1
|
Fernandez Triana M, Andreazza F, Melo N, Ignell R, Afify A, Li Y, Zhang DD, Potter CJ, Dong K, Stensmyr MC. Grapefruit-derived nootkatone potentiates GABAergic signaling and acts as a dual-action mosquito repellent and insecticide. Curr Biol 2025; 35:177-186.e6. [PMID: 39631399 DOI: 10.1016/j.cub.2024.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Humanity has long battled mosquitoes and the diseases they transmit-a struggle intensified by climate change and globalization, which have expanded mosquito ranges and the spread of associated diseases.1 Additionally, widespread insecticide resistance has reduced the efficacy of current control methods, necessitating new solutions.2,3 Nootkatone, a natural compound found in grapefruit, shows promise as both a mosquito repellent and an insecticide.4,5 However, its mechanism of action remains unclear. Our study demonstrates that nootkatone acts as a potent spatial and contact repellent against multiple mosquito species. Nootkatone-induced spatial aversion, which is influenced by human odor, is in Aedes aegypti partially mediated by Orco- and ionotropic receptor (IR)-positive neurons, while contact aversion is robust and likely mediated via the proboscis and independent of TRPA1 and IRs. We further find that nootkatone potentiates γ-aminobutyric acid (GABA)-mediated signaling by modulating the broadly expressed major insect GABA-gated chloride channel resistant to dieldrin (Rdl). At low doses, the chemosensory-mediated spatial and contact repellency is likely strengthened by nootkatone's disruption of synaptic transmission in select mosquito sensory neurons. At higher doses, nootkatone induces paralysis and death, presumably through broad-range synaptic transmission disruption. These findings reveal nootkatone's unique mode of action and highlight its potential as an effective mosquito control agent. Its dual role as a repellent and an insecticide, combined with low-to-no toxicity to humans and a pleasant smell, underscores nootkatone's promise as a future tool in mosquito control efforts.
Collapse
Affiliation(s)
- Merybeth Fernandez Triana
- Department of Biology, Lund University, Lund 22362, Sweden; Max Planck Center next Generation Chemical Ecology, Lund 22362, Sweden
| | | | - Nadia Melo
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Rickard Ignell
- Max Planck Center next Generation Chemical Ecology, Lund 22362, Sweden; Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma 23422, Sweden
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Yuan Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Marcus C Stensmyr
- Department of Biology, Lund University, Lund 22362, Sweden; Max Planck Center next Generation Chemical Ecology, Lund 22362, Sweden.
| |
Collapse
|
2
|
Baik LS, Talross GJS, Gray S, Pattisam HS, Peterson TN, Nidetz JE, Hol FJH, Carlson JR. Mosquito taste responses to human and floral cues guide biting and feeding. Nature 2024; 635:639-646. [PMID: 39415007 PMCID: PMC11578787 DOI: 10.1038/s41586-024-08047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The taste system controls many insect behaviours, yet little is known about how tastants are encoded in mosquitoes or how they regulate critical behaviours. Here we examine how taste stimuli are encoded by Aedes albopictus mosquitoes-a highly invasive disease vector-and how these cues influence biting, feeding and egg laying. We find that neurons of the labellum, the major taste organ of the head, differentially encode a wide variety of human and other cues. We identify three functional classes of taste sensilla with an expansive coding capacity. In addition to excitatory responses, we identify prevalent inhibitory responses, which are predictive of biting behaviour. Certain bitter compounds suppress physiological and behavioural responses to sugar, suggesting their use as potent stop signals against appetitive cues. Complex cues, including human sweat, nectar and egg-laying site water, elicit distinct response profiles from the neuronal repertoire. We identify key tastants on human skin and in sweat that synergistically promote biting behaviours. Transcriptomic profiling identifies taste receptors that could be targeted to disrupt behaviours. Our study sheds light on key features of the taste system that suggest new ways of manipulating chemosensory function and controlling mosquito vectors.
Collapse
Affiliation(s)
- Lisa S Baik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sydney Gray
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Himani S Pattisam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Taylor N Peterson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - James E Nidetz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Felix J H Hol
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Vainer Y, Wang Y, Huff RM, Perets D, Sar-Shalom E, Yakir E, Ghaninia M, Coutinho-Abreu Gomes IV, Ruiz C, Rajamanickam D, Warburg A, Akbari OS, Papathanos PA, Ignell R, Riffell JA, Pitts RJ, Bohbot JD. A conserved odorant receptor underpins borneol-mediated repellency in culicine mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.548337. [PMID: 37577635 PMCID: PMC10418152 DOI: 10.1101/2023.08.01.548337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The use of essential oils derived from the camphor tree to repel mosquitoes is an ancient practice that originated in Southeast Asia and gradually spread to China and across Europe via the Maritime Silk Road. The olfactory mechanisms by which these oils elicit avoidance behavior are unclear. Here we show that plant bicyclic monoterpenoids and borneol specifically activate a neural pathway that originates in the orphan olfactory receptor neuron of the capitate peg sensillum in the maxillary palp, and projects to the mediodorsal glomerulus 3 in the antennal lobe. This neuron co-locates with two olfactory receptor neurons tuned to carbon dioxide and octenol that mediate human-host detection. We also confirm that borneol elicits repellency against human-seeking female mosquitoes. Understanding the functional role of the mosquito maxillary palp is essential to investigating olfactory signal integration and host-selection behavior.
Collapse
Affiliation(s)
- Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | - Yinliang Wang
- Department of Entomology, The Hebrew University of Jerusalem, Israel
- Northeast Normal University, China
| | | | - Dor Perets
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | | | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, Israel
| | - Majid Ghaninia
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden
| | | | - Carlos Ruiz
- Department of Biology, University of Washington, USA
| | | | - A. Warburg
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Israel
| | - Omar S. Akbari
- Division of Biological Sciences, University of California, USA
| | | | - R. Ignell
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden
| | | | | | | |
Collapse
|
4
|
Smit SJ, Ayten S, Radzikowska BA, Hamilton JP, Langer S, Unsworth WP, Larson TR, Buell CR, Lichman BR. The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1589-1602. [PMID: 38489316 DOI: 10.1111/tpj.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sefa Ayten
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - C Robin Buell
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
5
|
Zhao X, Liu Y, Li M, Li H, Zhang Q, Lv Q. Differential analysis of volatiles in five types of mosquito-repellent products by chemometrics combined with headspace GC-Orbitrap HRMS nontargeted detection. Talanta 2024; 269:125443. [PMID: 38048684 DOI: 10.1016/j.talanta.2023.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
This paper reports a method for the differential analysis of volatile chemical components in five novel types of mosquito-repellent products based on chemometrics combined with headspace gas chromatography-Orbitrap high-resolution mass spectrometry (HS-GC-Orbitrap HRMS) nontargeted screening. A total of 358 unknown substances were detected in 30 samples under specific headspace conditions. Through principal component analysis and orthogonal partial least-squares discriminant analysis, 36 significantly different substances with variable importance in the projection values greater than 1 were further screened, and these substances were accurately identified by GC-Orbitrap HRMS. Most substances were found for the first time in mosquito-repellent products. The clustered heat map, Venn diagram and peak area histogram showed that the mosquito-repellent products had similar volatile composition, and the volatile species and content of different types of mosquito-repellent products significantly varied. Substances, such as eucalyptol, d-limonene, α-pinene, β-pinene, dl-menthol and methyl salicylate, may be the main sources of odour in mosquito-repellent products. This work explored the characteristic volatile components in mosquito-repellent products and comparatively analysed the chemical composition of different types of products. It can be generalised to consumer products as a case study and has positive implications for promoting product quality and safety and improving production processes.
Collapse
Affiliation(s)
- Xiying Zhao
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; College of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Yahui Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Meiping Li
- College of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou, 310018, Zhejiang Province, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
6
|
Batume C, Mulongo IM, Ludlow R, Ssebaale J, Randerson P, Pickett JA, Mukisa IM, Scofield S. Evaluating repellence properties of catnip essential oil against the mosquito species Aedes aegypti using a Y-tube olfactometer. Sci Rep 2024; 14:2269. [PMID: 38280895 PMCID: PMC10821859 DOI: 10.1038/s41598-024-52715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
The mosquito species Aedes aegypti (L.) is known to act as a vector in the transmission of various diseases, including dengue fever and yellow fever. The use of insect repellents is one of precautionary measures used to mitigate the risk of these diseases in humans by reducing mosquito biting. Nepetalactone, a potent natural insect repellent primarily found in catnip (Nepeta cataria) essential oil, has emerged as a promising candidate for mosquito repellence. Here, we evaluated the potential of catnip essential oil (> 95% nepetalactone) for use as a mosquito repellent. Using a Y-tube olfactometer and human hands as an attractant, we analysed the effectiveness of catnip oil at repelling the mosquito species Aedes aegypti. We tested a range of dilutions of catnip essential oil and found that concentrations as low as 2% were effective at repelling > 70% of mosquitoes for between one and four hours after repellent application. These findings suggest that nepetalactone could potentially be used as a natural, effective alternative to synthetic mosquito repellents, thereby offering protection against vector-borne diseases.
Collapse
Affiliation(s)
- Charles Batume
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | | | | | | | | | | | - Ivan M Mukisa
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | | |
Collapse
|
7
|
Luker HA. A critical review of current laboratory methods used to evaluate mosquito repellents. FRONTIERS IN INSECT SCIENCE 2024; 4:1320138. [PMID: 38469342 PMCID: PMC10926509 DOI: 10.3389/finsc.2024.1320138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024]
Abstract
Pathogens transmitted by mosquitoes threaten human health around the globe. The use of effective mosquito repellents can protect individuals from contracting mosquito-borne diseases. Collecting evidence to confirm and quantify the effectiveness of a mosquito repellent is crucial and requires thorough standardized testing. There are multitudes of methods to test repellents that each have their own strengths and weaknesses. Determining which type of test to conduct can be challenging and the collection of currently used and standardized methods has changed over time. Some of these methods can be powerful to rapidly screen numerous putative repellent treatments. Other methods can test mosquito responses to specific treatments and measure either spatial or contact repellency. A subset of these methods uses live animals or human volunteers to test the repellency of treatments. Assays can greatly vary in their affordability and accessibility for researchers and/or may require additional methods to confirm results. Here I present a critical review that covers some of the most frequently used laboratory assays from the last two decades. I discuss the experimental designs and highlight some of the strengths and weaknesses of each type of method covered.
Collapse
Affiliation(s)
- Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
8
|
Sato S, Magaji AM, Tominaga M, Sokabe T. Avoidance of thiazoline compound depends on multiple sensory pathways mediated by TrpA1 and ORs in Drosophila. Front Mol Neurosci 2023; 16:1249715. [PMID: 38188198 PMCID: PMC10771277 DOI: 10.3389/fnmol.2023.1249715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Transient receptor potential (TRP) channels are primary sensory molecules in animals and are involved in detecting a diverse range of physical and chemical cues in the environments. Considering the crucial role of TRPA1 channels in nocifensive behaviors and aversive responses across various insect species, activators of TRPA1 are promising candidates for insect pest control. In this study, we demonstrate that 2-methylthiazoline (2MT), an artificial volatile thiazoline compound originally identified as a stimulant for mouse TRPA1, can be utilized as a novel repellent for fruit flies, Drosophila melanogaster. We observed that 2MT induced strong, dose-dependent avoidance behaviors in adult males, regardless of their feeding states, as well as egg laying behavior in females. These aversive responses were mediated by contact chemosensation via TrpA1 and olfaction via odorant receptors. Knocking down TrpA1 revealed the essential roles of bitter taste neurons and nociceptive neurons in the legs and labellum. Furthermore, among five isoforms, TrpA1-C and TrpA1-D exclusively contributed to the aversiveness of 2MT. We also discovered that these isoforms were directly activated by 2MT through covalent modification of evolutionarily conserved cysteine residues. In conclusion, we have identified 2MT as a stimulant for multiple sensory pathways, triggering aversive behaviors in fruit flies. We propose that 2MT and related chemicals may serve as potential resources for developing novel insect repellents.
Collapse
Affiliation(s)
- Shoma Sato
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Aliyu Mudassir Magaji
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Makoto Tominaga
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Takaaki Sokabe
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan
| |
Collapse
|
9
|
Ren Q, Ma L, Zhang X, Chen L, Mao Z, Li D, Zhang L, Jiang X. Effect of Juvenile Hormone on Worker Behavioral Transition in the Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae). INSECTS 2023; 14:934. [PMID: 38132607 PMCID: PMC10743645 DOI: 10.3390/insects14120934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The division of labor among workers is a defining characteristic of social insects and plays a pivotal role in enhancing the competitive advantage of their colony. Juvenile hormone (JH) has long been hypothesized to be the essential driver in regulating the division of labor due to its ability to accelerate behavioral transitions in social insects, such as honeybees. The regulation of behavioral transitions by JH in the red imported fire ant (RIFA), Solenopsis invicta, a typical social pest, is unclear. Through video capture and analysis, we investigated the effects of the juvenile hormone analogue (JHA) methoprene on brood care, phototaxis behavior, and threat responsiveness of RIFA nurse workers. Our results showed that the JHA application significantly reduced the time and frequency of brood care behavior by nurse workers while increasing their walking distance and activity time in the light area. Additionally, the application of JHA made ants become excited, indicating a significant improvement in their activity level (movement distance, time, and speed). Furthermore, it was observed that the application of JHA did not affect the threat responsiveness of nurse workers towards stimuli (nestmates or non-nestmates). Our study demonstrates that the application of JHA reduced brood care behavior and enhanced phototaxis in nurse workers, which may reveal the role of JH in facilitating behavioral transitions in RIFA from intranidal tasks to extranidal activity. This study provides an experimental basis for further elucidating the mechanism underlying the division of labor in social insects.
Collapse
Affiliation(s)
- Qilin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Lin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Xiaolong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Libiao Chen
- Guangxi Green City Pest Control Technology Co., Ltd., Nanning 530007, China;
| | - Zhigang Mao
- Guangxi Beitou Urban Environmental Governance Group Co., Ltd., Nanning 530000, China; (Z.M.); (D.L.)
| | - Dongdong Li
- Guangxi Beitou Urban Environmental Governance Group Co., Ltd., Nanning 530000, China; (Z.M.); (D.L.)
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| |
Collapse
|
10
|
Nagata A, Oishi S, Kirishita N, Onoda K, Kobayashi T, Terada Y, Minami A, Senoo N, Yoshioka Y, Uchida K, Ito K, Miura S, Miyoshi N. Allyl Isothiocyanate Maintains DHA-Containing Glycerophospholipids and Ameliorates the Cognitive Function Decline in OVX Mice. ACS OMEGA 2023; 8:43118-43129. [PMID: 38024702 PMCID: PMC10652735 DOI: 10.1021/acsomega.3c06622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature-induced fatty acid desaturation is highly conserved in animals, plants, and bacteria. Allyl isothiocyanate (AITC) is an agonist of the transient receptor potential ankyrin 1 (TRPA1), which is activated by various chemophysiological stimuli, including low temperature. However, whether AITC induces fatty acid desaturation remains unknown. We showed here that AITC increased levels of glycerophospholipids (GP) esterified with unsaturated fatty acids, especially docosahexaenoic acid (DHA) in TRPA1-expressing HEK cells. Additionally, GP-DHA including phosphatidylcholine (18:0/22:6) and phosphatidylethanolamine (18:0/22:6) was increased in the brain and liver of AITC-administered mice. Moreover, intragastrical injection of AITC in ovariectomized (OVX) female C57BL/6J mice dose-dependently shortened the Δlatency time determined by the Morris water maze test, indicating AITC ameliorated the cognitive function decline in these mice. Thus, the oral administration of AITC maintains GP-DHA in the liver and brain, proving to be a potential strategy for preventing cognitive decline.
Collapse
Affiliation(s)
- Akika Nagata
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shiori Oishi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanako Kirishita
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keita Onoda
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Takuma Kobayashi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yuko Terada
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Akira Minami
- Department
of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Nanami Senoo
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Yasukiyo Yoshioka
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Kunitoshi Uchida
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Keisuke Ito
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Shinji Miura
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| | - Noriyuki Miyoshi
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 4228526, Japan
| |
Collapse
|
11
|
Zaharieva A, Rusanov K, Rusanova M, Paunov M, Yordanova Z, Mantovska D, Tsacheva I, Petrova D, Mishev K, Dobrev PI, Lacek J, Filepová R, Zehirov G, Vassileva V, Mišić D, Motyka V, Chaneva G, Zhiponova M. Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint ( Nepeta nuda L.). Metabolites 2023; 13:1099. [PMID: 37887424 PMCID: PMC10609352 DOI: 10.3390/metabo13101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.
Collapse
Affiliation(s)
- Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Grigor Zehirov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| |
Collapse
|
12
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
13
|
Borges JCM, Haddi K, Valbon WR, Costa LTM, Ascêncio SD, Santos GR, Soares IM, Barbosa RS, Viana KF, Silva EAP, Moura WS, Andrade BS, Oliveira EE, Aguiar RWS. Methanolic Extracts of Chiococca alba in Aedes aegypti Biorational Management: Larvicidal and Repellent Potential, and Selectivity against Non-Target Organisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:3298. [PMID: 36501335 PMCID: PMC9735851 DOI: 10.3390/plants11233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.
Collapse
Affiliation(s)
- Jaqueline C. M. Borges
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Khalid Haddi
- Departmento de Entomologia, Universidade Federal de Lavras (UFLA), Lavras 37200-000, MG, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Wilson R. Valbon
- Departmento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lara T. M. Costa
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Sérgio D. Ascêncio
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Gil R. Santos
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Ilsamar M. Soares
- Natural Products Research Laboratory, Federal University of Tocantins (UFT), Palmas 77001-090, TO, Brazil
| | - Robson S. Barbosa
- Natural Products Research Laboratory, Federal University of Tocantins (UFT), Palmas 77001-090, TO, Brazil
| | - Kelvinson F. Viana
- Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85870-901, PR, Brazil
| | - Eder A. P. Silva
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Wellington S. Moura
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Bruno S. Andrade
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Department of Biological Sciences, State University of Southwest Bahia, Jequié 45206-190, BA, Brazil
| | - Eugenio E. Oliveira
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Departmento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Raimundo W. S. Aguiar
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| |
Collapse
|
14
|
Palmer L, Chuang L, Siegmund M, Kunert M, Yamamoto K, Sonawane P, O'Connor SE. In vivo characterization of key iridoid biosynthesis pathway genes in catnip (Nepeta cataria). PLANTA 2022; 256:99. [PMID: 36222913 PMCID: PMC9556426 DOI: 10.1007/s00425-022-04012-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Using virus-induced gene silencing, we demonstrated that the enzymes GES, ISY, and MLPL are responsible for nepetalactone biosynthesis in Nepeta cataria. Nepetalactone is the main iridoid that is found in the Nepeta genus and is well-known for its psychoactive effect on house cats. Moreover, there is a burgeoning interest into the effect of nepetalactone on insects. Although the enzymes for nepetalactone biosynthesis have been biochemically assayed in vitro, validation of the role that these enzymes have in planta has not been demonstrated. Virus-induced gene silencing (VIGS) is a silencing method that relies on transient transformation and is an approach that has been particularly successful when applied to a variety of non-model plants. Here, we use a recently designed visual-marker dependent VIGS system to demonstrate that the nepetalactone biosynthetic enzymes GES, ISY, and MLPL impact nepetalactone biosynthesis in Nepeta cataria.
Collapse
Affiliation(s)
- Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Ling Chuang
- Institute of Botany, Leibniz University Hannover, 30167, Hannover, Germany
| | - Marlen Siegmund
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Kotaro Yamamoto
- School of Science, Association of International Arts and Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Prashant Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany.
| |
Collapse
|
15
|
Bol S, Scaffidi A, Bunnik EM, Flematti GR. Behavioral differences among domestic cats in the response to cat-attracting plants and their volatile compounds reveal a potential distinct mechanism of action for actinidine. BMC Biol 2022; 20:192. [PMID: 36008824 PMCID: PMC9414117 DOI: 10.1186/s12915-022-01369-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background It has been known for centuries that cats respond euphorically to Nepeta cataria (catnip). Recently, we have shown that Lonicera tatarica (Tatarian honeysuckle), Actinidia polygama (silver vine), and Valeriana officinalis (valerian) can also elicit this “catnip response”. The aim of this study was to learn if the behavior seen in response to these plants is similar to the response to catnip. Furthermore, we studied if these responses are fixed or if there are differences between cats. While nepetalactone was identified decades ago as the molecule responsible for the “catnip response”, we know that this volatile is found almost exclusively in catnip. Therefore, we also aimed to identify other compounds in these alternative plants that can elicit the blissful behavior in cats. Bioassays with 6 cats were performed in a low-stress environment, where 5 plants and 13 single compounds were each tested for at least 100 and 17 h, respectively. All responses were video recorded and BORIS software was used to analyze the cats’ behavior. Results Both response duration and behavior differed significantly between the cats. While individual cats had preferences for particular plants, the behavior of individual cats was consistent among all plants. About half a dozen lactones similar in structure to nepetalactone were able to elicit the “catnip response”, as were the structurally more distinct molecules actinidine and dihydroactinidiolide. Most cats did not respond to actinidine, whereas those who did, responded longer to this volatile than any of the other secondary plant metabolites, and different behavior was observed. Interestingly, dihydroactinidiolide was also found in excretions and secretions of the red fox, making this the first report of a compound produced by a mammal that can elicit the “catnip response”. A range of different cat-attracting compounds was detected by chemical analysis of plant materials but differences in cat behavior could not be directly related to differences in chemical composition of the plants. Together with results of, among others, habituation / dishabituation experiments, this indicates that additional cat-attracting compounds may be present in the plant materials that remain to be discovered. Conclusions Collectively, these findings suggest that both the personality of the cat and genetic variation in the genes encoding olfactory receptors may play a role in how cats respond to cat-attracting plants. Furthermore, the data suggest a potential distinct mechanism of action for actinidine. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01369-1.
Collapse
Affiliation(s)
| | - Adrian Scaffidi
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
16
|
Uenoyama R, Miyazaki T, Adachi M, Nishikawa T, Hurst JL, Miyazaki M. Domestic cat damage to plant leaves containing iridoids enhances chemical repellency to pests. iScience 2022; 25:104455. [PMID: 35880027 PMCID: PMC9308154 DOI: 10.1016/j.isci.2022.104455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Catnip (Nepeta cataria) and silver vine (Actinidia polygama) produce iridoids with arthropod-repellent effects. Cats rub and roll against these plants, transferring iridoids to their fur that repels mosquitoes. Cats also lick and chew plant leaves during this response, although the benefit of this additional behavior has remained unknown. Here, we show that feline leaf damage substantially increases iridoid emission from both plants while also diversifying iridoids in silver vine. Cats show an equivalent duration of response to the complex cocktail of iridoids in damaged silver vine and to the much higher level of a single iridoid produced by damaged catnip. The more complex iridoid cocktail produced when silver vine is licked and chewed by cats increases mosquito repellency at low concentration. In conclusion, feline leaf damage contributes by releasing more mosquito-repellent iridoids. Feline olfactory and behavioral sensitivity is fine-tuned to plant-specific iridoid production for maximizing the mosquito repellency gained. Feline damage of specific plants increases release of iridoids that repel mosquitoes Damaged silver vine emits a relatively low amount of complex iridoids Damaged catnip emits a high amount of the predominant iridoid nepetalactone Cat responsiveness to these damaged plants is similar despite different iridoid emissions
Collapse
Affiliation(s)
- Reiko Uenoyama
- Division of Agriculture, Graduate School of Arts and Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tamako Miyazaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Masaatsu Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jane L. Hurst
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, CH64 7TE Neston, UK
| | - Masao Miyazaki
- Division of Agriculture, Graduate School of Arts and Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Corresponding author
| |
Collapse
|
17
|
Ramos B, Cruz B, DeLong A, Pontrelli G, Harris G. Worms like catnip too! Identification of a new odor attractant in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000568. [PMID: 35622505 PMCID: PMC9077463 DOI: 10.17912/micropub.biology.000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Organisms across the phyla are capable of sensing an array of sensory cues to control, or shape behavioral responses in order to survive in a complex environment consisting of an array of attractive and repulsive dangerous cues. Mammalian systems extensively use olfactory and gustatory behavior to fine tune sensory-dependent decision-making behaviors. Despite understanding the importance of behavioral responses to cues in the form of odors in shaping decision-making behavior. The underlying mechanisms that mediate these responses at the level of sensation, processing, integration, and modulation of these sensory dependent responses are not fully understood. To understand these mechanisms we use the invertebrate worm,
C. elegans,
to characterize attraction to mammalian sensed odorant cues. We show that hermaphrodite worms are attracted to catnip oil cues, and identify select sensory mechanisms that mediate this attraction, identifying multiple sensory genes that are involved in this chemosensory response to a sensed cue, that is highly attractive in many cats. We have identified sensory transduction mechanisms, including G-proteins and cyclic nucleotide-gated ion channels, that regulate odor-dependent attraction to mammalian sensed catnip oil cues. We therefore provide a platform to use
C. elegans
as a model for studying olfactory-dependent pathways to mammalian cues. This allows characterization of the neural mechanisms that shape olfactory behavior and decision-making in higher systems.
Collapse
Affiliation(s)
- Brianna Ramos
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
,
Neuroscience Graduate Program, University of Michigan, Michigan, USA
| | - Bryant Cruz
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
| | - Alec DeLong
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
| | - Gianina Pontrelli
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
| | - Gareth Harris
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
,
Correspondence to: Gareth Harris (
)
| |
Collapse
|
18
|
Identification of an arthropod molecular target for plant-derived natural repellents. Proc Natl Acad Sci U S A 2022; 119:e2118152119. [PMID: 35452331 PMCID: PMC9170154 DOI: 10.1073/pnas.2118152119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rational control of arthropod pests is important for animal and human health as well as biodiversity preservation. As an alternative to synthetic chemical pesticides, natural repellents represent an ecological method of pest control. Through an exceptional gene library screening in Mesobuthus martensii scorpions, we here uncover a transient receptor potential ion channel as the chemosensory sensor for plant-derived repellents. Its ortholog ion channel in Drosophila melanogaster also acts as a molecular receptor of natural repellents and mediates avoidance behavior. This work thus identifies a molecular basis for arthropod chemosensing and should help update the ecological strategies for pest control while preserving biodiversity. Arthropods maintain ecosystem balance while also contributing to the spread of disease. Plant-derived natural repellents represent an ecological method of pest control, but their direct molecular targets in arthropods remain to be further elucidated. Occupying a critical phylogenetic niche in arthropod evolution, scorpions retain an ancestral genetic profile. Here, using a behavior-guided screening of the Mesobuthus martensii genome, we identified a scorpion transient receptor potential (sTRP1) channel that senses Cymbopogon-derived natural repellents, while remaining insensitive to the synthetic chemical pesticide DEET. Scrutinizing orthologs of sTRP1 in Drosophila melanogaster, we further demonstrated dTRPγ ion channel as a chemosensory receptor of natural repellents to mediate avoidance behavior. This study sheds light on arthropod molecular targets of natural repellents, exemplifying the arthropod–plant adaptation. It should also help the rational design of insect control strategy and in conserving biodiversity.
Collapse
|
19
|
Characterizations of botanical attractant of Halyomorpha halys and selection of relevant deorphanization candidates via computational approach. Sci Rep 2022; 12:4170. [PMID: 35264639 PMCID: PMC8907264 DOI: 10.1038/s41598-022-07840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Halyomorpha halys has been recognized as a global cross-border pest species. Along with well-established pheromone trapping approaches, there have been many attempts to utilize botanical odorant baits for field monitoring. Due to sensitivity, ecological friendliness, and cost-effectiveness for large-scale implementation, the selection of botanical volatiles as luring ingredients and/or synergists for H. halys is needed. In the current work, botanical volatiles were tested by olfactometer and electrophysiological tests. Results showed that linalool oxide was a potential candidate for application as a behavioral modifying chemical. It drove remarkable attractiveness toward H. halys adults in Y-tube assays, as well as eliciting robust electroantennographic responsiveness towards antennae. A computational pipeline was carried out to screen olfactory proteins related to the reception of linalool oxide. Simulated docking activities of four H. halys odorant receptors and two odorant binding proteins to linalool oxide and nerolidol were performed. Results showed that all tested olfactory genes were likely to be involved in plant volatile-sensing pathways, and they tuned broadly to tested components. The current work provides insights into the later development of field demonstration strategies using linalool oxide and its molecular targets.
Collapse
|
20
|
Coutinho-Abreu IV, Riffell JA, Akbari OS. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol 2022; 38:246-264. [PMID: 34674963 PMCID: PMC10789295 DOI: 10.1016/j.pt.2021.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Female mosquitoes use chemical and physical cues, including vision, smell, heat, and humidity, to orient toward hosts. Body odors are produced by skin resident bacteria that convert metabolites secreted in sweat into odorants that confer the characteristic body scent. Mosquitoes detect these compounds using olfactory receptors in their antennal olfactory receptor neurons. Such information is further integrated with the senses of temperature and humidity, as well as vision, processed in the brain into a behavioral output, leading to host finding. Knowledge of human scent components unveils a variety of odorants that are attractive to mosquitoes, but also odor-triggering repellency. Finding ways to divert human-seeking behavior by female mosquitoes using odorants can possibly mitigate mosquito-borne pathogen transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Density-functional theory of the catnip molecule, nepetalactone. Mol Cell Biochem 2022; 477:1139-1153. [PMID: 35076817 DOI: 10.1007/s11010-022-04366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Nepetalactones belongs to the group of iridoid monoterpenoids, which are present in the aerial parts of nepeta plants. Nepetalactone is an attractant to feline animals causing euphoric effects, while it is a repellent to mosquitoes and cockroaches. It is also a pheromone for several insect aphid species. The main objective of this research was to study the electronic and spectral properties of nepetalactones. We investigated its structural properties using hybrid density-functional theory of B3LYP and WB97XD functional with the 6-311++G(d,p) basis set to optimize the geometry, and then computed the electronic structure, HOMO-LUMO, natural bond orbitals, molecular electronic potential and its contour map. We also obtained spectral signatures of NMR, IR and UV-Vis, and compared them with experimental data from the literature. The DFT study provided different electronic and spectral information that will be of value for further research on making new derivatives of nepetalactones for commercial purposes. Nepetalactones have a promising future in the development of novel mosquito repellents for the control of malaria and arboviral diseases.
Collapse
|
22
|
Hogenbom J, Istanbouli M, Faraone N. Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties. Molecules 2021; 26:molecules26237391. [PMID: 34885973 PMCID: PMC8659168 DOI: 10.3390/molecules26237391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Cyclodextrin inclusion complexes have been successfully used to encapsulate essential oils, improving their physicochemical properties and pharmacological effects. Besides being well-known for its effects on cats and other felines, catnip (Nepeta cataria) essential oil demonstrates repellency against blood-feeding pests such as mosquitoes. This study evaluates the tick repellency of catnip oil alone and encapsulated in β-cyclodextrin, prepared using the co-precipitation method at a 1:1 molar ratio. The physicochemical properties of this inclusion complex were characterized using GC-FID for encapsulation efficiency and yield and SPME/GC-MS for volatile emission. Qualitative assessment of complex formation was done by UV-Vis, FT-IR, 1H NMR, and SEM analyses. Catnip oil at 5% (v/v) demonstrated significant tick repellency over time, being comparable to DEET as used in commercial products. The prepared [catnip: β-CD] inclusion complex exerted significant tick repellency at lower concentration of the essential oil (equivalent of 1% v/v). The inclusion complex showed that the release of the active ingredient was consistent after 6 h, which could improve the effective repellent duration. These results demonstrated the effective tick repellent activity of catnip essential oil and the successful synthesis of the inclusion complex, suggesting that β-CDs are promising carriers to improve catnip oil properties and to expand its use in repellent formulations for tick management.
Collapse
|
23
|
Andreazza F, Valbon WR, Wang Q, Liu F, Xu P, Bandason E, Chen M, Wu S, Smith LB, Scott JG, Jiang Y, Jiang D, Zhang A, Oliveira EE, Dong K. Sodium channel activation underlies transfluthrin repellency in Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009546. [PMID: 34237076 PMCID: PMC8266078 DOI: 10.1371/journal.pntd.0009546] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Volatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for their potent repellent activities in recent years for controlling human disease vectors. It has been long understood that pyrethroids kill insects by promoting activation and inhibiting inactivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repellency remains poorly understood and controversial. Methodology/Principal findings Here, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit any electroantennogram (EAG) responses, indicating that it does not activate olfactory receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate sodium channels, does not elicit repellency. Mutations in the sodium channel gene that reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET repellency. Conclusions/Significance These results provide a surprising example that sodium channel activation alone is sufficient to potently repel mosquitoes. Our findings of sodium channel activation as the principal mechanism of transfluthrin repellency and potentiation of DEET repellency have broad implications in future development of a new generation of dual-target repellent formulations to more effectively repel a variety of human disease vectors. Vector-transmitted human diseases, such as dengue fever, represent serious global health burdens. Pyrethroids, including transfluthrin, are widely used as insecticides and repellents due to their low mammalian toxicity and relatively benign environmental impact. Pyrethroids target voltage-gated sodium channels for their insecticidal action. However, the mechanism of pyrethroid repellency remains unclear and controversial. Insect repellency is traditionally thought to be mediated by olfactory receptors. We made two important discoveries in this study, showing that transfluthrin repellency is via activation of sodium channels and transfluthrin enhances DEET repellency. Discovery of sodium channel activation as a major mechanism of pyrethroid repellency has broad significance in insect olfaction study, repellents development, and control of human disease vectors.
Collapse
Affiliation(s)
- Felipe Andreazza
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Wilson R. Valbon
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiang Wang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Feng Liu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Peng Xu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth Bandason
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Leticia B. Smith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Jiangsu, China
| | - Dingxin Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, Maryland, United States of America
| | - Eugenio E. Oliveira
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|