1
|
Qin K, Ye X, Luo S, Fernie AR, Zhang Y. Engineering carbon assimilation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:926-948. [PMID: 39783795 DOI: 10.1111/jipb.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/03/2024] [Indexed: 01/12/2025]
Abstract
Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO2, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway. Consequently, RuBisCO needs to be present at very high concentrations, which is one of the factors contributing to its status as the most prevalent protein on Earth. Numerous attempts have been made to optimize the catalytic efficiency of RuBisCO and thereby promote plant growth. Furthermore, the limitations of this process highlight the potential benefits of engineering or discovering more efficient carbon fixation mechanisms, either by improving RuBisCO itself or by introducing alternative pathways. Here, we review advances in artificial carbon assimilation engineering, including the integration of synthetic biology, genetic engineering, metabolic pathway optimization, and artificial intelligence in order to create plants capable of performing more efficient photosynthesis. We additionally provide a perspective of current challenges and potential solutions alongside a personal opinion of the most promising future directions of this emerging field.
Collapse
Affiliation(s)
- Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Luo
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, , Potsdam-Golm, 14476, Germany
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Cackett L, Luginbuehl LH, Hendron RW, Plackett ARG, Stanley S, Hua L, Wang N, Kelly S, Hibberd JM. Increased chloroplast area in the rice bundle sheath through cell-specific perturbation of brassinosteroid signaling. PLANT PHYSIOLOGY 2025; 197:kiaf108. [PMID: 40173381 PMCID: PMC11997305 DOI: 10.1093/plphys/kiaf108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 04/04/2025]
Abstract
In the leaves of C3 species such as rice (Oryza sativa), mesophyll cells contain the largest compartment of photosynthetically active chloroplasts. In contrast, plants that use the derived and more efficient C4 photosynthetic pathway have a considerable chloroplast compartment in both bundle sheath and mesophyll cells. Accordingly, the evolution of C4 photosynthesis from the ancestral C3 state required an increased chloroplast compartment in the bundle sheath. Here, we investigated the potential to increase chloroplast compartment size in rice bundle sheath cells by manipulating brassinosteroid signaling. Treatment with brassinazole, a brassinosteroid biosynthesis inhibitor, raised leaf chlorophyll content and increased the number but decreased the area of chloroplasts in bundle sheath cells. Ubiquitous overexpression of the transcription factor-encoding BRASSINAZOLE RESISTANT 1 (OsBZR1) increased bundle sheath chloroplast area by up to 45%, but these plants became chlorotic. However, when OsBZR1 expression was driven by a bundle sheath-specific promoter, the negative effects on growth and viability were alleviated while chloroplast area still increased. In summary, we report a role for brassinosteroids in controlling chloroplast area and number in rice and conclude that cell-specific manipulation of brassinosteroid signaling can be used to manipulate the chloroplast compartment in rice bundle sheath cells.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Leonie H Luginbuehl
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ross-William Hendron
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Susan Stanley
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Na Wang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
3
|
Zhao M, Guo Z, Zhang M, Zhang J, Chen X, Yang F, Li Z, Li W. Optimization strategies to improve the carbon sink capacity of C 3 plants under the background of dual carbon strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109837. [PMID: 40168858 DOI: 10.1016/j.plaphy.2025.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
In the 21st century, mankind is facing serious climate challenges, and the greenhouse effect caused by excessive CO2 emissions is a difficult problem that mankind urgently needs to solve. In this context, the dual-carbon strategy is proposed, that is, it is hoped that by reducing carbon sources and increasing carbon sinks, the purpose of improving the climate can be achieved. Plants themselves have a certain carbon sequestration capacity, and C4 plants have a stronger carbon sequestration capacity than C3. Therefore, it is a good research prospect to improve C3 plants by utilizing the relevant characteristics of C4 plants to enhance the CO2 absorption capacity of C3 plants. Current research is generally focused on genetic engineering, this paper summarizes the enzymes that have some research significance in C3 plant modification, such as, Rubisco, PPDK, PEPC, NADP-MDH, NADP-ME, etc., as well as the related genes that constitute the enzymes, and also outlines a series of recent advances in the modification of photorespiratory branching and non-photochemical quenching (NPQ). It is hoped that this paper will provide certain research directions and ideas for researchers to obtain C3 plants with higher carbon sequestration capacity.
Collapse
Affiliation(s)
- Mengmeng Zhao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China.
| | - Zixuan Guo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Mingxia Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Jingwen Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Xiong Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Fanfan Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Ziting Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| | - Wangrun Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Anning District, Lanzhou City, Gansu Province, China
| |
Collapse
|
4
|
Alvarenga JP, Stata M, Sage RF, Patel R, das Chagas Mendonca AM, Della Torre F, Liu H, Cheng S, Weake S, Watanabe EJ, Lage Viana P, de Castro Arruda IA, Ludwig M, Delfino Barbosa JPRA, Sage TL. Evolutionary diversification of C2 photosynthesis in the grass genus Homolepis (Arthropogoninae). ANNALS OF BOTANY 2025; 135:769-788. [PMID: 39688921 PMCID: PMC11904902 DOI: 10.1093/aob/mcae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND AIMS To better understand C4 evolution in monocots, we characterized C3-C4 intermediate phenotypes in the grass genus Homolepis (subtribe Arthropogoninae). METHODS Carbon isotope ratio (δ13C), leaf gas exchange, mesophyll (M) and bundle sheath (BS) tissue characteristics, organelle size and numbers in M and BS tissue, and tissue distribution of the P-subunit of glycine decarboxylase (GLDP) were determined for five Homolepis species and the C4 grass Mesosetum loliiforme from a phylogenetic sister clade. We generated a transcriptome-based phylogeny for Homolepis and Mesosetum species to interpret physiological and anatomical patterns in an evolutionary context, and to test for hybridization. KEY RESULTS Homolepis contains two C3 species (H. glutinosa, H. villaricensis), one species with a weaker form of C2 termed sub-C2 (H. isocalycia), and two C2 species (H. longispicula, H. aturensis). Homolepis longispicula and H. aturensis express over 85 % of leaf glycine in centripetal mitochondria within the BS, and have increased fractions of leaf chloroplasts, mitochondria and peroxisomes within the BS relative to H. glutinosa. Analysis of leaf gas exchange, cell ultrastructure and transcript expression show M. loliiforme is a C4 plant of the NADP-malic enzyme subtype. Homolepis comprises two sister clades, one containing H. glutinosa and H. villaricensis and the second H. longispicula and H. aturensis. Homolepis isocalycia is of hybrid origin, its parents being H. aturensis and a common ancestor of the C3 Homolepis clade and H. longispicula. CONCLUSIONS Photosynthetic activation of BS tissue in the sub-C2 and C2 species of Homolepis is similar to patterns observed in C3-C4 intermediate eudicots, indicating common evolutionary pathways from C3 to C4 photosynthesis in these disparate clades. Hybridization can diversify the C3-C4 intermediate character state and should be considered in reconstructing putative ancestral states using phylogenetic analyses.
Collapse
Affiliation(s)
- Joyce Pereira Alvarenga
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Ria Patel
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Ane Marcela das Chagas Mendonca
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Felipe Della Torre
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
- Laboratory of Plant Physiology, Department of Botany, Institute of Science Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Samantha Weake
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Emile J Watanabe
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Pedro Lage Viana
- Instituto Nacional da Mata Atlantica, Santa Teresa, Espirito Santo, 29650-000, Brazil
| | - Iago Augusto de Castro Arruda
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | | | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
5
|
Lambret Frotte J, Buarque de Gusmão PP, Smith G, Lo SF, Yu SM, Hendron RW, Kelly S, Langdale JA. Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning-based tool. THE NEW PHYTOLOGIST 2025; 245:1512-1527. [PMID: 39668515 DOI: 10.1111/nph.20332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle sheath cells do not make a significant contribution to overall carbon fixation in rice, and thus, various attempts are being made to increase chloroplast content specifically in this cell type. In this study, we developed and applied a deep learning tool, Chloro-Count, and used it to quantify chloroplast dimensions in bundle sheath cells of OsHAP3H gain- and loss-of-function mutants in rice. Loss of OsHAP3H increased chloroplast occupancy in bundle sheath cells by 50%. When grown in the field, mutants exhibited increased numbers of tillers and panicles. The implementation of Chloro-Count enabled precise quantification of chloroplasts in loss- and gain-of-function OsHAP3H mutants and facilitated a comparison between 2D and 3D quantification methods. Collectively, our observations revealed that a mechanism operates in bundle sheath cells to restrict chloroplast occupancy as cell dimensions increase. That mechanism is unperturbed in Oshap3H mutants but loss of OsHAP3H function leads to an increase in chloroplast numbers. The use of Chloro-Count also revealed that 2D quantification is compromised by the positioning of chloroplasts within the cell.
Collapse
Affiliation(s)
- Julia Lambret Frotte
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Georgia Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Shuen-Fang Lo
- International Doctoral Program in Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Su-May Yu
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ross W Hendron
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
6
|
Fang X, Zhao L, Li J, Ma Z, Zhang F, Zheng P, Wang Z, Liu Y, Wang L. AcGLK1 promotes chloroplast division through regulating AcFtsZ1 in Actinidia chinensis. PLANTA 2024; 261:17. [PMID: 39690269 DOI: 10.1007/s00425-024-04592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This study unravels a new regulatory member (AcGLK1) that regulates chloroplast division by affecting the expression levels of cytoskeletal filamenting temperature-sensitive Z (FtsZ) in Actinidia chinensis. GOLDEN 2-LIKE (GLK) transcription factor members of GARP subfamily play an irreplaceable role in regulating chloroplast biogenesis and development. Here we report the functional characterization of a novel GLK1 homolog (AcGLK1) isolated from kiwifruit (Actinidia chinensis cultivar 'Hongyang'). Transgenic lines overexpressing AcGLK1 (AcGLK1OE) resulted in an increase of chloroplast number, size and nutrients accumulation in a tomato variety Micro-Tom (Solanum lycopersicum). Transcriptomic data revealed a series of DEGs related to chloroplast division, in which a tomato FtsZ1 homolog (SlFtsZ1) was significantly upregulated in the transgenic lines and could be directly activated by AcGLK1. Furthermore, AcGLK1 was shown to transcriptionally activate expression of kiwifruit FtsZ1 homologous genes (Achv4p23g035689 and Achv4p19g029547) through Y1H and GUS assays. Taken together, we provide evidence showing that AcGLK1 promotes chloroplast division probably through positively regulation of the transcription of FtsZ1 homologs.
Collapse
Affiliation(s)
- Xue Fang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lili Zhao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiwen Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Tsang HT, Ganguly DR, Furbank RT, von Caemmerer S, Danila FR. Novel resources to investigate leaf plasmodesmata formation in C 3 and C 4 monocots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2207-2225. [PMID: 39494762 PMCID: PMC11629748 DOI: 10.1111/tpj.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Plasmodesmata (PD) are nanochannels that facilitate cell-to-cell transport in plants. More productive and photosynthetically efficient C4 plants form more PD at the mesophyll (M)-bundle sheath (BS) interface in their leaves than their less efficient C3 relatives. In C4 leaves, PD play an essential role in facilitating the rapid metabolite exchange between the M and BS cells to operate a biochemical CO2 concentrating mechanism, which increases the CO2 partial pressure at the site of Rubisco in the BS cells and hence photosynthetic efficiency. The genetic mechanism controlling PD formation in C3 and C4 leaves is largely unknown, especially in monocot crops, due to the technical challenge of quantifying these nanostructures with electron microscopy. To address this issue, we have generated stably transformed lines of Oryza sativa (rice, C3) and Setaria viridis (setaria, C4) with fluorescent protein-tagged PD to build the first spatiotemporal atlas of leaf pit field (cluster of PD) density in monocots without the need for electron microscopy. Across leaf development, setaria had consistently more PD connections at the M-BS wall interface than rice while the difference in M-M pit field density varied. While light was a critical trigger of PD formation, cell type and function determined leaf pit field density. Complementary temporal mRNA sequencing and gene co-expression network analysis revealed that the pattern of pit field density correlated with differentially expressed PD-associated genes and photosynthesis-related genes. PD-associated genes identified from our co-expression network analysis are related to cell wall expansion, translation and chloroplast signalling.
Collapse
Affiliation(s)
- Hong Ting Tsang
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Florence R. Danila
- Australian Research Council Centre of Excellence for Translational PhotosynthesisPlant Sciences Division, Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
8
|
Billakurthi K, Wrobel TJ, Gowik U, Bräutigam A, Weber APM, Westhoff P. Transcriptome dynamics in developing leaves from C 3 and C 4 Flaveria species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1438-1456. [PMID: 39427328 DOI: 10.1111/tpj.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
C4 species have evolved more than 60 times independently from C3 ancestors. This multiple and parallel evolution of the complex C4 trait suggests common underlying evolutionary mechanisms, which could be identified by comparative analysis of closely related C3 and C4 species. Efficient C4 function depends on a distinctive leaf anatomy that is characterised by enlarged, chloroplast-rich bundle sheath cells and narrow vein spacing. To elucidate the molecular mechanisms that generate the Kranz anatomy, we analysed a developmental series of leaves from the C4 plant Flaveria bidentis and the closely related C3 species Flaveria robusta by comparing anatomies and transcriptomes. Vascular density measurements of all nine leaf developmental stages identified three leaf anatomical zones whose proportions vary with respect to the developmental stage. We then deconvoluted the transcriptome datasets using non-negative matrix factorisation, which identified four distinct transcriptome patterns in the growing leaves of both species. By integrating the leaf anatomy and transcriptome data, we were able to correlate the different transcriptional profiles with different developmental zones in the leaves. These comparisons revealed an important role for auxin metabolism, in particular auxin homeostasis (conjugation and deconjugation), in establishing the high vein density typical of C4 species.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Institute of Plant Molecular and Developmental Biology, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Thomas J Wrobel
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Udo Gowik
- Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Andrea Bräutigam
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Faculty of Biology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental Biology, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Zanini AA, Burch-Smith TM. New insights into plasmodesmata: complex 'protoplasmic connecting threads'. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5557-5567. [PMID: 39001658 PMCID: PMC11427835 DOI: 10.1093/jxb/erae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024]
Abstract
Intercellular communication in plants, as in other multicellular organisms, allows cells in tissues to coordinate their responses for development and in response to environmental stimuli. Much of this communication is facilitated by plasmodesmata (PD), consisting of membranes and cytoplasm, that connect adjacent cells to each other. PD have long been viewed as passive conduits for the movement of a variety of metabolites and molecular cargoes, but this perception has been changing over the last two decades or so. Research from the last few years has revealed the importance of PD as signaling hubs and as crucial players in hormone signaling. The adoption of advanced biochemical approaches, molecular tools, and high-resolution imaging modalities has led to several recent breakthroughs in our understanding of the roles of PD, revealing the structural and regulatory complexity of these 'protoplasmic connecting threads'. We highlight several of these findings that we think well illustrate the current understanding of PD as functioning at the nexus of plant physiology, development, and acclimation to the environment.
Collapse
Affiliation(s)
- Andrea A Zanini
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
| | | |
Collapse
|
11
|
Yelina NE, Frangedakis E, Wang Z, Schreier TB, Rever J, Tomaselli M, Forestier ECF, Billakurthi K, Ren S, Bai Y, Stewart-Wood J, Haseloff J, Zhong S, Hibberd JM. Streamlined regulation of chloroplast development in the liverwort Marchantia polymorpha. Cell Rep 2024; 43:114696. [PMID: 39235940 DOI: 10.1016/j.celrep.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Chloroplasts develop from undifferentiated plastids in response to light. In angiosperms, after the perception of light, the Elongated Hypocotyl 5 (HY5) transcription factor initiates photomorphogenesis, and two families of transcription factors known as GOLDEN2-LIKE (GLK) and GATA are considered master regulators of chloroplast development. In addition, the MIR171-targeted SCARECROW-LIKE GRAS transcription factors also impact chlorophyll biosynthesis. The extent to which these proteins carry out conserved roles in non-seed plants is not known. Using the model liverwort Marchantia polymorpha, we show that GLK controls chloroplast biogenesis, and HY5 shows a small conditional effect on chlorophyll content. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed that MpGLK has a broader set of targets than has been reported in angiosperms. We also identified a functional GLK homolog in green algae. In summary, our data support the hypothesis that GLK carries out a conserved role relating to chloroplast biogenesis in land plants and green algae.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Zhemin Wang
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Sibo Ren
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yahui Bai
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Julia Stewart-Wood
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK.
| |
Collapse
|
12
|
Yang Z, Bai T, E Z, Niu B, Chen C. OsNF-YB7 inactivates OsGLK1 to inhibit chlorophyll biosynthesis in rice embryo. eLife 2024; 13:RP96553. [PMID: 39288070 PMCID: PMC11407766 DOI: 10.7554/elife.96553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
As a master regulator of seed development, Leafy Cotyledon 1 (LEC1) promotes chlorophyll (Chl) biosynthesis in Arabidopsis, but the mechanism underlying this remains poorly understood. Here, we found that loss of function of OsNF-YB7, a LEC1 homolog of rice, leads to chlorophyllous embryo, indicating that OsNF-YB7 plays an opposite role in Chl biosynthesis in rice compared with that in Arabidopsis. OsNF-YB7 regulates the expression of a group of genes responsible for Chl biosynthesis and photosynthesis by directly binding to their promoters. In addition, OsNF-YB7 interacts with Golden 2-Like 1 (OsGLK1) to inhibit the transactivation activity of OsGLK1, a key regulator of Chl biosynthesis. Moreover, OsNF-YB7 can directly repress OsGLK1 expression by recognizing its promoter in vivo, indicating the involvement of OsNF-YB7 in multiple regulatory layers of Chl biosynthesis in rice embryo. We propose that OsNF-YB7 functions as a transcriptional repressor to regulate Chl biosynthesis in rice embryo.
Collapse
Affiliation(s)
- Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Tianqi Bai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research InstituteHangzhouChina
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Zhongshan Biological Breeding Laboratory, Agricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou UniversityYangzhouChina
| |
Collapse
|
13
|
Frangedakis E, Yelina NE, Billakurthi K, Hua L, Schreier T, Dickinson PJ, Tomaselli M, Haseloff J, Hibberd JM. MYB-related transcription factors control chloroplast biogenesis. Cell 2024; 187:4859-4876.e22. [PMID: 39047726 DOI: 10.1016/j.cell.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.
Collapse
Affiliation(s)
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
14
|
Zheng M, Wang X, Luo J, Ma B, Li D, Chen X. The pleiotropic functions of GOLDEN2-LIKE transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1445875. [PMID: 39224848 PMCID: PMC11366661 DOI: 10.3389/fpls.2024.1445875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The regulation of gene expression is crucial for biological plant growth and development, with transcription factors (TFs) serving as key switches in this regulatory mechanism. GOLDEN2-LIKE (GLK) TFs are a class of functionally partially redundant nuclear TFs belonging to the GARP superfamily of MYB TFs that play a key role in regulating genes related to photosynthesis and chloroplast biogenesis. Here, we summarized the current knowledge of the pleiotropic roles of GLKs in plants. In addition to their primary functions of controlling chloroplast biogenesis and function maintenance, GLKs have been proven to regulate the photomorphogenesis of seedlings, metabolite synthesis, flowering time, leaf senescence, and response to biotic and abiotic stress, ultimately contributing to crop yield. This review will provide a comprehensive understanding of the biological functions of GLKs and serve as a reference for future theoretical and applied studies of GLKs.
Collapse
Affiliation(s)
- Mengyi Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xinyu Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Luo
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bojun Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
15
|
Plackett ARG, Hibberd JM. Rice bundle sheath cell shape is regulated by the timing of light exposure during leaf development. PLANT, CELL & ENVIRONMENT 2024; 47:2597-2613. [PMID: 38549236 DOI: 10.1111/pce.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 06/06/2024]
Abstract
Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.
Collapse
Affiliation(s)
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Karthick PV, Senthil A, Djanaguiraman M, Anitha K, Kuttimani R, Boominathan P, Karthikeyan R, Raveendran M. Improving Crop Yield through Increasing Carbon Gain and Reducing Carbon Loss. PLANTS (BASEL, SWITZERLAND) 2024; 13:1317. [PMID: 38794389 PMCID: PMC11124956 DOI: 10.3390/plants13101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
Photosynthesis is a process where solar energy is utilized to convert atmospheric CO2 into carbohydrates, which forms the basis for plant productivity. The increasing demand for food has created a global urge to enhance yield. Earlier, the plant breeding program was targeting the yield and yield-associated traits to enhance the crop yield. However, the yield cannot be further improved without improving the leaf photosynthetic rate. Hence, in this review, various strategies to enhance leaf photosynthesis were presented. The most promising strategies were the optimization of Rubisco carboxylation efficiency, the introduction of a CO2 concentrating mechanism in C3 plants, and the manipulation of photorespiratory bypasses in C3 plants, which are discussed in detail. Improving Rubisco's carboxylation efficiency is possible by engineering targets such as Rubisco subunits, chaperones, and Rubisco activase enzyme activity. Carbon-concentrating mechanisms can be introduced in C3 plants by the adoption of pyrenoid and carboxysomes, which can increase the CO2 concentration around the Rubisco enzyme. Photorespiration is the process by which the fixed carbon is lost through an oxidative process. Different approaches to reduce carbon and nitrogen loss were discussed. Overall, the potential approaches to improve the photosynthetic process and the way forward were discussed in detail.
Collapse
Affiliation(s)
- Palanivelu Vikram Karthick
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Kuppusamy Anitha
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramalingam Kuttimani
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Parasuraman Boominathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramasamy Karthikeyan
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
17
|
Slewinski TL. Plant development: Laying the foundation for high-performance photosynthesis. Curr Biol 2024; 34:R326-R328. [PMID: 38653202 DOI: 10.1016/j.cub.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A new study shows that TOO MANY LATERALS/WIP6 acts as a key regulator of vein specification and development across C3 and C4 photosynthetic grasses.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Lead of Crop Efficiency and Disease Discovery, Bayer Crop Science, Biotechnology Division, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA; Adjunct Faculty, Department of Plant Science, University of Missouri, Columbia, MO 65201, USA. thomas.slewinski,@,bayer.com
| |
Collapse
|
18
|
Mahapatra K, Mukherjee A, Suyal S, Dar MA, Bhagavatula L, Datta S. Regulation of chloroplast biogenesis, development, and signaling by endogenous and exogenous cues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:167-183. [PMID: 38623168 PMCID: PMC11016055 DOI: 10.1007/s12298-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Arpan Mukherjee
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Shikha Suyal
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | - Mansoor Ali Dar
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| | | | - Sourav Datta
- Plant Cell and Developmental Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
19
|
Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. PLANT PHYSIOLOGY 2024; 194:774-786. [PMID: 37850886 PMCID: PMC10828204 DOI: 10.1093/plphys/kiad561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology and Ecology, Chinese Academy of Sciences, Shanghai
200032, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Liu Z, Cheng J. C 4 rice engineering, beyond installing a C 4 cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108256. [PMID: 38091938 DOI: 10.1016/j.plaphy.2023.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
C4 photosynthesis in higher plants is carried out by two distinct cell types: mesophyll cells and bundle sheath cells, as a result highly concentrated carbon dioxide is released surrounding RuBisCo in chloroplasts of bundle sheath cells and the photosynthetic efficiency is significantly higher than that of C3 plants. The evolution of the dual-cell C4 cycle involved complex modifications to leaf anatomy and cell ultra-structures. These include an increase in leaf venation, the formation of Kranz anatomy, changes in chloroplast morphology in bundle sheath cells, and increases in the density of plasmodesmata at interfaces between the bundle sheath and mesophyll cells. It is predicted that cereals will be in severe worldwide shortage at the mid-term of this century. Rice is a staple food that feeds more than half of the world's population. If rice can be engineered to perform C4 photosynthesis, it is estimated that rice yield will be increased by at least 50% due to enhanced photosynthesis. Thus, the Second Green Revolution has been launched on this principle by genetically installing C4 photosynthesis into C3 crops. The studies on molecular mechanisms underlying the changes in leaf morphoanatomy involved in C4 photosynthesis have made great progress in recent years. As there are plenty of reviews discussing the installment of the C4 cycle, we focus on the current progress and challenges posed to the research regarding leaf anatomy and cell ultra-structure modifications made towards the development of C4 rice.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Jinjin Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
21
|
Schreier TB, Müller KH, Eicke S, Faulkner C, Zeeman SC, Hibberd JM. Plasmodesmal connectivity in C 4 Gynandropsis gynandra is induced by light and dependent on photosynthesis. THE NEW PHYTOLOGIST 2024; 241:298-313. [PMID: 37882365 PMCID: PMC10952754 DOI: 10.1111/nph.19343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
In leaves of C4 plants, the reactions of photosynthesis become restricted between two compartments. Typically, this allows accumulation of C4 acids in mesophyll (M) cells and subsequent decarboxylation in the bundle sheath (BS). In C4 grasses, proliferation of plasmodesmata between these cell types is thought to increase cell-to-cell connectivity to allow efficient metabolite movement. However, it is not known whether C4 dicotyledons also show this enhanced plasmodesmal connectivity and so whether this is a general requirement for C4 photosynthesis is not clear. How M and BS cells in C4 leaves become highly connected is also not known. We investigated these questions using 3D- and 2D-electron microscopy on the C4 dicotyledon Gynandropsis gynandra as well as phylogenetically close C3 relatives. The M-BS interface of C4 G. gynandra showed higher plasmodesmal frequency compared with closely related C3 species. Formation of these plasmodesmata was induced by light. Pharmacological agents that perturbed photosynthesis reduced the number of plasmodesmata, but this inhibitory effect could be reversed by the provision of exogenous sucrose. We conclude that enhanced formation of plasmodesmata between M and BS cells is wired to the induction of photosynthesis in C4 G. gynandra.
Collapse
Affiliation(s)
- Tina B. Schreier
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB1 3EAUK
- Present address:
Department of BiologyUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre (CAIC)University of CambridgeDowning StreetCambridgeCB2 3DYUK
| | - Simona Eicke
- Institute of Molecular Plant BiologyETH ZurichZurichCH‐8092Switzerland
| | - Christine Faulkner
- Cell and Developmental BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Samuel C. Zeeman
- Institute of Molecular Plant BiologyETH ZurichZurichCH‐8092Switzerland
| | - Julian M. Hibberd
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB1 3EAUK
| |
Collapse
|
22
|
DiMario RJ, Kophs AN, Apalla AJA, Schnable JN, Cousins AB. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. ANNALS OF BOTANY 2023; 132:413-428. [PMID: 37675505 PMCID: PMC10667006 DOI: 10.1093/aob/mcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J A Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James N Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
23
|
Wang X, Ma X, Yan G, Hua L, Liu H, Huang W, Liang Z, Chao Q, Hibberd JM, Jiao Y, Zhang M. Gene duplications facilitate C4-CAM compatibility in common purslane. PLANT PHYSIOLOGY 2023; 193:2622-2639. [PMID: 37587696 PMCID: PMC10663116 DOI: 10.1093/plphys/kiad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-β) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-β WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Xuxu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ge Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Han Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Huang
- National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Qing Chao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Yuannian Jiao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Mei Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
24
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
25
|
Furbank R, Kelly S, von Caemmerer S. Photosynthesis and food security: the evolving story of C 4 rice. PHOTOSYNTHESIS RESEARCH 2023; 158:121-130. [PMID: 37067631 PMCID: PMC10108777 DOI: 10.1007/s11120-023-01014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Traditional "Green Revolution" cereal breeding strategies to improve yield are now reaching a plateau in our principal global food crop rice. Photosynthesis has now become a major target of international consortia to increase yield potential. Synthetic biology is being used across multiple large projects to improve photosynthetic efficiency. This review follows the genesis and progress of one of the first of these consortia projects, now in its 13th year; the Bill and Melinda Gates funded C4 Rice Project. This project seeks to install the biochemical and anatomical attributes necessary to support C4 photosynthesis in the C3 crop rice. Here we address the advances made thus far in installing the biochemical pathway and some of the key targets yet to be reached.
Collapse
Affiliation(s)
- Robert Furbank
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, Australia.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Susanne von Caemmerer
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
26
|
Billakurthi K, Hibberd JM. A rapid and robust leaf ablation method to visualize bundle sheath cells and chloroplasts in C 3 and C 4 grasses. PLANT METHODS 2023; 19:69. [PMID: 37408013 PMCID: PMC10324140 DOI: 10.1186/s13007-023-01041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND It has been proposed that engineering the C4 photosynthetic pathway into C3 crops could significantly increase yield. This goal requires an increase in the chloroplast compartment of bundle sheath cells in C3 species. To facilitate large-scale testing of candidate regulators of chloroplast development in the rice bundle sheath, a simple and robust method to phenotype this tissue in C3 species is required. RESULTS We established a leaf ablation method to accelerate phenotyping of rice bundle sheath cells. The bundle sheath cells and chloroplasts were visualized using light and confocal laser microscopy. Bundle sheath cell dimensions, chloroplast area and chloroplast number per cell were measured from the images obtained by confocal laser microscopy. Bundle sheath cell dimensions of maize were also measured and compared with rice. Our data show that bundle sheath width but not length significantly differed between C3 rice and C4 maize. Comparison of paradermal versus transverse bundle sheath cell width indicated that bundle sheath cells were intact after leaf ablation. Moreover, comparisons of planar chloroplast areas and chloroplast numbers per bundle sheath cell between wild-type and transgenic rice lines expressing the maize GOLDEN-2 (ZmG2) showed that the leaf ablation method allowed differences in chloroplast parameters to be detected. CONCLUSIONS Leaf ablation is a simple approach to accessing bundle sheath cell files in C3 species. We show that this method is suitable for obtaining parameters associated with bundle sheath cell size, chloroplast area and chloroplast number per cell.
Collapse
Affiliation(s)
- Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
27
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
28
|
Li R, He Y, Chen J, Zheng S, Zhuang C. Research Progress in Improving Photosynthetic Efficiency. Int J Mol Sci 2023; 24:ijms24119286. [PMID: 37298238 DOI: 10.3390/ijms24119286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Photosynthesis is the largest mass- and energy-conversion process on Earth, and it is the material basis for almost all biological activities. The efficiency of converting absorbed light energy into energy substances during photosynthesis is very low compared to theoretical values. Based on the importance of photosynthesis, this article summarizes the latest progress in improving photosynthesis efficiency from various perspectives. The main way to improve photosynthetic efficiency is to optimize the light reactions, including increasing light absorption and conversion, accelerating the recovery of non-photochemical quenching, modifying enzymes in the Calvin cycle, introducing carbon concentration mechanisms into C3 plants, rebuilding the photorespiration pathway, de novo synthesis, and changing stomatal conductance. These developments indicate that there is significant room for improvement in photosynthesis, providing support for improving crop yields and mitigating changes in climate conditions.
Collapse
Affiliation(s)
- Ruiqi Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Sierra J, Escobar-Tovar L, Leon P. Plastids: diving into their diversity, their functions, and their role in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2508-2526. [PMID: 36738278 DOI: 10.1093/jxb/erad044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
30
|
Luo W, Tan J, Li T, Feng Z, Ding Z, Xie X, Chen Y, Chen L, Liu YG, Zhu Q, Guo J. Overexpression of maize GOLDEN2 in rice and maize calli improves regeneration by activating chloroplast development. SCIENCE CHINA. LIFE SCIENCES 2023; 66:340-349. [PMID: 35982378 DOI: 10.1007/s11427-022-2149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Golden2 (G2), a member of the GARP transcription factor superfamily, regulates several biological processes and phytohormone signaling pathways in plants. In this study, we used a rice codon-optimized maize G2 gene (rZmG2) to improve the regeneration efficiency of rice and maize calli for genetic transformation. We isolated a promoter driving strong and callus-specific expression from rice to drive rZmG2 transcription from a transgene after transformation of two indica and two japonica rice cultivars. The resulting rZmG2 transgenic calli turned green in advance at the differentiation stage, thus significantly raising the regeneration rates of the transgenic indica and japonica rice plants relative to control transformations. Similar effect of this gene on improving maize transformation was also observed. Transcriptome sequencing and RT-qPCR analyses showed that many rice genes related to chloroplast development and phytohormones are upregulated in rZmG2-transgenic calli. These results demonstrate that rZmG2 can promote embryogenic callus differentiation and improve regeneration efficiency by activating chloroplast development and phytohormone pathways. We also established a heat-inducible Cre/loxP-based gene-excision system to remove rZmG2 and the antibiotic selectable gene after obtaining the transgenic plants. This study provides a useful tool for functional genomics work and biotechnology in plants.
Collapse
Affiliation(s)
- Wanni Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Ziting Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Zhi Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuanling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jinxing Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, SCAU, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Jin K, Chen G, Yang Y, Zhang Z, Lu T. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C 3 photosynthesis: Prospects on modern crop improvement. PLANT, CELL & ENVIRONMENT 2023; 46:363-378. [PMID: 36444099 DOI: 10.1111/pce.14500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.
Collapse
Affiliation(s)
- Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yirong Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
32
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
Leister D. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. MOLECULAR PLANT 2023; 16:4-22. [PMID: 35996755 DOI: 10.1016/j.molp.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is central to life on Earth, employing sunlight, water, and carbon dioxide to produce chemical energy and oxygen. It is generally accepted that boosting its efficiency offers one promising way to increase crop yields under agronomically realistic conditions. Since the components, structure, and regulatory mechanisms of the light reactions of photosynthesis are well understood, concepts for enhancing the process have been suggested and partially tested. These approaches vary in complexity, from targeting single components to comprehensive redesign of the whole process on the scales from single cells or tissues to whole canopies. Attempts to enhance light utilization per leaf, by decreasing pigmentation, increasing levels of photosynthetic proteins, prolonging the lifespan of the photosynthetic machinery, or massive reconfiguration of the photosynthetic machinery and the incorporation of nanomaterials, are discussed in this review first. Secondly, strategies intended to optimize the acclimation of photosynthesis to changes in the environment are presented, including redesigning mechanisms to dissipate excess excitation energy (e.g., non-photochemical quenching) or reduction power (e.g., flavodiiron proteins). Moreover, schemes for improving acclimation, inspired by natural or laboratory-induced adaptation, are introduced. However, all these endeavors are still in an early exploratory phase and/or have not resulted in the desired outcome, largely because photosynthesis is embedded within large networks of closely interacting cellular and metabolic processes, which can vary among species and even cultivars. This explains why integrated, systems-wide approaches are required to achieve the breakthroughs required for effectively increasing crop yields.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University (LMU) Munich, Martinsried-Planegg, D-82152 Munich, Germany.
| |
Collapse
|
34
|
Munekage YN, Taniguchi YY. A scheme for C 4 evolution derived from a comparative analysis of the closely related C 3, C 3-C 4 intermediate, C 4-like, and C 4 species in the genus Flaveria. PLANT MOLECULAR BIOLOGY 2022; 110:445-454. [PMID: 35119574 DOI: 10.1007/s11103-022-01246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of the genus Flaveria showed a C4 evolutionary process in which the anatomical and metabolic features of C4 photosynthesis were gradually acquired through C3-C4 intermediate stages. C4 photosynthesis has been acquired in multiple lineages of angiosperms during evolution to suppress photorespiration. Crops that perform C4 photosynthesis exhibit high rates of CO2 assimilation and high grain production even under high-temperature in semiarid environments; therefore, engineering C4 photosynthesis in C3 plants is of great importance in the application field. The genus Flaveria contains a large number of C3, C3-C4 intermediate, C4-like, and C4 species, making it a good model genus to study the evolution of C4 photosynthesis, and these studies indicate the direction for C4 engineering. C4 photosynthesis was acquired gradually through the C3-C4 intermediate stage. First, a two-celled C2 cycle called C2 photosynthesis was acquired by localizing glycine decarboxylase activity in the mitochondria of bundle sheath cells. With the development of two-cell metabolism, anatomical features also changed. Next, the replacement of the two-celled C2 cycle by the two-celled C4 cycle was induced by the acquisition of cell-selective expression in addition to the upregulation of enzymes in the C4 cycle during the C3-C4 intermediate stage. This was supported by an increase in cyclic electron transport activity in response to an increase in the ATP/NADPH demand for metabolism. Suppression of the C3 cycle in mesophyll cells was induced after the functional establishment of the C4 cycle, and optimization of electron transport by suppressing the activity of photosystem II also occurred during the final phase of C4 evolution.
Collapse
Affiliation(s)
- Yuri N Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
35
|
Takao K, Shirakura H, Hatakeyama Y, Ueno O. Salt stress induces Kranz anatomy and expression of C 4 photosynthetic enzymes in the amphibious sedge Eleocharis vivipara. PHOTOSYNTHESIS RESEARCH 2022; 153:93-102. [PMID: 35352232 DOI: 10.1007/s11120-022-00913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Eleocharis vivipara Link is a unique amphibious leafless plant of the Cyperaceae. The terrestrial form develops culms with Kranz anatomy and C4-like traits, while the submerged form does culms with non-Kranz anatomy and C3 traits. The submerged form develops new culms with C4-like mode when exposed to air or exogenous abscisic acid. In this study, we investigated whether salt stress (0.05-0.3 M NaCl) has a similar effect. When the submerged form was grown for one month in solutions of 0.1 M NaCl and more, culm growth was strongly suppressed. However, these plants slowly developed new culms that had Kranz anatomy with chloroplast-abundant Kranz bundle sheath cells. Although the culms of the submerged form had only few stomata, culms grown in the NaCl solution had many stomata. The NaCl-grown culms also accumulated large amounts of C4 photosynthetic enzymes (phosphoenolpyruvate carboxylase and pyruvate Pi dikinase), and the cellular localization patterns of these enzymes and ribulose 1,5-bisphosphate carboxylase/oxygenase were similar to those in terrestrial culms. Accumulation of C4 enzymes increased in mature culms of the submerged form (with non-Kranz anatomy) when exposed to 0.2 M NaCl solution for one week. These results suggest that salt stress induces development of Kranz anatomy and expression of C4 photosynthetic enzymes in the submerged C3 form of E. vivipara, whereas the anatomical and biochemical traits of C4 photosynthesis appear to be regulated independently.
Collapse
Affiliation(s)
- Kazuya Takao
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Hiroko Shirakura
- School of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
36
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
37
|
Mercado MA, Studer AJ. Meeting in the Middle: Lessons and Opportunities from Studying C 3-C 4 Intermediates. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:43-65. [PMID: 35231181 DOI: 10.1146/annurev-arplant-102720-114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of C3-C4 intermediate species nearly 50 years ago opened up a new avenue for studying the evolution of photosynthetic pathways. Intermediate species exhibit anatomical, biochemical, and physiological traits that range from C3 to C4. A key feature of C3-C4 intermediates that utilize C2 photosynthesis is the improvement in photosynthetic efficiency compared with C3 species. Although the recruitment of some core enzymes is shared across lineages, there is significant variability in gene expression patterns, consistent with models that suggest numerous evolutionary paths from C3 to C4 photosynthesis. Despite the many evolutionary trajectories, the recruitment of glycine decarboxylase for C2 photosynthesis is likely required. As technologies enable high-throughput genotyping and phenotyping, the discovery of new C3-C4 intermediates species will enrich comparisons between evolutionary lineages. The investigation of C3-C4 intermediate species will enhance our understanding of photosynthetic mechanisms and evolutionary processes and will potentially aid in crop improvement.
Collapse
Affiliation(s)
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA; ,
| |
Collapse
|
38
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin PA. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022. [PMID: 35201618 DOI: 10.1101/2021.08.10.455822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emma V Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Lígia T Bertolino
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
39
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin P. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022; 45:1398-1411. [PMID: 35201618 PMCID: PMC9314825 DOI: 10.1111/pce.14301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E. Bianconi
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emma V. Curran
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Luke T. Dunning
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Lígia T. Bertolino
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Pascal‐Antoine Christin
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| |
Collapse
|
40
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
41
|
Fan Y, Scafaro AP, Asao S, Furbank RT, Agostino A, Day DA, von Caemmerer S, Danila FR, Rug M, Webb D, Lee J, Atkin OK. Dark respiration rates are not determined by differences in mitochondrial capacity, abundance and ultrastructure in C 4 leaves. PLANT, CELL & ENVIRONMENT 2022; 45:1257-1269. [PMID: 35048399 DOI: 10.1111/pce.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Our understanding of the regulation of respiration in C4 plants, where mitochondria play different roles in the different types of C4 photosynthetic pathway, remains limited. We examined how leaf dark respiration rates (Rdark ), in the presence and absence of added malate, vary in monocots representing the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK) using intact leaves and extracted bundle sheath strands. In particular, we explored to what extent rates of Rdark are associated with mitochondrial number, volume and ultrastructure. Based on examination of a single species per C4 type, we found that the respiratory response of NAD-ME and PCK type bundle sheath strands to added malate was associated with differences in mitochondrial number, volume, and/or ultrastructure, while NADP-ME type bundle sheath strands did not respond to malate addition. In general, mitochondrial traits reflected the contributions mitochondria make to photosynthesis in the three C4 types. However, despite the obvious differences in mitochondrial traits, no clear correlation was observed between these traits and Rdark . We suggest that Rdark is primarily driven by cellular maintenance demands and not mitochondrial composition per se, in a manner that is somewhat independent of mitochondrial organic acid cycling in the light.
Collapse
Affiliation(s)
- Yuzhen Fan
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew P Scafaro
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shinichi Asao
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert T Furbank
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Antony Agostino
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Susanne von Caemmerer
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Florence R Danila
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Owen K Atkin
- Research School of Biology, ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Division of Plant Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
42
|
Hughes TE, Langdale JA. SCARECROW is deployed in distinct contexts during rice and maize leaf development. Development 2022; 149:dev200410. [PMID: 35293577 PMCID: PMC8995083 DOI: 10.1242/dev.200410] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 12/25/2022]
Abstract
The flexible deployment of developmental regulators is an increasingly appreciated aspect of plant development and evolution. The GRAS transcription factor SCARECROW (SCR) regulates the development of the endodermis in Arabidopsis and maize roots, but during leaf development it regulates the development of distinct cell types; bundle-sheath in Arabidopsis and mesophyll in maize. In rice, SCR is implicated in stomatal patterning, but it is unknown whether this function is additional to a role in inner leaf patterning. Here, we demonstrate that two duplicated SCR genes function redundantly in rice. Contrary to previous reports, we show that these genes are necessary for stomatal development, with stomata virtually absent from leaves that are initiated after germination of mutants. The stomatal regulator OsMUTE is downregulated in Osscr1;Osscr2 mutants, indicating that OsSCR acts early in stomatal development. Notably, Osscr1;Osscr2 mutants do not exhibit the inner leaf patterning perturbations seen in Zmscr1;Zmscr1h mutants, and Zmscr1;Zmscr1h mutants do not exhibit major perturbations in stomatal patterning. Taken together, these results indicate that SCR was deployed in different developmental contexts after the divergence of rice and maize around 50 million years ago.
Collapse
Affiliation(s)
- Thomas E. Hughes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jane A. Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
43
|
Cackett L, Luginbuehl LH, Schreier TB, Lopez-Juez E, Hibberd JM. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. THE NEW PHYTOLOGIST 2022; 233:2000-2016. [PMID: 34729790 DOI: 10.1111/nph.17839] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/09/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts are best known for their role in photosynthesis, but they also allow nitrogen and sulphur assimilation, amino acid, fatty acid, nucleotide and hormone synthesis. How chloroplasts develop is therefore relevant to these diverse and fundamental biological processes, but also to attempts at their rational redesign. Light is strictly required for chloroplast formation in all angiosperms and directly regulates the expression of hundreds of chloroplast-related genes. Light also modulates the levels of several hormones including brassinosteriods, cytokinins, auxins and gibberellins, which themselves control chloroplast development particularly during early stages of plant development. Transcription factors such as GOLDENLIKE1&2 (GLK1&2), GATA NITRATE-INDUCIBLE CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) act downstream of both light and phytohormone signalling to regulate chloroplast development. Thus, in green tissues transcription factors, light signalling and hormone signalling form a complex network regulating the transcription of chloroplast- and photosynthesis-related genes to control the development and number of chloroplasts per cell. We use this conceptual framework to identify points of regulation that could be harnessed to modulate chloroplast abundance and increase photosynthetic efficiency of crops, and to highlight future avenues to overcome gaps in current knowledge.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Leonie H Luginbuehl
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Enrique Lopez-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
44
|
Fan Y, Asao S, Furbank RT, von Caemmerer S, Day DA, Tcherkez G, Sage TL, Sage RF, Atkin OK. The crucial roles of mitochondria in supporting C 4 photosynthesis. THE NEW PHYTOLOGIST 2022; 233:1083-1096. [PMID: 34669188 DOI: 10.1111/nph.17818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
C4 photosynthesis involves a series of biochemical and anatomical traits that significantly improve plant productivity under conditions that reduce the efficiency of C3 photosynthesis. We explore how evolution of the three classical biochemical types of C4 photosynthesis (NADP-ME, NAD-ME and PCK types) has affected the functions and properties of mitochondria. Mitochondria in C4 NAD-ME and PCK types play a direct role in decarboxylation of metabolites for C4 photosynthesis. Mitochondria in C4 PCK type also provide ATP for C4 metabolism, although this role for ATP provision is not seen in NAD-ME type. Such involvement has increased mitochondrial abundance/size and associated enzymatic capacity, led to changes in mitochondrial location and ultrastructure, and altered the role of mitochondria in cellular carbon metabolism in the NAD-ME and PCK types. By contrast, these changes in mitochondrial properties are absent in the C4 NADP-ME type and C3 leaves, where mitochondria play no direct role in photosynthesis. From an eco-physiological perspective, rates of leaf respiration in darkness vary considerably among C4 species but does not differ systematically among the three C4 types. This review outlines further mitochondrial research in key areas central to the engineering of the C4 pathway into C3 plants and to the understanding of variation in rates of C4 dark respiration.
Collapse
Affiliation(s)
- Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shinichi Asao
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert T Furbank
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Susanne von Caemmerer
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Guillaume Tcherkez
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Institut de Recherche en Horticulture et Semences, INRA and University of Angers, Beaucouzé, 49070, France
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
45
|
Chen L, Ganguly DR, Shafik SH, Ermakova M, Pogson BJ, Grof CPL, Sharwood RE, Furbank RT. Elucidating the role of SWEET13 in phloem loading of the C 4 grass Setaria viridis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:615-632. [PMID: 34780111 DOI: 10.1111/tpj.15581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic efficiency and sink demand are tightly correlated with rates of phloem loading, where maintaining low cytosolic sugar concentrations is paramount to prevent the downregulation of photosynthesis. Sugars Will Eventually be Exported Transporters (SWEETs) are thought to have a pivotal role in the apoplastic phloem loading of C4 grasses. SWEETs have not been well studied in C4 species, and their investigation is complicated by photosynthesis taking place across two cell types and, therefore, photoassimilate export can occur from either one. SWEET13 homologues in C4 grasses have been proposed to facilitate apoplastic phloem loading. Here, we provide evidence for this hypothesis using the C4 grass Setaria viridis. Expression analyses on the leaf gradient of C4 species Setaria and Sorghum bicolor show abundant transcript levels for SWEET13 homologues. Carbohydrate profiling along the Setaria leaf shows total sugar content to be significantly higher in the mature leaf tip compared with the younger tissue at the base. We present the first known immunolocalization results for SvSWEET13a and SvSWEET13b using novel isoform-specific antisera. These results show localization to the bundle sheath and phloem parenchyma cells of both minor and major veins. We further present the first transport kinetics study of C4 monocot SWEETs by using a Xenopus laevis oocyte heterologous expression system. We demonstrate that SvSWEET13a and SvSWEET13b are high-capacity transporters of glucose and sucrose, with a higher apparent Vmax for sucrose, compared with glucose, typical of clade III SWEETs. Collectively, these results provide evidence for an apoplastic phloem loading pathway in Setaria and possibly other C4 species.
Collapse
Affiliation(s)
- Lily Chen
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales, 2753, Australia
| | - Diep R Ganguly
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory, 2601, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Maria Ermakova
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Barry J Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Christopher P L Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Robert E Sharwood
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, New South Wales, 2753, Australia
| | - Robert T Furbank
- Research School of Biology, ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
46
|
Yong MT, Solis CA, Amatoury S, Sellamuthu G, Rajakani R, Mak M, Venkataraman G, Shabala L, Zhou M, Ghannoum O, Holford P, Huda S, Shabala S, Chen ZH. Proto Kranz-like leaf traits and cellular ionic regulation are associated with salinity tolerance in a halophytic wild rice. STRESS BIOLOGY 2022; 2:8. [PMID: 37676369 PMCID: PMC10441962 DOI: 10.1007/s44154-021-00016-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/17/2021] [Indexed: 09/08/2023]
Abstract
Species of wild rice (Oryza spp.) possess a wide range of stress tolerance traits that can be potentially utilized in breeding climate-resilient cultivated rice cultivars (Oryza sativa) thereby aiding global food security. In this study, we conducted a greenhouse trial to evaluate the salinity tolerance of six wild rice species, one cultivated rice cultivar (IR64) and one landrace (Pokkali) using a range of electrophysiological, imaging, and whole-plant physiological techniques. Three wild species (O. latifolia, O. officinalis and O. coarctata) were found to possess superior salinity stress tolerance. The underlying mechanisms, however, were strikingly different. Na+ accumulation in leaves of O. latifolia, O. officinalis and O. coarctata were significantly higher than the tolerant landrace, Pokkali. Na+ accumulation in mesophyll cells was only observed in O. coarctata, suggesting that O. officinalis and O. latifolia avoid Na+ accumulation in mesophyll by allocating Na+ to other parts of the leaf. The finding also suggests that O. coarctata might be able to employ Na+ as osmolyte without affecting its growth. Further study of Na+ allocation in leaves will be helpful to understand the mechanisms of Na+ accumulation in these species. In addition, O. coarctata showed Proto Kranz-like leaf anatomy (enlarged bundle sheath cells and lower numbers of mesophyll cells), and higher expression of C4-related genes (e.g., NADPME, PPDK) and was a clear outlier with respect to salinity tolerance among the studied wild and cultivated Oryza species. The unique phylogenetic relationship of O. coarctata with C4 grasses suggests the potential of this species for breeding rice with high photosynthetic rate under salinity stress in the future.
Collapse
Affiliation(s)
- Miing-Tiem Yong
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Celymar Angela Solis
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Samuel Amatoury
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, -600113, Chennai, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, -600113, Chennai, India
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, -600113, Chennai, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Samsul Huda
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia.
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
47
|
Yeh SY, Lin HH, Chang YM, Chang YL, Chang CK, Huang YC, Ho YW, Lin CY, Zheng JZ, Jane WN, Ng CY, Lu MY, Lai IL, To KY, Li WH, Ku MSB. Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. PLANT PHYSIOLOGY 2022; 188:442-459. [PMID: 34747472 PMCID: PMC9049120 DOI: 10.1093/plphys/kiab511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 05/03/2023]
Abstract
Chloroplasts are the sites for photosynthesis, and two Golden2-like factors act as transcriptional activators of chloroplast development in rice (Oryza sativa L.) and maize (Zea mays L.). Rice OsGLK1 and OsGLK2 are orthologous to maize ZmGLK1 (ZmG1) and ZmGLK2 (ZmG2), respectively. However, while rice OsGLK1 and OsGLK2 act redundantly to regulate chloroplast development in mesophyll cells, maize ZmG1 and ZmG2 are functionally specialized and expressed in different cell-specific manners. To boost rice chloroplast development and photosynthesis, we generated transgenic rice plants overexpressing ZmG1 and ZmG2, individually or simultaneously, with constitutive promoters (pZmUbi::ZmG1 and p35S::ZmG2) or maize promoters (pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2). Both ZmG1 and ZmG2 genes were highly expressed in transgenic rice leaves. Moreover, ZmG1 and ZmG2 showed coordinated expression in pZmG1::ZmG1/pZmG2::ZmG2 plants. All Golden2-like (GLK) transgenic plants had higher chlorophyll and protein contents, Rubisco activities and photosynthetic rates per unit leaf area in flag leaves. However, the highest grain yields occurred when maize promoters were used; pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2 transgenic plants showed increases in grain yield by 51%, 47%, and 70%, respectively. In contrast, the pZmUbi::ZmG1 plant produced smaller seeds without yield increases. Transcriptome analysis indicated that maize GLKs act as master regulators promoting the expression of both photosynthesis-related and stress-responsive regulatory genes in both rice shoot and root. Thus, by promoting these important functions under the control of their own promoters, maize GLK1 and GLK2 genes together dramatically improved rice photosynthetic performance and productivity. A similar approach can potentially improve the productivity of many other crops.
Collapse
Affiliation(s)
- Su-Ying Yeh
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Hsin-Hung Lin
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Department of Horticulture and Biotechnology,
Chinese Culture University, Taipei 11114, Taiwan
| | - Yao-Ming Chang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia
Sinica, Taipei 11529, Taiwan
| | - Yu-Lun Chang
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
| | - Chao-Kang Chang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Yi-Cin Huang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Yi-Wen Ho
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Chu-Yin Lin
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Jun-Ze Zheng
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Chun-Yeung Ng
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, National
Pingtung University of Science and Technology, Pingtung 912,
Taiwan
| | - Kin-Ying To
- Agricultural Biotechnology Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Department of Ecology and Evolution, University of
Chicago, Chicago, Illinois 60637, USA
| | - Maurice S B Ku
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
- School of Biological Sciences, Washington State
University, Pullman, Washington 99164, USA
| |
Collapse
|
48
|
Iñiguez C, Aguiló-Nicolau P, Galmés J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochem Soc Trans 2021; 49:2007-2019. [PMID: 34623388 DOI: 10.1042/bst20201056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
49
|
Lee D, Hua L, Khoshravesh R, Giuliani R, Kumar I, Cousins A, Sage TL, Hibberd JM, Brutnell TP. Engineering chloroplast development in rice through cell-specific control of endogenous genetic circuits. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2291-2303. [PMID: 34328250 PMCID: PMC8541780 DOI: 10.1111/pbi.13660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
The engineering of C4 photosynthetic activity into the C3 plant rice has the potential to nearly double rice yields. To engineer a two-cell photosynthetic system in rice, the rice bundle sheath (BS) must be rewired to enhance photosynthetic capacity. Here, we show that BS chloroplast biogenesis is enhanced when the transcriptional activator, Oryza sativa Cytokinin GATA transcription factor 1 (OsCGA1), is driven by a vascular specific promoter. Ectopic expression of OsCGA1 resulted in increased BS chloroplast planar area and increased expression of photosynthesis-associated nuclear genes (PhANG), required for the biogenesis of photosynthetically active chloroplasts in BS cells of rice. A further refinement using a DNAse dead Cas9 (dCas9) activation module driven by the same cell-type specific promoter, directed enhanced chloroplast development of the BS cells when gRNA sequences were delivered by the dCas9 module to the promoter of the endogenous OsCGA1 gene. Single gRNA expression was sufficient to mediate the transactivation of both the endogenous gene and a transgenic GUS reporter fused with OsCGA1 promoter. Our results illustrate the potential for tissue-specific dCas9-activation and the co-regulation of genes needed for multistep engineering of C4 rice.
Collapse
Affiliation(s)
| | - Lei Hua
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary Biologythe University of TorontoTorontoONCanada
- Department of Biologythe University of New MexicoAlbuquerqueNMUSA
| | - Rita Giuliani
- School of Biological SciencesWashington State UniversityPullmanWAUSA
| | | | - Asaph Cousins
- School of Biological SciencesWashington State UniversityPullmanWAUSA
| | - Tammy L. Sage
- Department of Ecology and Evolutionary Biologythe University of TorontoTorontoONCanada
| | | | - Thomas P. Brutnell
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice DevelopmentBiotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
50
|
Cui H. Challenges and Approaches to Crop Improvement Through C3-to-C4 Engineering. FRONTIERS IN PLANT SCIENCE 2021; 12:715391. [PMID: 34594351 PMCID: PMC8476962 DOI: 10.3389/fpls.2021.715391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 05/24/2023]
Abstract
With a rapidly growing world population and dwindling natural resources, we are now facing the enormous challenge of increasing crop yields while simultaneously improving the efficiency of resource utilization. Introduction of C4 photosynthesis into C3 crops is widely accepted as a key strategy to meet this challenge because C4 plants are more efficient than C3 plants in photosynthesis and resource usage, particularly in hot climates, where the potential for productivity is high. Lending support to the feasibility of this C3-to-C4 engineering, evidence indicates that C4 photosynthesis has evolved from C3 photosynthesis in multiple lineages. Nevertheless, C3-to-C4 engineering is not an easy task, as several features essential to C4 photosynthesis must be introduced into C3 plants. One such feature is the spatial separation of the two phases of photosynthesis (CO2 fixation and carbohydrate synthesis) into the mesophyll and bundle sheath cells, respectively. Another feature is the Kranz anatomy, characterized by a close association between the mesophyll and bundle sheath (BS) cells (1:1 ratio). These anatomical features, along with a C4-specific carbon fixation enzyme (PEPC), form a CO2-concentration mechanism that ensures a high photosynthetic efficiency. Much effort has been taken in the past to introduce the C4 mechanism into C3 plants, but none of these attempts has met with success, which is in my opinion due to a lack of system-level understanding and manipulation of the C3 and C4 pathways. As a prerequisite for the C3-to-C4 engineering, I propose that not only the mechanisms that control the Kranz anatomy and cell-type-specific expression in C3 and C4 plants must be elucidated, but also a good understanding of the gene regulatory network underlying C3 and C4 photosynthesis must be achieved. In this review, I first describe the past and current efforts to increase photosynthetic efficiency in C3 plants and their limitations; I then discuss a systems approach to tackling down this challenge, some practical issues, and recent technical innovations that would help us to solve these problems.
Collapse
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- College of Life Science, Northwest Science University of Agriculture and Forestry, Yangling, China
| |
Collapse
|