1
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Ji W, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. Dev Cell 2024; 59:2659-2671.e4. [PMID: 38971157 PMCID: PMC11461132 DOI: 10.1016/j.devcel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Neutrophils collectively migrate to sites of injury and infection. How these swarms are coordinated to ensure the proper level of recruitment is unknown. Using an ex vivo model of infection, we show that human neutrophil swarming is organized by multiple pulsatile chemoattractant waves. These waves propagate through active relay in which stimulated neutrophils trigger their neighbors to release additional swarming cues. Unlike canonical active relays, we find these waves to be self-terminating, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-terminating behavior. We observe near-constant levels of neutrophil recruitment over a wide range of starting conditions, revealing surprising robustness in the swarming process. This homeostatic control is achieved by larger and more numerous swarming waves at lower cell densities. We link defective wave termination to a broken recruitment homeostat in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Hopke
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Wencheng Ji
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
4
|
Akter M, Kabir AMR, Keya JJ, Sada K, Asanuma H, Kakugo A. Localized Control of the Swarming of Kinesin-Driven Microtubules Using Light. ACS OMEGA 2024; 9:37748-37753. [PMID: 39281908 PMCID: PMC11391547 DOI: 10.1021/acsomega.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
The swarming of self-propelled cytoskeletal filaments has emerged as a new aspect in the field of molecular machines or robotics, as it has overcome one of the major challenges of controlling the mutual interaction of a large number of individuals at a time. Recently, we reported on the photoregulated swarming of kinesin-driven cytoskeletal microtubule filaments in which visible (VIS) and ultraviolet (UV) light triggered the association and dissociation of the swarm, respectively. However, systematic control of this potential system has yet to be achieved to optimize swarming for further applications in molecular machines or robotics. Here, we demonstrate the precise and localized control of a biomolecular motor-based swarm system by varying different parameters related to photoirradiation. We control the reversibility of the swarming by changing the wavelength or intensity of light and the number of azobenzenes in DNA. In addition, we regulate the swarming in local regions by introducing different-sized or shaped patterns in the UV light system. Such a detailed study of the precise control of swarming would provide new perspectives for developing a molecular swarm system for further applications in engineering systems.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48108, Michigan United States
| | | | - Jakia Jannat Keya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Akira Kakugo
- Department of Physics, Kyoto University, Kyoto 606-8224, Japan
| |
Collapse
|
5
|
Williantarra I, Georgantzoglou A, Sarris M. Visualising Neutrophil Actin Dynamics in Zebrafish in Response to Laser Wounding Using Two-Photon Microscopy. Bio Protoc 2024; 14:e4997. [PMID: 38873016 PMCID: PMC11166540 DOI: 10.21769/bioprotoc.4997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Cells need to migrate along gradients of chemicals (chemotaxis) in the course of development, wound healing, or immune responses. Neutrophils are prototypical migratory cells that are rapidly recruited to injured or infected tissues from the bloodstream. Their chemotaxis to these inflammatory sites involves changes in cytoskeletal dynamics in response to gradients of chemicals produced therein. Neutrophil chemotaxis has been largely studied in vitro; few assays have been developed to monitor gradient responses in complex living tissues. Here, we describe a laser-wound assay to generate focal injury in zebrafish larvae and monitor changes in behaviour and cytoskeletal dynamics. The first step is to cross adult fish and collect and rear embryos expressing a relevant fluorescent reporter (for example, Lifeact-mRuby, which labels dynamic actin) to an early larval stage. Subsequently, larvae are mounted and prepared for live imaging and wounding under a two-photon microscope. Finally, the resulting data are processed and used for cell segmentation and quantification of actin dynamics. Altogether, this assay allows the visualisation of cellular dynamics in response to acute injury at high resolution and can be combined with other manipulations, such as genetic or chemical perturbations. Key features • This protocol is designed to trigger laser wound in zebrafish larvae using two-photon intravital microscopy. • The ability to wound while imaging makes it possible to monitor the behaviour and actin changes of the cells immediately after gradient exposure. • The protocol requires a two-photon microscope for best results. Compared with one-photon laser wounding, the injury is more precise and has better tissue penetration. • The focal nature of the wounds is suitable for studies of neutrophil swarming/aggregation and can be further adapted to infectious settings.
Collapse
Affiliation(s)
- Ivanna Williantarra
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Antonios Georgantzoglou
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Milka Sarris
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Fok MR, Jin L. Learn, unlearn, and relearn post-extraction alveolar socket healing: Evolving knowledge and practices. J Dent 2024; 145:104986. [PMID: 38574844 DOI: 10.1016/j.jdent.2024.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This review was to offer a comprehensive analysis of currently available evidence on post-extraction alveolar socket healing, including i) the histological and molecular events during alveolar socket healing, ii) the dimensional ridge alterations after socket healing and controversies relating to sinus pneumatisation, iii) the patient-specific factors, procedural elements, and site-related variables influencing socket healing, iv) techniques and effectiveness of alveolar ridge preservation (ARP) procedure, and v) the philosophies and cost-effectiveness of ARP in clinical practice. SOURCES AND STUDY SELECTION To investigate the dimensional profiles of the alveolar ridge following unassisted healing, an overview of systematic reviews was conducted in February 2024 by two independent reviewers. Four electronic databases were searched in Pubmed, Embase, Web of science and Cochrane Library between 2004 and 2024 to identify all relevant systematic reviews on post-extraction healing. A further manual search of reviews was also conducted. The articles were further reviewed in full text for relevance. The AMSTAR-2 appraisal tool was adopted to assess methodological quality. Current research pertaining to other listed objectives was objectively analysed in narration. DATA 11 out of 459 retrieved studies were selected and ultimately covered in this review on the dimensional changes of alveolar ridge following natural healing: Seven systematic reviews and four systematic reviews with meta-analyses. The methodological quality of all included reviews was critically low. CONCLUSION This review thoroughly examines the healing profiles of post-extraction alveolar sockets and highlights the dynamic process with overlapping phases and the inter-individual variability in outcomes. ARP procedure is a potential strategy for facilitating prosthetic site development, while the current evidence is limited. Herein, an individualised and prosthetically driven approach is crucial. Further well sized and designed trials with novel biomaterials need to be undertaken, and the role of artificial intelligence in predicting healing and assisting clinical decision-making could be explored. CLINICAL SIGNIFICANCE By advancing our understanding of alveolar socket healing and its management strategies, clinicians can make more informed decisions regarding patient and site level assessment and selection, surgical techniques, and biomaterial choices, ultimately contributing to the enhanced healing process with reduced complications and improved quality of life for patients undergoing tooth extraction and dental implant treatments.
Collapse
Affiliation(s)
- Melissa Rachel Fok
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
7
|
Golenkina EA, Viryasova GM, Galkina SI, Iakushkina IV, Gaponova TV, Romanova YM, Sud’ina GF. ATP and Formyl Peptides Facilitate Chemoattractant Leukotriene-B4 Synthesis and Drive Calcium Fluxes, Which May Contribute to Neutrophil Swarming at Sites of Cell Damage and Pathogens Invasion. Biomedicines 2024; 12:1184. [PMID: 38927391 PMCID: PMC11201259 DOI: 10.3390/biomedicines12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Here, we demonstrate that human neutrophil interaction with the bacterium Salmonella typhimurium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs. Activation of 5-lipoxygenase (5-LOX), key enzyme of leukotriene biosynthesis, depends on an increase in the cytosolic concentration of Ca2+. We demonstrate that eATP treatment prior to fMLP, by markedly reducing the amplitude of the fMLP-induced Ca2+ transient jump, inhibits leukotriene synthesis. At the same time, when added with or shortly after fMLP, eATP effectively potentiates arachidonic acid metabolism, including by Ca2+ fluxes stimulation. Flufenamic acid, glibenclamide, and calmodulin antagonist R24571, all of which block calcium signaling in different ways, all suppressed 5-LOX product synthesis in our experimental model, indicating the dominance of calcium-mediated mechanisms in eATP regulatory potential. Investigation into the adhesive properties of neutrophils revealed the formation of cell clusters when adding fMLP to neutrophils exposed to the bacterium Salmonella typhimurium. eATP added simultaneously with fMLP supported neutrophil polarization and clustering. A cell-derived chemoattractant such as leukotriene B4 plays a crucial role in the recruitment of additional neutrophils to the foci of tissue damage or pathogen invasion, and eATP, through the dynamics of changes in [Ca2+]i, plays an important decisive role in fMLP-induced leukotrienes synthesis during neutrophil interactions with the bacterium Salmonella typhimurium.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Iuliia V. Iakushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, 125167 Moscow, Russia;
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| |
Collapse
|
8
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
9
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590456. [PMID: 38712240 PMCID: PMC11071349 DOI: 10.1101/2024.04.21.590456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. Secretion of LTB 4 -containing exosomes is required for effective neutrophil infiltration during inflammation. In this study, we show that neutrophils release nuclear DNA in a non-lytic, rapid, and repetitive manner, via a mechanism distinct from suicidal NET release and cell death. The packaging of nuclear DNA occurs in the lumen of nuclear envelope (NE)-derived multivesicular bodies (MVBs) that harbor the LTB 4 synthesizing machinery and is mediated by the lamin B receptor (LBR) and chromatin decondensation. Disruption of secreted exosome-associated DNA (SEAD) in a model of sterile inflammation in mouse skin amplifies and prolongs the presence of neutrophils, impeding the onset of resolution. Together, these findings advance our understanding of neutrophil functions during inflammation and the physiological significance of NETs, with implications for novel treatments for inflammatory disorders.
Collapse
|
10
|
Peterson EA, Sun J, Chen X, Wang J. Neutrophils facilitate the epicardial regenerative response after zebrafish heart injury. Dev Biol 2024; 508:93-106. [PMID: 38286185 PMCID: PMC10923159 DOI: 10.1016/j.ydbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Despite extensive studies on endogenous heart regeneration within the past 20 years, the players involved in initiating early regeneration events are far from clear. Here, we assessed the function of neutrophils, the first-responder cells to tissue damage, during zebrafish heart regeneration. We detected rapid neutrophil mobilization to the injury site after ventricular amputation, peaking at 1-day post-amputation (dpa) and resolving by 3 dpa. Further analyses indicated neutrophil mobilization coincides with peak epicardial cell proliferation, and recruited neutrophils associated with activated, expanding epicardial cells at 1 dpa. Neutrophil depletion inhibited myocardial regeneration and significantly reduced epicardial cell expansion, proliferation, and activation. To explore the molecular mechanism of neutrophils on the epicardial regenerative response, we performed scRNA-seq analysis of 1 dpa neutrophils and identified enrichment of the FGF and MAPK/ERK signaling pathways. Pharmacological inhibition of FGF signaling indicated its' requirement for epicardial expansion, while neutrophil depletion blocked MAPK/ERK signaling activation in epicardial cells. Ligand-receptor analysis indicated the EGF ligand, hbegfa, is released from neutrophils and synergizes with other FGF and MAPK/ERK factors for induction of epicardial regeneration. Altogether, our studies revealed that neutrophils quickly motivate epicardial cells, which later accumulate at the injury site and contribute to heart regeneration.
Collapse
Affiliation(s)
- Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Chen H, Han Y, Hearne A, Monarchino A, Wiseman JS. Purinergic ligands induce extracellular acidification and increased ATP turnover in HepG2 cells. Toxicol In Vitro 2024; 96:105788. [PMID: 38320684 DOI: 10.1016/j.tiv.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Nucleosides and nucleotides at μM concentrations stimulated a 300% increase in acid secretion in HepG2 cells, which was quantitatively accounted for as increased export of lactate generated by glycogenolysis. Agonist selectivity encompassed nucleosides and nucleotides for all 5 natural nucleobases and, along with antagonist profiles, was inconsistent with a role for purinergic receptors in mediating this activity. Agonist catabolism did not contribute significantly to either low selectivity or lactate production. Lactate production was driven by an increase in ATP turnover of as much as 56%. For some agonists, especially adenosine, ATP turnover decreased precipitously at mM concentrations, correlating with known adenosine-stimulated apoptosis. We propose that nucleoside/nucleotide agonists induce a futile energy cycle via a novel mechanism, which results in increased ATP turnover and initiates a continuum of events that for some agonists culminates in apoptosis.
Collapse
Affiliation(s)
- Haotong Chen
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA; QPS Holding LLC, 3 Innovation Way, Newark, DE 19711, United States of America.
| | - Yong Han
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Abby Hearne
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Anna Monarchino
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| | - Jeffrey S Wiseman
- Edison Biotechnology Institute, Bldg. 25, The Ridges, Ohio University, Athens, OH, USA.
| |
Collapse
|
12
|
Golenkina EA, Viryasova GM, Galkina SI, Kondratenko ND, Gaponova TV, Romanova YM, Lyamzaev KG, Chernyak BV, Sud’ina GF. Redox processes are major regulators of leukotriene synthesis in neutrophils exposed to bacteria Salmonella typhimurium; the way to manipulate neutrophil swarming. Front Immunol 2024; 15:1295150. [PMID: 38384456 PMCID: PMC10880102 DOI: 10.3389/fimmu.2024.1295150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia D. Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow, Russia
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Glaser KM, Doon-Ralls J, Walters N, Rima XY, Rambold AS, Réategui E, Lämmermann T. Arp2/3 complex and the pentose phosphate pathway regulate late phases of neutrophil swarming. iScience 2024; 27:108656. [PMID: 38205244 PMCID: PMC10777075 DOI: 10.1016/j.isci.2023.108656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Neutrophil swarming is an essential process of the neutrophil response to many pathological conditions. Resultant neutrophil accumulations are hallmarks of acute tissue inflammation and infection, but little is known about their dynamic regulation. Technical limitations to spatiotemporally resolve individual cells in dense neutrophil clusters and manipulate these clusters in situ have hampered recent progress. We here adapted an in vitro swarming-on-a-chip platform for the use with confocal laser-scanning microscopy to unravel the complexity of single-cell responses during neutrophil crowding. Confocal sectioning allowed the live visualization of subcellular components, including mitochondria, cell membranes, cortical actin, and phagocytic cups, inside neutrophil clusters. Based on this experimental setup, we identify that chemical inhibition of the Arp2/3 complex causes cell death in crowding neutrophils. By visualizing spatiotemporal patterns of reactive oxygen species (ROS) production in developing neutrophil swarms, we further demonstrate a regulatory role of the metabolic pentose phosphate pathway for ROS production and neutrophil cluster growth.
Collapse
Affiliation(s)
- Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jacob Doon-Ralls
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Angelika S. Rambold
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Eduardo Réategui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| |
Collapse
|
14
|
Sosa RA, Ahn R, Li F, Terry AQ, Qian Z, Bhat A, Sen S, Naini BV, Ito T, Kaldas FM, Hoffmann A, Busuttil RW, Kupiec-Weglinski JW, Gjertson DW, Reed EF. Myeloid spatial and transcriptional molecular signature of ischemia-reperfusion injury in human liver transplantation. Hepatol Commun 2024; 8:e0330. [PMID: 38206205 PMCID: PMC10786592 DOI: 10.1097/hc9.0000000000000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/02/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a significant clinical concern in liver transplantation, with a key influence on short-term and long-term allograft and patient survival. Myeloid cells trigger and sustain tissue inflammation and damage associated with IRI, but the mechanisms regulating these activities are unknown. To address this, we investigated the molecular characteristics of intragraft myeloid cells present in biopsy-proven IRI- and IRI+ liver transplants. METHODS RNA-sequencing was performed on 80 pre-reperfusion and post-reperfusion biopsies from 40 human recipients of liver transplantation (23 IRI+, 17 IRI-). We used transcriptional profiling and computational approaches to identify specific gene coexpression network modules correlated with functional subsets of MPO+, lysozyme+, and CD68+ myeloid cells quantified by immunohistochemistry on sequential sections from the same patient biopsies. RESULTS A global molecular map showed gene signatures related to myeloid activation in all patients regardless of IRI status; however, myeloid cell subsets differed dramatically in their spatial morphology and associated gene signatures. IRI- recipients were found to have a natural corticosteroid production and response profile from pre-reperfusion to post-reperfusion, particularly among monocytes/macrophages. The pre-reperfusion signature of IRI+ recipients included acute inflammatory responses in neutrophils and increased translation of adaptive immune-related genes in monocytes/macrophages coupled with decreased glucocorticoid responses. Subsequent lymphocyte activation at post-reperfusion identified transcriptional programs associated with the transition to adaptive immunity found only among IRI+ recipients. CONCLUSIONS Myeloid subset-specific genes and related signaling pathways provide targets for the development of therapeutic strategies aimed at limiting IRI in the clinical setting of liver transplantation.
Collapse
Affiliation(s)
- Rebecca A. Sosa
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, UCLA, Los Angeles, California, USA
| | - Richard Ahn
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California, USA
- Depertment of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Fang Li
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Allyson Q. Terry
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Zach Qian
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California, USA
| | - Adil Bhat
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Subha Sen
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Bita V. Naini
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Takahiro Ito
- Depertment of Surgery, UCLA, Los Angeles, California, USA
| | - Fady M. Kaldas
- Depertment of Surgery, UCLA, Los Angeles, California, USA
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California, USA
- Depertment of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | | | - Jerzy W. Kupiec-Weglinski
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Depertment of Surgery, UCLA, Los Angeles, California, USA
| | - David W. Gjertson
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, UCLA, Los Angeles, California, USA
| | - Elaine F. Reed
- Depertment of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Brady A, Sheneman KR, Pulsifer AR, Price SL, Garrison TM, Maddipati KR, Bodduluri SR, Pan J, Boyd NL, Zheng JJ, Rai SN, Hellmann J, Haribabu B, Uriarte SM, Lawrenz MB. Type 3 secretion system induced leukotriene B4 synthesis by leukocytes is actively inhibited by Yersinia pestis to evade early immune recognition. PLoS Pathog 2024; 20:e1011280. [PMID: 38271464 PMCID: PMC10846697 DOI: 10.1371/journal.ppat.1011280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/06/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Katelyn R. Sheneman
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda R. Pulsifer
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sarah L. Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Taylor M. Garrison
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Sobha R. Bodduluri
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Nolan L. Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jing-Juan Zheng
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shesh N. Rai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
16
|
Kaszab E, Jiang D, Szabó I, Kriszt B, Urbányi B, Szoboszlay S, Sebők R, Bock I, Csenki-Bakos Z. Evaluating the In Vivo Virulence of Environmental Pseudomonas aeruginosa Using Microinjection Model of Zebrafish ( Danio rerio). Antibiotics (Basel) 2023; 12:1740. [PMID: 38136774 PMCID: PMC10740789 DOI: 10.3390/antibiotics12121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Microinjection of zebrafish (Danio rerio) embryos offers a promising model for studying the virulence and potential environmental risks associated with Pseudomonas aeruginosa. (2) Methods: This work aimed to develop a P. aeruginosa infection model using two parallel exposition pathways on zebrafish larvae with microinjection into the yolk and the perivitelline space to simultaneously detect the invasive and cytotoxic features of the examined strains. The microinjection infection model was validated with 15 environmental and clinical strains of P. aeruginosa of various origins, antibiotic resistance profiles, genotypes and phenotypes: both exposition pathways were optimized with a series of bacterial dilutions, different drop sizes (injection volumes) and incubation periods. Besides mortality, sublethal symptoms of the treated embryos were detected and analyzed. (3) Results: According to the statistical evaluation of our results, the optimal parameters (dilution, drop size and incubation period) were determined. (4) Conclusions: The tested zebrafish embryo microinjection infection model is now ready for use to determine the in vivo virulence and ecological risk of environmental P. aeruginosa.
Collapse
Affiliation(s)
- Edit Kaszab
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Dongze Jiang
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Sándor Szoboszlay
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Rózsa Sebők
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (E.K.); (D.J.); (S.S.); (R.S.)
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| | - Zsolt Csenki-Bakos
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (I.S.); (I.B.); (Z.C.-B.)
| |
Collapse
|
17
|
Michael C, de Oliveira S. Exploring the dynamic behavior of leukocytes with zebrafish. Curr Opin Cell Biol 2023; 85:102276. [PMID: 37956533 PMCID: PMC10842401 DOI: 10.1016/j.ceb.2023.102276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Cell migration is a complex and intricate network of physical, chemical, and molecular events that ultimately leads to cell motility. This phenomenon is involved in both physiological and pathological processes such as proper immune and inflammatory responses. Dysregulation of cell migration machinery in immune cells can have a tremendous impact on the trajectory of inflammation, infection, and resolution. The small vertebrate, the zebrafish, has a remarkable capacity for genetic and pharmacological manipulation aligned to transparency that enables modulation and visualization of cell migration in vivo noninvasively. Such characteristics revolutionized the field of leukocyte biology, particularly neutrophils. In this review, we will focus on leukocyte migration and highlight findings made in the zebrafish that demonstrate how this small vertebrate system is a unique model to perform in vivo imaging and study mechanisms that regulate the dynamic behavior of immune cells in their native environment under homeostasis or upon challenge.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, USA.
| |
Collapse
|
18
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Edgerton M, Rojas I, Kumar R, Li R, Salvatori O, Abrams S, Irimia D. Neutrophil swarms containing myeloid-derived suppressor cells are crucial for limiting oral mucosal infection by C. albicans. RESEARCH SQUARE 2023:rs.3.rs-3346012. [PMID: 37886517 PMCID: PMC10602121 DOI: 10.21203/rs.3.rs-3346012/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that in vivo neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone. Neutrophil swarm function required leukotriene B4 receptor 1 (BLT1) expression, and swarms were further characterized by peripheral association of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) showing that OPC recruits PMN-MDSCs to this site of infection. Furthermore, PMN-MDSCs associated with Ca hyphae had no direct antifungal effect but showed prolonged survival times and increased autophagy. Thus in vivo neutrophil swarms are complex structures with spatially associated PMN-MDSCs that likely contribute immunoregulatory functions to resolve OPC. These swarm structures have an important function in preventing deep invasion by Ca within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.
Collapse
|
20
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Tamás SX, Roux BT, Vámosi B, Dehne FG, Török A, Fazekas L, Enyedi B. A genetically encoded sensor for visualizing leukotriene B4 gradients in vivo. Nat Commun 2023; 14:4610. [PMID: 37528073 PMCID: PMC10393954 DOI: 10.1038/s41467-023-40326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid chemoattractant driving inflammatory responses during host defense, allergy, autoimmune and metabolic diseases. Gradients of LTB4 orchestrate leukocyte recruitment and swarming to sites of tissue damage and infection. How LTB4 gradients form and spread in live tissues to regulate these processes remains largely elusive due to the lack of suitable tools for monitoring LTB4 levels in vivo. Here, we develop GEM-LTB4, a genetically encoded green fluorescent LTB4 biosensor based on the human G-protein-coupled receptor BLT1. GEM-LTB4 shows high sensitivity, specificity and a robust fluorescence increase in response to LTB4 without affecting downstream signaling pathways. We use GEM-LTB4 to measure ex vivo LTB4 production of murine neutrophils. Transgenic expression of GEM-LTB4 in zebrafish allows the real-time visualization of both exogenously applied and endogenously produced LTB4 gradients. GEM-LTB4 thus serves as a broadly applicable tool for analyzing LTB4 dynamics in various experimental systems and model organisms.
Collapse
Affiliation(s)
- Szimonetta Xénia Tamás
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benoit Thomas Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Boldizsár Vámosi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Fabian Gregor Dehne
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Anna Török
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - László Fazekas
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary.
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
22
|
Morandini L, Avery D, Angeles B, Winston P, Martin RK, Donahue HJ, Olivares-Navarrete R. Reduction of neutrophil extracellular traps accelerates inflammatory resolution and increases bone formation on titanium implants. Acta Biomater 2023; 166:670-684. [PMID: 37187302 PMCID: PMC10330750 DOI: 10.1016/j.actbio.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Neutrophils are the most abundant immune cells in the blood and the first cells to be recruited to the biomaterial implantation site. Neutrophils are fundamental in recruiting mononuclear leukocytes to mount an immune response at the injury site. Neutrophils exert significant pro-inflammatory effects through the release of cytokines and chemokines, degranulation and release of myeloperoxidase (MPO) and neutrophil elastase (NE), and the production of large DNA-based networks called neutrophil extracellular traps (NETs). Neutrophils are initially recruited and activated by cytokines and pathogen- and damage-associated molecular patterns, but little is known about how the physicochemical composition of the biomaterial affects their activation. This study aimed to understand how ablating neutrophil mediators (MPO, NE, NETs) affected macrophage phenotype in vitro and osseointegration in vivo. We discovered that NET formation is a crucial mediator of pro-inflammatory macrophage activation, and inhibition of NET formation significantly suppresses macrophage pro-inflammatory phenotype. Furthermore, reducing NET formation accelerated the inflammatory phase of healing and produced greater bone formation around the implanted biomaterial, suggesting that NETs are essential regulators of biomaterial integration. Our findings emphasize the importance of the neutrophil response to implanted biomaterials and highlight innate immune cells' regulation and amplification signaling during the initiation and resolution of the inflammatory phase of biomaterial integration. STATEMENT OF SIGNIFICANCE: Neutrophils are the most abundant immune cells in blood and are the first to be recruited to the injury/implantation site where they exert significant pro-inflammatory effects. This study aimed to understand how ablating neutrophil mediators affected macrophage phenotype in vitro and bone apposition in vivo. We found that NET formation is a crucial mediator of pro-inflammatory macrophage activation. Reducing NET formation accelerated the inflammatory phase of healing and produced greater appositional bone formation around the implanted biomaterial, suggesting that NETs are essential regulators of biomaterial integration.
Collapse
Affiliation(s)
- Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamin Angeles
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul Winston
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
23
|
Kopach O, Sylantyev S, Bard L, Michaluk P, Heller JP, Gutierrez del Arroyo A, Ackland GL, Gourine AV, Rusakov DA. Human neutrophils communicate remotely via calcium-dependent glutamate-induced glutamate release. iScience 2023; 26:107236. [PMID: 37496680 PMCID: PMC10366500 DOI: 10.1016/j.isci.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Neutrophils are white blood cells that are critical to acute inflammatory and adaptive immune responses. Their swarming-pattern behavior is controlled by multiple cellular cascades involving calcium-dependent release of various signaling molecules. Previous studies have reported that neutrophils express glutamate receptors and can release glutamate but evidence of direct neutrophil-neutrophil communication has been elusive. Here, we hold semi-suspended cultured human neutrophils in patch-clamp whole-cell mode to find that calcium mobilization induced by stimulating one neutrophil can trigger an N-methyl-D-aspartate (NMDA) receptor-driven membrane current and calcium signal in neighboring neutrophils. We employ an enzymatic-based imaging assay to image, in real time, glutamate release from neutrophils induced by glutamate released from their neighbors. These observations provide direct evidence for a positive-feedback inter-neutrophil communication that could contribute to mechanisms regulating communal neutrophil behavior.
Collapse
Affiliation(s)
- Olga Kopach
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Lucie Bard
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Piotr Michaluk
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Janosch P. Heller
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Ana Gutierrez del Arroyo
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gareth L. Ackland
- Translational Medicine and Therapeutics, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Alexander V. Gourine
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Dmitri A. Rusakov
- Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
24
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546744. [PMID: 37425711 PMCID: PMC10327146 DOI: 10.1101/2023.06.27.546744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, UCSF, San Francisco, CA, USA
| | - Alex Hopke
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Complex Systems, Faculty of Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Kennard AS, Sathe M, Labuz EC, Prinz CK, Theriot JA. Post-injury hydraulic fracturing drives fissure formation in the zebrafish basal epidermal cell layer. Curr Biol 2023:S0960-9822(23)00616-4. [PMID: 37290442 DOI: 10.1016/j.cub.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
The skin epithelium acts as the barrier between an organism's internal and external environments. In zebrafish and other freshwater organisms, this barrier function requires withstanding a large osmotic gradient across the epidermis. Wounds breach this epithelium, causing a large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with the external hypotonic fresh water. Here, we show that, following acute injury, the larval zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing, driven by the influx of external fluid. After the wound has sealed-preventing efflux of this external fluid-fissuring starts in the basal epidermal layer at the location nearest to the wound and then propagates at a constant rate through the tissue, spanning over 100 μm. During this process, the outermost superficial epidermal layer remains intact. Fissuring is completely inhibited when larvae are wounded in isotonic external media, suggesting that osmotic gradients are required for fissure formation. Additionally, fissuring partially depends on myosin II activity, as myosin II inhibition reduces the distance of fissure propagation away from the wound. During and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas ranging from 1 to 10 μm2). We conclude that excess external fluid entry through the wound and subsequent closure of the wound through actomyosin purse-string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and eventually the fluid is cleared through macropinocytosis.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mugdha Sathe
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellen C Labuz
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christopher K Prinz
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Robinson E, Herbert JA, Palor M, Ren L, Larken I, Patel A, Moulding D, Cortina-Borja M, Smyth RL, Smith CM. Trans-epithelial migration is essential for neutrophil activation during RSV infection. J Leukoc Biol 2023; 113:354-364. [PMID: 36807711 PMCID: PMC11334017 DOI: 10.1093/jleuko/qiad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023] Open
Abstract
The recruitment of neutrophils to the infected airway occurs early following respiratory syncytial virus (RSV) infection, and high numbers of activated neutrophils in the airway and blood are associated with the development of severe disease. The aim of this study was to investigate whether trans-epithelial migration is sufficient and necessary for neutrophil activation during RSV infection. Here, we used flow cytometry and novel live-cell fluorescent microscopy to track neutrophil movement during trans-epithelial migration and measure the expression of key activation markers in a human model of RSV infection. We found that when migration occurred, neutrophil expression of CD11b, CD62L, CD64, NE, and MPO increased. However, the same increase did not occur on basolateral neutrophils when neutrophils were prevented from migrating, suggesting that activated neutrophils reverse migrate from the airway to the bloodstream side, as has been suggested by clinical observations. We then combined our findings with the temporal and spatial profiling and suggest 3 initial phases of neutrophil recruitment and behavior in the airways during RSV infection; (1) initial chemotaxis; (2) neutrophil activation and reverse migration; and (3) amplified chemotaxis and clustering, all of which occur within 20 min. This work and the novel outputs could be used to develop therapeutics and provide new insight into how neutrophil activation and a dysregulated neutrophil response to RSV mediates disease severity.
Collapse
Affiliation(s)
- Elisabeth Robinson
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Jenny Amanda Herbert
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Machaela Palor
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Luo Ren
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Isobel Larken
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Alisha Patel
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Dale Moulding
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Mario Cortina-Borja
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Rosalind Louise Smyth
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| | - Claire Mary Smith
- Infection, Immunity and Inflammation Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom
| |
Collapse
|
27
|
Ma Y, Hui KL, Gelashvili Z, Niethammer P. Oxoeicosanoid signaling mediates early antimicrobial defense in zebrafish. Cell Rep 2023; 42:111974. [PMID: 36640321 PMCID: PMC9973399 DOI: 10.1016/j.celrep.2022.111974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
5-oxoETE is a bioactive lipid derived from arachidonic acid generated when phospholipase A2 activation coincides with oxidative stress. Through its G protein-coupled receptor OXER1, pure 5-oxoETE is a potent leukocyte chemoattractant. Yet, its physiological function has remained elusive owing to the unusual OXER1 conservation pattern. OXER1 is conserved from fish to primates but not in rodents, precluding genetic loss-of-function studies in mouse. To determine its physiological role, we combine transcriptomic, lipidomic, and intravital imaging assays with genetic perturbations of the OXER1 ortholog hcar1-4 in zebrafish. Pseudomonas aeruginosa infection induces the synthesis of 5-oxoETE and its receptor, along with other inflammatory pathways. Hcar1-4 deletion attenuates neutrophil recruitment and decreases post-infection survival, which could be rescued by ectopic expression of hcar1-4 or human OXER1. By revealing 5-oxoETE as dominant lipid regulator of the early antimicrobial response in a non-rodent vertebrate, our work expands the current, rodent-centric view of early inflammation.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
28
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
29
|
George A, Martin P. Wound Healing Insights from Flies and Fish. Cold Spring Harb Perspect Biol 2022; 14:a041217. [PMID: 35817511 PMCID: PMC9620851 DOI: 10.1101/cshperspect.a041217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All organisms from single-cell amoebae through to Homo sapiens have evolved strategies for repairing wounds as an essential homeostatic mechanism for rebuilding their outer barrier layers after damage. In multicellular animals, this outer barrier layer is the skin, and, for more than a century, scientists have been attempting to unravel the mechanisms underpinning skin repair because of its clear clinical relevance to pathologies that range from chronic nonhealing wounds, through to excessive scarring. Most of these studies have been in rabbits and rodents, or in in vitro scratch wound models, but in the last decades, two newcomer model organisms to wound healing studies-flies and fish-have brought genetic tractability and unparalleled opportunities for live imaging to the field. These two models are complementary to one another, and to mouse and in vitro approaches, and thus offer different insights into various aspects of the wound repair process.
Collapse
Affiliation(s)
- Anne George
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Paul Martin
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
30
|
Gross SM, Dane MA, Smith RL, Devlin KL, McLean IC, Derrick DS, Mills CE, Subramanian K, London AB, Torre D, Evangelista JE, Clarke DJB, Xie Z, Erdem C, Lyons N, Natoli T, Pessa S, Lu X, Mullahoo J, Li J, Adam M, Wassie B, Liu M, Kilburn DF, Liby TA, Bucher E, Sanchez-Aguila C, Daily K, Omberg L, Wang Y, Jacobson C, Yapp C, Chung M, Vidovic D, Lu Y, Schurer S, Lee A, Pillai A, Subramanian A, Papanastasiou M, Fraenkel E, Feiler HS, Mills GB, Jaffe JD, Ma’ayan A, Birtwistle MR, Sorger PK, Korkola JE, Gray JW, Heiser LM. A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses. Commun Biol 2022; 5:1066. [PMID: 36207580 PMCID: PMC9546880 DOI: 10.1038/s42003-022-03975-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.
Collapse
Affiliation(s)
- Sean M. Gross
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Mark A. Dane
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Rebecca L. Smith
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kaylyn L. Devlin
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Ian C. McLean
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Daniel S. Derrick
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Caitlin E. Mills
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Kartik Subramanian
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Alexandra B. London
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Denis Torre
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Erol Evangelista
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel J. B. Clarke
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhuorui Xie
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cemal Erdem
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Nicholas Lyons
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ted Natoli
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Sarah Pessa
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Xiaodong Lu
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - James Mullahoo
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jonathan Li
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Miriam Adam
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Brook Wassie
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Moqing Liu
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - David F. Kilburn
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Tiera A. Liby
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Elmar Bucher
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Crystal Sanchez-Aguila
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kenneth Daily
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Larsson Omberg
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Yunguan Wang
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Connor Jacobson
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Clarence Yapp
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Mirra Chung
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Dusica Vidovic
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stephan Schurer
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Albert Lee
- grid.94365.3d0000 0001 2297 5165Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Ajay Pillai
- grid.94365.3d0000 0001 2297 5165Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Aravind Subramanian
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Malvina Papanastasiou
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ernest Fraenkel
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Heidi S. Feiler
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Gordon B. Mills
- grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Division of Oncological Sciences, OHSU, Portland, OR USA
| | - Jake D. Jaffe
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Avi Ma’ayan
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marc R. Birtwistle
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Peter K. Sorger
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - James E. Korkola
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Joe W. Gray
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Laura M. Heiser
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| |
Collapse
|
31
|
Zhang H, Li Z, He Q. Medical Swimming Cellbots. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hongyue Zhang
- Laboratory for Space Environment and Physical Sciences Harbin Institute of Technology Harbin 150001 China
| | - Zesheng Li
- Laboratory for Space Environment and Physical Sciences Harbin Institute of Technology Harbin 150001 China
| | - Qiang He
- School of Medicine and Health Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
32
|
Zhang B, Ma X, Huang B, Jiang Q, Loor JJ, Lv X, Zhang W, Li M, Wen J, Yin Y, Wang J, Yang W, Xu C. Transcriptomics of circulating neutrophils in dairy cows with subclinical hypocalcemia. Front Vet Sci 2022; 9:959831. [PMID: 36176696 PMCID: PMC9514324 DOI: 10.3389/fvets.2022.959831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hypocalcemia is closely associated with inflammatory diseases in dairy cows. Recent research has underscored the key role of calcium in the adaptations of the innate immune system during this period. The main objective in the present study was to compare the transcriptome profiles and analyze differences in the expression of neutrophil (PMNL) immune function-related genes and calcium binding-related genes in hypocalcemic cows. At 2 days postpartum, a concentration >2.10 mmol Ca2+/L was used to classify cows as controls (CON), and a concentration <2.00 mmol Ca2+/L used to classify cows as low-calcium (LCAL) (n = 8 in each group). A routine medical examination was conducted by the attending veterinarian to ensure there were no other complications and that the blood β-hydroxybutyrate was <1.2 mmol/L. Blood was collected from the tail vein (20 mL) to isolate PMNL, and 5 cows in each group were used for RNA sequencing and statistical analysis of gene expression differences. Transcriptome RNA-seq sequencing analysis was via omicsstudio using the R package edgeR. GO and KEGG enrichment analysis were used for bioinformatics. The remaining 3 cows in each group were used for validation of RNA sequencing data via quantitative PCR, which confirmed the observed responses. Compared with CON, 158 genes in LCAL were significantly up-regulated and 296 genes were down-regulated. The downregulation of Interleukin-12 (CXCL12), Tubulin beta chain (TUBB1), L1 cell adhesion molecule (L1CAM), and Myeloperoxidase (MPO) indicated a decrease in immune function of PMNL in LCAL cows. The decreased expression of calcium-binding pathway-related genes in PMNL of LCAL cows indicated a decrease in immune function of PMNL likely related to calcium ions. For example, cartilage acid protein 1 (CRTAC1) and calcium/calmodulin-dependent kinase 4 (CAMK4) were significantly reduced in LCAL cows. The upregulation of Cyclin dependent kinase inhibitor 1A (CDKN1A), Perforin 1 (PRF1), and Homeodomain interacting protein kinase 3 (HIPK3) indicated that LCAL led to greater cell apoptosis and senescence. Overall, the analyses indicated that the reduction in PMNL immune function during hypocalcemia is associated with downregulation of intracellular Ca2+ related genes and upregulation of genes controlling apoptosis and senescence. Together, these alterations contribute to an immunosuppressive state during the transition period.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baoyin Huang
- Animal Husbandry and Veterinary Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihaer, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yufeng Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
33
|
Conejeros I, López-Osorio S, Zhou E, Velásquez ZD, Del Río MC, Burgos RA, Alarcón P, Chaparro-Gutiérrez JJ, Hermosilla C, Taubert A. Glycolysis, monocarboxylate transport, and purinergic signaling are key events in Eimeria bovis-induced NETosis. Front Immunol 2022; 13:842482. [PMID: 36032127 PMCID: PMC9403323 DOI: 10.3389/fimmu.2022.842482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
The protozoan parasite Eimeria bovis is the causative agent of bovine coccidiosis, an enteric disease of global importance that significantly affects cattle productivity. Previous studies showed that bovine NETosis—an important early host innate effector mechanism of polymorphonuclear neutrophil (PMN)—is elicited by E. bovis stages. So far, the metabolic requirements of E. bovis-triggered NET formation are unknown. We here studied early glycolytic and mitochondrial responses of PMN as well as the role of pH, distinct metabolic pathways, P2 receptor-mediated purinergic signaling, and monocarboxylate transporters 1 and 2 (MCT1, MCT2) in E. bovis sporozoite-induced NET formation. Seahorse-based experiments revealed a rapid induction of both neutrophil oxygen consumption rate (OCR) and early glycolytic responses, thereby reflecting immediate PMN activation and metabolic changes upon confrontation with sporozoites. The impact of these metabolic changes on NET formation was studied via chemical inhibition experiments targeting glycolysis and energy generation by the use of 2-fluor-2-deoxy-D-glucose (FDG), 6-diazo-5-oxo-L-norleucin (DON), sodium dichloroacetate (DCA), oxythiamine (OT), sodium oxamate (OXA), and oligomycin A (OmA) to block glycolysis, glutaminolysis, pyruvate dehydrogenase kinase, pyruvate dehydrogenase, lactate dehydrogenase, and mitochondrial ATP-synthase, respectively. Overall, sporozoite-induced NET formation was significantly diminished via PMN pretreatments with OmA and OXA, thereby indicating a key role of ATP- and lactate-mediated metabolic pathways. Consequently, we additionally studied the effects of extracellular pH, MCT1, MCT2, and purinergic receptor inhibitors (AR-C141900, AR-C155858, theobromine, and NF449, respectively). Pretreatment with the latter inhibitors led to blockage of sporozoite-triggered DNA release from exposed bovine PMN. This report provides first evidence on the pivotal role of carbohydrate-related metabolic pathways and purinergic receptors being involved in E. bovis sporozoite-induced NETosis.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
- *Correspondence: Iván Conejeros,
| | - Sara López-Osorio
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Ershun Zhou
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
- College of Life Sciences and Engineering, University of Foshan, Foshan, China
| | - Zahady D. Velásquez
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
| | - María Cristina Del Río
- Department of Animal Pathology, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | | | - Carlos Hermosilla
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus -Liebig University Giessen, Giessen, Germany
| |
Collapse
|
34
|
Stopp J, Sixt M. Plan your trip before you leave: The neutrophils' search-and-run journey. J Cell Biol 2022; 221:e202206127. [PMID: 35856919 PMCID: PMC9351625 DOI: 10.1083/jcb.202206127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reading, interpreting and crawling along gradients of chemotactic cues is one of the most complex questions in cell biology. In this issue, Georgantzoglou et al. (2022. J. Cell. Biol.https://doi.org/10.1083/jcb.202103207) use in vivo models to map the temporal sequence of how neutrophils respond to an acutely arising gradient of chemoattractant.
Collapse
Affiliation(s)
| | - Michael Sixt
- ISTA, Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
35
|
Georgantzoglou A, Poplimont H, Walker HA, Lämmermann T, Sarris M. A two-step search and run response to gradients shapes leukocyte navigation in vivo. J Cell Biol 2022; 221:213303. [PMID: 35731205 PMCID: PMC9225946 DOI: 10.1083/jcb.202103207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Migrating cells must interpret chemical gradients to guide themselves within tissues. A long-held principle is that gradients guide cells via reorientation of leading-edge protrusions. However, recent evidence indicates that protrusions can be dispensable for locomotion in some contexts, raising questions about how cells interpret endogenous gradients in vivo and whether other mechanisms are involved. Using laser wound assays in zebrafish to elicit acute endogenous gradients and quantitative analyses, we demonstrate a two-stage process for leukocyte chemotaxis in vivo: first a “search” phase, with stimulation of actin networks at the leading edge, cell deceleration, and turning. This is followed by a “run” phase, with fast actin flows, cell acceleration, and persistence. When actin dynamics are perturbed, cells fail to resolve the gradient, suggesting that pure spatial sensing of the gradient is insufficient for navigation. Our data suggest that cell contractility and actin flows provide memory for temporal sensing, while expansion of the leading edge serves to enhance gradient sampling.
Collapse
Affiliation(s)
- Antonios Georgantzoglou
- Department of Physiology, Development and Neuroscience, Downing Site, University of Cambridge, Cambridge, UK
| | - Hugo Poplimont
- Department of Physiology, Development and Neuroscience, Downing Site, University of Cambridge, Cambridge, UK
| | - Hazel A Walker
- Department of Physiology, Development and Neuroscience, Downing Site, University of Cambridge, Cambridge, UK
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Milka Sarris
- Department of Physiology, Development and Neuroscience, Downing Site, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Abstract
Neutrophils form cellular clusters or swarms in response to injury or pathogen intrusion. Yet, intracellular signaling events favoring this coordinated response remain to be fully characterized. Here, we show that calcium signals play a critical role during mouse neutrophil clustering around particles of zymosan, a structural fungal component. Pioneer neutrophils recognizing zymosan or live Candida albicans displayed elevated calcium levels. Subsequently, a transient wave of calcium signals in neighboring cells was observed followed by the attraction of neutrophils that exhibited more persistent calcium signals as they reached zymosan particles. Calcium signals promoted LTB4 production while the blocking of extracellular calcium entry or LTB4 signaling abrogated cluster formation. Finally, using optogenetics to manipulate calcium influx in primary neutrophils, we show that calcium signals could initiate recruitment of neighboring neutrophils in an LTB4-dependent manner. Thus, sustained calcium responses at the center of the cluster are necessary and sufficient for the generation of chemoattractive gradients that attract neutrophils in a self-reinforcing process.
Collapse
|
37
|
Myllymäki H, Yu PP, Feng Y. Opportunities presented by zebrafish larval models to study neutrophil function in tissues. Int J Biochem Cell Biol 2022; 148:106234. [PMID: 35667555 DOI: 10.1016/j.biocel.2022.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Appropriate neutrophil function is essential for innate immune defence and to avoid inflammatory pathology. Neutrophils can adapt their responses according to their environment and recently, the existence of multiple distinct neutrophil populations has been confirmed in both health and disease. However, the study of neutrophil functions in their tissue environment has remained challenging, and for instance, the relationship between neutrophil maturity and function is not fully understood. Many neutrophil morphological and functional features are highly conserved between mammals and non-mammalian vertebrates. This enables the use of the transparent and genetically tractable zebrafish larvae to study neutrophil biology. We review data on the development and function of zebrafish larval neutrophils and advances zebrafish have brought to studies of neutrophil biology. In addition, we discuss opportunities and aspects to be considered when using the larval zebrafish model to further enhance our understanding of neutrophil function in health and disease.
Collapse
Affiliation(s)
- Henna Myllymäki
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Peiyi Pearl Yu
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Yi Feng
- UoE Centre for Inflammation Research, Queen's Medical Research Institute, Institute for Regeneration and Repair, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
38
|
Mihlan M, Glaser KM, Epple MW, Lämmermann T. Neutrophils: Amoeboid Migration and Swarming Dynamics in Tissues. Front Cell Dev Biol 2022; 10:871789. [PMID: 35478973 PMCID: PMC9038224 DOI: 10.3389/fcell.2022.871789] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina M. Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W. Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
39
|
Robertson TF, Huttenlocher A. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent. Immunol Rev 2022; 306:258-270. [PMID: 35023170 PMCID: PMC8855992 DOI: 10.1111/imr.13061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
The ability to directly observe leukocyte behavior in vivo has dramatically expanded our understanding of the immune system. Zebrafish are particularly amenable to the high-resolution imaging of leukocytes during both homeostasis and inflammation. Due to its natural transparency, intravital imaging in zebrafish does not require any surgical manipulation. As a result, zebrafish are particularly well-suited for the long-term imaging required to observe the temporal and spatial events during the onset and resolution of inflammation. Here, we review major insights about neutrophil and macrophage function gained from real-time imaging of zebrafish. We discuss neutrophil reverse migration, the process whereby neutrophils leave sites of tissue damage and resolve local inflammation. Further, we discuss the current tools available for investigating immune function in zebrafish and how future studies that simultaneously image multiple leukocyte subsets can be used to further dissect mechanisms that regulate both the onset and resolution of inflammation.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
40
|
Harcha PA, López-López T, Palacios AG, Sáez PJ. Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Front Immunol 2022; 12:750480. [PMID: 34975840 PMCID: PMC8716617 DOI: 10.3389/fimmu.2021.750480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.
Collapse
Affiliation(s)
- Paloma A Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Golenkina EA, Galkina SI, Pletjushkina O, Chernyak B, Gaponova TV, Romanova YM, Sud'ina GF. Gram-Negative Bacteria Salmonella typhimurium Boost Leukotriene Synthesis Induced by Chemoattractant fMLP to Stimulate Neutrophil Swarming. Front Pharmacol 2022; 12:814113. [PMID: 35058789 PMCID: PMC8764451 DOI: 10.3389/fphar.2021.814113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Leukotriene synthesis in neutrophils is critical for host survival during infection. In particular, leukotriene B4 (LTB4) is a powerful neutrophil chemoattractant that plays a crucial role in neutrophil swarming. In this work, we demonstrated that preincubation of human neutrophils with Salmonella typhimurium strongly stimulated LTB4 production induced by the bacterial chemoattractant, peptide N-formyl-L-methionyl-L-leucyl-l-phenylalanine (fMLP), while the reverse sequence of additions was ineffective. Preincubation with bacterial lipopolysaccharide or yeast polysaccharide zymosan particles gives weaker effect on fMLP-induced LTB4 production. Activation of 5-lipoxygenase (5-LOX), a key enzyme in leukotrienes biosynthesis, depends on rise of cytosolic concentration of Ca2+ and on translocation of the enzyme to the nuclear membrane. Both processes were stimulated by S. typhimurium. With an increase in the bacteria:neutrophil ratio, the transformation of LTB4 to ω-OH-LTB4 was suppressed, which further supported increased concentration of LTB4. These data indicate that in neutrophils gathered around bacterial clusters, LTB4 production is stimulated and at the same time its transformation is suppressed, which promotes neutrophil swarming and elimination of pathogens simultaneously.
Collapse
Affiliation(s)
- Ekaterina A Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana I Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatjana V Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Galina F Sud'ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile.
| |
Collapse
|
43
|
Pont S, Blanc-Potard AB. Zebrafish Embryo Infection Model to Investigate Pseudomonas aeruginosa Interaction With Innate Immunity and Validate New Therapeutics. Front Cell Infect Microbiol 2021; 11:745851. [PMID: 34660345 PMCID: PMC8515127 DOI: 10.3389/fcimb.2021.745851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected patients with cystic fibrosis (CF). Considering the intrinsic and acquired resistance of P. aeruginosa to currently used antibiotics, new therapeutic strategies against this pathogen are urgently needed. Whereas virulence factors of P. aeruginosa are well characterized, the interplay between P. aeruginosa and the innate immune response during infection remains unclear. Zebrafish embryo is now firmly established as a potent vertebrate model for the study of infectious human diseases, due to strong similarities of its innate immune system with that of humans and the unprecedented possibilities of non-invasive real-time imaging. This model has been successfully developed to investigate the contribution of bacterial and host factors involved in P. aeruginosa pathogenesis, as well as rapidly assess the efficacy of anti-Pseudomonas molecules. Importantly, zebrafish embryo appears as the state-of-the-art model to address in vivo the contribution of innate immunity in the outcome of P. aeruginosa infection. Of interest, is the finding that the zebrafish encodes a CFTR channel closely related to human CFTR, which allowed to develop a model to address P. aeruginosa pathogenesis, innate immune response, and treatment evaluation in a CF context.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| |
Collapse
|
44
|
Hu Y, Alnabulsi A, Alnabulsi A, Scott C, Tafalla C, Secombes CJ, Wang T. Characterisation and analysis of IFN-gamma producing cells in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:328-338. [PMID: 34343543 DOI: 10.1016/j.fsi.2021.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Callum Scott
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
45
|
Glaser KM, Mihlan M, Lämmermann T. Positive feedback amplification in swarming immune cell populations. Curr Opin Cell Biol 2021; 72:156-162. [PMID: 34500367 DOI: 10.1016/j.ceb.2021.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Several immune cell types (neutrophils, eosinophils, T cells, and innate-like lymphocytes) display coordinated migration patterns when a population, formed of individually responding cells, moves through inflamed or infected tissues. "Swarming" refers to the process in which a population of migrating leukocytes switches from random motility to highly directed chemotaxis to form local cell clusters. Positive feedback amplification underlies this behavior and results from intercellular communication in the immune cell population. We here highlight recent findings on neutrophil swarming from mouse models, zebrafish larvae, and in vitro platforms for human cells, which together advanced our understanding of the principles and molecular mechanisms that shape immune cell swarming.
Collapse
Affiliation(s)
- Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
46
|
Georgantzoglou A, Matthews J, Sarris M. Neutrophil motion in numbers: How to analyse complex migration patterns. Cells Dev 2021; 168:203734. [PMID: 34461315 DOI: 10.1016/j.cdev.2021.203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
In vivo imaging has revolutionised the study of leukocyte trafficking and revealed many insights on the dynamic behaviour of immune cells in their native environment. Neutrophil migration represents a prominent example whereby live imaging led to discovery of unanticipated cell migration patterns. These cells are the first to enter inflammatory sites and their recruitment had once been thought to be driven primarily by extrinsic signals and resolved by apoptosis in these lesions. However, in vivo imaging in zebrafish and mice indicated that neutrophils are also able to self-organise their migration to a large extent, through collective generation of gradients, in a process referred to as 'swarming', and that they can leave sites of inflammation, in a process referred to as 'reverse migration'. An important step in understanding these newly defined behaviours is the ability to detect and quantify them through statistical analysis. Here we provide a summary of considerations and recommendations for quantitative analysis of neutrophil swarming and reverse migration, with the purpose of introducing relevant analysis tools to new researchers in the field and establishing common frameworks and standards.
Collapse
Affiliation(s)
- Antonios Georgantzoglou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK.
| | - Joanna Matthews
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Milka Sarris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK.
| |
Collapse
|
47
|
Scherer AK, Hopke A, Sykes DB, Irimia D, Mansour MK. Host defense against fungal pathogens: Adaptable neutrophil responses and the promise of therapeutic opportunities? PLoS Pathog 2021; 17:e1009691. [PMID: 34324592 PMCID: PMC8321001 DOI: 10.1371/journal.ppat.1009691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Allison K. Scherer
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AKS); (MKM)
| | - Alex Hopke
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine and Surgery, Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Daniel Irimia
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine and Surgery, Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Burns Hospital, Boston, Massachusetts, United States of America
| | - Michael K. Mansour
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AKS); (MKM)
| |
Collapse
|
48
|
Isles HM, Loynes CA, Alasmari S, Kon FC, Henry KM, Kadochnikova A, Hales J, Muir CF, Keightley MC, Kadirkamanathan V, Hamilton N, Lieschke GJ, Renshaw SA, Elks PM. Pioneer neutrophils release chromatin within in vivo swarms. eLife 2021; 10:68755. [PMID: 34292151 PMCID: PMC8298094 DOI: 10.7554/elife.68755] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are rapidly recruited to inflammatory sites where their coordinated migration forms clusters, a process termed neutrophil swarming. The factors that modulate early stages of neutrophil swarming are not fully understood, requiring the development of new in vivo models. Using transgenic zebrafish larvae to study endogenous neutrophil migration in a tissue damage model, we demonstrate that neutrophil swarming is a conserved process in zebrafish immunity, sharing essential features with mammalian systems. We show that neutrophil swarms initially develop around an individual pioneer neutrophil. We observed the violent release of extracellular cytoplasmic and nuclear fragments by the pioneer and early swarming neutrophils. By combining in vitro and in vivo approaches to study essential components of neutrophil extracellular traps (NETs), we provide in-depth characterisation and high-resolution imaging of the composition and morphology of these release events. Using a photoconversion approach to track neutrophils within developing swarms, we identify that the fate of swarm-initiating pioneer neutrophils involves extracellular chromatin release and that the key NET components gasdermin, neutrophil elastase, and myeloperoxidase are required for the swarming process. Together our findings demonstrate that release of cellular components by pioneer neutrophils is an initial step in neutrophil swarming at sites of tissue injury.
Collapse
Affiliation(s)
- Hannah M Isles
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Catherine A Loynes
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Fu Chuen Kon
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Katherine M Henry
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Anastasia Kadochnikova
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jack Hales
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Clare F Muir
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | | | - Visakan Kadirkamanathan
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Noémie Hamilton
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Philip M Elks
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| |
Collapse
|
49
|
Sharma K, Thacker VV, Dhar N, Clapés Cabrer M, Dubois A, Signorino-Gelo F, Mullenders J, Knott GW, Clevers H, McKinney JD. Early invasion of the bladder wall by solitary bacteria protects UPEC from antibiotics and neutrophil swarms in an organoid model. Cell Rep 2021; 36:109351. [PMID: 34289360 DOI: 10.1016/j.celrep.2021.109351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023] Open
Abstract
Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.
Collapse
Affiliation(s)
- Kunal Sharma
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Maria Clapés Cabrer
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anaëlle Dubois
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - François Signorino-Gelo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jasper Mullenders
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
| | - Graham W Knott
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knöpper K, Reátegui E, Epple MW, Gunzer M, Baumeister R, Tarrant TK, Germain RN, Irimia D, Kastenmüller W, Lämmermann T. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 2021; 372:372/6548/eabe7729. [PMID: 34140358 DOI: 10.1126/science.abe7729] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Neutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation. G protein-coupled receptor (GPCR) desensitization acts as a negative feedback control to stop migration of neutrophils when they sense high concentrations of self-secreted attractants that initially amplify swarming. Interference with this process allows neutrophils to scan larger tissue areas for microbes. Unexpectedly, this does not benefit bacterial clearance as containment of proliferating bacteria by neutrophil clusters becomes impeded. Our data reveal how autosignaling stops self-organized swarming behavior and how the finely tuned balance of neutrophil chemotaxis and arrest counteracts bacterial escape.
Collapse
Affiliation(s)
- Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konrad Knöpper
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Eduardo Reátegui
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Maximilian W Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA
| | - Wolfgang Kastenmüller
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|