1
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
2
|
Luo C, Wang Y, He B, He Y, Yan Y, Wang J, Gu X. Exploring the Core Prescription and Underlying Mechanism of Traditional Chinese Medicine in Treating Allergic Rhinitis in Children: A Real- World Study Based on an Illustrious Senior Traditional Chinese Medicine Practitioner. Comb Chem High Throughput Screen 2023; 26:207-223. [PMID: 35388748 DOI: 10.2174/1386207325666220406105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is widely used to treat allergic rhinitis (AR) in China, especially in children. However, due to the complicated composition rules and unclear underlying mechanisms, effective herbal prescriptions' popularization and application are limited. PURPOSE This study tried to detect the core prescription of herbs in treating AR in children, reveal its mechanism based on the ingredients' network, and explore the main signaling pathways. METHODS We screened medical records of children patients with AR who were treated by TCM in DongZhiMen Hospital from Aug 2009 to Jan 2020 and adopted a descriptive analysis method on herbal characteristics. We used association rules to mine core prescriptions and used network pharmacology to establish the ingredient-target-pathway network through online databases and TCMSP, Genecards, KEGG pathway, Excel, R-Studio, and Cytoscape software. RESULTS The analysis of 1,092 clinical visits highlighted that the principle of formulating prescription was as follows: 'pungent and warm herbs were used more frequently while cold-natured herbs were paid equal attention as warm-natured herbs.' The core prescription was formed by FangFeng, BaiZhi, CangErzi, and ChanTui. These herbs covered 130 underlying targets and 141 signaling pathways of AR, which mainly had an effect on signal transduction and immunoregulation. CONCLUSION The core prescription based on these real-world clinical records includes FangFeng, BaiZhi, CangErzi, and ChanTui. It principally acts on targets of signal transduction pathways and immune pathways.
Collapse
Affiliation(s)
- Changyong Luo
- Beijing University of Traditional Chinese Medicine, Beijing, China
- Dongfang Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yuhan Wang
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Bing He
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yu He
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yurou Yan
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Junhong Wang
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Gu
- Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Immune Modulatory Effects of Probiotic Streptococcus thermophilus on Human Monocytes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ingesting probiotics contributes to the development of a healthy microflora in the GIT with established benefits to human health. Some of these beneficial effects may be through the modulation of the immune system. In addition, probiotics have become more common in the treatment of many inflammatory and immune disorders. Here, we demonstrate a range of immune modulating effects of Streptococcus thermophilus by human monocytes, including decreased mRNA expression of IL-1R, IL-18, IFNαR1, IFNγR1, CCL2, CCR5, TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-8, CD14, CD86, CD4, ITGAM, LYZ, TYK2, IFNR1, IRAK-1, NOD2, MYD88, SLC11A1, and increased expression of IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-23, IFNγ, TNFα, CSF-2. The routine administration of Streptococcus thermophilus in fermented dairy products and their consumption may be beneficial to the treatment/management of inflammatory and autoimmune diseases.
Collapse
|
4
|
Pu R, Pu M, Huang H, Cui Y. MicroRNA 144 inhibits cell migration and invasion and regulates inflammatory cytokine secretion through targeting toll like receptor 2 in non-small cell lung cancer. Arch Med Sci 2021; 17:1028-1037. [PMID: 34336030 PMCID: PMC8314413 DOI: 10.5114/aoms.2020.93084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules involved in modulation of cancer progression. Here, we investigated the possible role of miR-144 in non-small cell lung cancer (NSCLC) development. MATERIAL AND METHODS The expression of miR-144 and TLR2 in NSCLC tissue and cell lines was determined by quantitative real-time PCR (qPCR). The TargetScan database was used to predict potential target genes of miR-144. Luciferase assay was used to verify the interaction between TLR2 and miR-144. TLR2 protein expression was measured by western blot. The secretion of interleukin (IL)-1β, IL-6 and IL-8 in A549 cells was detected by an ELISA kit. Cell migration and invasion were evaluated by wound healing assay and transwell assay, respectively. RESULTS Our results showed that miR-144 was downregulated in NSCLC tissue and cell lines when compared with the normal tissues and cell line (p < 0.05). The protein level of TLR2 in NSCLC tissue and cell lines was significantly higher than that in normal lung tissues. Dual luciferase reporter gene assay showed that miR-144 could bind to the 3'UTR of TLR2 specifically. Up-regulation of miR-144 significantly decreased the expression of TLR2. Up-regulation of miR-144 or down-regulation of TLR2 could decrease cell migration, invasion and secretion of IL-1β, IL-6 and IL-8 in A549 cells. Moreover, overexpression of TLR2 rescued the inhibitory effects of miR-144 on migration, invasion and inflammatory factor secretion of A549 cells. CONCLUSIONS miR-144 could inhibit the migration, invasion and secretion of IL-1β, IL-6 and IL-8 through downregulation of TLR2 expression in A549 cells.
Collapse
Affiliation(s)
- Rong Pu
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Meicen Pu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Haohai Huang
- Department of Education and Science, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Laboratory, The Third People’s Hospital of Dongguan, Dongguan, Guangdong, China
| |
Collapse
|
5
|
Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020; 9:E2411. [PMID: 33158024 PMCID: PMC7693401 DOI: 10.3390/cells9112411] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Gonzalez-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Mexico City 14330, Mexico; (Z.P.E.-R.); (D.S.-V.); (I.G.R.-M.); (M.J.P.R.); (M.L.)
| |
Collapse
|
6
|
Truong AD, Hong Y, Nguyen HT, Nguyen CT, Chu NT, Tran HTT, Dang HV, Lillehoj HS, Hong YH. Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. Br Poult Sci 2020; 62:68-80. [PMID: 32812773 DOI: 10.1080/00071668.2020.1812524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Leukocyte immunoglobulin-like receptor A5 (LILRA5) is a key molecule that regulates the immune system. However, the LILRA5 gene has not been characterised in avian species, including chickens. The present study aimed to identify and functionally characterise LILRA5 identified from two genetically disparate chicken lines, viz., Marek's disease (MD)-resistant (R) line 6.3 and MD-susceptible (S) line 7.2. 2. Multiple sequence alignment and phylogenetic analyses confirmed that the identity and similarity homologies of amino acids of LILRA5 in chicken lines 6.3 and 7.2 ranged between 93% and 93.7%, whereas those between chicken and mammals ranged between 20.9% and 43.7% and 21.1% to 43.9%, respectively. The newly cloned LILRA5 from chicken lines 6.3 and 7.2 revealed high conservation and a close relationship with other known mammalian LILRA5 proteins. 3. The results indicated that LILRA5 from chicken lines 6.3 and 7.2 was associated with phosphorylation of Src kinases and protein tyrosine phosphatase non-receptor type 11 (SHP2), which play a regulatory role in immune functions. Moreover, the results demonstrated that LILRA5 in these lines was associated with the activation of major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of the transporter associated with antigen processing. In addition, LILRA5 in both chicken lines activated and induced Janus kinase (JAK)-signal transducer and the activator of transcription (STAT), nuclear factor kappa B (NF-κB), phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2 signalling pathways; toll-like receptors; and Th1-, Th2-, and Th17- cytokines. 4. The data suggested that LILRA5 has innate immune receptors essential for macrophage immune response and provide novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- A D Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam.,Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - Y Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - H T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - C T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - N T Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H T T Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H V Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services , Beltsville, MD, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| |
Collapse
|
7
|
Dargahi N, Johnson J, Apostolopoulos V. Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One 2020; 15:e0228531. [PMID: 32045425 PMCID: PMC7012395 DOI: 10.1371/journal.pone.0228531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Consumption of probiotics contributes to a healthy microbiome of the GIT leading to many health benefits. They also contribute to the modulation of the immune system and are becoming popular for the treatment of a number of immune and inflammatory diseases. The main objective of this study was to evaluate anti-inflammatory and modulatory properties of Streptococcus thermophilus. We used peripheral blood mononuclear cells from healthy donors and assessed modifications in the mRNA expression of their genes related to innate and adaptive immune system. Our results showed strong immune modulatory effects of S. thermophilus 285 to human peripheral blood mononuclear cells with an array of anti-inflammatory properties. S. thermophilus 285 reduced mRNA expression in a number of inflammatory immune mediators and markers, and upregulated a few of immune markers. S. thermophilus is used in the dairy industry, survives during cold storage, tolerates well upon ingesting, and their consumption may have beneficial effects with potential implications in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Joshua Johnson
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
MPMBP down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB but not AP-1 activation. Int Immunopharmacol 2020; 79:106085. [DOI: 10.1016/j.intimp.2019.106085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
|
9
|
Young S, Sharma N, Lee JH, Chitu V, Neumeister V, Sohr E, Stanley ER, Hedrich CM, Craig AWB. Mast cells enhance sterile inflammation in chronic nonbacterial osteomyelitis. Dis Model Mech 2019; 12:dmm.040097. [PMID: 31416928 PMCID: PMC6737947 DOI: 10.1242/dmm.040097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disease, and patients with active or recurrent bone inflammation at multiple sites are diagnosed with chronic recurrent multifocal osteomyelitis (CRMO). The Chronic multifocal osteomyelitis (CMO) mouse model develops IL-1β-driven sterile bone lesions reminiscent of severe CRMO. The goal of this study was to evaluate the potential involvement of mast cells in CMO/CRMO. Here, we show that mast cells accumulate in inflamed tissues from CMO mice and that mast cell protease Mcpt1 can be detected in the peripheral blood. A transgenic model of connective tissue mast cell depletion (Mcpt5-Cre:Rosa26-Stopfl/fl-DTa) was crossed with CMO mice and the resulting mice (referred to as CMO/MC–) showed a significant delay in disease onset compared with age-matched CMO mice. At 5-6 months of age, CMO/MC– mice had fewer bone lesions and immune infiltration in the popliteal lymph nodes that drain the affected tissues. In bone marrow-derived mast cell cultures from CMO mice, cytokine production in response to the alarmin IL-33 was elevated compared with wild-type cultures. To test the relevance of mast cells to human CRMO, we tested serum samples from a cohort of healthy controls and from CRMO patients at diagnosis. Interestingly, mast cell chymase was elevated in CRMO patients as well as in patients with oligoarticular juvenile arthritis. Tryptase-positive mast cells were also detected in bone lesions from CRMO patients and patients with bacterial osteomyelitis. Together, our results identify mast cells as cellular contributors to bone inflammation in CMO/CRMO and provide rationale for further study of mast cells as therapeutic targets. Summary: This paper reports that mast cells promote bone loss in an autoinflammatory disease model and that mast cell mediators were detected in autoinflammatory disease patient samples.
Collapse
Affiliation(s)
- Stephanie Young
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Namit Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jae Hoon Lee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Volker Neumeister
- Departments of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Elisabeth Sohr
- Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Technical University Dresden, Dresden 01307, Germany
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christian M Hedrich
- Pediatric Rheumatology and Immunology, Children's Hospital Dresden, Technical University Dresden, Dresden 01307, Germany.,Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, UK.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
10
|
Vreman S, Auray G, Savelkoul HFJ, Rebel A, Summerfield A, Stockhofe-Zurwieden N. Neonatal porcine blood derived dendritic cell subsets show activation after TLR2 or TLR9 stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:361-370. [PMID: 29555549 DOI: 10.1016/j.dci.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the innate immune response in vitro to determine porcine neonate responses with Toll-like receptor (TLR)2 ligand (Pam3Cys) or TLR9 ligand (CpG) and compared these with adults. We identified the same phenotypically defined dendritic cell (DC) subsets and DC proportions in porcine neonate and adult blood by flow cytometry, which were plasmacytoid DCs (pDCs): CD14-CD4+CD172a+CADM1-) and conventional DCs (cDCs), being further divided into a cDC1 (CD14-CD4-CD172alowCADM1+) and a cDC2 (CD14-CD4-CD172a+CADM1+) subset. With neonatal cells, the TLR2 ligand induced a stronger TNF expression in monocytes and pDCs, and a stronger CD80/86 upregulation in cDC1, when compared to adult cells. Furthermore, in neonatal mononuclear cells TLR9 ligand was more potent at inducing IL12p40 mRNA expression. These results indicate clear responses of porcine neonatal antigen presenting cells after TLR2 and TLR9 stimulation, suggesting that corresponding ligands could be promising candidates for neonatal adjuvant application.
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 29703, 2502 LS, The Hague, The Netherlands.
| | - Gael Auray
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147, Mittelhausern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland
| | - Huub F J Savelkoul
- Cell Biology & Immunology Group, Wageningen University & Research P.O. Box 338, 6700 HA, Wageningen, The Netherlands
| | - Annemarie Rebel
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 29703, 2502 LS, The Hague, The Netherlands
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147, Mittelhausern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland
| | - Norbert Stockhofe-Zurwieden
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 29703, 2502 LS, The Hague, The Netherlands
| |
Collapse
|
11
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effects of sulfated chitosans on RAW 264.7 mouse macrophages via the activation of PI3K/Akt signaling pathway. Int J Biol Macromol 2017; 108:1310-1321. [PMID: 29129634 DOI: 10.1016/j.ijbiomac.2017.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
To investigate the immunostimulatory effects of chitosan sulfates, we prepared α- and β-chitosan sulfates with different molecular weights and compared their immunostimulatory activities in RAW 264.7 macrophages. Results suggest that β-chitosan sulfates were more active than α-chitosan in promoting nitric oxide (NO) production. Further study show that β-chitosan sulfate significantly promoted the production of NO, prostaglandin E2, tumor necrosis factor (TNF)-α, interleukin-6 and interleukin-1β at the levels of transcription and translation. Moreover, Western blots revealed that it induced the phosphorylation of p85 and Akt, and the nuclear translocation of p50/p65 and c-Fos/c-Jun. The luciferase activity of cells pretreated with β-chitosan sulfate further confirmed the nuclear translocation of p50/p65 and c-Fos/c-Jun. Determination of Toll-like receptor (TLR) 4 expression suggested that β-chitosan sulfate at least partly bound to TLR4. In conclusion, β-chitosan sulfates activate RAW 264.7 cells through the PI3K-Akt pathway, which is dependent on activator protein-1 and nuclear factor-κB activation.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
12
|
Hojo K, Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Etidronate down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB activation. Pharmacol Rep 2017; 69:773-778. [PMID: 28587938 DOI: 10.1016/j.pharep.2017.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Etidronate is a non-nitrogen-containing bisphosphonate (non-NBP) used for anti-bone resorptive therapy as well as having inhibitory effects on atherosclerotic plaques. The present study examined the effects of etidronate on the production of proinflammatory cytokines and chemokines by the macrophage-like cell line, J774.1, incubated with Pam3Cys-Ser-(Lys)4 (Pam3CSK4, a Toll-like receptor (TLR) 2 agonist) and lipid A (a TLR4 agonist). METHODS J774.1 cells and human monocytic THP-1 cells were pretreated with or without etidronate for 5min, and then incubated with or without Pam3CSK4 or lipid A for 24h. Levels of secreted interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity was determined by LDH activity in the supernatants. We also examined the effects of etidronate on the activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in J774.1 cells by ELISA and Western blotting. RESULTS Treatment of J774.1 cells with etidronate down-regulated TLR2 ligand-induced production of IL-6, TNF-α, MCP-1, and MIP-1α. Etidronate also inhibited Pam3CSK4-induced MCP-1 and TNF-α production by THP-1 cells. However, etidronate did not induce cytotoxicity and reduced lipid A-induced cytotoxicity in J774.1 cells. In addition, this agent did not down-regulate TLR4 ligand-induced proinflammatory cytokine production. Furthermore, etidronate inhibited the translocation of NF-κB but not p38 MAPK in J774.1 cells stimulated with Pam3CSK4 or lipid A. CONCLUSION Etidronate likely inhibits proinflammatory cytokine production in J774.1 cells by suppressing NF-κB activation in the TLR2 and not the TLR4 pathway.
Collapse
Affiliation(s)
- Kentaro Hojo
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| | - Michiyo Kobayashi-Sakamoto
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|