1
|
Alves Domingos H, Green M, Ouzounidis VR, Finlayson C, Prevo B, Cheerambathur DK. The kinetochore protein KNL-1 regulates the actin cytoskeleton to control dendrite branching. J Cell Biol 2025; 224:e202311147. [PMID: 39625434 PMCID: PMC11613958 DOI: 10.1083/jcb.202311147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The function of the nervous system is intimately tied to its complex and highly interconnected architecture. Precise control of dendritic branching in individual neurons is central to building the complex structure of the nervous system. Here, we show that the kinetochore protein KNL-1 and its associated KMN (Knl1/Mis12/Ndc80 complex) network partners, typically known for their role in chromosome-microtubule coupling during mitosis, control dendrite branching in the Caenorhabditis elegans mechanosensory PVD neuron. KNL-1 restrains excess dendritic branching and promotes contact-dependent repulsion events, ensuring robust sensory behavior and preventing premature neurodegeneration. Unexpectedly, KNL-1 loss resulted in significant alterations of the actin cytoskeleton alongside changes in microtubule dynamics within dendrites. We show that KNL-1 modulates F-actin dynamics to generate proper dendrite architecture and that its N-terminus can initiate F-actin assembly. These findings reveal that the postmitotic neuronal KMN network acts to shape the developing nervous system by regulating the actin cytoskeleton and provide new insight into the mechanisms controlling dendrite architecture.
Collapse
Affiliation(s)
- Henrique Alves Domingos
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Mattie Green
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Vasileios R. Ouzounidis
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Cameron Finlayson
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Bram Prevo
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dhanya K. Cheerambathur
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Zhang J, Wen J, Dai Z, Zhang H, Zhang N, Lei R, Liu Z, Peng L, Cheng Q. Causal association and shared genetics between telomere length and COVID-19 outcomes: New evidence from the latest large-scale summary statistics. Comput Struct Biotechnol J 2024; 23:2429-2441. [PMID: 38882679 PMCID: PMC11176559 DOI: 10.1016/j.csbj.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Observational studies suggested that leukocyte telomere length (LTL) is shortened in COVID-19 patients. However, the genetic association and causality remained unknown. Methods Based on the genome-wide association of LTL (N = 472,174) and COVID-19 phenotypes (N = 1086,211-2597,856), LDSC and SUPERGNOVA were used to estimate the genetic correlation. Cross-trait GWAS meta-analysis, colocalization, fine-mapping analysis, and transcriptome-wide association study were conducted to explore the shared genetic etiology. Mendelian randomization (MR) was utilized to infer the causality. Upstream and downstream two-step MR was performed to investigate the potential mediating effects. Results LDSC identified a significant genetic association between LTL and all COVID-19 phenotypes (rG < 0, p < 0.05). Six significant regions were observed for LTL and COVID-19 susceptibility and hospitalization, respectively. Colocalization analysis found rs144204502, rs34517439, and rs56255908 were shared causal variants between LTL and COVID-19 phenotypes. Numerous biological pathways associated with LTL and COVID-19 outcomes were identified, mainly involved in -immune-related pathways. MR showed that longer LTL was significantly associated with a lower risk of COVID-19 severity (OR [95% CI] = 0.81 [0.71-0.92], p = 1.24 ×10-3) and suggestively associated with lower risks of COVID-19 susceptibility (OR [95% CI] = 0.96 [0.92-1.00], p = 3.44 ×10-2) and COVID-19 hospitalization (OR [95% CI] = 0.89 [0.80-0.98], p = 1.89 ×10-2). LTL partially mediated the effects of BMI, smoking, and education on COVID-19 outcomes. Furthermore, six proteins partially mediated the causality of LTL on COVID-19 outcomes, including BNDF, QPCT, FAS, MPO, SFTPB, and APOF. Conclusions Our findings suggested that shorter LTL was genetically associated with a higher risk of COVID-19 phenotypes, with shared genetic etiology and potential causality.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyan Lei
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Peng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Mu Y, Liu H, Luo A, Zhang Q. KIFC3 promotes the progression of non-small cell lung cancer cells through the PI3K/Akt pathway. Thorac Cancer 2024; 15:2356-2364. [PMID: 39390964 PMCID: PMC11586134 DOI: 10.1111/1759-7714.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Kinesin family member C3 (KIFC3), as reported, plays important roles in several tumor types. Nevertheless, it is unknown whether KIFC3 has effects on non-small cell lung cancer (NSCLC) development. MATERIALS AND METHODS KIFC3 expression was detected by RT-PCR, and its correlation with prognosis was analyzed by GEPIA website. Small interfering RNA against KIFC3 were adopted for modulating KIFC3 expression in NSCLC cells. KIFC3 effects on NSCLC cell proliferation were determined using the MTT and clone formation assay. Matrigel invasion and wound healing assays were adopted for measuring the invasion and migration capability of NSCLC cells. Western blot was applied for measuring the levels of proteins associated with the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway in NSCLC cells. RESULTS KIFC3 was markedly increased in NSCLC samples and cells. KIFC3 knockdown suppressed the proliferation, invasion, and migration in NSCLC. Mechanically, KIFC3 silencing suppressed NSCLC progression through inhibiting the PI3K/Akt pathway. CONCLUSIONS KIFC3 lack suppressed the proliferation, invasion, and migration which works, at least partially, by the PI3K/Akt pathway. These findings suggest that targeting KIFC3 via the PI3K/Akt pathway may offer a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yu Mu
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Haoxiang Liu
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Anni Luo
- School of Traditional Chinese MedicineTexas Health and Science UniversityAustinTexasUSA
| | - Qingxiang Zhang
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
4
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00780-6. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Wood LM, Moore JK. β3 accelerates microtubule plus end maturation through a divergent lateral interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603993. [PMID: 39071388 PMCID: PMC11275713 DOI: 10.1101/2024.07.17.603993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
β-tubulin isotypes exhibit similar sequences but different activities, suggesting that limited sequence divergence is functionally important. We investigated this hypothesis for TUBB3/β3, a β-tubulin linked to aggressive cancers and chemoresistance in humans. We created mutant yeast strains with β-tubulin alleles that mimic variant residues in β3 and find that residues at the lateral interface are sufficient to alter microtubule dynamics and response to microtubule targeting agents. In HeLa cells, β3 overexpression decreases the lifetime of microtubule growth, and this requires residues at the lateral interface. These microtubules exhibit a shorter region of EB binding at the plus end, suggesting faster lattice maturation, and resist stabilization by paclitaxel. Resistance requires the H1-S2 and H2-S3 regions at the lateral interface of β3. Our results identify the mechanistic origins of the unique activity of β3 tubulin and suggest that tubulin isotype expression may tune the rate of lattice maturation at growing microtubule plus ends in cells.
Collapse
Affiliation(s)
- Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Ju JQ, Zhang HL, Wang Y, Hu LL, Sun SC. Kinesin KIFC3 is essential for microtubule stability and cytokinesis in oocyte meiosis. Cell Commun Signal 2024; 22:199. [PMID: 38553728 PMCID: PMC10979585 DOI: 10.1186/s12964-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Cash A, de Jager C, Brickler T, Soliman E, Ladner L, Kaloss AM, Zhu Y, Pridham KJ, Mills J, Ju J, Basso EKG, Chen M, Johnson Z, Sotiropoulos Y, Wang X, Xie H, Matson JB, Marvin EA, Theus MH. Endothelial deletion of EPH receptor A4 alters single-cell profile and Tie2/Akap12 signaling to preserve blood-brain barrier integrity. Proc Natl Acad Sci U S A 2023; 120:e2204700120. [PMID: 37796990 PMCID: PMC10576133 DOI: 10.1073/pnas.2204700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.
Collapse
Affiliation(s)
- Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA24061
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Liliana Ladner
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | | | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Zachary Johnson
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Yianni Sotiropoulos
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
- Center for Engineered Health, Virginia Tech, Blacksburg, VA24061
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Eric A. Marvin
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
8
|
Ouzounidis VR, Prevo B, Cheerambathur DK. Sculpting the dendritic landscape: Actin, microtubules, and the art of arborization. Curr Opin Cell Biol 2023; 84:102214. [PMID: 37544207 DOI: 10.1016/j.ceb.2023.102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Dendrites are intricately designed neuronal compartments that play a vital role in the gathering and processing of sensory or synaptic inputs. Their diverse and elaborate structures are distinct features of neuronal organization and function. Central to the generation of these dendritic arbors is the neuronal cytoskeleton. In this review, we delve into the current progress toward our understanding of how dendrite arbors are generated and maintained, focusing on the role of the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Vasileios R Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
9
|
He Y, He P, Lu S, Dong W. KIFC3 Regulates the progression and metastasis of gastric cancer via Notch1 pathway. Dig Liver Dis 2023; 55:1270-1279. [PMID: 36890049 DOI: 10.1016/j.dld.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION KIFC3 is a member of the kinesin family which has shown great promise in cancer therapy recently. In this study, we sought to elucidate the role of KIFC3 in the development of GC and its possible mechanisms. METHODS Two databases and a tissue microarray were used to explore the expression of KIFC3 and its correlation with patients' clinicopathological characteristics. Cell proliferation was examined by cell counting kit-8 assay and colony formation assay. Wound healing assay and transwell assay were performed to examine cell metastasis ability. EMT and Notch signaling related proteins were detected by western blot. Additionally, a xenograft tumor model was established to investigate the function of KIFC3 in vivo. RESULTS The expression of KIFC3 was upregulated in GC, and was associated with higher T stage and poor prognosis in GC patients. The proliferation and metastasis ability of GC cells were promoted by KIFC3 overexpression while inhibited by KIFC3 knockdown in vitro and in vivo. Furthermore, KIFC3 might activate the Notch1 pathway to facilitate the progression of GC, and DAPT, an inhibitor of Notch signaling, could reverse this effect. CONCLUSION Together, our data revealed that KIFC3 could enhance the progression and metastasis of GC by activating the Notch1 pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Shimin Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan, Hubei Province, China.
| |
Collapse
|
10
|
Bracey KM, Noguchi P, Edwards C, Cario A, Gu G, Kaverina I. Glucose-stimulated KIF5B-driven microtubule sliding organizes microtubule networks in pancreatic beta cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546468. [PMID: 37425827 PMCID: PMC10327020 DOI: 10.1101/2023.06.25.546468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In pancreatic islet beta cells, molecular motors use cytoskeletal polymers microtubules as tracks for intracellular transport of insulin secretory granules. Beta-cell microtubule network has a complex architecture and is non-directional, which provide insulin granules at the cell periphery for rapid secretion response, yet to avoid over-secretion and subsequent hypoglycemia. We have previously characterized a peripheral sub-membrane microtubule array, which is critical for withdrawal of excessive insulin granules from the secretion sites. Microtubules in beta cells originate at the Golgi in the cell interior, and how the peripheral array is formed is unknown. Using real-time imaging and photo-kinetics approaches in clonal mouse pancreatic beta cells MIN6, we now demonstrate that kinesin KIF5B, a motor protein with a capacity to transport microtubules as cargos, slides existing microtubules to the cell periphery and aligns them to each other along the plasma membrane. Moreover, like many physiological beta-cell features, microtubule sliding is facilitated by a high glucose stimulus. These new data, together with our previous report that in high glucose sub-membrane MT array is destabilized to allow for robust secretion, indicate that MT sliding is another integral part of glucose-triggered microtubule remodeling, likely replacing destabilized peripheral microtubules to prevent their loss over time and beta-cell malfunction.
Collapse
Affiliation(s)
- Kai M Bracey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Pi'illani Noguchi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Courtney Edwards
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alisa Cario
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Program of Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA. Corresponding author: Irina Kaverina
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Program of Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Kohle F, Ackfeld R, Hommen F, Klein I, Svačina MKR, Schneider C, Fink GR, Barham M, Vilchez D, Lehmann HC. Kinesin-5 inhibition improves neural regeneration in experimental autoimmune neuritis. J Neuroinflammation 2023; 20:139. [PMID: 37296476 DOI: 10.1186/s12974-023-02822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Autoimmune neuropathies can result in long-term disability and incomplete recovery, despite adequate first-line therapy. Kinesin-5 inhibition was shown to accelerate neurite outgrowth in different preclinical studies. Here, we evaluated the potential neuro-regenerative effects of the small molecule kinesin-5 inhibitor monastrol in a rodent model of acute autoimmune neuropathies, experimental autoimmune neuritis. METHODS Experimental autoimmune neuritis was induced in Lewis rats with the neurogenic P2-peptide. At the beginning of the recovery phase at day 18, the animals were treated with 1 mg/kg monastrol or sham and observed until day 30 post-immunisation. Electrophysiological and histological analysis for markers of inflammation and remyelination of the sciatic nerve were performed. Neuromuscular junctions of the tibialis anterior muscles were analysed for reinnervation. We further treated human induced pluripotent stem cells-derived secondary motor neurons with monastrol in different concentrations and performed a neurite outgrowth assay. RESULTS Treatment with monastrol enhanced functional and histological recovery in experimental autoimmune neuritis. Motor nerve conduction velocity at day 30 in the treated animals was comparable to pre-neuritis values. Monastrol-treated animals showed partially reinnervated or intact neuromuscular junctions. A significant and dose-dependent accelerated neurite outgrowth was observed after kinesin-5 inhibition as a possible mode of action. CONCLUSION Pharmacological kinesin-5 inhibition improves the functional outcome in experimental autoimmune neuritis through accelerated motor neurite outgrowth and histological recovery. This approach could be of interest to improve the outcome of autoimmune neuropathy patients.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Robin Ackfeld
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Franziska Hommen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Martin K R Svačina
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Christian Schneider
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Cognitive Neuroscience, Research Center Juelich, Juelich, Germany
| | - Mohammed Barham
- Department II of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Hospital Leverkusen, Leverkusen, Germany
| |
Collapse
|
12
|
Lu S, Liu Y, Tian S, He Y, Dong W. KIFC3 regulates progression of hepatocellular carcinoma via EMT and the AKT/mTOR pathway. Exp Cell Res 2023; 426:113564. [PMID: 36948354 DOI: 10.1016/j.yexcr.2023.113564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. Despite an overall downward trend in cancer mortality, HCC-related mortality continues to increase. KIFC3 is involved in cell division and cancers. However, the role of KIFC3 in HCC has yet to be elucidated. METHODS A total of 36 cases of HCC tissues, 4 HCC cell lines, and TCGA databases were searched to explore the expression of KIFC3 in HCC. Subsequently, Western blot analysis, immunofluorescence, bioinformatic analysis, molecular docking, and Co-IP were performed to investigate the molecular mechanisms of KIFC3 in HCC. RESULT We found that the expression of KIFC3 was upregulated in HCC, and high KIFC3 expression was related to poor overall survival. In addition, the knockdown of KIFC3 inhibited the proliferation, migration, and invasion of HCC cells in vitro, and impeded the growth of HCC in vivo, while overexpression of KIFC3 in HCC cells revealed the opposite effect. Mechanistically, KIFC3 promotes the progression of HCC through the PI3K/AKT/mTOR signalling. And KIFC3 had slight effect on the protein expression of p-PI3K, p-AKT and p-mTOR in TRIP13-ablated or LY294002-treated HCC cells. The KIFC3 knockdown could further enhance the inhibitory effect of LY294002. CONCLUSION Our data revealed that KIFC3 is upregulated in HCC and may serve as a novel biomarker for predicting survival in HCC patients. Targeting KIFC3 may serve as a novel therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Shimin Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan 430060, Hubei Province, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan 430060, Hubei Province, China
| | - Shan Tian
- Department of Infectious Disease, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan 430060, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Central Laboratory of Renmin Hospital, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
13
|
Goo BS, Mun DJ, Kim S, Nhung TTM, Lee SB, Woo Y, Kim SJ, Suh BK, Park SJ, Lee HE, Park K, Jang H, Rah JC, Yoon KJ, Baek ST, Park SY, Park SK. Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol Psychiatry 2023; 28:856-870. [PMID: 36357673 PMCID: PMC9908555 DOI: 10.1038/s41380-022-01856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Although large-scale genome-wide association studies (GWAS) have identified an association between MAD1L1 (Mitotic Arrest Deficient-1 Like 1) and the pathology of schizophrenia, the molecular mechanisms underlying this association remain unclear. In the present study, we aimed to address these mechanisms by examining the role of MAD1 (the gene product of MAD1L1) in key neurodevelopmental processes in mice and human organoids. Our findings indicated that MAD1 is highly expressed during active cortical development and that MAD1 deficiency leads to impairments in neuronal migration and neurite outgrowth. We also observed that MAD1 is localized to the Golgi apparatus and regulates vesicular trafficking from the Golgi apparatus to the plasma membrane, which is required for the growth and polarity of migrating neurons. In this process, MAD1 physically interacts and collaborates with the kinesin-like protein KIFC3 (kinesin family member C3) to regulate the morphology of the Golgi apparatus and neuronal polarity, thereby ensuring proper neuronal migration and differentiation. Consequently, our findings indicate that MAD1 is an essential regulator of neuronal development and that alterations in MAD1 may underlie schizophrenia pathobiology.
Collapse
Affiliation(s)
- Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
14
|
Blockade of Cholecystokinin Type 2 Receptors Prevents the Onset of Vincristine-Induced Neuropathy in Mice. Pharmaceutics 2022; 14:pharmaceutics14122823. [PMID: 36559317 PMCID: PMC9788598 DOI: 10.3390/pharmaceutics14122823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Vincristine (VCR) is responsible for the onset of the VCR-induced peripheral neuropathy (VIPN), associated with neuropathic pain. Several reports have strongly linked the cholecystokinin type 2 receptor (CCK2R) to nociceptive modulation. Thus, our aim was to evaluate the effect of CCK2R blockade on the onset of VIPN, as well as its interaction on VCR anticancer efficacy. VCR was administrated in mice for 8 days (100 µg/kg/d, i.p.). Transcriptomic analysis of the dorsal root ganglia (DRG) was performed at day 7 in VCR and control mice. Proglumide (30 mg/kg/d), a CCK1R and CCK2R antagonist, and Ly225910 (1 mg/kg/d), a selective CCK2R antagonist, were administrated one day before and during VCR treatment. Tactile sensitivity was assessed during treatments. Immunofluorescence and morphological analyses were performed on the skin, DRG and sciatic nerve at day 7. The cytotoxicity of VCR in combination with proglumide/Ly225910 was evaluated in human cancer cell lines. Cck2r was highly upregulated in the DRG of VCR mice. Proglumide accelerated the recovery of normal sensitivity, while Ly225910 totally prevented the onset of allodynia and nerve injuries induced by VCR. Proglumide or Ly225910 in combination with VCR did not affect the cytotoxicity of VCR. Targeting CCK2R could therefore be an effective strategy to prevent the onset of VIPN.
Collapse
|
15
|
Yap CC, Winckler B. Spatial regulation of endosomes in growing dendrites. Dev Biol 2022; 486:5-14. [PMID: 35306006 PMCID: PMC10646839 DOI: 10.1016/j.ydbio.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/19/2023]
Abstract
Many membrane proteins are highly enriched in either dendrites or axons. This non-uniform distribution is a critical feature of neuronal polarity and underlies neuronal function. The molecular mechanisms responsible for polarized distribution of membrane proteins has been studied for some time and many answers have emerged. A less well studied feature of neurons is that organelles are also frequently non-uniformly distributed. For instance, EEA1-positive early endosomes are somatodendritic whereas synaptic vesicles are axonal. In addition, some organelles are present in both axons and dendrites, but not distributed uniformly along the processes. One well known example are lysosomes which are abundant in the soma and proximal dendrite, but sparse in the distal dendrite and the distal axon. The mechanisms that determine the spatial distribution of organelles along dendrites are only starting to be studied. In this review, we will discuss the cell biological mechanisms of how the distribution of diverse sets of endosomes along the proximal-distal axis of dendrites might be regulated. In particular, we will focus on the regulation of bulk homeostatic mechanisms as opposed to local regulation. We posit that immature dendrites regulate organelle motility differently from mature dendrites in order to spatially organize dendrite growth, branching and sculpting.
Collapse
|
16
|
Akhmanova A, Kapitein LC. Mechanisms of microtubule organization in differentiated animal cells. Nat Rev Mol Cell Biol 2022; 23:541-558. [PMID: 35383336 DOI: 10.1038/s41580-022-00473-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Huang L, Peng Y, Tao X, Ding X, Li R, Jiang Y, Zuo W. Microtubule Organization Is Essential for Maintaining Cellular Morphology and Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1623181. [PMID: 35295719 PMCID: PMC8920689 DOI: 10.1155/2022/1623181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/10/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microtubules (MTs) are highly dynamic polymers essential for a wide range of cellular physiologies, such as acting as directional railways for intracellular transport and position, guiding chromosome segregation during cell division, and controlling cell polarity and morphogenesis. Evidence has established that maintaining microtubule (MT) stability in neurons is vital for fundamental cellular and developmental processes, such as neurodevelopment, degeneration, and regeneration. To fulfill these diverse functions, the nervous system employs an arsenal of microtubule-associated proteins (MAPs) to control MT organization and function. Subsequent studies have identified that the disruption of MT function in neurons is one of the most prevalent and important pathological features of traumatic nerve damage and neurodegenerative diseases and that this disruption manifests as a reduction in MT polymerization and concomitant deregulation of the MT cytoskeleton, as well as downregulation of microtubule-associated protein (MAP) expression. A variety of MT-targeting agents that reverse this pathological condition, which is regarded as a therapeutic opportunity to intervene the onset and development of these nervous system abnormalities, is currently under development. Here, we provide an overview of the MT-intrinsic organization process and how MAPs interact with the MT cytoskeleton to promote MT polymerization, stabilization, and bundling. We also highlight recent advances in MT-targeting therapeutic agents applied to various neurological disorders. Together, these findings increase our current understanding of the function and regulation of MT organization in nerve growth and regeneration.
Collapse
Affiliation(s)
- Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Yan Peng
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Xuetao Tao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoxiao Ding
- Department of Pharmacy, The People's Hospital of Beilun District, Ningbo, Zhejiang 315807, China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Wei Zuo
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| |
Collapse
|
18
|
Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci U S A 2022; 119:2108046119. [PMID: 35173049 PMCID: PMC8872730 DOI: 10.1073/pnas.2108046119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Kinesin-14 motors represent an essential class of molecular motors that bind to microtubules and then walk toward the microtubule minus-end. However, whether these motors can interact with growing plus-ends of microtubules to impact the lengthening of microtubules remains unknown. We found that Kinesin-14 motors could bind to a protein that resides at growing microtubule plus-ends and then pull this protein away from the growing end. This interaction acted to disrupt microtubule growth and decrease microtubule lengths in cells, likely by exerting minus-end–directed forces at the microtubule tip to alter the configuration of the growing microtubule plus-end. This work demonstrates general principles for the diverse roles that force-generating molecular motors can play in regulating cellular processes. Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end–directed motors could interact with growing microtubule plus-ends. In this work, we explored the role of minus-end–directed Kinesin-14 motor forces in controlling plus-end microtubule dynamics. In cells, a Kinesin-14 mutant with reduced affinity to EB proteins led to increased microtubule lengths. Cell-free biophysical microscopy assays were performed using Kinesin-14 motors and an EB family marker of growing microtubule plus-ends, Mal3, which revealed that when Kinesin-14 motors bound to Mal3 at growing microtubule plus-ends, the motors subsequently walked toward the minus-end, and Mal3 was pulled away from the growing microtubule tip. Strikingly, these interactions resulted in an approximately twofold decrease in the expected postinteraction microtubule lifetime. Furthermore, generic minus-end–directed tension forces, generated by tethering growing plus-ends to the coverslip using λ-DNA, led to an approximately sevenfold decrease in the expected postinteraction microtubule growth length. In contrast, the inhibition of Kinesin-14 minus-end–directed motility led to extended tip interactions and to an increase in the expected postinteraction microtubule lifetime, indicating that plus-ends were stabilized by nonmotile Kinesin-14 motors. Together, we find that Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate microtubule lengths in cells.
Collapse
|
19
|
So C, Menelaou K, Uraji J, Harasimov K, Steyer AM, Seres KB, Bucevičius J, Lukinavičius G, Möbius W, Sibold C, Tandler-Schneider A, Eckel H, Moltrecht R, Blayney M, Elder K, Schuh M. Mechanism of spindle pole organization and instability in human oocytes. Science 2022; 375:eabj3944. [PMID: 35143306 DOI: 10.1126/science.abj3944] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Julia Uraji
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Jonas Bucevičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | | | | - Heike Eckel
- Kinderwunschzentrum Göttingen, Göttingen, Germany
| | | | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Masucci EM, Relich PK, Lakadamyali M, Ostap EM, Holzbaur ELF. Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Mol Biol Cell 2021; 33:ar52. [PMID: 34705476 PMCID: PMC9265162 DOI: 10.1091/mbc.e21-10-0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end–directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end–out microtubules to be more dynamic than plus end–in microtubules, with nocodazole preferentially stabilizing the plus end–out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end–in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.
Collapse
Affiliation(s)
- Erin M Masucci
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Peter K Relich
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Melike Lakadamyali
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - E Michael Ostap
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Erika L F Holzbaur
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
21
|
Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, Herman I, Akay G, Du H, Calame DG, Ayaz A, Tos T, Yesil G, Aydin H, Geckinli B, Elcioglu N, Candan S, Sezer O, Erdem HB, Gul D, Demiral E, Elmas M, Yesilbas O, Kilic B, Gungor S, Ceylan AC, Bozdogan S, Ozalp O, Cicek S, Aslan H, Yalcintepe S, Topcu V, Bayram Y, Grochowski CM, Jolly A, Dawood M, Duan R, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Marafi D, Akdemir ZC, Karaca E, Carvalho CMB, Gibbs RA, Posey JE, Lupski JR, Pehlivan D. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet 2021; 108:1981-2005. [PMID: 34582790 PMCID: PMC8546040 DOI: 10.1016/j.ajhg.2021.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akif Ayaz
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey; Departments of Medical Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Tulay Tos
- University of Health Sciences Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Gozde Yesil
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul 34093, Turkey
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Private Reyap Istanbul Hospital, Istanbul 34515, Turkey
| | - Bilgen Geckinli
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey; Eastern Mediterranean University Medical School, Magosa, Mersin 10, Turkey
| | - Sukru Candan
- Medical Genetics Section, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun 55100, Turkey
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Emine Demiral
- Department of Medical Genetics, School of Medicine, University of Inonu, Malatya 44280, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Bezmialem Foundation University, Istanbul 34093, Turkey; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Betul Kilic
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Serdal Gungor
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Ahmet C Ceylan
- Department of Medical Genetics, University of Health Sciences, Ankara Training and Research Hospital, Ankara 06110, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana 01330, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Salih Cicek
- Department of Medical Genetics, Konya Training and Research Hospital, Konya 42250, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, School of Medicine, Trakya University, Edirne 22130, Turkey
| | - Vehap Topcu
- Department of Medical Genetics, Ankara City Hospital, Ankara 06800, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Falk S, Han D, Karow M. Cellular identity through the lens of direct lineage reprogramming. Curr Opin Genet Dev 2021; 70:97-103. [PMID: 34333231 DOI: 10.1016/j.gde.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Direct lineage reprogramming challenges our traditional view on basic aspects of cellular identity, and in particular on processes crucial for identity acquisition. This is partly because in direct lineage reprogramming but not during natural differentiation processes changing cellular identity can occur in the absence of mitosis. Only recently, technologies emerged to deconstruct the cellular and molecular processes governing the transitory states a cell passes through on the journey from its original identity to the new target cell fate. Here we discuss arising concepts on the nature of these transitory states and the challenges and decisions cells must conquer to reach their new cellular identity.
Collapse
Affiliation(s)
- Sven Falk
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | - Dandan Han
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
23
|
Buijs RR, Hummel JJA, Burute M, Pan X, Cao Y, Stucchi R, Altelaar M, Akhmanova A, Kapitein LC, Hoogenraad CC. WDR47 protects neuronal microtubule minus ends from katanin-mediated severing. Cell Rep 2021; 36:109371. [PMID: 34260930 DOI: 10.1016/j.celrep.2021.109371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Axons and dendrites are long extensions of neurons that contain arrays of noncentrosomal microtubules. Calmodulin-regulated spectrin-associated proteins (CAMSAPs) bind to and stabilize free microtubule minus ends and are critical for proper neuronal development and function. Previous studies have shown that the microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. However, how CAMSAP and microtubule minus end dynamics are regulated in neurons is poorly understood. Here, we show that the neuron-enriched protein WDR47 interacts with CAMSAPs and is critical for axon and dendrite development. We find that WDR47 accumulates at CAMSAP2-decorated microtubules, is essential for maintaining CAMSAP2 stretches, and protects minus ends from katanin-mediated severing. We propose a model where WDR47 protects CAMSAP2 at microtubule minus ends from katanin activity to ensure proper stabilization of the neuronal microtubule network.
Collapse
Affiliation(s)
- Robin R Buijs
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Yujie Cao
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
24
|
Puri D, Ponniah K, Biswas K, Basu A, Dey S, Lundquist EA, Ghosh-Roy A. Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13. J Cell Biol 2021; 220:212396. [PMID: 34137792 DOI: 10.1083/jcb.202005080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Keerthana Ponniah
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Kasturi Biswas
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| |
Collapse
|
25
|
Mini-review: Microtubule sliding in neurons. Neurosci Lett 2021; 753:135867. [PMID: 33812935 DOI: 10.1016/j.neulet.2021.135867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Microtubule sliding is an underappreciated mechanism that contributes to the establishment, organization, preservation, and plasticity of neuronal microtubule arrays. Powered by molecular motor proteins and regulated in part by static crosslinker proteins, microtubule sliding is the movement of microtubules relative to other microtubules or to non-microtubule structures such as the actin cytoskeleton. In addition to other important functions, microtubule sliding significantly contributes to the establishment and maintenance of microtubule polarity patterns in different regions of the neuron. The purpose of this article is to review the state of knowledge on microtubule sliding in the neuron, with emphasis on its mechanistic underpinnings as well as its functional significance.
Collapse
|
26
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
27
|
Covill-Cooke C, Toncheva VS, Kittler JT. Regulation of peroxisomal trafficking and distribution. Cell Mol Life Sci 2020; 78:1929-1941. [PMID: 33141311 PMCID: PMC7966214 DOI: 10.1007/s00018-020-03687-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Peroxisomes are organelles that perform a wide range of essential metabolic processes. To ensure that peroxisomes are optimally positioned in the cell, they must be transported by both long- and short-range trafficking events in response to cellular needs. Here, we review our current understanding of the mechanisms by which the cytoskeleton and organelle contact sites alter peroxisomal distribution. Though the focus of the review is peroxisomal transport in mammalian cells, findings from flies and fungi are used for comparison and to inform the gaps in our understanding. Attention is given to the apparent overlap in regulatory mechanisms for mitochondrial and peroxisomal trafficking, along with the recently discovered role of the mitochondrial Rho-GTPases, Miro, in peroxisomal dynamics. Moreover, we outline and discuss the known pathological and pharmacological conditions that perturb peroxisomal positioning. We conclude by highlighting several gaps in our current knowledge and suggest future directions that require attention.
Collapse
Affiliation(s)
| | - Viktoriya S Toncheva
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
28
|
Taran AS, Shuvalova LD, Lagarkova MA, Alieva IB. Huntington's Disease-An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020; 9:E1514. [PMID: 32580314 PMCID: PMC7348758 DOI: 10.3390/cells9061514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease is a severe and currently incurable neurodegenerative disease. An autosomal dominant mutation in the Huntingtin gene (HTT) causes an increase in the polyglutamine fragment length at the protein N-terminus. The consequence of the mutation is the death of neurons, mostly striatal neurons, leading to the occurrence of a complex of motor, cognitive and emotional-volitional personality sphere disorders in carriers. Despite intensive studies, the functions of both mutant and wild-type huntingtin remain poorly understood. Surprisingly, there is the selective effect of the mutant form of HTT even on nervous tissue, whereas the protein is expressed ubiquitously. Huntingtin plays a role in cell physiology and affects cell transport, endocytosis, protein degradation and other cellular and molecular processes. Our experimental data mining let us conclude that a significant part of the Huntingtin-involved cellular processes is mediated by microtubules and other cytoskeletal cell structures. The review attempts to look at unresolved issues in the study of the huntingtin and its mutant form, including their functions affecting microtubules and other components of the cell cytoskeleton.
Collapse
Affiliation(s)
- Aleksandra S. Taran
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
| | - Lilia D. Shuvalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina B. Alieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninsky Gory, 119992 Moscow, Russia
| |
Collapse
|
29
|
He L, Kooistra R, Das R, Oudejans E, van Leen E, Ziegler J, Portegies S, de Haan B, van Regteren Altena A, Stucchi R, Altelaar AM, Wieser S, Krieg M, Hoogenraad CC, Harterink M. Cortical anchoring of the microtubule cytoskeleton is essential for neuron polarity. eLife 2020; 9:55111. [PMID: 32293562 PMCID: PMC7159925 DOI: 10.7554/elife.55111] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
The development of a polarized neuron relies on the selective transport of proteins to axons and dendrites. Although it is well known that the microtubule cytoskeleton has a central role in establishing neuronal polarity, how its specific organization is established and maintained is poorly understood. Using the in vivo model system Caenorhabditis elegans, we found that the highly conserved UNC-119 protein provides a link between the membrane-associated Ankyrin (UNC-44) and the microtubule-associated CRMP (UNC-33). Together they form a periodic membrane-associated complex that anchors axonal and dendritic microtubule bundles to the cortex. This anchoring is critical to maintain microtubule organization by opposing kinesin-1 powered microtubule sliding. Disturbing this molecular complex alters neuronal polarity and causes strong developmental defects of the nervous system leading to severely paralyzed animals.
Collapse
Affiliation(s)
- Liu He
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robbelien Kooistra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ravi Das
- Neurophotonics and Mechanical Systems Biology, ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ellen Oudejans
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eric van Leen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johannes Ziegler
- Fast live-cell superresolution microscopy, ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Bart de Haan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna van Regteren Altena
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Af Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Stefan Wieser
- Fast live-cell superresolution microscopy, ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Neuroscience, Genentech, Inc, South San Francisco, United States
| | - Martin Harterink
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|