1
|
El-Danaf RN, Kapuralin K, Rajesh R, Simon F, Drou N, Pinto-Teixeira F, Özel MN, Desplan C. Morphological and functional convergence of visual projection neurons from diverse neurogenic origins in Drosophila. Nat Commun 2025; 16:698. [PMID: 39814708 PMCID: PMC11735856 DOI: 10.1038/s41467-025-56059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain. To address their origin, we used single-cell mRNA sequencing to define the transcriptome of LCN subtypes and identified lines that are expressed throughout their development. We show that LCNs originate from stem cells in four distinct brain regions exhibiting different modes of neurogenesis, including the ventral and dorsal tips of the outer proliferation center, the ventral superficial inner proliferation center and the central brain. We show that this convergence of similar neurons illustrates the complexity of generating neuronal diversity, and likely reflects the evolutionary origin of each subtype that detects a specific visual feature and might influence behaviors specific to each species.
Collapse
Affiliation(s)
- Rana Naja El-Danaf
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Katarina Kapuralin
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Raghuvanshi Rajesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Félix Simon
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
| | - Nizar Drou
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Filipe Pinto-Teixeira
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Mehmet Neset Özel
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Claude Desplan
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Department of Biology, New York University, 10 Washington Place, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Schretter CE, Hindmarsh Sten T, Klapoetke N, Shao M, Nern A, Dreher M, Bushey D, Robie AA, Taylor AL, Branson K, Otopalik A, Ruta V, Rubin GM. Social state alters vision using three circuit mechanisms in Drosophila. Nature 2025; 637:646-653. [PMID: 39567699 PMCID: PMC11735400 DOI: 10.1038/s41586-024-08255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well studied1-8. Much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviours, flies need to focus on nearby flies9-11. Here we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identify three state-dependent circuit motifs poised to modify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioural and neurophysiological analyses, we show that each of these circuit motifs is used during female aggression. We reveal that features of this same switch operate in male Drosophila during courtship pursuit, suggesting that disparate social behaviours may share circuit mechanisms. Our study provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.
Collapse
Affiliation(s)
| | - Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nathan Klapoetke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mei Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam L Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adriane Otopalik
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
3
|
Gou T, Matulis CA, Clark DA. Adaptation to visual sparsity enhances responses to isolated stimuli. Curr Biol 2024; 34:5697-5713.e8. [PMID: 39577424 PMCID: PMC11834764 DOI: 10.1016/j.cub.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.
Collapse
Affiliation(s)
- Tong Gou
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A Clark
- Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Seung HS. Predicting visual function by interpreting a neuronal wiring diagram. Nature 2024; 634:113-123. [PMID: 39358524 PMCID: PMC11446822 DOI: 10.1038/s41586-024-07953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
As connectomics advances, it will become commonplace to know far more about the structure of a nervous system than about its function. The starting point for many investigations will become neuronal wiring diagrams, which will be interpreted to make theoretical predictions about function. Here I demonstrate this emerging approach with the Drosophila optic lobe, analysing its structure to predict that three Dm3 (refs. 1-4) and three TmY (refs. 2,4) cell types are part of a circuit that serves the function of form vision. Receptive fields are predicted from connectivity, and suggest that the cell types encode the local orientation of a visual stimulus. Extraclassical5,6 receptive fields are also predicted, with implications for robust orientation tuning7, position invariance8,9 and completion of noisy or illusory contours10,11. The TmY types synapse onto neurons that project from the optic lobe to the central brain12,13, which are conjectured to compute conjunctions and disjunctions of oriented features. My predictions can be tested through neurophysiology, which would constrain the parameters and biophysical mechanisms in neural network models of fly vision14.
Collapse
Affiliation(s)
- H Sebastian Seung
- Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
6
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Kandagedon B, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and Conditional Epitope Tagging of Endogenous G-Protein-Coupled Receptors in Drosophila. J Neurosci 2024; 44:e2377232024. [PMID: 38937100 PMCID: PMC11326870 DOI: 10.1523/jneurosci.2377-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct β 1R, Oct β 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Piero Sanfilippo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Maureen M Sampson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Binu Kandagedon
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Kenneth Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Giselle D Burns
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Marylyn E Makar
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
7
|
Zheng Z, Guo A, Wu Z. Moving object detection based on bioinspired background subtraction. BIOINSPIRATION & BIOMIMETICS 2024; 19:056002. [PMID: 38917814 DOI: 10.1088/1748-3190/ad5ba3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Flying insects rely mainly upon visual motion to detect and track objects. There has been a lot of research on fly inspired algorithms for object detection, but few have been developed based on visual motion alone. One of the daunting difficulties is that the neural and circuit mechanisms underlying the foreground-background segmentation are still unclear. Our previous modeling study proposed that the lobula held parallel pathways with distinct directional selectivity, each of which could retinotopically discriminate figures moving in its own preferred direction based on relative motion cues. The previous model, however, did not address how the multiple parallel pathways gave the only detection output at their common downstream. Since the preferred directions of the pathways along either horizontal or vertical axis were opposite to each other, the background moving in the opposite direction to an object also activated the corresponding lobula pathway. Indiscriminate or ungated projection from all the pathways to their downstream would mix objects with the moving background, making the previous model fail with non-stationary background. Here, we extend the previous model by proposing that the background motion-dependent gating of individual lobula projections is the key to object detection. Large-field lobula plate tangential cells are hypothesized to perform the gating to realize bioinspired background subtraction. The model is shown to be capable of implementing a robust detection of moving objects in video sequences with either a moving camera that induces translational optic flow or a static camera. The model sheds light on the potential of the concise fly algorithm in real-world applications.
Collapse
Affiliation(s)
- Zhu'anzhen Zheng
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Aike Guo
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, People's Republic of China
| | - Zhihua Wu
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
8
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat Commun 2024; 15:5698. [PMID: 38972924 PMCID: PMC11228034 DOI: 10.1038/s41467-024-49616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Collapse
Affiliation(s)
- Ishani Ganguly
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Cowley BR, Calhoun AJ, Rangarajan N, Ireland E, Turner MH, Pillow JW, Murthy M. Mapping model units to visual neurons reveals population code for social behaviour. Nature 2024; 629:1100-1108. [PMID: 38778103 PMCID: PMC11136655 DOI: 10.1038/s41586-024-07451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different conclusion: combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.
Collapse
Affiliation(s)
- Benjamin R Cowley
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Elise Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Maxwell H Turner
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Schretter CE, Sten TH, Klapoetke N, Shao M, Nern A, Dreher M, Bushey D, Robie AA, Taylor AL, Branson KM, Otopalik A, Ruta V, Rubin GM. Social state gates vision using three circuit mechanisms in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585289. [PMID: 38559111 PMCID: PMC10979952 DOI: 10.1101/2024.03.15.585289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well-studied. Yet, much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviors, flies need to focus on nearby flies. Here, we study how the flow of visual information is altered when female Drosophila enter an aggressive state. From the connectome, we identified three state-dependent circuit motifs poised to selectively amplify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioral and neurophysiological analyses, we show that each of these circuit motifs function during female aggression. We reveal that features of this same switch operate in males during courtship pursuit, suggesting that disparate social behaviors may share circuit mechanisms. Our work provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.
Collapse
Affiliation(s)
| | - Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Nathan Klapoetke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mei Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam L Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adriane Otopalik
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
11
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Binu K, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and conditional epitope-tagging of endogenous G protein coupled receptors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573472. [PMID: 38234787 PMCID: PMC10793450 DOI: 10.1101/2023.12.27.573472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein coupled receptors (GPCRs) in Drosophila , we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Octβ1R, Octβ2R, two isoforms of OAMB, and mGluR. The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show that 5-HT1A and 5-HT2B localize to the mushroom bodies and central complex respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their function at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the mushroom bodies as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor. Significance Statement In Drosophila , despite remarkable advances in both connectomic and genomic studies, antibodies to many aminergic GPCRs are not available. We have overcome this obstacle using evolutionary conservation to identify loci in GPCRs amenable to epitope-tagging, and CRISPR/Cas9 genome editing to generated eight novel lines. This method also may be applied to other GPCRs and allows cell-specific expression of the tagged locus. We have used the tagged alleles we generated to address several questions that remain poorly understood. These include the relationship between pre- and post-synaptic sites that express the same receptor, and the use of relatively distant targets by pre-synaptic release sites that may employ volume transmission as well as standard synaptic signaling.
Collapse
|
12
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561793. [PMID: 37873086 PMCID: PMC10592809 DOI: 10.1101/2023.10.12.561793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The arthropod mushroom body is well-studied as an expansion layer that represents olfactory stimuli and links them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their tuning and function are poorly understood. Here, we use the FlyWire adult whole-brain connectome to identify inputs to visual Kenyon cells. The types of visual neurons we identify are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual projection neurons presynaptic to Kenyon cells receive input from large swathes of visual space, while local visual interneurons, providing smaller fractions of input, receive more spatially restricted signals that may be tuned to specific features of the visual scene. Like olfactory Kenyon cells, visual Kenyon cells receive sparse inputs from different combinations of visual channels, including inputs from multiple optic lobe neuropils. The sets of inputs to individual visual Kenyon cells are consistent with random sampling of available inputs. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the expansion coding properties appear different, with a specific repertoire of visual inputs projecting onto a relatively small number of visual Kenyon cells.
Collapse
Affiliation(s)
- Ishani Ganguly
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashok Litwin-Kumar
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate
| | - Rudy Behnia
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
13
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. Visual feedback neurons fine-tune Drosophila male courtship via GABA-mediated inhibition. Curr Biol 2023; 33:3896-3910.e7. [PMID: 37673068 PMCID: PMC10529139 DOI: 10.1016/j.cub.2023.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Tsuji M, Nishizuka Y, Emoto K. Threat gates visual aversion via theta activity in Tachykinergic neurons. Nat Commun 2023; 14:3987. [PMID: 37443364 PMCID: PMC10345120 DOI: 10.1038/s41467-023-39667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Animals must adapt sensory responses to an ever-changing environment for survival. Such sensory modulation is especially critical in a threatening situation, in which animals often promote aversive responses to, among others, visual stimuli. Recently, threatened Drosophila has been shown to exhibit a defensive internal state. Whether and how threatened Drosophila promotes visual aversion, however, remains elusive. Here we report that mechanical threats to Drosophila transiently gate aversion from an otherwise neutral visual object. We further identified the neuropeptide tachykinin, and a single cluster of neurons expressing it ("Tk-GAL42 ∩ Vglut neurons"), that are responsible for gating visual aversion. Calcium imaging analysis revealed that mechanical threats are encoded in Tk-GAL42 ∩ Vglut neurons as elevated activity. Remarkably, we also discovered that a visual object is encoded in Tk-GAL42 ∩ Vglut neurons as θ oscillation, which is causally linked to visual aversion. Our data reveal how a single cluster of neurons adapt organismal sensory response to a threatening situation through a neuropeptide and a combination of rate/temporal coding schemes.
Collapse
Affiliation(s)
- Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuto Nishizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Duan W, Zhang Y, Zhang X, Yang J, Shan H, Liu L, Wei H. A Visual Pathway into Central Complex for High-Frequency Motion-Defined Bars in Drosophila. J Neurosci 2023; 43:4821-4836. [PMID: 37290936 PMCID: PMC10312062 DOI: 10.1523/jneurosci.0128-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Relative motion breaks a camouflaged target from a same-textured background, thus eliciting discrimination of a motion-defined object. Ring (R) neurons are critical components in the Drosophila central complex, which has been implicated in multiple visually guided behaviors. Using two-photon calcium imaging with female flies, we demonstrated that a specific population of R neurons that innervate the superior domain of bulb neuropil, termed superior R neurons, encoded a motion-defined bar with high spatial frequency contents. Upstream superior tuberculo-bulbar (TuBu) neurons transmitted visual signals by releasing acetylcholine within synapses connected with superior R neurons. Blocking TuBu or R neurons impaired tracking performance of the bar, which reveals their importance in motion-defined feature encoding. Additionally, the presentation of a low spatial frequency luminance-defined bar evoked consistent excitation in R neurons of the superior bulb, whereas either excited or inhibited responses were evoked in the inferior bulb. The distinct properties of the responses to the two bar stimuli indicate there is a functional division between the bulb subdomains. Moreover, physiological and behavioral tests with restricted lines suggest that R4d neurons play a vital role in tracking motion-defined bars. We conclude that the central complex receives the motion-defined features via a visual pathway from superior TuBu to R neurons and might encode different visual features via distinct response patterns at the population level, thereby driving visually guided behaviors.SIGNIFICANCE STATEMENT Animals could discriminate a motion-defined object that is indistinguishable with a same-textured background until it moves, but little is known about the underlying neural mechanisms. In this study, we identified that R neurons and their upstream partners, TuBu neurons, innervating the superior bulb of Drosophila central brain are involved in the discrimination of high-frequency motion-defined bars. Our study provides new evidence that R neurons receive multiple visual inputs from distinct upstream neurons, indicating a population coding mechanism for the fly central brain to discriminate diverse visual features. These results build progress in unraveling neural substrates for visually guided behaviors.
Collapse
Affiliation(s)
- Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Heying Shan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
- Chinese Academy of Sciences Key Laboratory of Mental Health, Beijing 100101, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
16
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Kim G, An J, Ha S, Kim AJ. A deep learning analysis of Drosophila body kinematics during magnetically tethered flight. J Neurogenet 2023:1-10. [PMID: 37200153 DOI: 10.1080/01677063.2023.2210682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
Flying Drosophila rely on their vision to detect visual objects and adjust their flight course. Despite their robust fixation on a dark, vertical bar, our understanding of the underlying visuomotor neural circuits remains limited, in part due to difficulties in analyzing detailed body kinematics in a sensitive behavioral assay. In this study, we observed the body kinematics of flying Drosophila using a magnetically tethered flight assay, in which flies are free to rotate around their yaw axis, enabling naturalistic visual and proprioceptive feedback. Additionally, we used deep learning-based video analyses to characterize the kinematics of multiple body parts in flying animals. By applying this pipeline of behavioral experiments and analyses, we characterized the detailed body kinematics during rapid flight turns (or saccades) in two different visual conditions: spontaneous flight saccades under static screen and bar-fixating saccades while tracking a rotating bar. We found that both types of saccades involved movements of multiple body parts and that the overall dynamics were comparable. Our study highlights the importance of sensitive behavioral assays and analysis tools for characterizing complex visual behaviors.
Collapse
Affiliation(s)
- Geonil Kim
- Department of Artificial Intelligence, Hanyang University, Seoul, South Korea
| | - JoonHu An
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Subin Ha
- Department of Artificial Intelligence, Hanyang University, Seoul, South Korea
| | - Anmo J Kim
- Department of Artificial Intelligence, Hanyang University, Seoul, South Korea
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
18
|
Wu Z, Guo A. Bioinspired figure-ground discrimination via visual motion smoothing. PLoS Comput Biol 2023; 19:e1011077. [PMID: 37083880 PMCID: PMC10155969 DOI: 10.1371/journal.pcbi.1011077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Flies detect and track moving targets among visual clutter, and this process mainly relies on visual motion. Visual motion is analyzed or computed with the pathway from the retina to T4/T5 cells. The computation of local directional motion was formulated as an elementary movement detector (EMD) model more than half a century ago. Solving target detection or figure-ground discrimination problems can be equivalent to extracting boundaries between a target and the background based on the motion discontinuities in the output of a retinotopic array of EMDs. Individual EMDs cannot measure true velocities, however, due to their sensitivity to pattern properties such as luminance contrast and spatial frequency content. It remains unclear how local directional motion signals are further integrated to enable figure-ground discrimination. Here, we present a computational model inspired by fly motion vision. Simulations suggest that the heavily fluctuating output of an EMD array is naturally surmounted by a lobula network, which is hypothesized to be downstream of the local motion detectors and have parallel pathways with distinct directional selectivity. The lobula network carries out a spatiotemporal smoothing operation for visual motion, especially across time, enabling the segmentation of moving figures from the background. The model qualitatively reproduces experimental observations in the visually evoked response characteristics of one type of lobula columnar (LC) cell. The model is further shown to be robust to natural scene variability. Our results suggest that the lobula is involved in local motion-based target detection.
Collapse
Affiliation(s)
- Zhihua Wu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aike Guo
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525544. [PMID: 36747836 PMCID: PMC9900824 DOI: 10.1101/2023.01.25.525544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
20
|
Kim H, Park H, Lee J, Kim AJ. A visuomotor circuit for evasive flight turns in Drosophila. Curr Biol 2023; 33:321-335.e6. [PMID: 36603587 DOI: 10.1016/j.cub.2022.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
Visual systems extract multiple features from a scene using parallel neural circuits. Ultimately, the separate neural signals must come together to coherently influence action. Here, we characterize a circuit in Drosophila that integrates multiple visual features related to imminent threats to drive evasive locomotor turns. We identified, using genetic perturbation methods, a pair of visual projection neurons (LPLC2) and descending neurons (DNp06) that underlie evasive flight turns in response to laterally moving or approaching visual objects. Using two-photon calcium imaging or whole-cell patch clamping, we show that these cells indeed respond to both translating and approaching visual patterns. Furthermore, by measuring visual responses of LPLC2 neurons after genetically silencing presynaptic motion-sensing neurons, we show that their visual properties emerge by integrating multiple visual features across two early visual structures: the lobula and the lobula plate. This study highlights a clear example of how distinct visual signals converge on a single class of visual neurons and then activate premotor neurons to drive action, revealing a concise visuomotor pathway for evasive flight maneuvers in Drosophila.
Collapse
Affiliation(s)
- Hyosun Kim
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, South Korea
| | - Hayun Park
- Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Joowon Lee
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Anmo J Kim
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, South Korea; Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea; Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
21
|
Dombrovski M, Peek MY, Park JY, Vaccari A, Sumathipala M, Morrow C, Breads P, Zhao A, Kurmangaliyev YZ, Sanfilippo P, Rehan A, Polsky J, Alghailani S, Tenshaw E, Namiki S, Zipursky SL, Card GM. Synaptic gradients transform object location to action. Nature 2023; 613:534-542. [PMID: 36599984 PMCID: PMC9849133 DOI: 10.1038/s41586-022-05562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin Y Peek
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jin-Yong Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrea Vaccari
- Department of Computer Science, Middlebury College, Middlebury, VT, USA
| | | | - Carmen Morrow
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patrick Breads
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Piero Sanfilippo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aadil Rehan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Polsky
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shada Alghailani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Department of Neuroscience, Howard Hughes Medical Institute, The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Turner MH, Krieger A, Pang MM, Clandinin TR. Visual and motor signatures of locomotion dynamically shape a population code for feature detection in Drosophila. eLife 2022; 11:e82587. [PMID: 36300621 PMCID: PMC9651947 DOI: 10.7554/elife.82587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Natural vision is dynamic: as an animal moves, its visual input changes dramatically. How can the visual system reliably extract local features from an input dominated by self-generated signals? In Drosophila, diverse local visual features are represented by a group of projection neurons with distinct tuning properties. Here, we describe a connectome-based volumetric imaging strategy to measure visually evoked neural activity across this population. We show that local visual features are jointly represented across the population, and a shared gain factor improves trial-to-trial coding fidelity. A subset of these neurons, tuned to small objects, is modulated by two independent signals associated with self-movement, a motor-related signal, and a visual motion signal associated with rotation of the animal. These two inputs adjust the sensitivity of these feature detectors across the locomotor cycle, selectively reducing their gain during saccades and restoring it during intersaccadic intervals. This work reveals a strategy for reliable feature detection during locomotion.
Collapse
Affiliation(s)
- Maxwell H Turner
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Avery Krieger
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Michelle M Pang
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | |
Collapse
|
23
|
Vashistha H, Clark DA. Feature maps: How the insect visual system organizes information. Curr Biol 2022; 32:R847-R849. [PMID: 35944487 DOI: 10.1016/j.cub.2022.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new study explores how a population of neurons in the insect brain responds to different features of visual scenes and discovers an unusual topographic map that organizes the information they encode.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Tanaka R, Clark DA. Neural mechanisms to exploit positional geometry for collision avoidance. Curr Biol 2022; 32:2357-2374.e6. [PMID: 35508172 PMCID: PMC9177691 DOI: 10.1016/j.cub.2022.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
Abstract
Visual motion provides rich geometrical cues about the three-dimensional configuration of the world. However, how brains decode the spatial information carried by motion signals remains poorly understood. Here, we study a collision-avoidance behavior in Drosophila as a simple model of motion-based spatial vision. With simulations and psychophysics, we demonstrate that walking Drosophila exhibit a pattern of slowing to avoid collisions by exploiting the geometry of positional changes of objects on near-collision courses. This behavior requires the visual neuron LPLC1, whose tuning mirrors the behavior and whose activity drives slowing. LPLC1 pools inputs from object and motion detectors, and spatially biased inhibition tunes it to the geometry of collisions. Connectomic analyses identified circuitry downstream of LPLC1 that faithfully inherits its response properties. Overall, our results reveal how a small neural circuit solves a specific spatial vision task by combining distinct visual features to exploit universal geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
25
|
von Reyn CR. Feature encoding: How back-to-front motion guides the polite fly. Curr Biol 2022; 32:R513-R515. [PMID: 35671722 DOI: 10.1016/j.cub.2022.04.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Motion of a visual image from back-to-front across a visual field can provide an early-stage cue for impending collisions. A new study reveals visual feature encoding neurons that drive behavioral responses to back-to-front motion in the fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Ryu L, Kim SY, Kim AJ. From Photons to Behaviors: Neural Implementations of Visual Behaviors in Drosophila. Front Neurosci 2022; 16:883640. [PMID: 35600623 PMCID: PMC9115102 DOI: 10.3389/fnins.2022.883640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neural implementations of visual behaviors in Drosophila have been dissected intensively in the past couple of decades. The availability of premiere genetic toolkits, behavioral assays in tethered or freely moving conditions, and advances in connectomics have permitted the understanding of the physiological and anatomical details of the nervous system underlying complex visual behaviors. In this review, we describe recent advances on how various features of a visual scene are detected by the Drosophila visual system and how the neural circuits process these signals and elicit an appropriate behavioral response. Special emphasis was laid on the neural circuits that detect visual features such as brightness, color, local motion, optic flow, and translating or approaching visual objects, which would be important for behaviors such as phototaxis, optomotor response, attraction (or aversion) to moving objects, navigation, and visual learning. This review offers an integrative framework for how the fly brain detects visual features and orchestrates an appropriate behavioral response.
Collapse
Affiliation(s)
- Leesun Ryu
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Sung Yong Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Anmo J. Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
27
|
Evans BJE, O’Carroll DC, Fabian JM, Wiederman SD. Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes. Front Cell Neurosci 2022; 16:857071. [PMID: 35450210 PMCID: PMC9017788 DOI: 10.3389/fncel.2022.857071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Aerial predators, such as the dragonfly, determine the position and movement of their prey even when both are moving through complex, natural scenes. This task is likely supported by a group of neurons in the optic lobe which respond to moving targets that subtend less than a few degrees. These Small Target Motion Detector (STMD) neurons are tuned to both target size and velocity, whilst also exhibiting facilitated responses to targets traveling along continuous trajectories. When presented with a pair of targets, some STMDs generate spiking activity that represent a competitive selection of one target, as if the alternative does not exist (i.e., selective attention). Here, we describe intracellular responses of CSTMD1 (an identified STMD) to the visual presentation of targets embedded within cluttered, natural scenes. We examine CSTMD1 response changes to target contrast, as well as a range of target and background velocities. We find that background motion affects CSTMD1 responses via the competitive selection between features within the natural scene. Here, robust discrimination of our artificially embedded "target" is limited to scenarios when its velocity is matched to, or greater than, the background velocity. Additionally, the background's direction of motion affects discriminability, though not in the manner observed in STMDs of other flying insects. Our results highlight that CSTMD1's competitive responses are to those features best matched to the neuron's underlying spatiotemporal tuning, whether from the embedded target or other features in the background clutter. In many scenarios, CSTMD1 responds robustly to targets moving through cluttered scenes. However, whether this neuronal system could underlie the task of competitively selecting slow moving prey against fast-moving backgrounds remains an open question.
Collapse
|
28
|
A functionally ordered visual feature map in the Drosophila brain. Neuron 2022; 110:1700-1711.e6. [DOI: 10.1016/j.neuron.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
|
29
|
Tanaka 田中涼介 R, Clark DA. Identifying Inputs to Visual Projection Neurons in Drosophila Lobula by Analyzing Connectomic Data. eNeuro 2022; 9:ENEURO.0053-22.2022. [PMID: 35410869 PMCID: PMC9034759 DOI: 10.1523/eneuro.0053-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Electron microscopy (EM)-based connectomes provide important insights into how visual circuitry of fruit fly Drosophila computes various visual features, guiding and complementing behavioral and physiological studies. However, connectomic analyses of the lobula, a neuropil putatively dedicated to detecting object-like features, remains underdeveloped, largely because of incomplete data on the inputs to the brain region. Here, we attempted to map the columnar inputs into the Drosophila lobula neuropil by performing connectivity-based and morphology-based clustering on a densely reconstructed connectome dataset. While the dataset mostly lacked visual neuropils other than lobula, which would normally help identify inputs to lobula, our clustering analysis successfully extracted clusters of cells with homogeneous connectivity and morphology, likely representing genuine cell types. We were able to draw a correspondence between the resulting clusters and previously identified cell types, revealing previously undocumented connectivity between lobula input and output neurons. While future, more complete connectomic reconstructions are necessary to verify the results presented here, they can serve as a useful basis for formulating hypotheses on mechanisms of visual feature detection in lobula.
Collapse
Affiliation(s)
- Ryosuke Tanaka 田中涼介
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511
- Department of Physics, Yale University, New Haven, CT 06511
- Department of Neuroscience, Yale University, New Haven, CT 06511
| |
Collapse
|
30
|
Lepore MG, Tomsic D, Sztarker J. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata. J Comp Neurol 2022; 530:1533-1550. [PMID: 34985823 DOI: 10.1002/cne.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
The visual neuropils (lamina, medulla and lobula complex), of malacostracan crustaceans and hexapods have many organizational principles, cell types and functional properties in common. Information about the cellular elements that compose the crustacean lobula is scarce especially when focusing on small columnar cells. Semiterrestrial crabs possess a highly developed visual system and display conspicuous visually guided behaviors. In particular, Neohelice granulata has been previously used to describe the cellular components of the first two optic neuropils using Golgi impregnation technique. Here, we present a comprehensive description of individual elements composing the third optic neuropil, the lobula, of that same species. We characterized a wide variety of elements (140 types) including input terminals and lobula columnar, centrifugal and input columnar elements. Results reveal a very dense and complex neuropil. We found a frequently impregnated input element (suggesting a supernumerary cartridge representation) that arborizes in the third layer of the lobula and that presents four variants each with ramifications organized following one of the four cardinal axes suggesting a role in directional processing. We also describe input elements with two neurites branching in the third layer, probably connecting with the medulla and lobula plate. These facts suggest that this layer is involved in the directional motion detection pathway in crabs. We analyze and discuss our findings considering the similarities and differences found between the layered organization and components of this crustacean lobula and the lobula of insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Grazia Lepore
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
31
|
Facilitation of neural responses to targets moving against optic flow. Proc Natl Acad Sci U S A 2021; 118:2024966118. [PMID: 34531320 PMCID: PMC8463850 DOI: 10.1073/pnas.2024966118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Target detection in visual clutter is a difficult computational task that insects, with their poor spatial resolution compound eyes and small brains, do successfully and with extremely short behavioral delays. We here show that the responses of target selective descending neurons are attenuated by background motion in the same direction as target motion but facilitated by background motion in the opposite direction. This finding is important for understanding how target pursuit can occur in tandem with gaze stabilization. Indeed, the neural facilitation would come into effect if the hoverfly is subjected to background motion in one direction but the target it is pursuing moves in the opposite direction and could therefore be used to override gaze stabilizing corrective turns. For the human observer, it can be difficult to follow the motion of small objects, especially when they move against background clutter. In contrast, insects efficiently do this, as evidenced by their ability to capture prey, pursue conspecifics, or defend territories, even in highly textured surrounds. We here recorded from target selective descending neurons (TSDNs), which likely subserve these impressive behaviors. To simulate the type of optic flow that would be generated by the pursuer’s own movements through the world, we used the motion of a perspective corrected sparse dot field. We show that hoverfly TSDN responses to target motion are suppressed when such optic flow moves syn-directional to the target. Indeed, neural responses are strongly suppressed when targets move over either translational sideslip or rotational yaw. More strikingly, we show that TSDNs are facilitated by optic flow moving counterdirectional to the target, if the target moves horizontally. Furthermore, we show that a small, frontal spatial window of optic flow is enough to fully facilitate or suppress TSDN responses to target motion. We argue that such TSDN response facilitation could be beneficial in modulating corrective turns during target pursuit.
Collapse
|
32
|
Cheong HS, Siwanowicz I, Card GM. Multi-regional circuits underlying visually guided decision-making in Drosophila. Curr Opin Neurobiol 2020; 65:77-87. [PMID: 33217639 DOI: 10.1016/j.conb.2020.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.
Collapse
Affiliation(s)
- Han Sj Cheong
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Igor Siwanowicz
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States
| | - Gwyneth M Card
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, United States.
| |
Collapse
|
33
|
Serotonergic modulation of visual neurons in Drosophila melanogaster. PLoS Genet 2020; 16:e1009003. [PMID: 32866139 PMCID: PMC7485980 DOI: 10.1371/journal.pgen.1009003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila. Serotonergic neurons innervate the Drosophila melanogaster eye, but it was not known whether serotonin signaling could induce acute physiological responses in visual interneurons. We found serotonin receptors expressed in all neuropils of the optic lobe and identified specific neurons involved in visual information processing that express serotonin receptors. Activation of these receptors increased intracellular calcium in first order interneurons L1 and L2 and may enhance visually induced calcium transients in L2 neurons. These data support a role for the serotonergic neuromodulation of interneurons in the Drosophila visual system.
Collapse
|