1
|
Park JI, Cho SW, Kang JH, Park TE. Intestinal Peyer's Patches: Structure, Function, and In Vitro Modeling. Tissue Eng Regen Med 2023; 20:341-353. [PMID: 37079198 PMCID: PMC10117255 DOI: 10.1007/s13770-023-00543-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGOUND Considering the important role of the Peyer's patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases. METHODS In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish in vitro intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA+ B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed. RESULTS PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses. CONCLUSION Current in vitro PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.
Collapse
Affiliation(s)
- Jung In Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea.
| |
Collapse
|
2
|
Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis. J Clin Med 2021; 10:jcm10081749. [PMID: 33920646 PMCID: PMC8073534 DOI: 10.3390/jcm10081749] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fecal microbiota transplantation following triple-antibiotic therapy (amoxicillin/fosfomycin/metronidazole) improves dysbiosis caused by reduced Bacteroidetes diversity in patients with ulcerative colitis (UC). We investigated the correlation between Bacteroidetes species abundance and UC activity. Fecal samples from 34 healthy controls and 52 patients with active UC (Lichtiger’s clinical activity index ≥5 or Mayo endoscopic subscore ≥1) were subjected to next-generation sequencing with HSP60 as a target in bacterial metagenome analysis. A multiplex gene expression assay using colonoscopy-harvested mucosal tissues determined the involvement of Bacteroidetes species in the mucosal immune response. In patients with UC, six Bacteroides species exhibited significantly lower relative abundance, and twelve Bacteroidetes species were found significantly correlated with at least one metric of disease activity. The abundance of five Bacteroidetes species (Alistipes putredinis, Bacteroides stercoris, Bacteroides uniformis, Bacteroides rodentium, and Parabacteroides merdae) was correlated with three metrics, and their cumulative relative abundance was strongly correlated with the sum of Mayo endoscopic subscore (R = −0.71, p = 2 × 10−9). Five genes (TARP, C10ORF54, ITGAE, TNFSF9, and LCN2) associated with UC pathogenesis were expressed by the 12 key species. The loss of key species may exacerbate UC activity, serving as potential biomarkers.
Collapse
|
3
|
Chen YM, Helm ET, Groeltz-Thrush JM, Gabler NK, Burrough ER. Epithelial-mesenchymal transition of absorptive enterocytes and depletion of Peyer's patch M cells after PEDV infection. Virology 2020; 552:43-51. [PMID: 33059319 PMCID: PMC7548064 DOI: 10.1016/j.virol.2020.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
This study focused on intestinal restitution including phenotype switching of absorptive enterocytes and the abundance of different enterocyte subtypes in weaned pigs after porcine epidemic diarrhea virus (PEDV) infection. At 10 days post-PEDV-inoculation, the ratio of villus height to crypt depth in both jejunum and ileum had restored, and the PEDV antigen was not detectable. However, enterocytes at the villus tips revealed epithelial-mesenchymal transition (EMT) in the jejunum in which E-cadherin expression decreased while expression of N-cadherin, vimentin, and Snail increased. Additionally, there was reduced expression of actin in microvilli and Zonula occludens-1 (ZO-1) in tight junctions. Moreover, the protein concentration of transforming growth factor β1 (TGFβ1), which mediates EMT and cytoskeleton alteration, was increased. We also found a decreased number of Peyer's patch M cells in the ileum. These results reveal incomplete restitution of enterocytes in the jejunum and potentially impaired immune surveillance in the ileum after PEDV infection.
Collapse
Affiliation(s)
- Ya-Mei Chen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Emma T Helm
- Department of Animal Science, Iowa State University, College of Agriculture and Life Sciences, Ames, IA, USA
| | - Jennifer M Groeltz-Thrush
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, College of Agriculture and Life Sciences, Ames, IA, USA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Lee Y, Kim SJ, Park JK. Chips-on-a-plate device for monitoring cellular migration in a microchannel-based intestinal follicle-associated epithelium model. BIOMICROFLUIDICS 2019; 13:064127. [PMID: 31893012 PMCID: PMC6930141 DOI: 10.1063/1.5128640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 05/05/2023]
Abstract
This paper describes a chips-on-a-plate (COP) device for monitoring the migration of Raji cells in the Caco-2/Raji coculture. To generate a model of the human intestinal follicle-associated epithelium (FAE), the coculture method using a conventional Transwell cell culture insert was established. Due to the structural limitations of the Transwell insert, live-cell tracking studies have not been performed previously using the existing FAE model. In this study, we designed a COP device to conduct long-term live-cell tracking of Raji cell migration using a microchannel-based FAE model. The COP device incorporates microfluidic chips integrated on a standard well plate, consistent humidity control to allow live-cell microscopy for 2 days, and microchannels connecting the two cell culture chambers of the COP device, which serve as a monitoring area for cellular migration. Using the COP device, we provide the first analysis of various migratory characteristics of Raji cells, including their chemotactic index in the microchannel-based FAE model. We showed that the migration of Raji cells could be controlled by modulating the geometry of the connecting microchannels. Cellular treatments with cytokines revealed that the cytokines increased the permeability of an FAE model with a detachment of Caco-2 cells. Live-cell monitoring of Raji cells treated with a fluorescent reagent also indicated exocytosis as a key agent of the Caco-2/Raji interaction. The COP device allows live-cell tracking analyses of cocultured cells in the microchannel-based FAE model, providing a promising tool for investigating cellular behavior associated with the recruitment of Raji to Caco-2 cells.
Collapse
Affiliation(s)
- Young Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Author to whom correspondence should be addressed:. Tel.: +82-42-350-4315. Fax: +82-42-350-4310
| |
Collapse
|
5
|
Dillon A, Lo DD. M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Front Immunol 2019; 10:1499. [PMID: 31312204 PMCID: PMC6614372 DOI: 10.3389/fimmu.2019.01499] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
M cells are specialized intestinal epithelial cells that provide the main machinery for sampling luminal microbes for mucosal immune surveillance. M cells are usually found in the epithelium overlying organized mucosal lymphoid tissues, but studies have identified multiple distinct lineages of M cells that are produced under different conditions, including intestinal inflammation. Among these lineages there is a common morphology that helps explain the efficiency of M cells in capturing luminal bacteria and viruses; in addition, M cells recruit novel cellular mechanisms to transport the particles across the mucosal barrier into the lamina propria, a process known as transcytosis. These specializations used by M cells point to a novel engineering of cellular machinery to selectively capture and transport microbial particles of interest. Because of the ability of M cells to effectively violate the mucosal barrier, the circumstances of M cell induction have important consequences. Normal immune surveillance insures that transcytosed bacteria are captured by underlying myeloid/dendritic cells; in contrast, inflammation can induce development of new M cells not accompanied by organized lymphoid tissues, resulting in bacterial transcytosis with the potential to amplify inflammatory disease. In this review, we will discuss our own perspectives on the life history of M cells and also raise a few questions regarding unique aspects of their biology among epithelia.
Collapse
Affiliation(s)
- Andrea Dillon
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Vigilance or Subversion? Constitutive and Inducible M Cells in Mucosal Tissues. Trends Immunol 2017; 39:185-195. [PMID: 28958392 DOI: 10.1016/j.it.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Microfold (M) cells are epithelial cells present in mucosal tissues and specialized for the capture of luminal microparticles and their delivery to underlying immune cells; thus, they are crucial participants in mucosal immune surveillance. Multiple phenotypic subsets of M cells have now been described, all sharing a unique apical morphology that provides clues to their ability to capture microbial particles. The existence of diverse M cell phenotypes, especially inflammation-inducible M cells, provides an intriguing puzzle: some variants may augment luminal surveillance to boost mucosal immunity, while others may promote microbial access to tissues. Here, I consider the unique induction requirements of each M cell subset and functional differences, highlighting the potentially distinct consequences in mucosal immunity.
Collapse
|
7
|
Parnell EA, Walch EM, Lo DD. Inducible Colonic M Cells Are Dependent on TNFR2 but Not Ltβr, Identifying Distinct Signalling Requirements for Constitutive Versus Inducible M Cells. J Crohns Colitis 2017; 11:751-760. [PMID: 27932454 PMCID: PMC5881705 DOI: 10.1093/ecco-jcc/jjw212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS M cells associated with organised lymphoid tissues such as intestinal Peyer's patches provide surveillance of the intestinal lumen. Inflammation or infection in the colon can induce an M cell population associated with lymphoid infiltrates; paradoxically, induction is dependent on the inflammatory cytokine tumour necrosis factor [TNF]-α. Anti-TNFα blockade is an important therapeutic in inflammatory bowel disease, so understanding the effects of TNFα signalling is important in refining therapeutics. METHODS To dissect pro-inflammatory signals from M cell inductive signals, we used confocal microscopy image analysis to assess requirements for specific cytokine receptor signals using TNF receptor 1 [TNFR1] and 2 [TNFR2] knockouts [ko] back-crossed to the PGRP-S-dsRed transgene; separate groups were treated with soluble lymphotoxin β receptor [sLTβR] to block LTβR signalling. All groups were treated with dextran sodium sulphate [DSS] to induce colitis. RESULTS Deficiency of TNFR1 or TNFR2 did not prevent DSS-induced inflammation nor induction of stromal cell expression of receptor activator of nuclear factor kappa-B ligand [RANKL], but absence of TNFR2 prevented M cell induction. LTβR blockade had no effect on M cell induction, but it appeared to reduce RANKL induction below adjacent M cells. CONCLUSIONS TNFR2 is required for inflammation-inducible M cells, indicating that constitutive versus inflammation-inducible M cells depend on different triggers. The inducible M cell dependence on TNFR2 suggests that this specific subset is dependent on TNFα in addition to a presumed requirement for RANKL. Since inducible M cell function will influence immune responses, selective blockade of TNFα may affect colonic inflammation.
Collapse
Affiliation(s)
- Erinn A. Parnell
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| | - Erin M. Walch
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| | - David D. Lo
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| |
Collapse
|
8
|
Váradi J, Harazin A, Fenyvesi F, Réti-Nagy K, Gogolák P, Vámosi G, Bácskay I, Fehér P, Ujhelyi Z, Vasvári G, Róka E, Haines D, Deli MA, Vecsernyés M. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers. PLoS One 2017; 12:e0170537. [PMID: 28103316 PMCID: PMC5245816 DOI: 10.1371/journal.pone.0170537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.
Collapse
Affiliation(s)
- Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Katalin Réti-Nagy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Péter Gogolák
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Eszter Róka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - David Haines
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Sehgal A, Kobayashi A, Donaldson DS, Mabbott NA. c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology 2016; 222:316-326. [PMID: 27663963 PMCID: PMC5152706 DOI: 10.1016/j.imbio.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/22/2023]
Abstract
M cells reside within the follicle-associated epithelium (FAE) overlying the gut-associated lymphoid tissues. These unique phagocytic epithelial cells enable the mucosal immune system to sample antigens within the lumen of the intestine. The differentiation of M cells from uncommitted precursors in the FAE is dependent on the production of receptor activator of nuclear factor-κB ligand (RANKL) by subepithelial stromal cells. The ligation of a variety of cell surface receptors activates the nuclear factor-κB (NF-κB) family of transcription factors which in-turn induce the transcription of multiple target genes. RANKL-stimulation can stimulate the nuclear translocation of the NF-κB subunit c-Rel. We therefore used c-Rel-deficient mice to determine whether the differentiation and functional maturation of M cells in the Peyer's patches was dependent on c-Rel. Our data show that c-Rel-deficiency does not influence the expression of RANKL or RANK in Peyer's patches, or the induction of M-cell differentiation in the FAE. RANKL-stimulation in the differentiating M cells induces the expression of SpiB which is essential for their subsequent maturation. However, SpiB expression in the FAE was also unaffected in the absence of c-Rel. As a consequence, the functional maturation of M cells was not impaired in the Peyer's patches of c-Rel-deficient mice. Although our data showed that the specific expression of CCL20 and ubiquitin D in the FAE was not impeded in the absence of c-Rel, the expression of ubiquitin D was dramatically reduced in the B cell-follicles of c-Rel-deficient mice. Coincident with this, we also observed that the status of follicular dendritic cells in the B cell-follicles was dramatically reduced in Peyer's patches from c-Rel-deficient mice. Taken together, our data show that c-Rel is dispensable for the RANKL-mediated differentiation and functional maturation of M cells.
Collapse
Affiliation(s)
- Anuj Sehgal
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - David S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
10
|
The Pro-inflammatory Cytokine Interleukin-6 Regulates Nanoparticle Transport Across Model Follicle-Associated Epithelium Cells. J Pharm Sci 2016; 105:2099-104. [DOI: 10.1016/j.xphs.2016.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022]
|
11
|
Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1081-90. [PMID: 27102559 DOI: 10.1152/ajpgi.00026.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a common factor in the development of many gastrointestinal malignancies. Examples include inflammatory bowel disease predisposing to colorectal cancer, Barrett's esophagus as a precursor of esophageal adenocarcinoma, and Helicobacter pylori-induced gastric cancer. The classical activation pathway of NF-κB signaling has been identified as regulating several sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these processes. This review brings together current knowledge of the role of the alternative NF-κB signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-associated cancer development.
Collapse
Affiliation(s)
- Yvette J Merga
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian O'Hara
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Bennett KM, Parnell EA, Sanscartier C, Parks S, Chen G, Nair MG, Lo DD. Induction of Colonic M Cells during Intestinal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1166-79. [PMID: 26948422 DOI: 10.1016/j.ajpath.2015.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 11/24/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
Intestinal M (microfold) cells are specialized epithelial cells overlying lymphoid tissues in the small intestine. Unlike common enterocytes, M cells lack an organized apical brush border, and are able to transcytose microparticles across the mucosal barrier to underlying antigen-presenting cells. We found that in both the dextran sodium sulfate and Citrobacter rodentium models of colitis, significantly increased numbers of Peyer's patch (PP) phenotype M cells were induced at the peak of inflammation in colonic epithelium, often accompanied by loosely organized lamina propria infiltrates. PP type M cells are thought to be dependent on cytokines, including tumor necrosis factor (TNF)-α and receptor activator of nuclear factor kappa-B ligand; these cytokines were also found to be induced in the inflamed tissues. The induction of M cells was abrogated by anti-TNF-α blockade, suggesting that anti-TNF-α therapies may have similar effects in clinical settings, although the functional consequences are not clear. Our results suggest that inflammatory cytokine-induced PP type M cells may be a useful correlate of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Kaila M Bennett
- Bioengineering Interdepartmental Graduate Program, School of Medicine, University of California, Riverside, Riverside, California; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Erinn A Parnell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Candice Sanscartier
- Bioengineering Interdepartmental Graduate Program, School of Medicine, University of California, Riverside, Riverside, California; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Sophia Parks
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Gang Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California.
| |
Collapse
|
13
|
Gusti V, Bennett KM, Lo DD. CD137 signaling enhances tight junction resistance in intestinal epithelial cells. Physiol Rep 2014; 2:e12090. [PMID: 25096552 PMCID: PMC4246582 DOI: 10.14814/phy2.12090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022] Open
Abstract
Treatment of Caco-2-BBe intestinal epithelial cells (BBe) with TNF-α and lymphotoxin-β (LT-β) receptor agonists induced the expression of the TNF receptor superfamily gene TNFRSF9/CD137. In the gut, these cytokines are known to be involved in both inflammatory responses and development of organized lymphoid tissues; thus, it was notable that in CD137-deficient mice Peyer's patch M cells lacked transcytosis function. To examine the direct effect of CD137 expression on epithelial cell function independent of other cytokine effects including CD137L triggering, we stably transfected BBe cells to express CD137. CD137 was found at the cell surface as well as the cytoplasm, and confocal microscopy suggested that aggregates of CD137 at the lateral and basolateral surface may be associated with cytoplasmic actin filament termini. Many of the CD137 clusters were colocalized with extracellular fibronectin providing a possible alternative ligand for CD137. Interestingly, we found that CD137-expressing cells showed significantly higher transepithelial electrical resistance (TEER) accompanied by an increase in claudin-4 and decrease in claudin-3 protein expression. By contrast, transfection with a truncated CD137 lacking the cytoplasmic signaling domain did not affect TEER. Finally, CD137-deficient mice showed increased intestinal permeability upon dextran sodium sulfate (DSS) treatment as compared to control mice. Our results suggest that cytokine-induced expression of CD137 may be important in enhancing epithelial barrier function in the presence of intestinal inflammation as well as influencing cytoskeletal organization.
Collapse
Affiliation(s)
- Veronica Gusti
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, California
| | - Kaila M. Bennett
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, California
| | - David D. Lo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, California
| |
Collapse
|
14
|
Ye T, Yue Y, Fan X, Dong C, Xu W, Xiong S. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine 2014; 32:4457-4465. [PMID: 24958702 DOI: 10.1016/j.vaccine.2014.06.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/21/2014] [Accepted: 06/11/2014] [Indexed: 11/20/2022]
Abstract
Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Chitosan/administration & dosage
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/prevention & control
- Disease Models, Animal
- Enterovirus B, Human/immunology
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Male
- Mice, Inbred BALB C
- Myocarditis/pathology
- Myocarditis/prevention & control
- T-Lymphocytes/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ting Ye
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Xiangmei Fan
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Chunsheng Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China.
| |
Collapse
|
15
|
Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infect Immun 2014; 82:2860-71. [PMID: 24778113 DOI: 10.1128/iai.01681-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli ("microvillus-minus," or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions.
Collapse
|
16
|
Ferreira C, Palmer D, Blake K, Garden OA, Dyson J. Reduced regulatory T cell diversity in NOD mice is linked to early events in the thymus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4145-52. [PMID: 24663675 DOI: 10.4049/jimmunol.1301600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thymic natural regulatory T cell (Treg) compartment of NOD mice is unusual in having reduced TCR diversity despite normal cellularity. In this study, we show that this phenotype is attributable to perturbations in early and late stages of thymocyte development and is controlled, at least in part, by the NOD Idd9 region on chromosome 4. Progression from double negative 1 to double negative 2 stage thymocytes in NOD mice is inefficient; however, this defect is compensated by increased proliferation of natural Tregs (nTregs) within the single positive CD4 thymocyte compartment, accounting for recovery of cellularity accompanied by loss of TCR diversity. This region also underlies the known attenuation of ERK-MAPK signaling, which may preferentially disadvantage nTreg selection. Interestingly, the same genetic region also regulates the rate of thymic involution that is accelerated in NOD mice. These findings highlight further complexity in the control of nTreg repertoire diversity.
Collapse
Affiliation(s)
- Cristina Ferreira
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Hamada K, Kakigawa N, Sekine S, Shitara Y, Horie T. Disruption of ZO-1/claudin-4 interaction in relation to inflammatory responses in methotrexate-induced intestinal mucositis. Cancer Chemother Pharmacol 2013; 72:757-65. [PMID: 23963446 DOI: 10.1007/s00280-013-2238-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 07/18/2013] [Indexed: 12/14/2022]
Abstract
PURPOSE Methotrexate (MTX)-induced intestinal mucositis limits the use of the drug. We previously reported that MTX-dependent production of reactive oxygen species is an initiating signal leading to neutrophil migration and intestinal barrier dysfunction. Moreover, alterations of zonula occludens (ZO)-1, an integral component of tight junctions (TJs), contribute to its dysfunction. This study aimed to clarify the identity of inflammatory mediators in the intestine of MTX-treated rats and to evaluate MTX-stimulated alterations in the expression of TJ proteins other than ZO-1 (e.g., occludin and claudins). METHODS Male Wistar rats were administrated MTX (15 mg kg(-1)) orally once daily for 4 days. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant-2, Toll-like receptor 4 (TLR4), and occludin were determined by real-time RT-PCR. Expression, distribution, and interactions of TJ proteins were evaluated by Western blotting, immunohistochemistry, and immunoprecipitation. RESULTS MTX increased the mRNA levels of TNF-α, IL-1β, MIP-2, and TLR4 in the small intestine, as well as the protein expression of claudin-2. Increased claudin-2 and decreased claudin-4 immunostaining were also observed. Occludin mRNA levels were significantly diminished by MTX administration, whereas occludin protein levels and the interaction between ZO-1 and occludin were unaltered; however, the interaction between ZO-1 and claudin-4 was significantly compromised. CONCLUSIONS These results indicate that elevated levels of inflammatory cytokines and chemokines in the small intestine of MTX-treated rats may contribute to the inhibition of ZO-1/claudin-4 binding, and that inhibition of ZO-1/claudin-4 binding may in turn lead to a reduction in claudin-4 expression.
Collapse
Affiliation(s)
- Kazuma Hamada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | | | | | | | | |
Collapse
|
18
|
Kang BH, Jensen KJ, Hatch JA, Janes KA. Simultaneous profiling of 194 distinct receptor transcripts in human cells. Sci Signal 2013; 6:rs13. [PMID: 23921087 DOI: 10.1126/scisignal.2003624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many signal transduction cascades are initiated by transmembrane receptors with the presence or absence and abundance of receptors dictating cellular responsiveness. We provide a validated array of quantitative reverse transcription polymerase chain reaction (qRT-PCR) reagents for high-throughput profiling of the presence and relative abundance of transcripts for 194 transmembrane receptors in the human genome. We found that the qRT-PCR array had greater sensitivity and specificity for the detected receptor transcript profiles compared to conventional oligonucleotide microarrays or exon microarrays. The qRT-PCR array also distinguished functional receptor presence versus absence more accurately than deep sequencing of adenylated RNA species by RNA sequencing (RNA-seq). By applying qRT-PCR-based receptor transcript profiling to 40 human cell lines representing four main tissues (pancreas, skin, breast, and colon), we identified clusters of cell lines with enhanced signaling capabilities and revealed a role for receptor silencing in defining tissue lineage. Ectopic expression of the interleukin-10 (IL-10) receptor-encoding gene IL10RA in melanoma cells engaged an IL-10 autocrine loop not otherwise present in this cell type, which altered signaling, gene expression, and cellular responses to proinflammatory stimuli. Our array provides a rapid, inexpensive, and convenient means for assigning a receptor signature to any human cell or tissue type.
Collapse
Affiliation(s)
- Byong H Kang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
19
|
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013; 6:666-77. [PMID: 23695511 PMCID: PMC3686595 DOI: 10.1038/mi.2013.30] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer's patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady state and during aging; molecules expressed on M cells which appear to be used as "immunosurveillance" receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines.
Collapse
|
20
|
Regulation of tight junctions in upper airway epithelium. BIOMED RESEARCH INTERNATIONAL 2012; 2013:947072. [PMID: 23509817 PMCID: PMC3591135 DOI: 10.1155/2013/947072] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022]
Abstract
The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs) are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP), which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.
Collapse
|
21
|
Kobayashi A, Donaldson DS, Kanaya T, Fukuda S, Baillie JK, Freeman TC, Ohno H, Williams IR, Mabbott NA. Identification of novel genes selectively expressed in the follicle-associated epithelium from the meta-analysis of transcriptomics data from multiple mouse cell and tissue populations. DNA Res 2012; 19:407-22. [PMID: 22991451 PMCID: PMC3473373 DOI: 10.1093/dnares/dss022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/16/2012] [Indexed: 01/09/2023] Open
Abstract
The follicle-associated epithelium (FAE) overlying the Peyer's patches and the microfold cells (M cells) within it are important sites of antigen transcytosis across the intestinal epithelium. Using a meta-analysis approach, we identified a transcriptional signature that distinguished the FAE from a large collection of mouse cells and tissues. A co-expressed cluster of 21 FAE-specific genes was identified, and the analysis of the transcription factor binding site motifs in their promoter regions indicated that these genes shared an underlying transcriptional programme. This cluster contained known FAE- (Anxa10, Ccl20, Psg18 and Ubd) and M-cell-specific (Gp2) genes, suggesting that the others were novel FAE-specific genes. Some of these novel candidate genes were expressed highly by the FAE and M cells (Calcb, Ces3b, Clca2 and Gjb2), and others only by the FAE (Ascl2, Cftr, Fgf15, Gpr133, Kcna1, Kcnj15, Mycl1, Pgap1 and Rps6kl). We also identified a subset of novel FAE-related genes that were induced in the intestinal epithelium after receptor activator of nuclear factor (NF)-κB ligand stimulation. These included Mfge8 which was specific to FAE enterocytes. This study provides new insight into the FAE transcriptome. Further characterization of the candidate genes identified here will aid the identification of novel regulators of cell function in the FAE.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - David S. Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Takashi Kanaya
- Research Center for Allergy and Immunology (RCAI), RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shinji Fukuda
- Research Center for Allergy and Immunology (RCAI), RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - J. Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hiroshi Ohno
- Research Center for Allergy and Immunology (RCAI), RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Ifor R. Williams
- Department of Pathology, Emory University School of Medicine, Whitehead Bldg. 105D, 615 Michael St., Atlanta, GA 30322, USA
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
22
|
Lapthorne S, Macsharry J, Scully P, Nally K, Shanahan F. Differential intestinal M-cell gene expression response to gut commensals. Immunology 2012; 136:312-24. [PMID: 22385384 DOI: 10.1111/j.1365-2567.2012.03581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different rates of bacterial translocation across the gut mucosa have been reported but few studies have examined translocation of commensals at the level of the gut epithelial microfold (M) cell. We used an in vitro M-cell model to quantify translocation and determine the transcriptional response of M cells to various commensal bacteria. The transport kinetics and gene expression profile of M cells in response to different bacterial strains, namely Lactobacillus salivarius, Escherichia coli and Bacteroides fragilis, was assessed. Bacterial strains translocated across M cells with different efficiencies; E. coli and B. fragilis translocated with equal efficiency whereas L. salivarius translocated with less efficiency. Microarray analysis of the M cell response showed both common and differential gene expression changes between the bacterial strains. In the presence of bacteria, but not control beads, up-regulated genes were mainly involved in transcription regulation whereas pro-inflammatory and stress response genes were primarily up-regulated by E. coli and B. fragilis, but not L. salivarius nor beads. Translocation of bacteria and M-cell gene expression responses were confirmed in murine M cells following bacterial challenge in vivo. These results demonstrate that M cells have the ability to discriminate between different commensal bacteria and modify subsequent immune responses.
Collapse
Affiliation(s)
- Susan Lapthorne
- Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | | | |
Collapse
|
23
|
Hsieh EH, Lo DD. Jagged1 and Notch1 help edit M cell patterning in Peyer's patch follicle epithelium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:306-312. [PMID: 22504165 PMCID: PMC3374009 DOI: 10.1016/j.dci.2012.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 05/31/2023]
Abstract
Mucosal epithelium M cells are dispersed across Peyer's patch follicle associated epithelium (PPFAE) with minimal clustering. Since Notch signaling can influence patterning in epithelia, we examined its influence on PPFAE M cell distribution. Conditional deletion of Notch1 in intestinal epithelium increased PPFAE M cells and also increased M cell clustering, implying a role for Notch in both M cell numbers and lateral inhibition. By contrast, conditional deletion of the ligand Jagged1 also increased M cell clustering, but with a paradoxical decrease in M cell density. In vitro, inhibition of Notch signaling reduced expression of an M cell associated gene CD137, consistent with cis-promoting effects on M cell development. Thus, Jagged1 may have a cis-promoting role in committed M cells, but a trans-inhibitory effect on neighboring cells. In sum, Jagged1-Notch signaling may edit the pattern of M cells across the PPFAE, which may help optimize mucosal immune surveillance.
Collapse
Affiliation(s)
- En-Hui Hsieh
- Division of Biomedical Sciences, University of California Riverside, CA 92521, United States
| | | |
Collapse
|
24
|
Lo DD, Ling J, Eckelhoefer AH. M cell targeting by a Claudin 4 targeting peptide can enhance mucosal IgA responses. BMC Biotechnol 2012; 12:7. [PMID: 22413871 PMCID: PMC3337280 DOI: 10.1186/1472-6750-12-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/13/2012] [Indexed: 01/22/2023] Open
Abstract
Background Mucosal immune surveillance is thought to be largely achieved through uptake by specialized epithelial M cells. We recently identified Claudin 4 as an M cell target receptor and developed a Claudin 4 targeting peptide (CPE) that can mediate uptake of nanoparticles through Nasal Associated Lymphoid Tissue (NALT) M cells. Methods Recombinant influenza hemagglutinin (HA) and a version with the CPE peptide at the C-terminal end was used to immunize mice by the intranasal route along with a single dose of cholera toxin as an adjuvant. Serum and mucosal IgG and IgA responses were tested for reactivity to HA. Results We found that the recombinant HA was immunogenic on intranasal administration, and inclusion of the CPE targeting peptide induced higher mucosal IgA responses. This mucosal administration also induced systemic serum IgG responses with Th2 skewing, but targeting did not enhance IgG responses, suggesting that the IgG response to mucosal immunization is independent of the effects of CPE M cell targeting. Conclusions M cell targeting mediated by a Claudin 4-specific targeting peptide can enhance mucosal IgA responses above the response to non-targeted mucosal antigen. Since Claudin 4 has also been found to be regulated in human Peyer's patch M cells, the CPE targeting peptide could be a reasonable platform delivery technology for mucosal vaccination.
Collapse
Affiliation(s)
- David D Lo
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
25
|
Shore SA, Williams ES, Chen L, Benedito LAP, Kasahara DI, Zhu M. Impact of aging on pulmonary responses to acute ozone exposure in mice: role of TNFR1. Inhal Toxicol 2011; 23:878-88. [PMID: 22066571 DOI: 10.3109/08958378.2011.622316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Chamber studies in adult humans indicate reduced responses to acute ozone with increasing age. Age-related changes in TNFα have been observed. TNFα induced inflammation is predominantly mediated through TNFR1. OBJECTIVE To examine the impact of aging on inflammatory responses to acute ozone exposure in mice and determine the role of TNFR1 in age-related differences. MATERIALS AND METHODS Wildtype and TNFR1 deficient (TNFR1(-/-)) mice aged 7 or 39 weeks were exposed to ozone (2 ppm for 3 h). Four hours after exposure, bronchoalveolar lavage (BAL) was performed and BAL cells, cytokines, chemokines, and protein were examined. RESULTS Ozone-induced increases in BAL neutrophils and in neutrophil chemotactic factors were lower in 39- versus 7-week-old wildtype, but not (TNFR1(-/-)) mice. There was no effect of TNFR1 genotype in 7-week-old mice, but in 39-week-old mice, BAL neutrophils and BAL concentrations of MCP-1, KC, MIP-2, IL-6 and IP-10 were significantly greater following ozone exposure in TNFR1(-/-) versus wildtype mice. BAL concentrations of the soluble form of the TNFR1 receptor (sTNFR1) were substantially increased in 39-week-old versus 7-week-old mice, regardless of exposure. DISCUSSION AND CONCLUSION The data suggest that increased levels of sTNFR1 in the lungs of the 39-week-old mice may neutralize TNFα and protect these older mice against ozone-induced inflammation.
Collapse
Affiliation(s)
- Stephanie A Shore
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Wang J, Gusti V, Saraswati A, Lo DD. Convergent and divergent development among M cell lineages in mouse mucosal epithelium. THE JOURNAL OF IMMUNOLOGY 2011; 187:5277-85. [PMID: 21984701 DOI: 10.4049/jimmunol.1102077] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
M cells are specialized epithelial cells mediating immune surveillance of the mucosal lumen by transepithelial delivery of Ags to underlying dendritic cells (DC). At least three M cell phenotypes are known in the airways and intestine, but their developmental relationships are unclear. We used reporter transgenic mouse strains to follow the constitutive development of M cell subsets and their acute induction by cholera toxin (CT). M cells overlying intestinal Peyer's patches (PPs), isolated lymphoid follicles, and nasal-associated lymphoid tissue are induced by distinct settings, yet show convergent phenotypes, such as expression of a peptidoglycan recognition protein-S (PGRP-S) transgene reporter. By contrast, though PP, isolated lymphoid follicle, and villous M cells are all derived from intestinal crypt stem cells, their phenotypes were clearly distinct; for example, PP M cells frequently appeared to form M cell-DC functional units, whereas villous M cells did not consistently engage underlying DC. B lymphocytes are critical to M cell function by forming a basolateral pocket and possible signaling through CD137; however, initial commitment to all M cell lineages is B lymphocyte and CD137 independent. CT causes induction of new M cells in the airway and intestine without cell division, suggesting transdifferentiation from mature epithelial cells. In contrast with intestinal PP M cells, CT-induced nasal-associated lymphoid tissue M cells appear to be generated from ciliated Foxj1(+)PGRP-S(+) cells, indicative of a possible precommitted progenitor. In summary, constitutive and inducible differentiation of M cells is toward strictly defined context-dependent phenotypes, suggesting specialized roles in surveillance of mucosal Ags.
Collapse
Affiliation(s)
- Jing Wang
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
27
|
Ogasawara N, Kojima T, Go M, Takano KI, Kamekura R, Ohkuni T, Koizumi JI, Masaki T, Fuchimoto J, Obata K, Kurose M, Shintani T, Sawada N, Himi T. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids. Acta Otolaryngol 2011; 131:116-23. [PMID: 21062118 DOI: 10.3109/00016489.2010.520022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasion of antigens through the mucosal surface can be prevented by the common mucosal immune system, including Peyer's patches (PPs) and nasopharyngeal-associated lymphoreticular tissue (NALT). The adenoids (nasopharyngeal tonsils) comprise one of the NALTs and constitute the major part of Waldeyer's lymphoid ring in humans. However, the role of the lymphoepithelium, including M cells and dendritic cells (DCs), in the adenoids is unknown compared with the epithelium of PPs. NALTs also have unique functions such as the barrier of epithelial cells and uptake of antigens by M cells and DCs, and may play a crucial role in airway mucosal immune responses. The lymphoepithelium of adenoids has well-developed tight junctions that play an important role in the barrier function, the same as nasal epithelium but not palatine tonsillar epithelium. Tight junction molecules are expressed in both M cells and DCs as well as epithelial cells, and various antigens may be sampled, transported, and released to lymphocytes through the cells while they maintain the integrity of the epithelial barrier. This review summarizes the recent progress in our understanding of how M cells and DCs control the epithelial barrier in the adenoids.
Collapse
Affiliation(s)
- Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Claudin-4 is an unusual member of the claudin family; in addition to its role in epithelial tight junction barrier function, it is a receptor for the Clostridium perfringens enterotoxin. We have also found that claudin-4 is regulated in mucosal epithelium M cells, both in increased expression of the protein and in redistribution into endocytosis vesicles. Our ongoing studies are studying the potential for developing ligands specific to claudin-4 for targeted delivery of cargo such as proteins and poly(DL-lactide-co-glycolide) nanoparticles to mucosal M cells. Methods for the study of claudin-4 movement within epithelial cells, and delivery of nanoparticles through targeted binding of claudin-4 are described.
Collapse
|
29
|
Pickard JM, Chervonsky AV. Sampling of the intestinal microbiota by epithelial M cells. Curr Gastroenterol Rep 2010; 12:331-339. [PMID: 20706806 DOI: 10.1007/s11894-010-0128-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sampling of intestinal pathogens and commensals is an important aspect of the gut immune system, and is accomplished through the action of specialized epithelial M cells. Although their sampling abilities have been appreciated for decades, few molecular details of their development or function are known. This review discusses several recent advances in our understanding of these cells, including signals controlling their development, the mechanisms they use for taking up microbes, and their exploitation by certain pathogens. Future research directions are discussed, including development of oral vaccines.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
30
|
Hsieh EH, Fernandez X, Wang J, Hamer M, Calvillo S, Croft M, Kwon BS, Lo DD. CD137 is required for M cell functional maturation but not lineage commitment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:666-76. [PMID: 20616340 DOI: 10.2353/ajpath.2010.090811] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mucosal immune surveillance depends on M cells that reside in the epithelium overlying Peyer's patch and nasopharyngeal associated lymphoid tissue to transport particles to underlying lymphocytes. M cell development is associated with B lymphocytes in a basolateral pocket, but the interactions between these cells are poorly understood. In a cell culture model of M cell differentiation, we found lymphotoxin/tumor necrosis factor alpha induction of CD137 (TNFRSF9) protein on intestinal epithelial cell lines, raising the possibility that CD137 on M cells in vivo might interact with CD137L expressed by B cells. Accordingly, while CD137-deficient mice produced UEA-1+ M cell progenitors in nasopharyngeal associated lymphoid tissue and Peyer's patch epithelium, they showed an abnormal morphology, including the absence of basolateral B cell pockets. More important, CD137-deficient nasopharyngeal associated lymphoid tissue M cells were defective in microparticle transcytosis. Bone marrow irradiation chimeras confirmed that while induction of UEA-1+ putative M cell precursors was not CD137-dependent, full M cell transcytosis function required expression of CD137 by radioresistant stromal cells as well as by bone marrow-derived cells. These results are consistent with a two-step model of M cell differentiation, with initial CD137-independent commitment to the M cell lineage followed by a CD137-CD137L interaction of M cells with CD137-activated B lymphocytes or dendritic cells for functional maturation.
Collapse
Affiliation(s)
- En Hui Hsieh
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Z, Zhang P, Zhou Y, Qin H, Shen T. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3. Braz J Med Biol Res 2010; 43:451-9. [PMID: 20490432 DOI: 10.1590/s0100-879x2010007500036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 04/06/2010] [Indexed: 11/21/2022] Open
Abstract
Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures) was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines), allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39) and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV), may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.
Collapse
Affiliation(s)
- Z Liu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | | | | | | | | |
Collapse
|
32
|
Martinez-Argudo I, Jepson MA. Identification of adhesin–receptor interactions driving bacterial translocation through M cells. Future Microbiol 2010; 5:549-53. [DOI: 10.2217/fmb.10.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evaluation of: Hase K, Kawano K, Nochi T et al.: Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009). M cells are specialized epithelial cells that transport antigens into lymphoid follicles. The mechanisms by which molecules, particles and microorganisms are transported by M cells remains poorly understood. Here, Hase and colleagues move a significant step forward by performing an extensive functional characterization of the GP2 interaction with FimH adhesin of bacterial type 1 pili. They show that GP2 is selectively expressed in M cells and functions as an endocytic receptor for type I-piliated bacteria. Comparison of Salmonella infection of wild-type and GP2-deficient mice confirmed the relevance of the GP2–FimH interaction in triggering an antigen-specific immune response in mice. Although this work supports the idea that the GP2-dependent pathway might constitute a new target for oral vaccine delivery it is necessary to be cautious as the reported enhancement of immune responses associated with GP2 and FimH expression were relatively modest. Since variation in FimH has been reported to have a major impact on glycoprotein binding, it might be possible to improve the efficacy of a putative vaccine using recombinant bacteria expressing high-affinity FimH variants. Alternative adhesin/receptor interactions are also likely to play a role in bacterial sampling by M cells and might also be exploited to enhance vaccine delivery.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Cellular & Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark A Jepson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|