1
|
Gibert A, Schatz B, Buscail R, Nguyen D, Baguette M, Barthes N, Bertrand JAM. Floral phenotypic divergence and genomic insights in an Ophrys orchid: unraveling early speciation processes. THE NEW PHYTOLOGIST 2025; 245:849-868. [PMID: 39557060 DOI: 10.1111/nph.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/22/2024] [Indexed: 11/20/2024]
Abstract
Adaptive radiation in Ophrys orchids leads to complex floral phenotypes that vary in scent, color and shape. Using a novel pipeline to quantify these phenotypes, we investigated trait divergence at early stages of speciation in six populations of Ophrys aveyronensis experiencing recent allopatry. By integrating different genetic/genomic techniques, we investigated: variation and integration of floral components (scent, color and shape); phenotypes and genomic regions under divergent selection; and the genomic bases of trait variation. We identified a large genomic island of divergence, likely associated with phenotypic variation in particular in floral odor. We detected potential divergent selection on macular color, while stabilizing selection was suspected on floral morphology and for several volatile olfactive compounds. We also identified candidate genes involved in anthocyanin and in steroid biosynthesis pathways associated with standing genetic variation in color and odor. This study sheds light on early differentiation in Ophrys, revealing patterns that often become invisible over time, that is the geographic mosaic of traits under selection and the early appearance of strong genomic divergence. It also supports a crucial genomic region for future investigation and highlights the value of a multifaceted approach in unraveling speciation within taxa with large genomes.
Collapse
Affiliation(s)
- Anaïs Gibert
- Laboratoire Génome et Développement des Plantes (LGDP) UMR 5096, Université de Perpignan Via Domitia (UPVD) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD), EMR 269 MANGO, Perpignan, F-66860, France
| | - Bertrand Schatz
- Centre d'Etude d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Université Montpellier - EPHE - IRD, Montpellier, 34090, France
| | - Roselyne Buscail
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110, Université de Perpignan Via Domitia - CNRS, Perpignan, F-66860, France
| | - Dominique Nguyen
- Laboratoire Génome et Développement des Plantes (LGDP) UMR 5096, Université de Perpignan Via Domitia (UPVD) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD), EMR 269 MANGO, Perpignan, F-66860, France
| | - Michel Baguette
- Institut Systématique, Évolution, Biodiversité (ISEB), UMR 7205, Museum National d'Histoire Naturelle (MNHN) - Centre National de la Recherche Scientifique (CNRS) - Sorbonne Université - École Pratique des Hautes Études (EPHE), Université des Antilles, Paris, F-75005, France
- Station d'Écologie Théorique et Expérimentale (SETE), UMR 5321, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Moulis, F-09200, France
| | - Nicolas Barthes
- Station d'Écologie Théorique et Expérimentale (SETE), UMR 5321, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Moulis, F-09200, France
| | - Joris A M Bertrand
- Laboratoire Génome et Développement des Plantes (LGDP) UMR 5096, Université de Perpignan Via Domitia (UPVD) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD), EMR 269 MANGO, Perpignan, F-66860, France
| |
Collapse
|
2
|
Shan Q, Wan Y, Liang J, He W, Zeng J, Liang W, Xiong S, Zhang M, Wang B, Zou X, Xiong C, Liu F. HS-SPME combined with GC-MS and GC-O for characterization of key aroma-active compounds in fruity and grassy peppers ( Capsicum chinense Jacq.). Food Chem X 2024; 24:101944. [PMID: 39582655 PMCID: PMC11585830 DOI: 10.1016/j.fochx.2024.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pepper (Capsicum spp.) is highly popular due to its unique flavor. However, there was limited research on the primary volatiles that influence the different flavors of fresh peppers. In this study, peppers with three aroma compound types denoted as "grassy," "fruity," and "no special aroma" (control) were analyzed using sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Altogether, 393 volatiles were identified by GC-MS, and the main volatiles in peppers (C. chinense Jacq.) were esters and terpenoids. GC-O and relative odor activity value analysis revealed that 2-isobutyl-3-methoxypyrazine had a highly bitter, spicy aroma intensity in all peppers. Hexanal and trans-2-hexenal were the main aroma-active compounds in grassy peppers. In addition, citronellal was determined to be a crucial aroma-active compound in fruity peppers. This study offers a theoretical foundation for guiding the growth of the pepper processing industry and breeding.
Collapse
Affiliation(s)
- Qingyun Shan
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yu Wan
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jude Liang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wanjuan He
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zeng
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wenhui Liang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Siwei Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Meiling Zhang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Bing Wang
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xuexiao Zou
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Cheng Xiong
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Feng Liu
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Li H, Li Y, Yan H, Bao T, Shan X, Caissard JC, Zhang L, Fang H, Bai X, Zhang J, Wang Z, Wang M, Guan Q, Cai M, Ning G, Jia X, Boachon B, Baudino S, Gao X. The complexity of volatile terpene biosynthesis in roses: Particular insights into β-citronellol production. PLANT PHYSIOLOGY 2024; 196:1908-1922. [PMID: 39186538 DOI: 10.1093/plphys/kiae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The fascinating scent of rose (Rosa genus) flowers has captivated human senses for centuries, making them one of the most popular and widely used floral fragrances. Despite much progress over the last decade, many biochemical pathways responsible for rose scents remain unclear. We analyzed the floral scent compositions from various rose varieties and selected the modern cultivar Rosa hybrida "Double Delight" as a model system to unravel the formation of rose dominant volatile terpenes, which contribute substantially to the rose fragrance. Key genes involved in rose terpene biosynthesis were functionally characterized. Cytosolic geranyl diphosphate (GPP) generated by geranyl/farnesyl diphosphate synthase (G/FPPS1) catalysis played a pivotal role in rose scent production, and terpene synthases in roses play an important role in the formation of most volatile terpenes, but not for geraniol, citral, or β-citronellol. Subsequently, a series of enzymes, including geraniol dehydrogenase, geranial reductase, 12-oxophytodienoate reductase, and citronellal reductase, were characterized as involved in the transformation of geraniol to β-citronellol in roses through three successive steps. Interestingly, the β-citronellol biosynthesis pathway appears to be conserved in other horticultural plants like Lagerstroemia caudata and Paeonia lactiflora. Our findings provide valuable insights into the biosynthesis of rose volatile terpenoid compounds and offer essential gene resources for future breeding and molecular modification efforts.
Collapse
Affiliation(s)
- Hongjie Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Huijun Yan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Jean-Claude Caissard
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huiyi Fang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xue Bai
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Zhaoxuan Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Min Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Qian Guan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Ming Cai
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan 430070, China
| | - Xiujuan Jia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Benoît Boachon
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Sylvie Baudino
- CNRS UMR 5079, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Université Jean Monnet Saint-Etienne, Saint-Etienne 42023, France
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Shang J, Feng D, Liu H, Niu L, Li R, Li Y, Chen M, Li A, Liu Z, He Y, Gao X, Jian H, Wang C, Tang K, Bao M, Wang J, Yang S, Yan H, Ning G. Evolution of the biosynthetic pathways of terpene scent compounds in roses. Curr Biol 2024; 34:3550-3563.e8. [PMID: 39043188 DOI: 10.1016/j.cub.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
It is unknown why roses are terpene-rich, what the terpene biosynthetic pathways in roses are, and why only a few rose species produce the major components of rose essential oil. Here, we assembled two high-quality chromosome-level genomes for Rosa rugosa and Rosa multiflora. We also re-sequenced 132 individuals from the F1 progeny of Rosa chinensis and Rosa wichuraiana and 36 of their related species. Comparative genomics revealed that expansions of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and terpene synthases (TPSs) gene families led to the enrichment of terpenes in rose scent components. We constructed a terpene biosynthesis network and discovered a TPS-independent citronellol biosynthetic pathway in roses through gene functional identification, genome-wide association studies (GWASs), and multi-omic analysis. Heterologous co-expression of rose citronellol biosynthetic genes in Nicotiana benthamiana led to citronellol production. Our genomic and metabolomic analyses suggested that the copy number of NUDX1-1a determines the citronellol content in different rose species. Our findings not only provide additional genome and gene resources and reveal the evolution of the terpene biosynthetic pathways but also present a nearly complete scenario for terpenoid metabolism that will facilitate the breeding of fragrant roses and the production of rose oil.
Collapse
Affiliation(s)
- Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedang Feng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Heng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Lintao Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yajun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengxi Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China.
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 671003, China.
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
6
|
Wong DCJ, Wang Z, Perkins J, Jin X, Marsh GE, John EG, Peakall R. The road less taken: Dihydroflavonol 4-reductase inactivation and delphinidin anthocyanin loss underpins a natural intraspecific flower colour variation. Mol Ecol 2024:e17334. [PMID: 38651763 DOI: 10.1111/mec.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Grace Emma Marsh
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Emma Grace John
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Phillips RD, Bohman B, Peakall R, Reiter N. Sexual attraction with pollination during feeding behaviour: implications for transitions between specialized strategies. ANNALS OF BOTANY 2024; 133:273-286. [PMID: 37963103 PMCID: PMC11005785 DOI: 10.1093/aob/mcad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND AND AIMS Understanding the origin of pollination by sexual deception has proven challenging, as sexually deceptive flowers are often highly modified, making it hard to resolve how any intermediate forms between sexual deception and an ancestral strategy might have functioned. Here, we report the discovery in Caladenia (Orchidaceae) of sexual attraction with pollination during feeding behaviour, which may offer important clues for understanding shifts in pollination strategy. METHODS For Caladenia robinsonii, we observed the behaviour of its male wasp pollinator, Phymatothynnus aff. nitidus (Thynnidae), determined the site of release of the sexual attractant, and experimentally evaluated if the position of the attractant influences rates of attempted copulation and feeding behaviour. We applied GC-MS to test for surface sugar on the labellum. To establish if this pollination strategy is widespread in Caladenia, we conducted similar observations and experiments for four other Caladenia species. KEY RESULTS In C. robinsonii, long-range sexual attraction of the pollinator is via semiochemicals emitted from the glandular sepal tips. Of the wasps landing on the flower, 57 % attempted copulation with the sepal tips, while 27 % attempted to feed from the base of the labellum, the behaviour associated with pollen transfer. A similar proportion of wasps exhibited feeding behaviour when the site of odour release was manipulated. A comparable pollination strategy occurs in another phylogenetically distinct clade of Caladenia. CONCLUSIONS We document a previously overlooked type of sexual deception for orchids involving long-distance sexual attraction, but with pollination occurring during feeding behaviour at the labellum. We show this type of sexual deception operates in other Caladenia species and predict that it is widespread across the genus. Our findings may offer clues about how an intermediate transitional strategy from a food-rewarding or food-deceptive ancestor operated during the evolution of sexual deception.
Collapse
Affiliation(s)
- Ryan D Phillips
- Department of Environment and Genetics and the Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia
- Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, WA 6005, Australia
| | - Björn Bohman
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Department of Plant Protection Biology, the Swedish University of Agricultural Sciences, Lomma 23422, Sweden
- School of Molecular Sciences, The University of Western Australia Crawley, WA 6009Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Noushka Reiter
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia
| |
Collapse
|
8
|
Martinelli L, Bihanic C, Bony A, Gros F, Conart C, Fiorucci S, Casabianca H, Schiets F, Chietera G, Boachon B, Blerot B, Baudino S, Jullien F, Saint-Marcoux D. Citronellol biosynthesis in pelargonium is a multistep pathway involving progesterone 5β-reductase and/or iridoid synthase-like enzymes. PLANT PHYSIOLOGY 2024; 194:1006-1023. [PMID: 37831417 DOI: 10.1093/plphys/kiad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Citronellol is a pleasant-smelling compound produced in rose (Rosa spp.) flowers and in the leaves of many aromatic plants, including pelargoniums (Pelargonium spp.). Although geraniol production has been well studied in several plants, citronellol biosynthesis has been documented only in crab-lipped spider orchid (Caladenia plicata) and its mechanism remains open to question in other species. We therefore profiled 10 pelargonium accessions using RNA sequencing and gas chromatography-MS analysis. Three enzymes from the progesterone 5β-reductase and/or iridoid synthase-like enzymes (PRISE) family were characterized in vitroand subsequently identified as citral reductases (named PhCIRs). Transgenic RNAi lines supported a role for PhCIRs in the biosynthesis of citronellol as well as in the production of mint-scented terpenes. Despite their high amino acid sequence identity, the 3 enzymes showed contrasting stereoselectivity, either producing mainly (S)-citronellal or a racemate of both (R)- and (S)-citronellal. Using site-directed mutagenesis, we identified a single amino acid substitution as being primarily responsible for the enzyme's enantioselectivity. Phylogenetic analysis of pelargonium PRISEs revealed 3 clades and 7 groups of orthologs. PRISEs from different groups exhibited differential affinities toward substrates (citral and progesterone) and cofactors (NADH/NADPH), but most were able to reduce both substrates, prompting hypotheses regarding the evolutionary history of PhCIRs. Our results demonstrate that pelargoniums evolved citronellol biosynthesis independently through a 3-step pathway involving PRISE homologs and both citral and citronellal as intermediates. In addition, these enzymes control the enantiomeric ratio of citronellol thanks to small alterations of the catalytic site.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07455, Germany
| | - Camille Bihanic
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Aurélie Bony
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Florence Gros
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Corentin Conart
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice-UMR 7272, Université Côte d'Azur, CNRS, Nice 06108, France
| | - Hervé Casabianca
- Institut des Sciences Analytiques-UMR 5280, Université de Lyon, CNRS, Villeurbanne 69100, France
| | - Frédéric Schiets
- Institut des Sciences Analytiques-UMR 5280, Université de Lyon, CNRS, Villeurbanne 69100, France
| | | | - Benoît Boachon
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | | | - Sylvie Baudino
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Frédéric Jullien
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Denis Saint-Marcoux
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| |
Collapse
|
9
|
Bhat S, Sharma A, Sharma P, Singh K, Kundan M, Fayaz M, Wajid MA, Gairola S, Misra P. Development and analysis of de novo transcriptome assemblies of multiple genotypes of Cymbopogon spp. reveal candidate genes involved in the biosynthesis of aromatic monoterpenes. Int J Biol Macromol 2023; 253:127508. [PMID: 37865377 DOI: 10.1016/j.ijbiomac.2023.127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Despite the high economic value of the monoterpene-rich essential oils from different genotypes of Cymbopogon, the knowledge about the genes and metabolic route(s) involved in the biosynthesis of aromatic monoterpenes in this genus is limited. In the present study, a comprehensive transcriptome analysis of four genotypes of Cymbopogon, displaying diverse quantitative and qualitative profiles of volatile monoterpenes in their essential oils has been carried out. The comparative analysis of the deduced protein sequences corresponding to the transcriptomes of the four genotypes revealed 4609 genotype-specific orthogroups, which might contribute in defining genotype-specific phenotypes. The transcriptome data mining led to the identification of unigenes involved in the isoprenogenesis. The homology searches, combined with the phylogenetic and expression analyses provided information about candidate genes concerning the biosynthesis of monoterpene aldehyde, monoterpene alcohol, and monoterpene esters. In addition, the present study suggests a potential role of geranial reductase like enzyme in the biosynthesis of monoterpene aldehyde in Cymbopogon spp. The detailed analysis of the candidate pathway genes suggested that multiple enzymatic routes might be involved in the biosynthesis of aromatic monoterpenes in the genus Cymbopogon. The present study provides deeper insights into the biosynthesis of monoterpenes, which will be useful for the genetic improvement of these aromatic grasses.
Collapse
Affiliation(s)
- Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arti Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanwaljeet Singh
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Botany and Microbiology, HNB Garhwal University, Srinagar, Garhwal 246174, Uttarakhand, India.
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Li S, Bohman B, Flematti GR, Jayatilaka D. Determining the parent and associated fragment formulae in mass spectrometry via the parent subformula graph. J Cheminform 2023; 15:104. [PMID: 37936244 PMCID: PMC10631010 DOI: 10.1186/s13321-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Identifying the molecular formula and fragmentation reactions of an unknown compound from its mass spectrum is crucial in areas such as natural product chemistry and metabolomics. We propose a method for identifying the correct candidate formula of an unidentified natural product from its mass spectrum. The method involves scoring the plausibility of parent candidate formulae based on a parent subformula graph (PSG), and two possible metrics relating to the number of edges in the PSG. This method is applicable to both electron-impact mass spectrometry (EI-MS) and tandem mass spectrometry (MS/MS) data. Additionally, this work introduces the two-dimensional fragmentation plot (2DFP) for visualizing PSGs. RESULTS Our results suggest that incorporating information regarding the edges of the PSG results in enhanced performance in correctly identifying parent formulae, in comparison to the more well-accepted "MS/MS score", on the 2016 Computational Assessment of Small Molecule Identification (CASMI 2016) data set (76.3 vs 58.9% correct formula identification) and the Research Centre for Toxic Compounds in the Environment (RECETOX) data set (66.2% vs 59.4% correct formula identification). In the extension of our method to identify the correct candidate formula from complex EI-MS data of semiochemicals, our method again performed better (correct formula appearing in the top 4 candidates in 20/23 vs 7/23 cases) than the MS/MS score, and enables the rapid identification of both the correct parent ion mass and the correct parent formula with minimal expert intervention. CONCLUSION Our method reliably identifies the correct parent formula even when the mass information is ambiguous. Furthermore, should parent formula identification be successful, the majority of associated fragment formulae can also be correctly identified. Our method can also identify the parent ion and its associated fragments in EI-MS spectra where the identity of the parent ion is unclear due to low quantities and overlapping compounds. Finally, our method does not inherently require empirical fitting of parameters or statistical learning, meaning it is easy to implement and extend upon. SCIENTIFIC CONTRIBUTION Developed, implemented and tested new metrics for assessing plausibility of candidate molecular formulae obtained from HR-MS data.
Collapse
Affiliation(s)
- Sean Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Björn Bohman
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 23422, Lomma, Sweden
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| |
Collapse
|
11
|
Peakall R. Pollination by sexual deception. Curr Biol 2023; 33:R489-R496. [PMID: 37279681 DOI: 10.1016/j.cub.2023.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The flower is arguably the centrepiece of angiosperm evolution. Its primary function is to secure pollination - the transfer of pollen from the anther (male) to the stigma (female). As plants are sessile organisms, the extraordinary diversity of flowers in large part reflects countless alternative evolutionary solutions to achieve this critical step in the flowering plant life cycle. The majority of flowering plants, some 87% by one estimate, depend on animals for pollination, with most of these paying for the service of pollination via food rewards of nectar or pollen. As in human economic systems, however, some cheating and deception occurs, with the pollination strategy of sexual deception being one such example.
Collapse
Affiliation(s)
- Rod Peakall
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
12
|
Wong DCJ, Pichersky E, Peakall R. Many different flowers make a bouquet: Lessons from specialized metabolite diversity in plant-pollinator interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102332. [PMID: 36652780 DOI: 10.1016/j.pbi.2022.102332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Flowering plants have evolved extraordinarily diverse metabolites that underpin the floral visual and olfactory signals enabling plant-pollinator interactions. In some cases, these metabolites also provide unusual rewards that specific pollinators depend on. While some metabolites are shared by most flowering plants, many have evolved in restricted lineages in response to the specific selection pressures encountered within different niches. The latter are designated as specialized metabolites. Recent investigations continue to uncover a growing repertoire of unusual specialized metabolites. Increased accessibility to cutting-edge multi-omics technologies (e.g. genome, transcriptome, proteome, metabolome) is now opening new doors to simultaneously uncover the molecular basis of their synthesis and their evolution across diverse plant lineages. Drawing upon the recent literature, this perspective discusses these aspects and, where known, their ecological and evolutionary relevance. A primer on omics-guided approaches to discover the genetic and biochemical basis of functional specialized metabolites is also provided.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
13
|
Pichersky E. Biochemistry and genetics of floral scent: a historical perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36995899 DOI: 10.1111/tpj.16220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.
Collapse
Affiliation(s)
- Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Debat H, Garcia ML, Bejerman N. Expanding the Repertoire of the Plant-Infecting Ophioviruses through Metatranscriptomics Data. Viruses 2023; 15:v15040840. [PMID: 37112821 PMCID: PMC10144540 DOI: 10.3390/v15040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Ophioviruses (genus Ophiovirus, family Aspiviridae) are plant-infecting viruses with non-enveloped, filamentous, naked nucleocapsid virions. Members of the genus Ophiovirus have a segmented single-stranded negative-sense RNA genome (ca. 11.3–12.5 kb), encompassing three or four linear segments. In total, these segments encode four to seven proteins in the sense and antisense orientation, both in the viral and complementary strands. The genus Ophiovirus includes seven species with viruses infecting both monocots and dicots, mostly trees, shrubs and some ornamentals. From a genomic perspective, as of today, there are complete genomes available for only four species. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and molecular characterization of 33 novel viruses with genetic and evolutionary cues of ophioviruses. Genetic distance and evolutionary insights suggest that all the detected viruses could correspond to members of novel species, which expand the current diversity of ophioviruses ca. 4.5-fold. The detected viruses increase the tentative host range of ophioviruses for the first time to mosses, liverwort and ferns. In addition, the viruses were linked to several Asteraceae, Orchidaceae and Poaceae crops/ornamental plants. Phylogenetic analyses showed a novel clade of mosses, liverworts and fern ophioviruses, characterized by long branches, suggesting that there is still plenty of unsampled hidden diversity within the genus. This study represents a significant expansion of the genomics of ophioviruses, opening the door to future works on the molecular and evolutionary peculiarity of this virus genus.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Correspondence: (H.D.); (N.B.)
| | - Maria Laura Garcia
- Instituto de Biotecnología y Biología Molecular (IBBM-CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115, La Plata 1900, Argentina
| | - Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Correspondence: (H.D.); (N.B.)
| |
Collapse
|
15
|
Bosman RN, Vervalle JAM, November DL, Burger P, Lashbrooke JG. Grapevine genome analysis demonstrates the role of gene copy number variation in the formation of monoterpenes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112214. [PMID: 37008487 PMCID: PMC10061021 DOI: 10.3389/fpls.2023.1112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Volatile organic compounds such as terpenes influence the quality parameters of grapevine through their contribution to the flavour and aroma profile of berries. Biosynthesis of volatile organic compounds in grapevine is relatively complex and controlled by multiple genes, the majority of which are unknown or uncharacterised. To identify the genomic regions that associate with modulation of these compounds in grapevine berries, volatile metabolic data generated via GC-MS from a grapevine mapping population was used to identify quantitative trait loci (QTLs). Several significant QTLs were associated with terpenes, and candidate genes were proposed for sesquiterpene and monoterpene biosynthesis. For monoterpenes, loci on chromosomes 12 and 13 were shown to be associated with geraniol and cyclic monoterpene accumulation, respectively. The locus on chromosome 12 was shown to contain a geraniol synthase gene (VvGer), while the locus on chromosome 13 contained an α-terpineol synthase gene (VvTer). Molecular and genomic investigation of VvGer and VvTer revealed that these genes were found in tandemly duplicated clusters, displaying high levels of hemizygosity. Gene copy number analysis further showed that not only did VvTer and VvGer copy numbers vary within the mapping population, but also across recently sequenced Vitis cultivars. Significantly, VvTer copy number correlated with both VvTer gene expression and cyclic monoterpene accumulation in the mapping population. A hypothesis for a hyper-functional VvTer allele linked to increased gene copy number in the mapping population is presented and can potentially lead to selection of cultivars with modulated terpene profiles. The study highlights the impact of VvTPS gene duplication and copy number variation on terpene accumulation in grapevine.
Collapse
Affiliation(s)
- Robin Nicole Bosman
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | | | - Danielle Lisa November
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Phyllis Burger
- Department for Crop Development, Agricultural Research Council - Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Kellenberger RT, Ponraj U, Delahaie B, Fattorini R, Balk J, Lopez-Gomollon S, Müller KH, Ellis AG, Glover BJ. Multiple gene co-options underlie the rapid evolution of sexually deceptive flowers in Gorteria diffusa. Curr Biol 2023; 33:1502-1512.e8. [PMID: 36963385 DOI: 10.1016/j.cub.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Gene co-option, the redeployment of an existing gene in an unrelated developmental context, is an important mechanism underlying the evolution of morphological novelty. In most cases described to date, novel traits emerged by co-option of a single gene or genetic network. Here, we show that the integration of multiple co-opted genetic elements facilitated the rapid evolution of complex petal spots that mimic female bee-fly pollinators in the sexually deceptive South African daisy Gorteria diffusa. First, co-option of iron homeostasis genes altered petal spot pigmentation, producing a color similar to that of female pollinators. Second, co-option of the root hair gene GdEXPA7 enabled the formation of enlarged papillate petal epidermal cells, eliciting copulation responses from male flies. Third, co-option of the miR156-GdSPL1 transcription factor module altered petal spot placement, resulting in better mimicry of female flies resting on the flower. The three genetic elements were likely co-opted sequentially, and strength of sexual deception in different G. diffusa floral forms strongly correlates with the presence of the three corresponding morphological alterations. Our findings suggest that gene co-options can combine in a modular fashion, enabling rapid evolution of novel complex traits.
Collapse
Affiliation(s)
- Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; CIRAD, UMR DIADE, Montpellier 34398, France; UMR DIADE, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 4JT, UK
| | - Sara Lopez-Gomollon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
17
|
Theodoridis S, Drakou EG, Hickler T, Thines M, Nogues-Bravo D. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet Health 2023; 7:e155-e163. [PMID: 36754471 DOI: 10.1016/s2542-5196(22)00317-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Medicinal plants and their bioactive molecules are integral components of nature and have supported the health of human societies for millennia. However, the prevailing view of medicinal biodiversity solely as an ecosystem-decoupled natural resource of commercial value prevents people from fully benefiting from the capacity of nature to provide medicines and from assessing the vulnerability of this capacity to the global environmental crisis. Emerging scientific and technological developments and traditional knowledge allow for appreciating medicinal plant resources from a planetary health perspective. In this Personal View, we highlight and integrate current knowledge that includes medicinal, biodiversity, and environmental change research in a transdisciplinary framework to evaluate natural medicinal resources and their vulnerability in the anthropocene. With Europe as an application case, we propose proxy spatial indicators for establishing the capacity, potential societal benefits, and economic values of native medicinal plant resources and the exposure of these resources to global environmental change. The proposed framework and indicators aim to be a basis for transdisciplinary research on medicinal biodiversity and could guide decisions in addressing crucial multiple Sustainable Development Goals, from accessible global health care to natural habitat protection and restoration.
Collapse
Affiliation(s)
- Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
| | | | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Department of Physical Geography, Geosciences, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - David Nogues-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Perkins J, Hayashi T, Peakall R, Flematti GR, Bohman B. The volatile chemistry of orchid pollination. Nat Prod Rep 2023; 40:819-839. [PMID: 36691832 DOI: 10.1039/d2np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to September 2022Orchids are renowned not only for their diversity of floral forms, but also for their many and often highly specialised pollination strategies. Volatile semiochemicals play a crucial role in the attraction of a wide variety of insect pollinators of orchids. The compounds produced by orchid flowers are as diverse as the pollinators they attract, and here we summarise some of the chemical diversity found across orchid taxa and pollination strategies. We focus on compounds that have been experimentally demonstrated to underpin pollinator attraction. We also highlight the structural elucidation and synthesis of a select subset of important orchid pollinator attractants, and discuss the ecological significance of the discoveries, the gaps in our current knowledge of orchid pollination chemistry, and some opportunities for future research in this field.
Collapse
Affiliation(s)
- James Perkins
- Research School of Biology, The Australian National University, Australia
| | - Tobias Hayashi
- Research School of Biology, The Australian National University, Australia
| | - Rod Peakall
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Australia
| | - Björn Bohman
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia.,Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden.
| |
Collapse
|
19
|
Bejerman N, Dietzgen RG, Debat H. Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses. Pathogens 2022; 11:1127. [PMID: 36297184 PMCID: PMC9608074 DOI: 10.3390/pathogens11101127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 09/28/2023] Open
Abstract
The genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 and 2018. More recently, the number of known varicosaviruses has substantially increased in concert with the extensive use of high-throughput sequencing platforms and data mining approaches. The novel varicosaviruses have revealed not only sequence diversity, but also plasticity in terms of genome architecture, including a virus with a tentatively unsegmented genome. Here, we report the discovery of 45 novel varicosavirus genomes which were identified in publicly available metatranscriptomic data. The identification, assembly, and curation of the raw Sequence Read Archive reads has resulted in 39 viral genome sequences with full-length coding regions and 6 with nearly complete coding regions. The highlights of the obtained sequences include eight varicosaviruses with unsegmented genomes, which are linked to a phylogenetic clade associated with gymnosperms. These findings have resulted in the most complete phylogeny of varicosaviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant rhabdoviruses. Thus, the extensive use of sequence data mining for virus discovery has allowed us to unlock of the hidden genetic diversity of varicosaviruses, the largely neglected plant rhabdoviruses.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| |
Collapse
|
20
|
Koyama K, Kono A, Ban Y, Bahena-Garrido SM, Ohama T, Iwashita K, Fukuda H, Goto-Yamamoto N. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). BMC PLANT BIOLOGY 2022; 22:458. [PMID: 36151514 PMCID: PMC9503205 DOI: 10.1186/s12870-022-03842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although grapes accumulate diverse groups of volatile compounds, their genetic regulation in different cultivars remains unelucidated. Therefore, this study investigated the volatile composition in the berries of an interspecific hybrid population from a Vitis labruscana 'Campbell Early' (CE) × Vitis vinifera 'Muscat of Alexandria' (MA) cross to understand the relationship among volatile compounds and their genetic regulation. Then, a quantitative trait locus (QTL) analysis of its volatile compounds was conducted. RESULTS While MA contained higher concentrations of monoterpenes and norisoprenoids, CE contained higher concentrations of C6 compounds, lactones and shikimic acid derivatives, including volatiles characteristic to American hybrids, i.e., methyl anthranilate, o-aminoacetophenone and mesifurane. Furthermore, a cluster analysis of volatile profiles in the hybrid population discovered ten coordinately modulated free and bound volatile clusters. QTL analysis identified a major QTL on linkage group (LG) 5 in the MA map for 14 monoterpene concentrations, consistent with a previously reported locus. Additionally, several QTLs detected in the CE map affected the concentrations of specific monoterpenes, such as linalool, citronellol and 1,8-cineol, modifying the monoterpene composition in the berries. As for the concentrations of five norisoprenoids, a major common QTL on LG2 was discovered first in this study. Several QTLs with minor effects were also discovered in various volatile groups, such as lactones, alcohols and shikimic acid derivatives. CONCLUSIONS An overview of the profiles of aroma compounds and their underlying QTLs in a population of interspecific hybrid grapes in which muscat flavor compounds and many other aroma compounds were mixed variously were elucidated. Coordinate modulation of the volatile clusters in the hybrid population suggested an independent mechanism for controlling the volatiles of each group. Accordingly, specific QTLs with significant effects were observed for terpenoids, norisoprenoids and some volatiles highly contained in CE berries.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Yusuke Ban
- Western Region Agricultural Research Center (Kinki, Chugoku and Shikoku Regions), NARO, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan
| | | | - Tomoko Ohama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hisashi Fukuda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
21
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|
22
|
Drakolide Structure-activity Relationships for Sexual Attraction of Zeleboria Wasp Pollinator. J Chem Ecol 2022; 48:323-336. [DOI: 10.1007/s10886-021-01324-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
|
23
|
Three Chemically Distinct Floral Ecotypes in Drakaea livida, an Orchid Pollinated by Sexual Deception of Thynnine Wasps. PLANTS 2022; 11:plants11030260. [PMID: 35161242 PMCID: PMC8840651 DOI: 10.3390/plants11030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
Sexually deceptive orchids are unusual among plants in that closely related species typically attract different pollinator species using contrasting blends of floral volatiles. Therefore, intraspecific variation in pollinator attraction may also be underpinned by differences in floral volatiles. Here, we tested for the presence of floral ecotypes in the sexually deceptive orchid Drakaea livida and investigated if the geographic range of floral ecotypes corresponded to variation in pollinator availability. Pollinator choice trials revealed the presence of three floral ecotypes within D. livida that each attracts a different species of thynnine wasp as a pollinator. Surveys of pollinator distribution revealed that the distribution of one of the ecotypes was strongly correlated with that of its pollinator, while another pollinator species was present throughout the range of all three ecotypes, demonstrating that pollinator availability does not always correlate with ecotype distribution. Floral ecotypes differed in chemical volatile composition, with a high degree of separation evident in principal coordinate analysis. Some compounds that differed between ecotypes, including pyrazines and (methylthio)phenols, are known to be electrophysiologically active in thynnine wasp antennae. Based on differences in pollinator response and floral volatile profile, the ecotypes represent distinct entities and should be treated as such in conservation management.
Collapse
|
24
|
Phillips RD, Bohman B, Peakall R. Pollination by nectar-foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:702-710. [PMID: 33998761 DOI: 10.1111/plb.13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The Pompilidae is a cosmopolitan and diverse group of wasps, which commonly feed on nectar. However, pollination systems specialized on pompilids have not been documented in detail outside of southern Africa. Here, we studied Caladenia drummondii (Orchidaceae) where, based on floral traits and preliminary field observations, we predicted pollination by sexual deception of male pompilid wasps. Detailed pollinator observations were undertaken using floral baiting experiments at sites spanning 375 km. Following evidence for nectar on some flowers of C. drummondii, the sugar content on the labellum was analysed by GC-MS. Floral spectral reflectance was measured and compared with Caladenia using other pollination strategies. Males of a single species of pompilid wasp (Calopompilus sp.) were the only visitors capable of pollinating C. drummondii. Attempts to feed from the surface of the labellum were frequent and were associated with removal and deposition of pollinia. GC-MS analysis revealed larger quantities of sugar on the labellum than reported in other Caladenia species. While no sexual or courtship behaviour was observed, the zig-zag and circling flight on approach to the flower is suggestive of odour-based attraction. Floral spectral reflectance was similar to sexually deceptive Caladenia. This study represents the first confirmation of a specialized pompilid pollination system outside of Africa. Although pollination occurs during nectar-foraging, long-distance sexual attraction cannot be ruled out as an explanation for the exclusive male visitation. The similarity in floral spectral reflectance to other Caladenia indicates colour may not impose a constraint on the evolution of pollination by pompilids.
Collapse
Affiliation(s)
- R D Phillips
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, Australia
- Department of Biodiversity Conservation and Attractions, Kings Park Science, Kings Park, WA, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - B Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Science, Alnarp, Sweden
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - R Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
25
|
Bergman ME, Bhardwaj M, Phillips MA. Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose-scented geranium (Pelargonium graveolens). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:493-510. [PMID: 33949016 DOI: 10.1111/tpj.15304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Geraniol, citronellol and their esters are high-value acyclic monoterpenes used in food technology, perfumery and cosmetics. A major source of these compounds is the essential oil of rose-scented geraniums of the genus Pelargonium. We provide evidence that their biosynthesis mainly takes place in the cytosol of glandular trichomes via geranyl monophosphate (GP) through the action of a Nudix hydrolase. Protein preparations could convert geranyl diphosphate (GDP) to geraniol in in vitro assays, a process which could be blocked by inorganic phosphatase inhibitors, suggesting a two-step conversion of GDP to geraniol. Pelargonium graveolens chemotypes enriched in either geraniol or (-)-citronellol accumulate GP or citronellyl monophosphate (CP), respectively, the presumed precursors to their monoterpenoid end products. Geranyl monophosphate was highly enriched in isolated glandular trichomes of lines producing high amounts of geraniol. In contrast, (-)-isomenthone-rich lines are depleted in these prenyl monophosphates and monoterpene alcohols and instead feature high levels of GDP, the precursor to plastidic p-menthane biosynthesis. A Nudix hydrolase cDNA from Pelargonium glandular trichomes, dubbed PgNdx1, encoded a cytosolic protein capable of hydrolyzing GDP to GP with a KM of about 750 nm but is only weakly active towards farnesyl diphosphate. In citronellol-rich lines, GDP, GP and CP were detected in nearly equimolar amounts, while citronellyl diphosphate was absent, suggesting that citronellol biosynthesis may proceed by reduction of GP to CP in this species. These findings highlight the cytosol as a compartment that supports monoterpene biosynthesis and expands the roles of Nudix hydrolases in the biosynthesis of plant volatiles.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mridula Bhardwaj
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Michael A Phillips
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
26
|
Hayashi T, Bohman B, Scaffidi A, Peakall R, Flematti GR. An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Curr Biol 2021; 31:1954-1961.e7. [DOI: 10.1016/j.cub.2021.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
|
27
|
Brock RE, Cini A, Sumner S. Ecosystem services provided by aculeate wasps. Biol Rev Camb Philos Soc 2021; 96:1645-1675. [PMID: 33913243 DOI: 10.1111/brv.12719] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
The aculeate wasps are one of the most diverse and speciose insect taxa; they are omnipresent across ecosystems and exhibit diverse co-evolutionary and exploitative associations with other organisms. There is widespread conjecture that aculeate wasps are likely to perform essential ecological and economic services of importance to the health, well-being and nutritional needs of our planet. However, the scope and nature of the ecosystem services they provide are not well understood relative to other insect groups (e.g. bees, butterflies, beetles); an appreciation of their value is further tarnished by their public reputation as pointless pests. Here, we conduct the first comprehensive review of how aculeate wasps contribute to the four main areas of ecosystem services: regulatory, provisioning, supporting and cultural services. Uniting data from a large but previously disconnected literature on solitary and social aculeate wasps, we provide a synthesis on how these insects perform important ecosystem services as parasites, predators, biological indicators, pollinators, decomposers and seed dispersers; and their additional services as a sustainable alternative to meat for human consumption, and medicinal potential as sources of research leads for anti-microbials and cancer treatments. We highlight how aculeate wasps offer substantial, but largely overlooked, economic benefits through their roles in natural pest management and biological control programs. Accordingly, we provide data-driven arguments for reasons to consider the ecosystem service value of aculeate wasps on a par with other 'useful' insects (e.g. bees). Finally, we provide a research roadmap identifying the key areas of research required to capitalise better on the services provided by these important insects.
Collapse
Affiliation(s)
- Ryan E Brock
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, U.K
| | - Alessandro Cini
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.,Centre for Biodiversity & Environment Research, University College London, Medawar Building, Gower Street, London, WC1E 6BT, U.K
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, University College London, Medawar Building, Gower Street, London, WC1E 6BT, U.K
| |
Collapse
|
28
|
Cohen C, Liltved WR, Colville JF, Shuttleworth A, Weissflog J, Svatoš A, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol 2021; 31:1962-1969.e6. [PMID: 33770493 DOI: 10.1016/j.cub.2021.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Sexual mimicry is a complex multimodal strategy used by some plants to lure insects to flowers for pollination.1-4 It is notable for being highly species-specific and is typically mediated by volatiles belonging to a restricted set of chemical compound classes.3,4 Well-documented cases involve exploitation of bees and wasps (Hymenoptera)5,6 and flies (Diptera).7-9 Although beetles (Coleoptera) are the largest insect order and are well known as pollinators of both early and modern plants,10,11 it has been unclear whether they are sexually deceived by plants during flower visits.12,13 Here we report the discovery of an unambiguous case of sexual deception of a beetle: male longhorn beetles (Chorothyse hessei, Cerambycidae) pollinate the elaborate insectiform flowers of a rare southern African orchid (Disa forficaria), while exhibiting copulatory behavior including biting the antennae-like petals, curving the abdomen into the hairy lip cleft, and ejaculating sperm. The beetles are strongly attracted by (16S,9Z)-16-ethyl hexadec-9-enolide, a novel macrolide that we isolated from the floral scent. Structure-activity studies14,15 confirmed that chirality and other aspects of the structural geometry of the macrolide are critical for the attraction of the male beetles. These results demonstrate a new biological function for plant macrolides and confirm that beetles can be exploited through sexual deception to serve as pollinators.
Collapse
Affiliation(s)
- Callan Cohen
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - William R Liltved
- Compton Herbarium, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa
| | - Jonathan F Colville
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa; Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Adam Shuttleworth
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Jerrit Weissflog
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Benny Bytebier
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
29
|
Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol Ecol Resour 2021; 21:1118-1140. [PMID: 33453072 DOI: 10.1111/1755-0998.13327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.
Collapse
Affiliation(s)
- Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia
| | - Monica Ruibal
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
30
|
Martel C, Neubig KM, Williams NH, Ayasse M. The uncinate viscidium and floral setae, an evolutionary innovation and exaptation to increase pollination success in the Telipogon alliance (Orchidaceae: Oncidiinae). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00457-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Nguyen TD, O’Connor SE. The Progesterone 5β-Reductase/Iridoid Synthase Family: A Catalytic Reservoir for Specialized Metabolism across Land Plants. ACS Chem Biol 2020; 15:1780-1787. [PMID: 32501002 PMCID: PMC7467569 DOI: 10.1021/acschembio.0c00220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Iridoids are plant-derived
terpenoids with a rich array of bioactivities.
The key step in iridoid skeleton formation is the reduction of 8-oxogeranial
by certain members of the progesterone 5β-reductase/iridoid
synthase (PRISE) family of short-chain alcohol dehydrogenases. Other
members of the PRISE family have previously been implicated in the
biosynthesis of the triterpenoid class of cardenolides, which requires
the reduction of progesterone. Here, we explore the occurrence and
activity of PRISE across major lineages of plants. We observed trace
activities toward either 8-oxogeranial or progesterone in all PRISEs,
including those from nonseed plants and green algae. Phylogenetic
analysis, coupled with enzymatic assays, show that these activities
appear to have become specialized in specific angiosperm lineages.
This broad analysis of the PRISE family provides insight into how
these enzymes evolved in plants and also suggests that iridoid synthase
activity is an ancestral trait in all land plants, which might have
contributed to the rise of iridoid metabolites.
Collapse
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
32
|
Identification of ( Z)-8-Heptadecene and n-Pentadecane as Electrophysiologically Active Compounds in Ophrys insectifera and Its Argogorytes Pollinator. Int J Mol Sci 2020; 21:ijms21020620. [PMID: 31963543 PMCID: PMC7014428 DOI: 10.3390/ijms21020620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually deceptive orchids typically depend on specific insect species for pollination, which are lured by sex pheromone mimicry. European Ophrys orchids often exploit specific species of wasps or bees with carboxylic acid derivatives. Here, we identify the specific semiochemicals present in O. insectifera, and in females of one of its pollinator species, Argogorytes fargeii. Headspace volatile samples and solvent extracts were analysed by GC-MS and semiochemicals were structurally elucidated by microderivatisation experiments and synthesis. (Z)-8-Heptadecene and n-pentadecane were confirmed as present in both O. insectifera and A. fargeii female extracts, with both compounds being found to be electrophysiologically active to pollinators. The identified semiochemicals were compared with previously identified Ophrys pollinator attractants, such as (Z)-9 and (Z)-12-C27-C29 alkenes in O. sphegodes and (Z)-9-octadecenal, octadecanal, ethyl linoleate and ethyl oleate in O. speculum, to provide further insights into the biosynthesis of semiochemicals in this genus. We propose that all these currently identified Ophrys semiochemicals can be formed biosynthetically from the same activated carboxylic acid precursors, after a sequence of elongation and decarbonylation reactions in O. sphegodes and O. speculum, while in O. insectifera, possibly by decarbonylation without preceding elongation.
Collapse
|
33
|
Bohman B, Tan MMY, Phillips RD, Scaffidi A, Sobolev AN, Moggach SA, Flematti GR, Peakall R. A Specific Blend of Drakolide and Hydroxymethylpyrazines: An Unusual Pollinator Sexual Attractant Used by the Endangered Orchid
Drakaea micrantha. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| | - Monica M. Y. Tan
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Ryan D. Phillips
- Research School of Biology Australian National University Canberra ACT 2600 Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science, 1 Kattidj Close West Perth WA 6005 Australia
- Department of Ecology Environment and Evolution La Trobe University Melbourne Melbourne Victoria 3086 Australia
| | - Adrian Scaffidi
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Stephen A. Moggach
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Gavin R. Flematti
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Rod Peakall
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
34
|
Bohman B, Tan MMY, Phillips RD, Scaffidi A, Sobolev AN, Moggach SA, Flematti GR, Peakall R. A Specific Blend of Drakolide and Hydroxymethylpyrazines: An Unusual Pollinator Sexual Attractant Used by the Endangered Orchid
Drakaea micrantha. Angew Chem Int Ed Engl 2019; 59:1124-1128. [DOI: 10.1002/anie.201911636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/31/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| | - Monica M. Y. Tan
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Ryan D. Phillips
- Research School of Biology Australian National University Canberra ACT 2600 Australia
- Department of Biodiversity Conservation and Attractions Kings Park Science, 1 Kattidj Close West Perth WA 6005 Australia
- Department of Ecology Environment and Evolution La Trobe University Melbourne Melbourne Victoria 3086 Australia
| | - Adrian Scaffidi
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Stephen A. Moggach
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Gavin R. Flematti
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
| | - Rod Peakall
- School of Molecular Sciences The University of Western Australia Crawley WA 6009 Australia
- Research School of Biology Australian National University Canberra ACT 2600 Australia
| |
Collapse
|
35
|
Yan G, Liu S, Schlink AC, Flematti GR, Brodie BS, Bohman B, Greeff JC, Vercoe PE, Hu J, Martin GB. Volatiles from Merino fleece evoke antennal and behavioural responses in the Australian sheep blow fly Lucilia cuprina. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:491-497. [PMID: 31136024 DOI: 10.1111/mve.12383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
To identify flystrike-related volatile compounds in wool from Merino sheep, the attractiveness of wool to Lucilia cuprina Wiedmann (Diptera: Calliphoridae) was examined. First, a selection of wool samples guided by previous knowledge of sheep lines, predicted to be more susceptible or more resistant to flystrike, was tested. The attractiveness of the 10 samples selected was not associated with field susceptibility: two samples from the more resistant line were identified as most attractive and two samples from the more susceptible line were identified as least attractive, based on the behavioural assays with gravid flies. Comparison of the headspace volatiles of these samples, using solid phase microextraction and gas chromatography-mass spectrometry-electroantennographic detection, revealed octanal and nonanal to be present in the attractive wool samples that elicited responses from the fly antenna. Furthermore, the two compounds were not present in wool that was least attractive to L. cuprina. In laboratory bioassays, octanal and nonanal evoked antennal and behavioural responses in gravid L. cuprina, thus confirming their potential role as semiochemicals responsible for attracting L. cuprina to Merino sheep.
Collapse
Affiliation(s)
- G Yan
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - S Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - A C Schlink
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - G R Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - B S Brodie
- Department of Biological Sciences, Ohio University, Athens, OH, U.S.A
| | - B Bohman
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - J C Greeff
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - P E Vercoe
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - J Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - G B Martin
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
36
|
Martel C, Francke W, Ayasse M. The chemical and visual bases of the pollination of the Neotropical sexually deceptive orchid Telipogon peruvianus. THE NEW PHYTOLOGIST 2019; 223:1989-2001. [PMID: 31074029 DOI: 10.1111/nph.15902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Deception of floral visitors in pollination systems is widely distributed among flowering plants. In deceptive systems, the flower (or part of it) or inflorescence mimics either a specific or an unspecific model to attract pollinators. A previous study showed that Telipogon peruvianus flowers developed sexual deception for pollination. However, it was unknown which stimuli were playing a role in pollination. Therefore, we aim to throw some light onto these questions using colour and chemical analysis and biotests. Interestingly, using spectral reflectance, we show here that the flowers present high contrast similar to that produced by a female tachinid fly sitting on a daisy inflorescence, which is used as food resource. We also tested the role of chemical signals in pollinator attraction by collecting floral and female extracts for chemical and electrophysiological analyses, and carried out behavioural tests. For biotests, various treatments, including synthetic mixtures of the electrophysiologically active compounds found in common in females and flowers, have demonstrated that T. peruvianus flowers mimic the sexual pheromone of their pollinator's females. Thus, we give evidence that T. peruvianus flowers mimic a model composed of two organisms. Our study contributes to the understanding of the evolution of deceptive pollination.
Collapse
Affiliation(s)
- Carlos Martel
- Institute of Evolutionary Ecology and Conservation Genomics, Universität Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Wittko Francke
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Universität Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
37
|
Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. INSECTS 2019; 10:insects10080241. [PMID: 31390759 PMCID: PMC6723273 DOI: 10.3390/insects10080241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.
Collapse
Affiliation(s)
- Ricardo Barbosa-Cornelio
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Fernando Cantor
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| |
Collapse
|
38
|
Wong DCJ, Amarasinghe R, Falara V, Pichersky E, Peakall R. Duplication and selection in β-ketoacyl-ACP synthase gene lineages in the sexually deceptive Chiloglottis (Orchidaceace). ANNALS OF BOTANY 2019; 123:1053-1066. [PMID: 30789664 PMCID: PMC6589519 DOI: 10.1093/aob/mcz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/05/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS The processes of gene duplication, followed by divergence and selection, probably underpin the evolution of floral volatiles crucial to plant-insect interactions. The Australian sexually deceptive Chiloglottis orchids use a class of 2,5-dialkylcyclohexan-1,3-dione volatiles or 'chiloglottones' to attract specific male wasp pollinators. Here, we explore the expression and evolution of fatty acid pathway genes implicated in chiloglottone biosynthesis. METHODS Both Chiloglottis seminuda and C. trapeziformis produce chiloglottone 1, but only the phylogenetically distinct C. seminuda produces this volatile from both the labellum callus and glandular sepal tips. Transcriptome sequencing and tissue-specific contrasts of the active and non-active floral tissues was performed. The effects of the fatty acid synthase inhibitor cerulenin on chiloglottone production were tested. Patterns of selection and gene evolution were investigated for fatty acid pathway genes. KEY RESULTS Tissue-specific differential expression of fatty acid pathway transcripts was evident between active and non-active floral tissues. Cerulenin significantly inhibits chiloglottone 1 production in the active tissues of C. seminuda. Phylogenetic analysis of plant β-ketoacyl synthase I (KASI), a protein involved in fatty acid biosynthesis, revealed two distinct clades, one of which is unique to the Orchidaceae (KASI-2B). Selection analysis indicated a strong signal of positive selection at the split of KASI-2B followed by relaxed purifying selection in the Chiloglottis clade. CONCLUSIONS By capitalizing on a phylogenetically distinct Chiloglottis from earlier studies, we show that the transcriptional and biochemical dynamics linked to chiloglottone biosynthesis in active tissues are conserved across Chiloglottis. A combination of tissue-specific expression and relaxed purifying selection operating at specific fatty acid pathway genes may hold the key to the evolution of chiloglottones.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
- For correspondence. E-mail ,
| | - Ranamalie Amarasinghe
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
| | - Vasiliki Falara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
| |
Collapse
|
39
|
Bohman B, Weinstein AM, Phillips RD, Peakall R, Flematti GR. 2-(Tetrahydrofuran-2-yl)acetic Acid and Ester Derivatives as Long-Range Pollinator Attractants in the Sexually Deceptive Orchid Cryptostylis ovata. JOURNAL OF NATURAL PRODUCTS 2019; 82:1107-1113. [PMID: 30920220 DOI: 10.1021/acs.jnatprod.8b00772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sexually deceptive orchids achieve pollination by luring male insects to flowers through chemical and sometimes visual mimicry of females. An extreme example of this deception occurs in Cryptostylis, one of only two genera where sexual deception is known to induce pollinator ejaculation. In the present study, bioassay-guided fractionations of Cryptostylis solvent extracts in combination with field bioassays were implemented to isolate and identify floral volatiles attractive to the pollinator Lissopimpla excelsa. ( S)-2-(Tetrahydrofuran-2-yl)acetic acid [( S)-1] and the ester derivatives methyl ( S)-2-(tetrahydrofuran-2-yl)acetate [( S)-2] and ethyl ( S)-2-(tetrahydrofuran-2-yl)acetate [( S)-3], all previously unknown semiochemicals, were confirmed to attract L. excelsa males in field bioassays. Chiral-phase GC and HPLC showed that the natural product 1 comprised a single enantiomer, its S-configuration being confirmed by synthesis of the two enantiomers from known enantiomers of tetrahydrofuran-2-carboxylic acid.
Collapse
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
| | - Alyssa M Weinstein
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
- Department of Ecology, Environment and Evolution , La Trobe University , Melbourne , Victoria 3086 , Australia
- Department of Biodiversity Conservation and Attractions , Kings Park Science , 1 Kattidj Close , West Perth , WA , Australia
| | - Rod Peakall
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
| | - Gavin R Flematti
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
| |
Collapse
|
40
|
de Jager ML, Peakall R. Experimental examination of pollinator-mediated selection in a sexually deceptive orchid. ANNALS OF BOTANY 2019; 123:347-354. [PMID: 29878057 PMCID: PMC6344214 DOI: 10.1093/aob/mcy083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Selection exerted by pollinators on flowers is predicted to occur along two distinct axes. While pollinator attraction to flowers is governed by pollinator preferences, pollen transfer efficiency is mediated by the mechanical fit of pollinators to flower morphology. Although pollinator attraction in sexually deceptive orchids is typically underpinned by floral odour, morphological traits are expected to play a vital role in mechanical fit during floral contact with pollinators. METHODS Here we utilize a comprehensive and novel procedure to test for pollinator-mediated selection through mechanical fit with the flower labellum in the orchid Chiloglottis trapeziformis. This approach combines detailed pollinator observations related to plant reproductive fitness with complementary experimental manipulation and phenotypic selection analysis. KEY RESULTS Experiments with virgin flowers revealed that pollen removal occurs only during vigorous pseudocopulation. This behaviour involves male wasps that grasp the insectiform callus structure on the labellum while probing the labellum tip in a forward orientation. Both orientation and duration of pseudocopulation were significant predictors of pollen removal, confirming a direct relationship between pollinator behaviour and plant fitness. Controlled floral manipulation that either shortened or elongated the distance between the callus and the labellum tip detected no change in pollinator attraction. The duration of pseudocopulation, however, was significantly reduced on flowers with shortened or elongated callus-tip distances, consistent with stabilizing selection. Phenotypic selection analysis confirmed this prediction in natural populations by uncovering evidence for stabilizing selection on the distance between the callus and the labellum tip. CONCLUSIONS Our experimental manipulations and selection analysis in natural populations thus demonstrate stabilizing selection on the distance from the callus to the labellum tip, and illustrate the utility of employing multiple approaches to confirm selection exerted by pollinators on floral form.
Collapse
Affiliation(s)
- Marinus L de Jager
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- For correspondence. E-mail
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
41
|
Blerot B, Martinelli L, Prunier C, Saint-Marcoux D, Legrand S, Bony A, Sarrabère L, Gros F, Boyer N, Caissard JC, Baudino S, Jullien F. Functional Analysis of Four Terpene Synthases in Rose-Scented Pelargonium Cultivars ( Pelargonium × hybridum) and Evolution of Scent in the Pelargonium Genus. FRONTIERS IN PLANT SCIENCE 2018; 9:1435. [PMID: 30483274 PMCID: PMC6240891 DOI: 10.3389/fpls.2018.01435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 05/26/2023]
Abstract
Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.
Collapse
Affiliation(s)
- Bernard Blerot
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
- IFF-LMR Naturals, Grasse, France
| | - Laure Martinelli
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Cécile Prunier
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Denis Saint-Marcoux
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | | | - Aurélie Bony
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Loïc Sarrabère
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Florence Gros
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Nicolas Boyer
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Frédéric Jullien
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| |
Collapse
|
42
|
Phillips RD, Peakall R. An experimental evaluation of traits that influence the sexual behaviour of pollinators in sexually deceptive orchids. J Evol Biol 2018; 31:1732-1742. [PMID: 30144355 DOI: 10.1111/jeb.13370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Pollination by sexual deception of male insects is perhaps one of the most remarkable cases of mimicry in the plant kingdom. However, understanding the influence of floral traits on pollinator behaviour in sexually deceptive plants is challenging, due to the risk of confounding changes in floral odour when manipulating morphology. Here, we investigated the floral traits influencing the sexual response of male Zaspilothynnus nigripes (Tiphiidae) wasps, a pollinator of two distantly related sexually deceptive orchids with contrasting floral architecture, Caladenia pectinata and Drakaea livida. In D. livida, the chemical sexual attractant is emitted from the labellum, whereas in C. pectinata, it is produced from the distal sepal tips, allowing manipulative experiments. When controlling for visual cues, there was no difference in long-distance attraction, although the floral odour of D. livida induced copulation more frequently than that of C. pectinata. The role of colour in pollinator sexual attraction was equivocal, indicating that colour may not be a strong constraint on the initial evolution of sexual deception. The frequency of wasp visitors landing on C. pectinata decreased when the amount of floral odour was reduced, but attempted copulation rates were enhanced when the source of floral odour was associated with the labellum. These latter variables may represent axes of selection that operate across many sexually deceptive species. Nonetheless, the observed variation in floral traits suggests flexibility among species in how sexual deception can be achieved.
Collapse
Affiliation(s)
- Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, WA, Australia.,Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
43
|
Yan G, Liu S, Schlink AC, Flematti GR, Brodie BS, Bohman B, Greeff JC, Vercoe PE, Hu J, Martin GB. Behavior and Electrophysiological Response of Gravid and Non-Gravid Lucilia cuprina (Diptera: Calliphoridae) to Carrion-Associated Compounds. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1958-1965. [PMID: 30085240 DOI: 10.1093/jee/toy115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/08/2023]
Abstract
The Australian blow fly, Lucilia cuprina Wiedmann (Diptera: Calliphoridae), is a major cause of myiasis (flystrike) in Merino sheep in Australia and New Zealand and, as a primary colonizer of fresh carrion, also an important species in forensic investigations. Olfaction is considered the most important cue for insects to rapidly locate carrion over long distances, so the first carrion visitors are predicted to be very sensitive to carrion-related volatile compounds. We studied the responses of the Australian blow fly, Lucilia cuprina, to the carrion-associated compounds dimethyl trisulfide (DMTS), butyric acid, 1-octen-3-ol and indole. We also tested 2-mercaptoethanol, a compound commonly used in fly traps in Australia. We investigated whether responses of the flies are affected by their ovarian status by comparing responses of gravid and non-gravid L. cuprina in electroantennography (EAG) and two-choice laboratory bioassays. All four compounds evoked an EAG response, while only DMTS evoked responses in gas chromatography-mass spectrometry electroantennographic detection (GCMS-EAD) analyses and two-choice bioassays. Gravid flies detected lower doses of the test compounds than non-gravid flies. Our results indicate that DMTS is an important semiochemical for L. cuprina to locate carrion resources, and has potential for use in fly traps for flystrike control. Our observations also suggest that the greater sensitivity of gravid L. cuprina allows them to find fresh carrion quickly to maximize reproductive success by avoiding unsuitable degraded carrion.
Collapse
Affiliation(s)
- Guanjie Yan
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Northwest Agriculture and Forestry University, College of Animal Science and Technology, Yangling, China
| | - Shimin Liu
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Department of Primary Industry and Regional Development, Livestock Industries, Agriculture and Food, South Perth, WA, Australia
| | - Anthony C Schlink
- Department of Primary Industry and Regional Development, Livestock Industries, Agriculture and Food, South Perth, WA, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Bekka S Brodie
- Department of Biological Sciences, Ohio University, Athens, OH
| | - Bjorn Bohman
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Johan C Greeff
- Department of Primary Industry and Regional Development, Livestock Industries, Agriculture and Food, South Perth, WA, Australia
| | - Philip E Vercoe
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Jianhong Hu
- Northwest Agriculture and Forestry University, College of Animal Science and Technology, Yangling, China
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
44
|
Comparative transcriptomics provides insight into the molecular basis of species diversification of section Trigonopedia (Cypripedium) on the Qinghai-Tibetan Plateau. Sci Rep 2018; 8:11640. [PMID: 30076357 PMCID: PMC6076244 DOI: 10.1038/s41598-018-30147-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/24/2018] [Indexed: 11/15/2022] Open
Abstract
Deceptive pollination is key to the species richness of Orchidaceae. However, the genetic basis of species diversification is still under study. Section Trigonopedia is a monophyletic clade of genus Cypripedium distributed in the southwest of China. The species of this section are pollinated by different flies. Pollinator differentiation makes section Trigonopedia an ideal group for studying the genetic basis underlying species diversification. Here, we sequenced the transcriptomes of eight species of the genus Cypripedium, including six co-flowering species of section Trigonopedia and two species outside this section as an outgroup. We reconstructed the phylogeny of the section with the combined 1572 single-copy genes extracted from the eight species and produced a highly resolved tree of the section. Furthermore, we combined substitution rate estimation and differential expression analysis to identify candidate genes, including genes related to floral scent synthesis and environmental adaptation, involved in species differentiation. Field investigations showed that these species have adapted to different habitats. We propose that the species diversification in this section is initiated by floral scent differentiation, followed by habitat differentiation, finally leading to speciation. This study sheds novel light on the diversification of closely related orchid species in the Qinghai-Tibetan region.
Collapse
|
45
|
Comparative transcriptome analysis provides global insight into gene expression differences between two orchid cultivars. PLoS One 2018; 13:e0200155. [PMID: 29975782 PMCID: PMC6033423 DOI: 10.1371/journal.pone.0200155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
The orchids GL and YL are two cultivars of Cymbidium longibracteatum. YL displays an obviously yellowing rhizome and yellow leaves, while GL ('Longchangsu') shows dark green leaves and greenish rhizome. But the molecular mechanism for the differences between the two cultivars is poorly understood. In the present study, we showed that the structure of chloroplasts was significantly damaged in YL. Biochemical analysis uncovered the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid were notably decreased in YL. Using RNA-Seq technology, more than 38 million clean reads were generated in each pool, and 116,422 unigenes were assembled de novo. 6,660 unigenes with differential expression patterns (FDR≤0.01 and |log2 ratio|≥1) were totally identified between the two cultivars. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed unigenes (DEGs) suggested 33 KEGG pathways were notably enriched, including biological processes such as “phenylpropanoid biosynthesis”, “phagosome”, “starch and sucrose metabolism”, “drug metabolism—cytochrome P450”, “fatty acid elongation”, and “flavone and flavonol biosynthesis”. Further analysis revealed that chlorophyll degeneration related unigene (c48794_g1) and flavonoid biosynthesis related unigenes (c16388_g1, c48963_g1, c63571_g1, c4492_g1, c52282_g1, c78740_g1, c4645_g1) were up-regulated while carotenoid biosynthesis related unigene (c7212_g1) were down-regulated in YL. Additionally, six of NAC, R2R3-MYB, bHLH transcription factors (c42861_g1, c105949_g1, c61265_g1, c42659_g1, c82171_g1, c19158_g1) might be involved in regulation of pigment biosynthesis. The chlorophyll degeneration and the flavonoid biosynthesis related unigenes up-regulation together with the carotenoid biosynthesis related unigenes down-regulation may contribute to the yellowing phenotype of YL.
Collapse
|
46
|
Wong DCJ, Amarasinghe R, Pichersky E, Peakall R. Evidence for the Involvement of Fatty Acid Biosynthesis and Degradation in the Formation of Insect Sex Pheromone-Mimicking Chiloglottones in Sexually Deceptive Chiloglottis Orchids. FRONTIERS IN PLANT SCIENCE 2018; 9:839. [PMID: 29971087 PMCID: PMC6018206 DOI: 10.3389/fpls.2018.00839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
Hundreds of orchid species secure pollination by sexually luring specific male insects as pollinators by chemical and morphological mimicry. Yet, the biochemical pathways involved in the synthesis of the insect sex pheromone-mimicking volatiles in these sexually deceptive plants remain poorly understood. Here, we explore the biochemical pathways linked to the chemical mimicry of female sex pheromones (chiloglottones) employed by the Australian sexually deceptive Chiloglottis orchids to lure their male pollinator. By strategically exploiting the transcriptomes of chiloglottone 1-producing Chiloglottis trapeziformis at distinct floral tissues and at key floral developmental stages, we identified two key transcriptional trends linked to the stage- and tissue-dependent distribution profiles of chiloglottone in the flower: (i) developmental upregulation of fatty acid biosynthesis and β-oxidation genes such as KETOACYL-ACP SYNTHASE, FATTY ACYL-ACP THIOESTERASE, and ACYL-COA OXIDASE during the transition from young to mature buds and flowers and (ii) the tissue-specific induction of fatty acid pathway genes in the callus (the insectiform odor-producing structure on the labellum of the flower) compared to the labellum remains (non-odor-producing) regardless of development stage of the flower. Enzyme inhibition experiments targeting KETOACYL-ACP SYNTHASE activity alone in three chiloglottone-producing species (C. trapeziformis, C. valida, and C. aff. valida) significantly inhibited chiloglottone biosynthesis up to 88.4% compared to the controls. These findings highlight the role of coordinated (developmental stage- and tissue-dependent) fatty acid gene expression and enzyme activities for chiloglottone production in Chiloglottis orchids.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ranamalie Amarasinghe
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
47
|
Magnard JL, Bony AR, Bettini F, Campanaro A, Blerot B, Baudino S, Jullien F. Linalool and linalool nerolidol synthases in roses, several genes for little scent. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:74-87. [PMID: 29550664 DOI: 10.1016/j.plaphy.2018.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/08/2018] [Indexed: 05/12/2023]
Abstract
Roses are widely appreciated for the appearance of their flowers and for their fragrance. This latter character results from the combination of different odorant molecules among which monoterpenes are often prevalent constituents. In this study, we report the cloning and characterization of three rose monoterpene synthases. In vitro functional characterization of these enzymes showed that one is a (-)-(3R)-linalool synthase whereas the others have a dual (+)-(3S)-linalool nerolidol synthase activity. However, given that the characterized rose cultivars were only able to produce the (-)-(3R)-linalool stereoisomer, the linalool nerolidol synthases are probably not active in planta. Furthermore, these three enzymes were also characterized by a weak expression level as assessed by RT-qPCR and by the low abundance of the corresponding sequences in an EST library. This characteristic is likely to explain why linalool is generally a minor constituent in rose flowers' scents. On this basis, we propose that in roses the monoterpene biosynthesis effort is focused on the production of acyclic monoterpenes derived from geraniol through the recently characterized Nudix biosynthesis pathway, at the expense of conventional monoterpene biosynthesis via terpene synthases such as linalool or linalool nerolidol synthases.
Collapse
Affiliation(s)
- Jean-Louis Magnard
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France.
| | - Aurélie Rius Bony
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France
| | - Fabienne Bettini
- International Flavors and Fragrances - Laboratoire Monique Rémy (IFF-LMR Naturals), Parc Industriel des Bois de Grasse, 18/20 Avenue Joseph Honoré Isnard, F-06130, Grasse, France
| | - Ausilia Campanaro
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, e Dipartimento di Scienze Della Vita e Biologia dei Sistemi, Torino, Italy
| | - Bernard Blerot
- International Flavors and Fragrances - Laboratoire Monique Rémy (IFF-LMR Naturals), Parc Industriel des Bois de Grasse, 18/20 Avenue Joseph Honoré Isnard, F-06130, Grasse, France
| | - Sylvie Baudino
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France
| | - Frédéric Jullien
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France
| |
Collapse
|
48
|
Bohman B, Karton A, Flematti GR, Scaffidi A, Peakall R. Structure-Activity Studies of Semiochemicals from the Spider Orchid Caladenia plicata for Sexual Deception. J Chem Ecol 2018; 44:436-443. [DOI: 10.1007/s10886-018-0946-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
|
49
|
Wong DCJ, Pichersky E, Peakall R. The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1955. [PMID: 29181016 PMCID: PMC5693887 DOI: 10.3389/fpls.2017.01955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 05/23/2023]
Abstract
Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
50
|
(Methylthio)phenol semiochemicals are exploited by deceptive orchids as sexual attractants for Campylothynnus thynnine wasps. Fitoterapia 2017; 126:78-82. [PMID: 28965764 DOI: 10.1016/j.fitote.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 01/26/2023]
Abstract
Until recently, (methylthio)phenols as natural products had only been reported from bacteria. Now, four representatives of this class of sulfurous aromatic compounds have been discovered as semiochemicals in the orchid Caladenia crebra, which secures pollination by sexual deception. In this case, field bioassays confirmed that a 10:1 blend of 2-(methylthio)benzene-1,4-diol (1) and 4-hydroxy-3-(methylthio)benzaldehyde (2) sexually attracts the male thynnine wasp Campylothynnus flavopictus (Tiphiidae:Thynnineae), the exclusive pollinator of C. crebra. Here we show with field bioassays that another undescribed species of Campylothynnus (sp. A) is strongly sexually attracted to a 1:1 blend of compounds 1 and 2, which elicits very high attempted copulation rates (88%). We also confirm that this Campylothynnus species is a pollinator of Caladenia attingens subsp. attingens. Chemical analysis of the flowers of this orchid revealed two (methylthio)phenols, compound 2 and 2-(methylthio)phenol (3), as candidate semiochemicals involved in pollinator attraction. Thus, (methylthio)phenols are likely to be more widely used than presently known. The confirmation of this Campylothynnus as a pollinator of C. attingens subsp. attingens at our study sites was unexpected, since elsewhere this orchid is pollinated by a different thynnine wasp (Thynnoides sp). In general, sexually deceptive Caladenia only use a single species of pollinator, and as such, this unusual case may offer a tractable study system for understanding the chemical basis of pollinator switching in sexually deceptive orchids.
Collapse
|