1
|
Liang X, Kuang W. Large-scale fossil records analysis reveals prehistoric extinction mechanisms of woolly rhinoceros (Coelodonta antiquitatis). Integr Zool 2024; 19:1233-1235. [PMID: 39210680 DOI: 10.1111/1749-4877.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Climate oscillations and prehistoric human activity during the Middle-Late Pleistocene profoundly affected the population fluctuations and extinctions of megafauna, especially the extinct woolly rhinoceros. Fordham et al. (2024) recently proposed new solutions based on fossil records, paleoclimates, and prehistoric human activities data to reconstruct an explicit process-driven model, resulting in high-resolution population dynamics of the woolly rhinoceros. This study revealed the mechanisms of the woolly rhinoceros extinction: climate-driven habitat fragmentation combined with low but persistent levels of human hunting weakened metapopulation processes, leading to their extinction.
Collapse
Affiliation(s)
- Xiaoling Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
2
|
de-Dios T, Fontsere C, Renom P, Stiller J, Llovera L, Uliano-Silva M, Sánchez-Gracia A, Wright C, Lizano E, Caballero B, Navarro A, Civit S, Robbins RK, Blaxter M, Marquès T, Vila R, Lalueza-Fox C. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 2024; 12:RP87928. [PMID: 39365295 PMCID: PMC11466284 DOI: 10.7554/elife.87928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. We sequenced the genomes of four 80- to 100-year-old Xerces Blue, and seven historical and one modern specimens of its closest relative, the Silvery Blue (Glaucopsyche lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (Glaucopsyche alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, both species experienced population growth during the Eemian interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity and deleterious load in the former were significantly greater than in the later, suggesting a higher incidence of inbreeding. These signals of population decline observed in Xerces Blue could be used to identify and monitor other insects threatened by human activities, whose extinction patterns are still not well known.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary BiologyBarcelonaSpain
- Institute of Genomics, University of TartuTartuEstonia
| | - Claudia Fontsere
- Institute of Evolutionary BiologyBarcelonaSpain
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Pere Renom
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of CopenhagenCopenhagenDenmark
| | | | | | - Alejandro Sánchez-Gracia
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | | | - Esther Lizano
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Arcadi Navarro
- Institute of Evolutionary BiologyBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Civit
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | - Robert K Robbins
- Department of Entomology, National Museum of Natural History, Smithsonian InstitutionWashingtonUnited States
| | - Mark Blaxter
- Wellcome Sanger InstituteSaffron WaldenUnited Kingdom
| | - Tomàs Marquès
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Roger Vila
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Carles Lalueza-Fox
- Institute of Evolutionary BiologyBarcelonaSpain
- Museu de Ciències Naturals de BarcelonaBarcelonaSpain
| |
Collapse
|
3
|
Dehasque M, Morales HE, Díez-Del-Molino D, Pečnerová P, Chacón-Duque JC, Kanellidou F, Muller H, Plotnikov V, Protopopov A, Tikhonov A, Nikolskiy P, Danilov GK, Giannì M, van der Sluis L, Higham T, Heintzman PD, Oskolkov N, Gilbert MTP, Götherström A, van der Valk T, Vartanyan S, Dalén L. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 2024; 187:3531-3540.e13. [PMID: 38942016 DOI: 10.1016/j.cell.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024]
Abstract
A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.
Collapse
Affiliation(s)
- Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Patrícia Pečnerová
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Héloïse Muller
- Master de Biologie, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon I, Universite de Lyon, 69007 Lyon, France
| | - Valerii Plotnikov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Albert Protopopov
- Academy of Sciences of Sakha Republic, Lenin Avenue 33, Yakutsk, Republic of Sakha (Yakutia), Russia
| | - Alexei Tikhonov
- Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Pavel Nikolskiy
- Geological Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb K Danilov
- Peter the Great Museum of Anthropology and Ethnography, Kunstkamera, Russian Academy of Sciences, 3 University Embankment, Box 199034, Saint-Petersburg, Russia
| | - Maddalena Giannì
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Laura van der Sluis
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Tom Higham
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Peter D Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Geological Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, 11418 Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; SciLifeLab, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
4
|
Fordham DA, Brown SC, Canteri E, Austin JJ, Lomolino MV, Haythorne S, Armstrong E, Bocherens H, Manica A, Rey-Iglesia A, Rahbek C, Nogués-Bravo D, Lorenzen ED. 52,000 years of woolly rhinoceros population dynamics reveal extinction mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2316419121. [PMID: 38830089 PMCID: PMC11181021 DOI: 10.1073/pnas.2316419121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The extinction of the woolly rhinoceros (Coelodonta antiquitatis) at the onset of the Holocene remains an enigma, with conflicting evidence regarding its cause and spatiotemporal dynamics. This partly reflects challenges in determining demographic responses of late Quaternary megafauna to climatic and anthropogenic causal drivers with available genetic and paleontological techniques. Here, we show that elucidating mechanisms of ancient extinctions can benefit from a detailed understanding of fine-scale metapopulation dynamics, operating over many millennia. Using an abundant fossil record, ancient DNA, and high-resolution simulation models, we untangle the ecological mechanisms and causal drivers that are likely to have been integral in the decline and later extinction of the woolly rhinoceros. Our 52,000-y reconstruction of distribution-wide metapopulation dynamics supports a pathway to extinction that began long before the Holocene, when the combination of cooling temperatures and low but sustained hunting by humans trapped woolly rhinoceroses in suboptimal habitats along the southern edge of their range. Modeling indicates that this ecological trap intensified after the end of the last ice age, preventing colonization of newly formed suitable habitats, weakening stabilizing metapopulation processes, triggering the extinction of the woolly rhinoceros in the early Holocene. Our findings suggest that fragmentation and resultant metapopulation dynamics should be explicitly considered in explanations of late Quaternary megafauna extinctions, sending a clarion call to the fragility of the remaining large-bodied grazers restricted to disjunct fragments of poor-quality habitat due to anthropogenic environmental change.
Collapse
Affiliation(s)
- Damien A. Fordham
- The Environment Institute, School of Biological Sciences, University of Adelaide, AdelaideSA, 5005, Australia
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
| | - Stuart C. Brown
- The Environment Institute, School of Biological Sciences, University of Adelaide, AdelaideSA, 5005, Australia
- Globe Institute, University of Copenhagen, Copenhagen K1350, Denmark
| | - Elisabetta Canteri
- The Environment Institute, School of Biological Sciences, University of Adelaide, AdelaideSA, 5005, Australia
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
| | - Jeremy J. Austin
- The Environment Institute, School of Biological Sciences, University of Adelaide, AdelaideSA, 5005, Australia
| | - Mark V. Lomolino
- Department of Environmental and Forest Biology, College of Environmental Science, Syracuse, NY13210
| | - Sean Haythorne
- The Environment Institute, School of Biological Sciences, University of Adelaide, AdelaideSA, 5005, Australia
- Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences, University of Melbourne, Melbourne, VIC3010, Australia
| | - Edward Armstrong
- Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen72074, Germany
- Department of Geosciences, Biogeology, University of Tübingen, Tübingen72074, Germany
| | - Andrea Manica
- Department of Zoology, University of Cambridge, CB23EJCambridge, United Kingdom
| | - Alba Rey-Iglesia
- Globe Institute, University of Copenhagen, Copenhagen K1350, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
- Institute of Ecology, Peking University, Beijing100871, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M5230, Denmark
| | - David Nogués-Bravo
- Center for Macroecology, Evolution, and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
| | - Eline D. Lorenzen
- Globe Institute, University of Copenhagen, Copenhagen K1350, Denmark
| |
Collapse
|
5
|
Seeber PA, Batke L, Dvornikov Y, Schmidt A, Wang Y, Stoof-Leichsenring K, Moon K, Vohr SH, Shapiro B, Epp LS. Mitochondrial genomes of Pleistocene megafauna retrieved from recent sediment layers of two Siberian lakes. eLife 2024; 12:RP89992. [PMID: 38488477 PMCID: PMC10942779 DOI: 10.7554/elife.89992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Ancient environmental DNA (aeDNA) from lake sediments has yielded remarkable insights for the reconstruction of past ecosystems, including suggestions of late survival of extinct species. However, translocation and lateral inflow of DNA in sediments can potentially distort the stratigraphic signal of the DNA. Using three different approaches on two short lake sediment cores of the Yamal peninsula, West Siberia, with ages spanning only the past hundreds of years, we detect DNA and identified mitochondrial genomes of multiple mammoth and woolly rhinoceros individuals-both species that have been extinct for thousands of years on the mainland. The occurrence of clearly identifiable aeDNA of extinct Pleistocene megafauna (e.g. >400 K reads in one core) throughout these two short subsurface cores, along with specificities of sedimentology and dating, confirm that processes acting on regional scales, such as extensive permafrost thawing, can influence the aeDNA record and should be accounted for in aeDNA paleoecology.
Collapse
Affiliation(s)
| | - Laura Batke
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yury Dvornikov
- Agroengineering Department/Department of Landscape Design and Sustainable Ecosystems, Agrarian and Technological Institute, RUDN University, Moscow, Russian Federation
- Laboratory of Carbon Monitoring in Terrestrial Ecosystems, Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Yi Wang
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kathleen Stoof-Leichsenring
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Katie Moon
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, United States
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, United States
| | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, United States
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, United States
| | - Laura S Epp
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Talavera A, Palmada-Flores M, Burriel-Carranza B, Valbuena-Ureña E, Mochales-Riaño G, Adams DC, Tejero-Cicuéndez H, Soler-Membrives A, Amat F, Guinart D, Carbonell F, Obon E, Marquès-Bonet T, Carranza S. Genomic insights into the Montseny brook newt ( Calotriton arnoldi), a Critically Endangered glacial relict. iScience 2024; 27:108665. [PMID: 38226169 PMCID: PMC10788218 DOI: 10.1016/j.isci.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The Montseny brook newt (Calotriton arnoldi), considered the most endangered amphibian in Europe, is a relict salamandrid species endemic to a small massif located in northeastern Spain. Although conservation efforts should always be guided by genomic studies, those are yet scarce among urodeles, hampered by the extreme sizes of their genomes. Here, we present the third available genome assembly for the order Caudata, and the first genomic study of the species and its sister taxon, the Pyrenean brook newt (Calotriton asper), combining whole-genome and ddRADseq data. Our results reveal significant demographic oscillations which accurately mirrored Europe's climatic history. Although severe bottlenecks have led to depauperate genomic diversity and long runs of homozygosity along a gigantic genome, inbreeding might have been avoided by assortative mating strategies. Other life history traits, however, seem to have been less advantageous, and the lack of land dispersal has driven to exceptional levels of population fragmentation.
Collapse
Affiliation(s)
- Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Marc Palmada-Flores
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, Pº Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | | | | | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fèlix Amat
- Àrea d’Herpetologia, BiBIO, Museu de Granollers – Ciències Naturals. Palaudàries 102, Granollers, Barcelona, Spain
| | - Daniel Guinart
- Servei de Gestió de Parcs Naturals, Diputació de Barcelona, Spain
| | - Francesc Carbonell
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Elena Obon
- Centre de fauna salvatge de Torreferrussa (Forestal Catalana, SA), Santa Perpètua de Mogoda, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
7
|
van Oosterhout C. AI-informed conservation genomics. Heredity (Edinb) 2024; 132:1-4. [PMID: 38151537 PMCID: PMC10798949 DOI: 10.1038/s41437-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Affiliation(s)
- Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Conservation Genetics Specialist Group, International Union for Conservation of Nature (IUCN), Gland, Switzerland.
| |
Collapse
|
8
|
Pečnerová P, Lord E, Garcia-Erill G, Hanghøj K, Rasmussen MS, Meisner J, Liu X, van der Valk T, Santander CG, Quinn L, Lin L, Liu S, Carøe C, Dalerum F, Götherström A, Måsviken J, Vartanyan S, Raundrup K, Al-Chaer A, Rasmussen L, Hvilsom C, Heide-Jørgensen MP, Sinding MHS, Aastrup P, Van Coeverden de Groot PJ, Schmidt NM, Albrechtsen A, Dalén L, Heller R, Moltke I, Siegismund HR. Population genomics of the muskox' resilience in the near absence of genetic variation. Mol Ecol 2024; 33:e17205. [PMID: 37971141 DOI: 10.1111/mec.17205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.
Collapse
Affiliation(s)
- Patrícia Pečnerová
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Zoo, Frederiksberg, Denmark
| | - Edana Lord
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Malthe Sebro Rasmussen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Cindy G Santander
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Long Lin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Biodiversity Research Institute (CSIC-UO-PA), Mieres, Spain
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johannes Måsviken
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Russian Academy of Sciences, Magadan, Russia
| | | | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linett Rasmussen
- Copenhagen Zoo, Frederiksberg, Denmark
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mads Peter Heide-Jørgensen
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Greenland Institute of Natural Resources, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Peter Aastrup
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Redlef Siegismund
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Clark MS, Hoffman JI, Peck LS, Bargelloni L, Gande D, Havermans C, Meyer B, Patarnello T, Phillips T, Stoof-Leichsenring KR, Vendrami DLJ, Beck A, Collins G, Friedrich MW, Halanych KM, Masello JF, Nagel R, Norén K, Printzen C, Ruiz MB, Wohlrab S, Becker B, Dumack K, Ghaderiardakani F, Glaser K, Heesch S, Held C, John U, Karsten U, Kempf S, Lucassen M, Paijmans A, Schimani K, Wallberg A, Wunder LC, Mock T. Multi-omics for studying and understanding polar life. Nat Commun 2023; 14:7451. [PMID: 37978186 PMCID: PMC10656552 DOI: 10.1038/s41467-023-43209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss 'omics' approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.
Collapse
Affiliation(s)
- M S Clark
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - J I Hoffman
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany.
| | - L S Peck
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - D Gande
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - C Havermans
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - B Meyer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - T Phillips
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - K R Stoof-Leichsenring
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 14473, Potsdam, Germany
| | - D L J Vendrami
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - A Beck
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Botanische Staatssammlung München (SNSB-BSM), Menzinger Str. 67, 80638, München, Germany
| | - G Collins
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Manaaki Whenua-Landcare Research, 231 Morrin Road St Johns, Auckland, 1072, New Zealand
| | - M W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - K M Halanych
- Center for Marine Science, University of North Carolina, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - J F Masello
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- Justus-Liebig-Universität Gießen, Giessen, Germany
| | - R Nagel
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - K Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - C Printzen
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - M B Ruiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Universität Duisburg-Essen, Universitätstrasse 5, 45151, Essen, Germany
| | - S Wohlrab
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - B Becker
- Universität zu Köln, Institut für Pflanzenwissenschaften, Zülpicher Str. 47b, 60674, Köln, Germany
| | - K Dumack
- Universität zu Köln, Terrestrische Ökologie, Zülpicher Str. 47b, 60674, Köln, Germany
| | - F Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - K Glaser
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Heesch
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - C Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U John
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Kempf
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - M Lucassen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - A Paijmans
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - K Schimani
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany
| | - A Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - L C Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - T Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
10
|
Seeber PA, Palmer Z, Schmidt A, Chagas A, Kitagawa K, Marinova-Wolff E, Tafelmaier Y, Epp LS. The first European woolly rhinoceros mitogenomes, retrieved from cave hyena coprolites, suggest long-term phylogeographic differentiation. Biol Lett 2023; 19:20230343. [PMID: 37909055 PMCID: PMC10618854 DOI: 10.1098/rsbl.2023.0343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
The woolly rhinoceros (Coelodonta antiquitatis) is an iconic species of the Eurasian Pleistocene megafauna, which was abundant in Eurasia in the Pleistocene until its demise beginning approximately 10 000 years ago. Despite the early recovery of several specimens from well-known European archaeological sites, including its type specimen (Blumenbach 1799), no genomes of European populations were available so far, and all available genomic data originated exclusively from Siberian populations. Using coprolites of cave hyenas (Crocuta crocuta spelea) recovered from Middle Palaeolithic layers of two caves in Germany (Bockstein-Loch and Hohlenstein-Stadel), we isolated and enriched predator and prey DNA to assemble the first European woolly rhinoceros mitogenomes, in addition to cave hyena mitogenomes. Both coprolite samples produced copious sequences assigned to C. crocuta (27% and 59% mitogenome coverage, respectively) and woolly rhinoceros (Coelodonta antiquitatis; 27% and 81% coverage, respectively). The sequences suggested considerable DNA degradation, which may limit the conclusions to be drawn; however, the mitogenomes of European woolly rhinoceros are genetically distinct from the Siberian woolly rhinoceros, and analyses of the more complete mitogenome suggest a split of the populations potentially coinciding with the earliest fossil records of woolly rhinoceros in Europe.
Collapse
Affiliation(s)
- P. A. Seeber
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Z. Palmer
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - A. Schmidt
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - A. Chagas
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - K. Kitagawa
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tubingen, Germany
- Institute of Archaeological Sciences, Department of Geosciences, University of Tübingen, Tubingen, Germany
| | - E. Marinova-Wolff
- Laboratory for Archaeobotany Baden-Württemberg, State Office for Cultural Heritage, Gaienhofen-Hemmenhofen, Germany
| | - Y. Tafelmaier
- State Office for Cultural Heritage Baden-Württemberg, Palaeolithic & Mesolithic Research Unit, Gaienhofen-Hemmenhofen, Germany
| | - L. S. Epp
- Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
11
|
Dussex N, Kurland S, Olsen RA, Spong G, Ericsson G, Ekblom R, Ryman N, Dalén L, Laikre L. Range-wide and temporal genomic analyses reveal the consequences of near-extinction in Swedish moose. Commun Biol 2023; 6:1035. [PMID: 37848497 PMCID: PMC10582009 DOI: 10.1038/s42003-023-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Ungulate species have experienced severe declines over the past centuries through overharvesting and habitat loss. Even if many game species have recovered thanks to strict hunting regulation, the genome-wide impacts of overharvesting are still unclear. Here, we examine the temporal and geographical differences in genome-wide diversity in moose (Alces alces) over its whole range in Sweden by sequencing 87 modern and historical genomes. We found limited impact of the 1900s near-extinction event but local variation in inbreeding and load in modern populations, as well as suggestion of a risk of future reduction in genetic diversity and gene flow. Furthermore, we found candidate genes for local adaptation, and rapid temporal allele frequency shifts involving coding genes since the 1980s, possibly due to selective harvesting. Our results highlight that genomic changes potentially impacting fitness can occur over short time scales and underline the need to track both deleterious and selectively advantageous genomic variation.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.
- Norwegian University of Science and Technology, University Museum, Trondheim, NO-7491, Norway.
| | - Sara Kurland
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21, Solna, Sweden
| | - Göran Spong
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
12
|
Yuan J, Sun G, Xiao B, Hu J, Wang L, Taogetongqimuge, Bao L, Hou Y, Song S, Jiang S, Wu Y, Pan D, Liu Y, Westbury MV, Lai X, Sheng G. Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China. BMC Ecol Evol 2023; 23:56. [PMID: 37752413 PMCID: PMC10521388 DOI: 10.1186/s12862-023-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Woolly rhinoceros (Coelodonta antiquitatis) is a typical indicator of cold-stage climate that was widely distributed in Northern Hemisphere during the Middle-Late Pleistocene. Although a plethora of fossils have been excavated from Northern China, their phylogenetic status, intraspecific diversity and phylogeographical structure are still vague. RESULTS In the present study, we generated four mitogenomes from Late Pleistocene woolly rhinoceros in Northern China and compared them with published data. Bayesian and network analyses indicate that the analyzed individuals contain at least four maternal haplogroups, and Chinese samples fall in three of them. One of our samples belongs to a previously unidentified early diverging clade (haplogroup D), which separated from other woolly rhinoceros around 0.57 Ma (95% CI: 0.76-0.41 Ma). The timing of this clade's origin coincides with the first occurrence of woolly rhinoceros, which are thought to have evolved in Europe. Our other three samples cluster in haplogroup C, previously only identified from one specimen from Wrangel Island (ND030) and initially considered to be an isolated clade. Herein, our findings suggest that ND030 is likely descended from a northward dispersal of the individuals carrying haplogroup C from Northern China. Additionally, Chinese woolly rhinoceros specimens exhibit higher nucleotide diversity than those from Siberia. CONCLUSION Our findings highlight Northern China as a possible refugium and a key evolution center of the Pleistocene woolly rhinoceros.
Collapse
Affiliation(s)
- Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
- Bioarchaeology Laboratory, Jilin University, Changchun, 130012, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| | - Guojiang Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Linying Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
- College of Earth and Environmental Science, Lanzhou University, Lanzhou, 730099, China
| | | | - Lei Bao
- Ordos Institute of Cultural Relics and Archaeology, Ordos, 017010, China
| | - Yamei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Shiwen Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Shan Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Yong Wu
- The Third Geological and Mineral Exploration Institute of Gansu Bureau of Geology and Mineral Resources, Lanzhou, 730050, China
| | - Dong Pan
- Palaeontological Fossil Conservation Center, Qinggang County, Suihua, 151600, China
| | - Yang Liu
- School of Sociology & Anthropology, Sun Yat-sen University, Guangzhou, 510275, China
| | | | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
13
|
Mármol-Sánchez E, Fromm B, Oskolkov N, Pochon Z, Kalogeropoulos P, Eriksson E, Biryukova I, Sekar V, Ersmark E, Andersson B, Dalén L, Friedländer MR. Historical RNA expression profiles from the extinct Tasmanian tiger. Genome Res 2023; 33:1299-1316. [PMID: 37463752 PMCID: PMC10552650 DOI: 10.1101/gr.277663.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 223 62 Lund, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91 Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Eli Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Inna Biryukova
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Vaishnovi Sekar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden;
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
| |
Collapse
|
14
|
von Seth J, van der Valk T, Lord E, Sigeman H, Olsen RA, Knapp M, Kardailsky O, Robertson F, Hale M, Houston D, Kennedy E, Dalén L, Norén K, Massaro M, Robertson BC, Dussex N. Genomic trajectories of a near-extinction event in the Chatham Island black robin. BMC Genomics 2022; 23:747. [PMID: 36357860 PMCID: PMC9647977 DOI: 10.1186/s12864-022-08963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.
Collapse
Affiliation(s)
- Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, 90014, Oulu, Finland
| | - Remi-André Olsen
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17121, Solna, Sweden
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, PO Box 56, Dunedin, 9054, Aotearoa, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Marie Hale
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Dave Houston
- Department of Conservation, Biodiversity Group, Auckland, New Zealand
| | - Euan Kennedy
- Department of Conservation, Science and Capability, Christchurch, New Zealand
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Karin Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences and Gulbali Institute, Charles Sturt University, PO Box 789, Albury, NSW, Australia
| | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin, 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
15
|
Lord E, Marangoni A, Baca M, Popović D, Goropashnaya AV, Stewart JR, Knul MV, Noiret P, Germonpré M, Jimenez EL, Abramson NI, Vartanyan S, Prost S, Smirnov NG, Kuzmina EA, Olsen RA, Fedorov VB, Dalén L. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol Evol 2022; 22:126. [PMID: 36329382 PMCID: PMC9632076 DOI: 10.1186/s12862-022-02081-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ancient DNA studies suggest that Late Pleistocene climatic changes had a significant effect on population dynamics in Arctic species. The Eurasian collared lemming (Dicrostonyx torquatus) is a keystone species in the Arctic ecosystem. Earlier studies have indicated that past climatic fluctuations were important drivers of past population dynamics in this species. RESULTS Here, we analysed 59 ancient and 54 modern mitogenomes from across Eurasia, along with one modern nuclear genome. Our results suggest population growth and genetic diversification during the early Late Pleistocene, implying that collared lemmings may have experienced a genetic bottleneck during the warm Eemian interglacial. Furthermore, we find multiple temporally structured mitogenome clades during the Late Pleistocene, consistent with earlier results suggesting a dynamic late glacial population history. Finally, we identify a population in northeastern Siberia that maintained genetic diversity and a constant population size at the end of the Pleistocene, suggesting suitable conditions for collared lemmings in this region during the increasing temperatures associated with the onset of the Holocene. CONCLUSIONS This study highlights an influence of past warming, in particular the Eemian interglacial, on the evolutionary history of the collared lemming, along with spatiotemporal population structuring throughout the Late Pleistocene.
Collapse
Affiliation(s)
- Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| | - Aurelio Marangoni
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Anna V Goropashnaya
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - John R Stewart
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, Dorset, UK
| | - Monika V Knul
- Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, SO22 4NR, UK
| | - Pierre Noiret
- Service de Préhistoire, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Mietje Germonpré
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
| | - Elodie-Laure Jimenez
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
- School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Natalia I Abramson
- Department of Molecular Systematics, Zoological Institute RAS, St Petersburg, Russia
| | - Sergey Vartanyan
- Far East Branch, N.A. Shilo North-East Interdisciplinary Scientific Research Institute Russian Academy of Sciences (NEISRI FEB RAS), 685000, Magadan, Russia
| | - Stefan Prost
- Central Research Laboratories, Natural History Museum Vienna, 1010, Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090, Vienna, Austria
- Konrad Lorenz Institute of Ethology, 1160, Vienna, Austria
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
| | - Nickolay G Smirnov
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Elena A Kuzmina
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Remi-André Olsen
- Science for Life Laboratory (SciLifeLab), Dept of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Vadim B Fedorov
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| |
Collapse
|
16
|
Canteri E, Brown SC, Schmidt NM, Heller R, Nogués‐Bravo D, Fordham DA. Spatiotemporal influences of climate and humans on muskox range dynamics over multiple millennia. GLOBAL CHANGE BIOLOGY 2022; 28:6602-6617. [PMID: 36031712 PMCID: PMC9804684 DOI: 10.1111/gcb.16375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Processes leading to range contractions and population declines of Arctic megafauna during the late Pleistocene and early Holocene are uncertain, with intense debate on the roles of human hunting, climatic change, and their synergy. Obstacles to a resolution have included an overreliance on correlative rather than process-explicit approaches for inferring drivers of distributional and demographic change. Here, we disentangle the ecological mechanisms and threats that were integral in the decline and extinction of the muskox (Ovibos moschatus) in Eurasia and in its expansion in North America using process-explicit macroecological models. The approach integrates modern and fossil occurrence records, ancient DNA, spatiotemporal reconstructions of past climatic change, species-specific population ecology, and the growth and spread of anatomically modern humans. We show that accurately reconstructing inferences of past demographic changes for muskox over the last 21,000 years require high dispersal abilities, large maximum densities, and a small Allee effect. Analyses of validated process-explicit projections indicate that climatic change was the primary driver of muskox distribution shifts and demographic changes across its previously extensive (circumpolar) range, with populations responding negatively to rapid warming events. Regional analyses show that the range collapse and extinction of the muskox in Europe (~13,000 years ago) was likely caused by humans operating in synergy with climatic warming. In Canada and Greenland, climatic change and human activities probably combined to drive recent population sizes. The impact of past climatic change on the range and extinction dynamics of muskox during the Pleistocene-Holocene transition signals a vulnerability of this species to future increased warming. By better establishing the ecological processes that shaped the distribution of the muskox through space and time, we show that process-explicit macroecological models have important applications for the future conservation and management of this iconic species in a warming Arctic.
Collapse
Affiliation(s)
- Elisabetta Canteri
- The Environment Institute and School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Center for Macroecology, Evolution and ClimateGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Stuart C. Brown
- The Environment Institute and School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Niels Martin Schmidt
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | - Rasmus Heller
- Department of Biology, Section of Computational and RNA BiologyUniversity of CopenhagenCopenhagenDenmark
| | - David Nogués‐Bravo
- Center for Macroecology, Evolution and ClimateGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Damien A. Fordham
- The Environment Institute and School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Center for Macroecology, Evolution and ClimateGlobe Institute, University of CopenhagenCopenhagenDenmark
- Center for Global Mountain BiodiversityGlobe Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
17
|
Robin M, Ferrari G, Akgül G, Münger X, von Seth J, Schuenemann VJ, Dalén L, Grossen C. Ancient mitochondrial and modern whole genomes unravel massive genetic diversity loss during near extinction of Alpine ibex. Mol Ecol 2022; 31:3548-3565. [PMID: 35560856 PMCID: PMC9328357 DOI: 10.1111/mec.16503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
Abstract
Population bottlenecks can have dramatic consequences for the health and long-term survival of a species. Understanding of historic population size and standing genetic variation prior to a contraction allows estimating the impact of a bottleneck on the species genetic diversity. Although historic population sizes can be modelled based on extant genomics, uncertainty is high for the last 10-20 millenia. Hence, integrating ancient genomes provides a powerful complement to retrace the evolution of genetic diversity through population fluctuations. Here, we recover 15 high-quality mitogenomes of the once nearly extinct Alpine ibex spanning 8601 BP to 1919 CE and combine these with 60 published modern whole genomes. Coalescent demography simulations based on modern whole genomes indicate population fluctuations coinciding with the last major glaciation period. Using our ancient and historic mitogenomes, we investigate the more recent demographic history of the species and show that mitochondrial haplotype diversity was reduced to a fifth of the pre-bottleneck diversity with several highly differentiated mitochondrial lineages having co-existed historically. The main collapse of mitochondrial diversity coincides with elevated human population growth during the last 1-2 kya. After recovery, one lineage was spread and nearly fixed across the Alps due to recolonization efforts. Our study highlights that a combined approach integrating genomic data of ancient, historic and extant populations unravels major long-term population fluctuations from the emergence of a species through its near extinction up to the recent past.
Collapse
Affiliation(s)
- Mathieu Robin
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Giada Ferrari
- Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Xenia Münger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Christine Grossen
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
18
|
Deng MX, Xiao B, Yuan JX, Hu JM, Kim KS, Westbury MV, Lai XL, Sheng GL. Ancient Mitogenomes Suggest Stable Mitochondrial Clades of the Siberian Roe Deer. Genes (Basel) 2022; 13:genes13010114. [PMID: 35052455 PMCID: PMC8774404 DOI: 10.3390/genes13010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
The roe deer (Capreolus spp.) has been present in China since the early Pleistocene. Despite abundant fossils available for detailed morphological analyses, little is known about the phylogenetic relationships of the fossil individuals to contemporary roe deer. We generated near-complete mitochondrial genomes for four roe deer remains from Northeastern China to explore the genetic connection of the ancient roe deer to the extant populations and to investigate the evolutionary history and population dynamics of this species. Phylogenetic analyses indicated the four ancient samples fall into three out of four different haplogroups of the Siberian roe deer. Haplogroup C, distributed throughout Eurasia, have existed in Northeastern China since at least the Late Pleistocene, while haplogroup A and D, found in the east of Lake Baikal, emerged in Northeastern China after the Mid Holocene. The Bayesian estimation suggested that the first split within the Siberian roe deer occurred approximately 0.34 million years ago (Ma). Moreover, Bayesian skyline plot analyses suggested that the Siberian roe deer had a population increase between 325 and 225 thousand years ago (Kya) and suffered a transient decline between 50 and 18 Kya. This study provides novel insights into the evolutionary history and population dynamics of the roe deer.
Collapse
Affiliation(s)
- Miao-Xuan Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
| | - Bo Xiao
- School of Earth Science, China University of Geosciences, Wuhan 430078, China; (B.X.); (J.-M.H.); (X.-L.L.)
| | - Jun-Xia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China;
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jia-Ming Hu
- School of Earth Science, China University of Geosciences, Wuhan 430078, China; (B.X.); (J.-M.H.); (X.-L.L.)
| | - Kyung Seok Kim
- Department of Ecology, Evolution, and Organismal Biology, lowa State University, Ames, IA 77575, USA;
| | - Michael V. Westbury
- GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Voldgade 5-7, 1353 Copenhagen, Denmark;
| | - Xu-Long Lai
- School of Earth Science, China University of Geosciences, Wuhan 430078, China; (B.X.); (J.-M.H.); (X.-L.L.)
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China;
| | - Gui-Lian Sheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China;
- Correspondence: ; Tel.: +86-27-6788-3022
| |
Collapse
|
19
|
Bacon AM, Bourgon N, Welker F, Cappellini E, Fiorillo D, Tombret O, Thi Mai Huong N, Anh Tuan N, Sayavonkhamdy T, Souksavatdy V, Sichanthongtip P, Antoine PO, Duringer P, Ponche JL, Westaway K, Joannes-Boyau R, Boesch Q, Suzzoni E, Frangeul S, Patole-Edoumba E, Zachwieja A, Shackelford L, Demeter F, Hublin JJ, Dufour É. A multi-proxy approach to exploring Homo sapiens' arrival, environments and adaptations in Southeast Asia. Sci Rep 2021; 11:21080. [PMID: 34702921 PMCID: PMC8548499 DOI: 10.1038/s41598-021-99931-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023] Open
Abstract
The capability of Pleistocene hominins to successfully adapt to different types of tropical forested environments has long been debated. In order to investigate environmental changes in Southeast Asia during a critical period for the turnover of hominin species, we analysed palaeoenvironmental proxies from five late Middle to Late Pleistocene faunas. Human teeth discoveries have been reported at Duoi U'Oi, Vietnam (70-60 ka) and Nam Lot, Laos (86-72 ka). However, the use of palaeoproteomics allowed us to discard the latter, and, to date, no human remains older than ~ 70 ka are documented in the area. Our findings indicate that tropical rainforests were highly sensitive to climatic changes over that period, with significant fluctuations of the canopy forests. Locally, large-bodied faunas were resilient to these fluctuations until the cooling period of the Marine Isotope Stage 4 (MIS 4; 74-59 ka) that transformed the overall biotope. Then, under strong selective pressures, populations with new phenotypic characteristics emerged while some other species disappeared. We argue that this climate-driven shift offered new foraging opportunities for hominins in a novel rainforest environment and was most likely a key factor in the settlement and dispersal of our species during MIS 4 in SE Asia.
Collapse
Affiliation(s)
- Anne-Marie Bacon
- grid.508487.60000 0004 7885 7602UMR 8045 BABEL, CNRS, Université de Paris, Faculté de Chirurgie dentaire, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Nicolas Bourgon
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.5802.f0000 0001 1941 7111Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Frido Welker
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Denis Fiorillo
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Olivier Tombret
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Nguyen Thi Mai Huong
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Nguyen Anh Tuan
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Thongsa Sayavonkhamdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | - Viengkeo Souksavatdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | | | - Pierre-Olivier Antoine
- grid.121334.60000 0001 2097 0141Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Duringer
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- grid.463965.b0000 0004 0452 6077UMR 7362 Laboratoire Image Ville et Environnement, Institut de Géologie, Strasbourg, France
| | - Kira Westaway
- grid.1004.50000 0001 2158 5405Department of Earth and Environmental Sciences, Traps’ MQ Luminescence Dating Facility, Macquarie University, Sydney, Australia
| | - Renaud Joannes-Boyau
- grid.1031.30000000121532610Geoarchaeology & Archaeometry Research Group, Southern Cross University, Lismore, Australia ,grid.458456.e0000 0000 9404 3263Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences, Beijing, China
| | - Quentin Boesch
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Elise Patole-Edoumba
- grid.410350.30000 0001 2174 9334Muséum d’Histoire Naturelle, La Rochelle, France
| | - Alexandra Zachwieja
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN USA
| | - Laura Shackelford
- grid.35403.310000 0004 1936 9991Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Fabrice Demeter
- grid.452548.a0000 0000 9817 5300Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, Copenhagen, Denmark ,UMR 7206 Eco-Anthropologie, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Jean-Jacques Hublin
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.410533.00000 0001 2179 2236Collège de France, Chaire de Paléoanthropologie, Paris, France
| | - Élise Dufour
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
20
|
Liu S, Westbury MV, Dussex N, Mitchell KJ, Sinding MHS, Heintzman PD, Duchêne DA, Kapp JD, von Seth J, Heiniger H, Sánchez-Barreiro F, Margaryan A, André-Olsen R, De Cahsan B, Meng G, Yang C, Chen L, van der Valk T, Moodley Y, Rookmaaker K, Bruford MW, Ryder O, Steiner C, Bruins-van Sonsbeek LGR, Vartanyan S, Guo C, Cooper A, Kosintsev P, Kirillova I, Lister AM, Marques-Bonet T, Gopalakrishnan S, Dunn RR, Lorenzen ED, Shapiro B, Zhang G, Antoine PO, Dalén L, Gilbert MTP. Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell 2021; 184:4874-4885.e16. [PMID: 34433011 DOI: 10.1016/j.cell.2021.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.
Collapse
Affiliation(s)
- Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
| | - Michael V Westbury
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius vag 20C, Stockholm 10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 10405, Sweden; Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Peter D Heintzman
- The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - David A Duchêne
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius vag 20C, Stockholm 10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 10405, Sweden; Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Holly Heiniger
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Fátima Sánchez-Barreiro
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Ashot Margaryan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Remi André-Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Binia De Cahsan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Guanliang Meng
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China
| | - Chentao Yang
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tom van der Valk
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Thohoyandou 0950, Republic of South Africa
| | - Kees Rookmaaker
- Editor of the Rhino Resource Center, Utrecht, the Netherlands
| | - Michael W Bruford
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, UK; Sustainable Places Research Institute, Cardiff University, Cardiff CF10 3BA, UK
| | - Oliver Ryder
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, San Diego, CA 92027, USA
| | - Cynthia Steiner
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, San Diego, CA 92027, USA
| | | | - Sergey Vartanyan
- N.A. Shilo North-East Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy of Sciences (NEISRI FEB RAS), Magadan 685000, Russia
| | - Chunxue Guo
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China
| | - Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia
| | - Pavel Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia; Ural Federal University, Yekaterinburg, Russia
| | - Irina Kirillova
- Institute of Geography, Russian Academy of Sciences, Moscow 119017, Russia
| | - Adrian M Lister
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain; Centre Nacional d'Anàlisi Genòmica, Centre for Genomic Regulation (CNAG-CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shyam Gopalakrishnan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Robert R Dunn
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark; Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Eline D Lorenzen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 96050, USA
| | - Guojie Zhang
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Pierre-Olivier Antoine
- Institut des Sciences de l'Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius vag 20C, Stockholm 10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 10405, Sweden; Department of Zoology, Stockholm University, Stockholm 10691, Sweden.
| | - M Thomas P Gilbert
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark; Norwegian University of Science and Technology (NTNU) University Museum, Trondheim 7012, Norway.
| |
Collapse
|
21
|
Dussex N, van der Valk T, Morales HE, Wheat CW, Díez-del-Molino D, von Seth J, Foster Y, Kutschera VE, Guschanski K, Rhie A, Phillippy AM, Korlach J, Howe K, Chow W, Pelan S, Mendes Damas JD, Lewin HA, Hastie AR, Formenti G, Fedrigo O, Guhlin J, Harrop TW, Le Lec MF, Dearden PK, Haggerty L, Martin FJ, Kodali V, Thibaud-Nissen F, Iorns D, Knapp M, Gemmell NJ, Robertson F, Moorhouse R, Digby A, Eason D, Vercoe D, Howard J, Jarvis ED, Robertson BC, Dalén L. Population genomics of the critically endangered kākāpō. CELL GENOMICS 2021; 1:100002. [PMID: 36777713 PMCID: PMC9903828 DOI: 10.1016/j.xgen.2021.100002] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden,Department of Zoology, Stockholm University, 10691 Stockholm, Sweden,Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand,Corresponding author
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Hernán E. Morales
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - David Díez-del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden,Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Yasmin Foster
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Verena E. Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Katerina Guschanski
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK,Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75236 Uppsala, Sweden
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonas Korlach
- Pacific Biosciences, 1305 O’Brien Drive, Menlo Park, CA 94025, USA
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - William Chow
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sarah Pelan
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Joanna D. Mendes Damas
- Department of Evolution and Ecology and the UC Davis Genome Center, 4321 Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA
| | - Harris A. Lewin
- Department of Evolution and Ecology and the UC Davis Genome Center, 4321 Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA
| | - Alex R. Hastie
- Bionano Genomics, 9540 Towne Centre Drive, San Diego, CA 92121, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA,Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA
| | - Joseph Guhlin
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Thomas W.R. Harrop
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Marissa F. Le Lec
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Peter K. Dearden
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Vamsi Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Iorns
- The Genetic Rescue Foundation, Wellington, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9016, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ron Moorhouse
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Andrew Digby
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Daryl Eason
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Deidre Vercoe
- Kākāpō Recovery, Department of Conservation, PO Box 743, Invercargill 9840, New Zealand
| | - Jason Howard
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA,BioSkryb Genomics, 701 W Main Street, Suite 200, Durham, NC 27701, USA
| | - Erich D. Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA,Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Corresponding author
| | - Bruce C. Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand,Corresponding author
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden,Department of Zoology, Stockholm University, 10691 Stockholm, Sweden,Corresponding author
| |
Collapse
|
22
|
Hoban S, Bruford MW, Funk WC, Galbusera P, Griffith MP, Grueber CE, Heuertz M, Hunter ME, Hvilsom C, Stroil BK, Kershaw F, Khoury CK, Laikre L, Lopes-Fernandes M, MacDonald AJ, Mergeay J, Meek M, Mittan C, Mukassabi TA, O'Brien D, Ogden R, Palma-Silva C, Ramakrishnan U, Segelbacher G, Shaw RE, Sjögren-Gulve P, Veličković N, Vernesi C. Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. Bioscience 2021; 71:964-976. [PMID: 34475806 PMCID: PMC8407967 DOI: 10.1093/biosci/biab054] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Global conservation policy and action have largely neglected protecting and monitoring genetic diversity—one of the three main pillars of biodiversity. Genetic diversity (diversity within species) underlies species’ adaptation and survival, ecosystem resilience, and societal innovation. The low priority given to genetic diversity has largely been due to knowledge gaps in key areas, including the importance of genetic diversity and the trends in genetic diversity change; the perceived high expense and low availability and the scattered nature of genetic data; and complicated concepts and information that are inaccessible to policymakers. However, numerous recent advances in knowledge, technology, databases, practice, and capacity have now set the stage for better integration of genetic diversity in policy instruments and conservation efforts. We review these developments and explore how they can support improved consideration of genetic diversity in global conservation policy commitments and enable countries to monitor, report on, and take action to maintain or restore genetic diversity.
Collapse
Affiliation(s)
- Sean Hoban
- The Morton Arboretum, Center for Tree Science, Lisle, Illinois, United States
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States
| | - Peter Galbusera
- Royal Zoological Society of Antwerp, Centre for Research and Conservation, Antwerp, Belgium
| | | | - Catherine E Grueber
- University of Sydney's School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Myriam Heuertz
- INRAE, and the University of Bordeaux, Biogeco, Cestas, France
| | - Margaret E Hunter
- US Geological Survey's Wetland and Aquatic Research Center, Gainesville, Florida, United States
| | | | - Belma Kalamujic Stroil
- University of Sarajevo Institute for Genetic Engineering and Biotechnology, Laboratory for Molecular Genetics of Natural Resources, Sarajevo, Bosnia and Herzegovina
| | - Francine Kershaw
- Natural Resources Defense Council, New York, New York, United States
| | - Colin K Khoury
- International Center for Tropical Agriculture, Cali, Colombia
| | - Linda Laikre
- Department of Zoology, Division of Population Genetics, Stockholm University, Stockholm, Sweden
| | | | - Anna J MacDonald
- Australian National University, John Curtin School of Medical Research and Research School of Biology, Canberra, Australia
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mariah Meek
- Michigan State University Department of Integrative Biology, AgBio Research, Ecology, Evolution, and Behavior Program, East Lansing, Michigan, United States
| | - Cinnamon Mittan
- Cornell University's Department of Ecology and Evolutionary Biology, Ithaca, New York, United States
| | - Tarek A Mukassabi
- University of Benghazi Department of Botany, Faculty of Sciences, Benghazi, Libya
| | | | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and with the Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, United Kingdom
| | | | - Uma Ramakrishnan
- Department of Ecology and Evolution, National Centre for Biological Sciences, Bangalore, India
| | - Gernot Segelbacher
- Chair of wildlife ecology and management, University Freiburg, Freiburg, Germany
| | - Robyn E Shaw
- Department of Environmental and Conservation Sciences, Murdoch University, Perth, Australia
| | - Per Sjögren-Gulve
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Nevena Veličković
- University of Novi Sad's Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
| | - Cristiano Vernesi
- Forest Ecology and Biogeochemical Fluxes Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Italy
| |
Collapse
|
23
|
Dussex N, Bergfeldt N, de Anca Prado V, Dehasque M, Díez-Del-Molino D, Ersmark E, Kanellidou F, Larsson P, Lemež Š, Lord E, Mármol-Sánchez E, Meleg IN, Måsviken J, Naidoo T, Studerus J, Vicente M, von Seth J, Götherström A, Dalén L, Heintzman PD. Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics. Proc Biol Sci 2021; 288:20211252. [PMID: 34428961 PMCID: PMC8385357 DOI: 10.1098/rspb.2021.1252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ancient DNA (aDNA) has played a major role in our understanding of the past. Important advances in the sequencing and analysis of aDNA from a range of organisms have enabled a detailed understanding of processes such as past demography, introgression, domestication, adaptation and speciation. However, to date and with the notable exception of microbiomes and sediments, most aDNA studies have focused on single taxa or taxonomic groups, making the study of changes at the community level challenging. This is rather surprising because current sequencing and analytical approaches allow us to obtain and analyse aDNA from multiple source materials. When combined, these data can enable the simultaneous study of multiple taxa through space and time, and could thus provide a more comprehensive understanding of ecosystem-wide changes. It is therefore timely to develop an integrative approach to aDNA studies by combining data from multiple taxa and substrates. In this review, we discuss the various applications, associated challenges and future prospects of such an approach.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Nora Bergfeldt
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Petter Larsson
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Špela Lemež
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ioana N Meleg
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,'Emil Racoviță' Institute of Speleology of the Romanian Academy, Calea 13 Septembrie, nr. 13, 050711, Sector 5, Bucharest, Romania.,Emil. G. Racoviță Institute, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Johannes Måsviken
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Ancient DNA Unit, SciLifeLab, Stockholm and Uppsala, Sweden
| | - Jovanka Studerus
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Mário Vicente
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Peter D Heintzman
- The Arctic University Museum of Norway, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
24
|
Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. DIVERSITY 2021. [DOI: 10.3390/d13080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.
Collapse
|
25
|
Patil AB, Vijay N. Repetitive genomic regions and the inference of demographic history. Heredity (Edinb) 2021; 127:151-166. [PMID: 34002046 PMCID: PMC8322061 DOI: 10.1038/s41437-021-00443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Inference of demographic histories using whole-genome datasets has provided insights into diversification, adaptation, hybridization, and plant-pathogen interactions, and stimulated debate on the impact of anthropogenic interventions and past climate on species demography. However, the impact of repetitive genomic regions on these inferences has mostly been ignored by masking of repeats. We use the Populus trichocarpa genome (Pop_tri_v3) to show that masking of repeat regions leads to lower estimates of effective population size (Ne) in the distant past in contrast to an increase in Ne estimates in recent times. However, in human datasets, masking of repeats resulted in lower estimates of Ne at all time points. We demonstrate that repeats affect demographic inferences using diverse methods like PSMC, MSMC, SMC++, and the Stairway plot. Our genomic analysis revealed that the biases in Ne estimates were dependent on the repeat class type and its abundance in each atomic interval. Notably, we observed a weak, yet consistently significant negative correlation between the repeat abundance of an atomic interval and the Ne estimates for that interval, which potentially reflects the recombination rate variation within the genome. The rationale for the masking of repeats has been that variants identified within these regions are erroneous. We find that polymorphisms in some repeat classes occur in callable regions and reflect reliable coalescence histories (e.g., LTR Gypsy, LTR Copia). The current demography inference methods do not handle repeats explicitly, and hence the effect of individual repeat classes needs careful consideration in comparative analysis. Deciphering the repeat demographic histories might provide a clear understanding of the processes involved in repeat accumulation.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
26
|
Prasad A, Lorenzen ED, Westbury MV. Evaluating the role of reference-genome phylogenetic distance on evolutionary inference. Mol Ecol Resour 2021; 22:45-55. [PMID: 34176238 DOI: 10.1111/1755-0998.13457] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
When a high-quality genome assembly of a target species is unavailable, an option to avoid the costly de novo assembly process is a mapping-based assembly. However, mapping shotgun data to a distant relative may lead to biased or erroneous evolutionary inference. Here, we used short-read data from a mammal (beluga whale) and a bird species (rowi kiwi) to evaluate whether reference genome phylogenetic distance can impact downstream demographic (Pairwise Sequentially Markovian Coalescent) and genetic diversity (heterozygosity, runs of homozygosity) analyses. We mapped to assemblies of species of varying phylogenetic distance (from conspecific to genome-wide divergence of >7%), and de novo assemblies created using cross-species scaffolding. We show that while reference genome phylogenetic distance has an impact on demographic analyses, it is not pronounced until using a reference genome with >3% divergence from the target species. When mapping to cross-species scaffolded assemblies, we are unable to replicate the original beluga demographic results, but are able with the rowi kiwi, presumably reflecting the more fragmented nature of the beluga assemblies. We find that increased phylogenetic distance has a pronounced impact on genetic diversity estimates; heterozygosity estimates deviate incrementally with increasing phylogenetic distance. Moreover, runs of homozygosity are largely undetectable when mapping to any nonconspecific assembly. However, these biases can be reduced when mapping to a cross-species scaffolded assembly. Taken together, our results show that caution should be exercised when selecting reference genomes. Cross-species scaffolding may offer a way to avoid a costly, traditional de novo assembly, while still producing robust, evolutionary inference.
Collapse
Affiliation(s)
- Aparna Prasad
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
27
|
Sellinger TPP, Abu-Awad D, Tellier A. Limits and convergence properties of the sequentially Markovian coalescent. Mol Ecol Resour 2021; 21:2231-2248. [PMID: 33978324 DOI: 10.1111/1755-0998.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Several methods based on the sequentially Markovian coalescent (SMC) make use of full genome sequence data from samples to infer population demographic history including past changes in population size, admixture, migration events and population structure. More recently, the original theoretical framework has been extended to allow the simultaneous estimation of population size changes along with other life history traits such as selfing or seed banking. The latter developments enhance the applicability of SMC methods to nonmodel species. Although convergence proofs have been given using simulated data in a few specific cases, an in-depth investigation of the limitations of SMC methods is lacking. In order to explore such limits, we first develop a tool inferring the best case convergence of SMC methods assuming the true underlying coalescent genealogies are known. This tool can be used to quantify the amount and type of information that can be confidently retrieved from given data sets prior to the analysis of the real data. Second, we assess the inference accuracy when the assumptions of SMC approaches are violated due to departures from the model, namely the presence of transposable elements, variable recombination and mutation rates along the sequence, and SNP calling errors. Third, we deliver a new interpretation of SMC methods by highlighting the importance of the transition matrix, which we argue can be used as a set of summary statistics in other statistical inference methods, uncoupling the SMC from hidden Markov models (HMMs). We finally offer recommendations to better apply SMC methods and build adequate data sets under budget constraints.
Collapse
Affiliation(s)
| | - Diala Abu-Awad
- Department of Life Science Systems, Technical University of Munich, Munchen, Germany
| | - Aurélien Tellier
- Department of Life Science Systems, Technical University of Munich, Munchen, Germany
| |
Collapse
|
28
|
Rey-Iglesia A, Lister AM, Campos PF, Brace S, Mattiangeli V, Daly KG, Teasdale MD, Bradley DG, Barnes I, Hansen AJ. Exploring the phylogeography and population dynamics of the giant deer ( Megaloceros giganteus) using Late Quaternary mitogenomes. Proc Biol Sci 2021; 288:20201864. [PMID: 33977786 PMCID: PMC8114472 DOI: 10.1098/rspb.2020.1864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer (Megaloceros giganteus) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.
Collapse
Affiliation(s)
- Alba Rey-Iglesia
- Centre for Geogenetics, Natural History Museum Denmark, University of Copenhagen, Østervoldgade 5-7, 1350 Copenhagen, Denmark
| | - Adrian M. Lister
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paula F. Campos
- Centre for Geogenetics, Natural History Museum Denmark, University of Copenhagen, Østervoldgade 5-7, 1350 Copenhagen, Denmark
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Selina Brace
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin Dublin 2, Ireland
| | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin Dublin 2, Ireland
| | - Matthew D. Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin Dublin 2, Ireland
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin Dublin 2, Ireland
| | - Ian Barnes
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Anders J. Hansen
- Centre for Geogenetics, Natural History Museum Denmark, University of Copenhagen, Østervoldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
29
|
von Seth J, Dussex N, Díez-Del-Molino D, van der Valk T, Kutschera VE, Kierczak M, Steiner CC, Liu S, Gilbert MTP, Sinding MHS, Prost S, Guschanski K, Nathan SKSS, Brace S, Chan YL, Wheat CW, Skoglund P, Ryder OA, Goossens B, Götherström A, Dalén L. Genomic insights into the conservation status of the world's last remaining Sumatran rhinoceros populations. Nat Commun 2021; 12:2393. [PMID: 33896938 PMCID: PMC8071806 DOI: 10.1038/s41467-021-22386-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/01/2021] [Indexed: 02/02/2023] Open
Abstract
Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations.
Collapse
Affiliation(s)
- Johanna von Seth
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Nicolas Dussex
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cynthia C Steiner
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, Escondido, CA, USA
| | - Shanlin Liu
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberg, Frankfurt, Germany
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Yvonne L Chan
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | | | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, Escondido, CA, USA
| | - Benoit Goossens
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
30
|
Mitchell KJ, Rawlence NJ. Examining Natural History through the Lens of Palaeogenomics. Trends Ecol Evol 2021; 36:258-267. [PMID: 33455740 DOI: 10.1016/j.tree.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The many high-resolution tools that are uniquely applicable to specimens from the Quaternary period (the past ~2.5 Ma) provide an opportunity to cross-validate data and test hypotheses based on the morphology and distribution of fossils. Among these tools is palaeogenomics - the genome-scale sequencing of genetic material from ancient specimens - that can provide direct insight into ecology and evolution, potentially improving the accuracy of inferences about past ecological communities over longer timescales. Palaeogenomics has revealed instances of over- and underestimation of extinct diversity, detected cryptic faunal migration and turnover, allowed quantification of widespread sex biases and sexual dimorphism in the fossil record, revealed past hybridisation events and hybrid individuals, and has highlighted previously unrecognised routes of zoonotic disease transfer.
Collapse
Affiliation(s)
- Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Evolution: Untangling the Woolly Rhino’s Extinction. Curr Biol 2020; 30:R1087-R1090. [DOI: 10.1016/j.cub.2020.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|