1
|
Gagliardi CM, Normandin ME, Keinath AT, Julian JB, Lopez MR, Ramos-Alvarez MM, Epstein RA, Muzzio IA. Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation. Nat Commun 2024; 15:5968. [PMID: 39013846 PMCID: PMC11252339 DOI: 10.1038/s41467-024-50112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Reorientation, the process of regaining one's bearings after becoming lost, requires identification of a spatial context (context recognition) and recovery of facing direction within that context (heading retrieval). We previously showed that these processes rely on the use of features and geometry, respectively. Here, we examine reorientation behavior in a task that creates contextual ambiguity over a long timescale to demonstrate that male mice learn to combine both featural and geometric cues to recover heading. At the neural level, most CA1 neurons persistently align to geometry, and this alignment predicts heading behavior. However, a small subset of cells remaps coherently in a context-sensitive manner, which serves to predict context. Efficient heading retrieval and context recognition correlate with rate changes reflecting integration of featural and geometric information in the active ensemble. These data illustrate how context recognition and heading retrieval are coded in CA1 and how these processes change with experience.
Collapse
Affiliation(s)
- Celia M Gagliardi
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA
| | - Marc E Normandin
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA
| | - Alexandra T Keinath
- Department of Psychology, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Joshua B Julian
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Matthew R Lopez
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA
| | | | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabel A Muzzio
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA.
| |
Collapse
|
2
|
Makarov M, Sysoev YI, Agafonova O, Prikhodko VA, Korkotian E, Okovityi SV. Color-Coding Method Reveals Enhancement of Stereotypic Locomotion by Phenazepam in Rat Open Field Test. Brain Sci 2023; 13:brainsci13030408. [PMID: 36979218 PMCID: PMC10046075 DOI: 10.3390/brainsci13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
One of the most important tasks in neuroscience is the search for theoretical foundations for the development of methods for diagnosing and treating neurological pathology, and for assessing the effect of pharmacological drugs on the nervous system. Specific behavioral changes associated with exposure to systemic influences have been invisible to the human eye for a long time. A similar pattern of changes is characteristic of phenazepam, a drug with a wide range of effects on the brain. In this study, we used a color-coding method, which consists of combining three time positions in one image, the present (0 s), the near future (0.33 s) and the far future (1.6 s). This method made it possible to identify movement patterns, such as the initialization of ahead movements, side turns and 180° turns (back), and also to determine the degree of predictability of future movements. The obtained data revealed a decrease in the number of turns to the sides while maintaining ahead movement, as well as an increase in the predictability of movements in rats under the influence of phenazepam. Thus, sedative doses of phenazepam do not exhibit general depression of brain functions, but the inhibition of specific centers, including the medial prefrontal cortex and postsubiculum, which are involved in stereotypic locomotive behavior.
Collapse
Affiliation(s)
- Mark Makarov
- Faculty of Biology, Perm State University, 614068 Perm, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | | | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence:
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
3
|
Zarhin D, Atsmon R, Ruggiero A, Baeloha H, Shoob S, Scharf O, Heim LR, Buchbinder N, Shinikamin O, Shapira I, Styr B, Braun G, Harel M, Sheinin A, Geva N, Sela Y, Saito T, Saido T, Geiger T, Nir Y, Ziv Y, Slutsky I. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep 2022; 38:110268. [PMID: 35045289 PMCID: PMC8789564 DOI: 10.1016/j.celrep.2021.110268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.
Collapse
Affiliation(s)
- Daniel Zarhin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Refaela Atsmon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiri Shoob
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Scharf
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Harel
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Tamar Geiger
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Plasticity between visual input pathways and the head direction system. Curr Opin Neurobiol 2021; 71:60-68. [PMID: 34619578 DOI: 10.1016/j.conb.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Animals can maintain a stable sense of direction even when they navigate in novel environments, but how the animal's brain interprets and encodes unfamiliar sensory information in its navigation system to maintain a stable sense of direction is a mystery. Recent studies have suggested that distinct brain structures of mammals and insects have evolved to solve this common problem with strategies that share computational principles; specifically, a network structure called a ring attractor maintains the sense of direction. Initially, in a novel environment, the animal's sense of direction relies on self-motion cues. Over time, the mapping from visual inputs to head direction cells, responsible for the sense of direction, is established via experience-dependent plasticity. Yet the mechanisms that facilitate acquiring a world-centered sense of direction, how many environments can be stored in memory, and what visual features are selected, all remain unknown. Thanks to recent advances in large scale physiological recording, genetic tools, and theory, these mechanisms may soon be revealed.
Collapse
|
5
|
Ben-Yishay E, Krivoruchko K, Ron S, Ulanovsky N, Derdikman D, Gutfreund Y. Directional tuning in the hippocampal formation of birds. Curr Biol 2021; 31:2592-2602.e4. [PMID: 33974847 DOI: 10.1016/j.cub.2021.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Birds strongly rely on spatial memory and navigation. Therefore, it is of utmost interest to reveal how space is represented in the avian brain. Here we used tetrodes to record neurons from the hippocampal formation of Japanese quails-a ground-dwelling species-while the quails roamed in an open-field arena. Whereas spatially modulated cells (place cells, grid cells, border cells) were generally not encountered, the firing rate of about 12% of the neurons was unimodally and significantly modulated by the head azimuth-i.e., these were head-direction cells (HD cells). Typically, HD cells were maximally active at one preferred direction and minimally at the opposite null direction, with preferred directions spanning all 360° across the population. The preferred direction was independent of the animal's position and speed and was stable during the recording session. The HD tuning was broader compared to that of HD cells in rodents, and most cells had non-zero baseline firing in all directions. However, similar to findings in rodents, the HD tuning usually rotated with the rotation of a salient visual cue in the arena. Thus, these findings support the existence of an allocentric HD representation in the quail hippocampal formation and provide the first demonstration of HD cells in birds.
Collapse
Affiliation(s)
- Elhanan Ben-Yishay
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Ksenia Krivoruchko
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Shaked Ron
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Yoram Gutfreund
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel.
| |
Collapse
|
6
|
Lee SM, Jin SW, Park SB, Park EH, Lee CH, Lee HW, Lim HY, Yoo SW, Ahn JR, Shin J, Lee SA, Lee I. Goal-directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus 2021; 31:717-736. [PMID: 33394547 PMCID: PMC8359334 DOI: 10.1002/hipo.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 11/10/2022]
Abstract
The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The “dual‐stream model” was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual‐stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal‐directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal‐directed Interaction of Stimulus and Task‐demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices—the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects—with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non‐navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non‐navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Jin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Hye Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Jae Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Keinath AT, Rechnitz O, Balasubramanian V, Epstein RA. Environmental deformations dynamically shift human spatial memory. Hippocampus 2020; 31:89-101. [PMID: 32941670 DOI: 10.1002/hipo.23265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022]
Abstract
Place and grid cells in the hippocampal formation are commonly thought to support a unified and coherent cognitive map of space. This mapping mechanism faces a challenge when a navigator is placed in a familiar environment that has been deformed from its original shape. Under such circumstances, many transformations could plausibly serve to map a navigator's familiar cognitive map to the deformed space. Previous empirical results indicate that the firing fields of rodent place and grid cells stretch or compress in a manner that approximately matches the environmental deformation, and human spatial memory exhibits similar distortions. These effects have been interpreted as evidence that reshaping a familiar environment elicits an analogously reshaped cognitive map. However, recent work has suggested an alternative explanation, whereby deformation-induced distortions of the grid code are attributable to a mechanism that dynamically anchors grid fields to the most recently experienced boundary, thus causing history-dependent shifts in grid phase. This interpretation raises the possibility that human spatial memory will exhibit similar history-dependent dynamics. To test this prediction, we taught participants the locations of objects in a virtual environment and then probed their memory for these locations in deformed versions of this environment. Across three experiments with variable access to visual and vestibular cues, we observed the predicted pattern, whereby the remembered locations of objects were shifted from trial to trial depending on the boundary of origin of the participant's movement trajectory. These results provide evidence for a dynamic anchoring mechanism that governs both neuronal firing and spatial memory.
Collapse
Affiliation(s)
- Alexandra T Keinath
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ohad Rechnitz
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Nau M, Navarro Schröder T, Frey M, Doeller CF. Behavior-dependent directional tuning in the human visual-navigation network. Nat Commun 2020; 11:3247. [PMID: 32591544 PMCID: PMC7320013 DOI: 10.1038/s41467-020-17000-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
The brain derives cognitive maps from sensory experience that guide memory formation and behavior. Despite extensive efforts, it still remains unclear how the underlying population activity unfolds during spatial navigation and how it relates to memory performance. To examine these processes, we combined 7T-fMRI with a kernel-based encoding model of virtual navigation to map world-centered directional tuning across the human cortex. First, we present an in-depth analysis of directional tuning in visual, retrosplenial, parahippocampal and medial temporal cortices. Second, we show that tuning strength, width and topology of this directional code during memory-guided navigation depend on successful encoding of the environment. Finally, we show that participants' locomotory state influences this tuning in sensory and mnemonic regions such as the hippocampus. We demonstrate a direct link between neural population tuning and human cognition, where high-level memory processing interacts with network-wide visuospatial coding in the service of behavior.
Collapse
Affiliation(s)
- Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway
| | - Markus Frey
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Trondheim, Norway.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
9
|
Sheintuch L, Geva N, Baumer H, Rechavi Y, Rubin A, Ziv Y. Multiple Maps of the Same Spatial Context Can Stably Coexist in the Mouse Hippocampus. Curr Biol 2020; 30:1467-1476.e6. [PMID: 32220328 DOI: 10.1016/j.cub.2020.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
Hippocampal place cells selectively fire when an animal traverses a particular location and are considered a neural substrate of spatial memory. Place cells were shown to change their activity patterns (remap) across different spatial contexts but to maintain their spatial tuning in a fixed familiar context. Here, we show that mouse hippocampal neurons can globally remap, forming multiple distinct representations (maps) of the same familiar environment, without any apparent changes in sensory input or behavior. Alternations between maps occurred only across separate visits to the environment, implying switching between distinct stable attractors in the hippocampal network. Importantly, the different maps were spatially informative and persistent over weeks, demonstrating that they can be reliably stored and retrieved from long-term memory. Taken together, our results suggest that a memory of a given spatial context could be associated with multiple distinct neuronal representations, rather than just one.
Collapse
Affiliation(s)
- Liron Sheintuch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Baumer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Rechavi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Nagele J, Herz AVM, Stemmler MB. Untethered firing fields and intermittent silences: Why grid-cell discharge is so variable. Hippocampus 2020; 30:367-383. [PMID: 32045073 DOI: 10.1002/hipo.23191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 11/07/2022]
Abstract
Grid cells in medial entorhinal cortex are notoriously variable in their responses, despite the striking hexagonal arrangement of their spatial firing fields. Indeed, when the animal moves through a firing field, grid cells often fire much more vigorously than predicted or do not fire at all. The source of this trial-to-trial variability is not completely understood. By analyzing grid-cell spike trains from mice running in open arenas and on linear tracks, we characterize the phenomenon of "missed" firing fields using the statistical theory of zero inflation. We find that one major cause of grid-cell variability lies in the spatial representation itself: firing fields are not as strongly anchored to spatial location as the averaged grid suggests. In addition, grid fields from different cells drift together from trial to trial, regardless of whether the environment is real or virtual, or whether the animal moves in light or darkness. Spatial realignment across trials sharpens the grid representation, yielding firing fields that are more pronounced and significantly narrower. These findings indicate that ensembles of grid cells encode relative position more reliably than absolute position.
Collapse
Affiliation(s)
- Johannes Nagele
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas V M Herz
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin B Stemmler
- Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Angelaki DE, Laurens J. The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties. Curr Opin Neurobiol 2020; 60:136-144. [PMID: 31877492 PMCID: PMC7002189 DOI: 10.1016/j.conb.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022]
Abstract
Knowledge of head direction cell function has progressed remarkably in recent years. The predominant theory that they form an attractor has been confirmed by several experiments. Candidate pathways that may convey visual input have been identified. The pre-subicular circuitry that conveys head direction signals to the medial entorhinal cortex, potentially sustaining path integration by grid cells, has been resolved. Although the neuronal substrate of the attractor remains unknown in mammals, a simple head direction network, whose structure is astoundingly similar to neuronal models theorized decades earlier, has been identified in insects. Finally, recent experiments have revealed that these cells do not encode head direction in the horizontal plane only, but also in vertical planes, thus providing a 3D orientation signal.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Center for Neural Science and Tandon School of Engineering, New York University, NY, USA
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany.
| |
Collapse
|
12
|
Julian JB, Keinath AT, Marchette SA, Epstein RA. The Neurocognitive Basis of Spatial Reorientation. Curr Biol 2019; 28:R1059-R1073. [PMID: 30205055 DOI: 10.1016/j.cub.2018.04.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability to recover one's bearings when lost is a skill that is fundamental for spatial navigation. We review the cognitive and neural mechanisms that underlie this ability, with the aim of linking together previously disparate findings from animal behavior, human psychology, electrophysiology, and cognitive neuroscience. Behavioral work suggests that reorientation involves two key abilities: first, the recovery of a spatial reference frame (a cognitive map) that is appropriate to the current environment; and second, the determination of one's heading and location relative to that reference frame. Electrophysiological recording studies, primarily in rodents, have revealed potential correlates of these operations in place, grid, border/boundary, and head-direction cells in the hippocampal formation. Cognitive neuroscience studies, primarily in humans, suggest that the perceptual inputs necessary for these operations are processed by neocortical regions such as the retrosplenial complex, occipital place area and parahippocampal place area, with the retrosplenial complex mediating spatial transformations between the local environment and the recovered spatial reference frame, the occipital place area supporting perception of local boundaries, and the parahippocampal place area processing visual information that is essential for identification of the local spatial context. By combining results across these various literatures, we converge on a unified account of reorientation that bridges the cognitive and neural domains.
Collapse
Affiliation(s)
- Joshua B Julian
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Alexandra T Keinath
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA; McGill University, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC, Canada
| | - Steven A Marchette
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Russell A Epstein
- University of Pennsylvania, Department of Psychology, 3710 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Kubie JL, Levy ERJ, Fenton AA. Is hippocampal remapping the physiological basis for context? Hippocampus 2019; 30:851-864. [PMID: 31571314 DOI: 10.1002/hipo.23160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022]
Abstract
In 1980, Nadel and Wilner extended Richard Hirsh's notion that the hippocampus creates environmental representations, called "contexts," suggesting that the fundamental structure of context was the spatial representation proposed by O'Keefe and Nadel's landmark book, The Hippocampus as a Cognitive Map (1978). This book, in turn, derives from the discovery that individual hippocampal neurons act as place cells, with the complete set of place cells tiling an enclosure, forming a type of spatial map. It was found that unique environments had unique place cell representations. That is, if one takes the hippocampal map of a specific environment, this representation scrambles, or "remaps" when the animal is placed in a different environment. Several authors have speculated that "maps" and "remapping" form the physiological substrates for context and context shifting. One difficulty with this definition is that it is exclusively spatial; it can only be inferred when an animal locomotes in an enclosure. There are five aims for this article. The first is to give an historical overview of context as a variable that controls behavior. The second aim is to give an historical overview of concepts of place cell maps and remapping. The third aim is to propose an updated definition of a place cell map, based on temporal rather than spatial overlaps, which adds flexibility. The fourth aim is to address the issue of whether the biological phenomenon of hippocampal remapping, is, in fact, the substrate for shifts in the psychological phenomenon of context. The final aim is speculation of how contextual representations may contribute to effective behavior.
Collapse
Affiliation(s)
- John L Kubie
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York.,Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Eliott R J Levy
- Center for Neural Science, New York University, New York, New York
| | - André A Fenton
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York.,Center for Neural Science, New York University, New York, New York.,Neuroscience Institute at the New York University Langone Medical Center, New York University, New York, New York
| |
Collapse
|
14
|
Dudchenko PA, Wood ER, Smith A. A new perspective on the head direction cell system and spatial behavior. Neurosci Biobehav Rev 2019; 105:24-33. [PMID: 31276715 DOI: 10.1016/j.neubiorev.2019.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/10/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
Abstract
The head direction cell system is an interconnected set of brain structures containing neurons whose firing is directionally tuned. The robust representation of allocentric direction by head direction cells suggests that they provide a neural compass for the animal. However, evidence linking head direction cells and spatial behavior has been mixed. Whereas damage to the hippocampus yields profound deficits in a range of spatial tasks, lesions to the head direction cell system often yield milder impairments in spatial behavior. In addition, correlational approaches have shown a correspondence between head direction cells and spatial behavior in some tasks, but not others. These mixed effects may be explained in part by a new view of the head direction cell system arising from recent demonstrations of at least two types of head direction cells: 'traditional' cells, and a second class of 'sensory' cells driven by polarising features of an environment. The recognition of different kinds of head direction cells now allows a nuanced assessment of this system's role in guiding navigation.
Collapse
Affiliation(s)
- Paul A Dudchenko
- University of Stirling, Psychology, School of Natural Sciences, Stirling, FK9 4LA, United Kingdom.
| | - Emma R Wood
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| | - Anna Smith
- University of Stirling, Psychology, School of Natural Sciences, Stirling, FK9 4LA, United Kingdom; University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, 1 George Square, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
15
|
Styr B, Gonen N, Zarhin D, Ruggiero A, Atsmon R, Gazit N, Braun G, Frere S, Vertkin I, Shapira I, Harel M, Heim LR, Katsenelson M, Rechnitz O, Fadila S, Derdikman D, Rubinstein M, Geiger T, Ruppin E, Slutsky I. Mitochondrial Regulation of the Hippocampal Firing Rate Set Point and Seizure Susceptibility. Neuron 2019; 102:1009-1024.e8. [PMID: 31047779 PMCID: PMC6559804 DOI: 10.1016/j.neuron.2019.03.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/07/2019] [Accepted: 03/28/2019] [Indexed: 01/08/2023]
Abstract
Maintaining average activity within a set-point range constitutes a fundamental property of central neural circuits. However, whether and how activity set points are regulated remains unknown. Integrating genome-scale metabolic modeling and experimental study of neuronal homeostasis, we identified mitochondrial dihydroorotate dehydrogenase (DHODH) as a regulator of activity set points in hippocampal networks. The DHODH inhibitor teriflunomide stably suppressed mean firing rates via synaptic and intrinsic excitability mechanisms by modulating mitochondrial Ca2+ buffering and spare respiratory capacity. Bi-directional activity perturbations under DHODH blockade triggered firing rate compensation, while stabilizing firing to the lower level, indicating a change in the firing rate set point. In vivo, teriflunomide decreased CA3-CA1 synaptic transmission and CA1 mean firing rate and attenuated susceptibility to seizures, even in the intractable Dravet syndrome epilepsy model. Our results uncover mitochondria as a key regulator of activity set points, demonstrate the differential regulation of set points and compensatory mechanisms, and propose a new strategy to treat epilepsy.
Collapse
Affiliation(s)
- Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nir Gonen
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Daniel Zarhin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Refaela Atsmon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Neta Gazit
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Irena Vertkin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Michal Harel
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ohad Rechnitz
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 31096 Haifa, Israel
| | - Saja Fadila
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; The Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, 31096 Haifa, Israel
| | - Moran Rubinstein
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; The Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, NIH, Bethesda, MD, USA
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
16
|
Julian JB, Kamps FS, Epstein RA, Dilks DD. Dissociable spatial memory systems revealed by typical and atypical human development. Dev Sci 2019; 22:e12737. [PMID: 30176106 PMCID: PMC6391167 DOI: 10.1111/desc.12737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/28/2023]
Abstract
Rodent lesion studies have revealed the existence of two causally dissociable spatial memory systems, localized to the hippocampus and striatum that are preferentially sensitive to environmental boundaries and landmark objects, respectively. Here we test whether these two memory systems are causally dissociable in humans by examining boundary- and landmark-based memory in typical and atypical development. Adults with Williams syndrome (WS)-a developmental disorder with known hippocampal abnormalities-and typical children and adults, performed a navigation task that involved learning locations relative to a boundary or a landmark object. We found that boundary-based memory was severely impaired in WS compared to typically-developing mental-age matched (MA) children and chronological-age matched (CA) adults, whereas landmark-based memory was similar in all groups. Furthermore, landmark-based memory matured earlier in typical development than boundary-based memory, consistent with the idea that the WS cognitive phenotype arises from developmental arrest of late maturing cognitive systems. Together, these findings provide causal and developmental evidence for dissociable spatial memory systems in humans.
Collapse
Affiliation(s)
- Joshua B. Julian
- Department of Psychology, University of Pennsylvania
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology
| | | | | | | |
Collapse
|
17
|
Kinsky NR, Sullivan DW, Mau W, Hasselmo ME, Eichenbaum HB. Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales. Curr Biol 2018; 28:3578-3588.e6. [PMID: 30393037 DOI: 10.1016/j.cub.2018.09.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
To provide a substrate for remembering where in space events have occurred, place cells must reliably encode the same positions across long timescales. However, in many cases, place cells exhibit instability by randomly reorganizing their place fields between experiences, challenging this premise. Recent evidence suggests that, in some cases, instability could also arise from coherent rotations of place fields, as well as from random reorganization. To investigate this possibility, we performed in vivo calcium imaging in dorsal hippocampal region CA1 of freely moving mice while they explored two arenas with different geometry and visual cues across 8 days. The two arenas were rotated randomly between sessions and then connected, allowing us to probe how cue rotations, the integration of new information about the environment, and the passage of time concurrently influenced the spatial coherence of place fields. We found that spatially coherent rotations of place-field maps in the same arena predominated, persisting up to 6 days later, and that they frequently rotated in a manner that did not match that of the arena rotation. Furthermore, place-field maps were flexible, as mice frequently employed a similar, coherent configuration of place fields to represent each arena despite their differing geometry and eventual connection. These results highlight the ability of the hippocampus to retain consistent relationships between cells across long timescales and suggest that, in many cases, apparent instability might result from a coherent rotation of place fields.
Collapse
Affiliation(s)
- Nathaniel R Kinsky
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA; Graduate Program for Neuroscience, Boston University, Commonwealth Avenue, Boston, MA 02215, USA.
| | - David W Sullivan
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| | - William Mau
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA; Graduate Program for Neuroscience, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| | - Michael E Hasselmo
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| | - Howard B Eichenbaum
- Center for Memory and Brain, Boston University, Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
18
|
Abstract
A key challenge for animals is recognising locations and navigating between them. These capacities are varied: we can remember where our car is parked at the mall, rats are able to remember where their nest location is while foraging for food morsels, and bats are able to fly directly to a favourite fruit tree 20 kilometers from their home cave. These spatial abilities, whether commonplace or remarkable, raise fundamental questions. First, how do animals find their way? Second, how does the brain represent the outside world? In this Primer, we will address both questions from the perspective of rodent cognition and neuroscience.
Collapse
Affiliation(s)
- Paul A Dudchenko
- University of Stirling, Faculty of Natural Sciences, Stirling, FK9 4LA, UK.
| | - Douglas Wallace
- Northern Illinois University, Department of Psychology, DeKalb, Illinois, 60115, USA
| |
Collapse
|
19
|
Weiss S, Derdikman D. Role of the head-direction signal in spatial tasks: when and how does it guide behavior? J Neurophysiol 2018. [PMID: 29537921 DOI: 10.1152/jn.00560.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, mammalian head-direction (HD) cells have been extensively researched in terms of sensory origins, external cue control, and circuitry. However, the relationship of HD cells to behavior is not yet fully understood. In the current review, we examine the anatomical clues for information flow in the HD circuit and an emerging body of evidence that links neural activity of HD cells and spatial orientation. We hypothesize from results obtained in spatial orientation tasks involving HD cells that when properly aligned with available external cues, the HD signal could be used for guiding rats to a goal location. However, contradictory inputs from separate sensory systems may reduce the influence of the HD signal such that animals are able to switch between this and other systems according to their impact on behavior.
Collapse
Affiliation(s)
- Shahaf Weiss
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology , Haifa , Israel.,School of Zoology, George Wise Faculty of Life Sciences, Tel Aviv University , Ramat-Aviv , Israel.,Max Planck Institute for Brain Research , Frankfurt am Main , Germany
| | - Dori Derdikman
- Department of Neuroscience, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
20
|
Grieves RM, Duvelle É, Dudchenko PA. A boundary vector cell model of place field repetition. SPATIAL COGNITION AND COMPUTATION 2018. [DOI: 10.1080/13875868.2018.1437621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Roddy M Grieves
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK
| | - Éléonore Duvelle
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK
| | - Paul A Dudchenko
- School of Natural Sciences, University of Stirling, Stirling, UK
- Centre for Cognitive and Neural Systems, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|