1
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hammoud MK, Meena C, Dietze R, Hoffmann N, Szymanski W, Finkernagel F, Nist A, Stiewe T, Graumann J, von Strandmann EP, Müller R. Arachidonic acid impairs natural killer cell functions by disrupting signaling pathways driven by activating receptors and reactive oxygen species. Cell Commun Signal 2024; 22:555. [PMID: 39563446 PMCID: PMC11575453 DOI: 10.1186/s12964-024-01940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND High levels of the polyunsaturated fatty acid arachidonic acid (AA) within the ovarian carcinoma (OC) microenvironment correlate with reduced relapse-free survival. Furthermore, OC progression is tied to compromised immunosurveillance, partially attributed to the impairment of natural killer (NK) cells. However, potential connections between AA and NK cell dysfunction in OC have not been studied. METHODS We employed a combination of phosphoproteomics, transcriptional profiling and biological assays to investigate AA's impact on NK cell functions. RESULTS AA (i) disrupts interleukin-2/15-mediated expression of pro-inflammatory genes by inhibiting STAT1-dependent signaling, (ii) hampers signaling by cytotoxicity receptors through disruption of their surface expression, (iii) diminishes phosphorylation of NKG2D-induced protein kinases, including ERK1/2, LYN, MSK1/2 and STAT1, and (iv) alters reactive oxygen species production by transcriptionally upregulating detoxification. These modifications lead to a cessation of NK cell proliferation and a reduction in cytotoxicity. CONCLUSION Our findings highlight significant AA-induced alterations in the signaling network that regulates NK cell activity. As low expression of several NK cell receptors correlates with shorter OC patient survival, these findings suggest a functional linkage between AA, NK cell dysfunction and OC progression.
Collapse
Affiliation(s)
- Mohamad K Hammoud
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Institute of Physiological Chemistry, Philipps University, Marburg, Germany
| | - Celina Meena
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Raimund Dietze
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Witold Szymanski
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| | - Rolf Müller
- Department of Translational Oncology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Duan Z, Yang Y, Qin M, Yi X. Interleukin 15: A new intermediary in the effects of exercise and training on skeletal muscle and bone function. J Cell Mol Med 2024; 28:e70136. [PMID: 39601091 PMCID: PMC11599876 DOI: 10.1111/jcmm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024] Open
Abstract
Interleukin-15 (IL-15), a pro-inflammatory cytokine, is produced mainly by skeletal muscle cells, macrophages and epithelial cells. Recent research has demonstrated that IL-15 is closely related to the functions of bone and skeletal muscle in the locomotor system. There is growing evidence that exercise, an important means to regulate the immune and locomotor systems, influences IL-15 content in various tissues, thereby indirectly affecting the function of bones and muscles. Furthermore, the form, intensity, and duration of exercise determine the degree of change in IL-15 and downstream effects. This paper reviews the structure, synthesis and secretion of IL-15, the role of IL-15 in regulating the metabolism of bone tissue cells and myofibers through binding to the IL-15 receptor-α (IL-15Rα), and the response of IL-15 to different types of exercise. This review provides a reference for further analyses of the role and mechanism of action of IL-15 in the regulation of metabolism during exercise.
Collapse
Affiliation(s)
- Ziqiang Duan
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Yang Yang
- School of KinesiologyShanghai University of SportShanghaiChina
| | - Mianhong Qin
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Xuejie Yi
- Social Science Research CenterShenyang Sport UniversityShenyangChina
| |
Collapse
|
5
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
6
|
Feng Z, Kuang Y, Qi Y, Wang X, Xu P, Chen X. Exogenous IL-33 promotes tumor immunity via macroscopic regulation of ILC2s. Sci Rep 2024; 14:26140. [PMID: 39478174 PMCID: PMC11525627 DOI: 10.1038/s41598-024-77751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Interleukin-33 (IL-33) is a pleiotropic molecule that plays various roles in the body. However, how exogenous IL-33 changes the tumor immune microenvironment remains unclear. Our study revealed that exogenous IL-33 exerts anti-tumor effects and effectively suppresses the progression of subcutaneous melanoma. scRNA-seq analysis revealed that exogenous IL-33 reduced neutrophils accumulation, thereby improving the inhibitory immune environment. Flow cytometry analysis revealed that exogenous IL-33 significantly increased the proportion of eosinophils and group 2 innate lymphoid cells (ILC2s). In addition, we identified genes encoding major histocompatibility complex (MHC) class II molecules in this group of ILC2s, suggesting that ILC2s may play a role in antigen presentation. In Il7rCreArg1flox/flox mice, the decrease of ILC2s led to a reduction in the proportion of eosinophils. Furthermore, we found that exogenous IL-33 effectively promoted the differentiation of ILC2s and their accumulation in tumors, thereby enhancing the anti-tumor immune response. These findings may pave the way for developing new cancer immunotherapies that use IL-33 as an activator to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Zhenchu Feng
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Ye Kuang
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuan Qi
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Wang
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Peng Xu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.
| | - Xi Chen
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
7
|
Naji O, Ghouzlani A, Rafii S, Sadiqi RU, Kone AS, Harmak Z, Choukri K, Kandoussi S, Karkouri M, Badou A. Investigating tumor immunogenicity in breast cancer: deciphering the tumor immune response to enhance therapeutic approaches. Front Immunol 2024; 15:1399754. [PMID: 39507526 PMCID: PMC11538072 DOI: 10.3389/fimmu.2024.1399754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
The interplay between immune cells and malignant cells represents an essential chapter in the eradication of breast cancer. This widely distributed and diverse form of cancer represents a major threat to women worldwide. The incidence of breast cancer is related to several risk factors, notably genetic predisposition and family antecedents. Despite progress in treatment modalities varying from surgery and chemotherapy to radiotherapy and targeted therapies, persistently high rates of recurrence, metastasis, and treatment resistance underscore the urgent need for new therapeutic approaches. Immunotherapy has gained considerable ground in the treatment of breast cancer, as it takes advantage of the complex interactions within the tumor microenvironment. This dynamic interplay between immune and tumor cells has become a key point of focus in immunological research. This study investigates the role of various cancer markers, such as neoantigens and immune regulatory genes, in the diagnosis and treatment of breast tumors. Moreover, it explores the future potential of immune checkpoint inhibitors as therapeutically effective agents, as well as the challenges that prevent their efficacy, in particular tumor-induced immunosuppression and the difficulty of achieving tumor specificity.
Collapse
Affiliation(s)
- Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Rizwan ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdou-samad Kone
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Zakia Harmak
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khalil Choukri
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat and Mohammed VI University for Sciences and Health, Casablanca, Morocco
| |
Collapse
|
8
|
Iijima H, Sakai A, Ebisumoto K, Ogura G, Yamauchi M, Teramura T, Yamazaki A, Watanabe T, Inagi T, Yanagiya R, Yamamoto A, Ashida H, Ota Y, Sato Y, Kobayashi N, Maki D, Nakamura N, Okami K. Combined Positive Score and Cisplatin Sensitivity Are Prognostic Factors for Response to Nivolumab Therapy for Recurrent Metastatic Squamous Cell Carcinoma of the Head and Neck. Clin Med Insights Oncol 2024; 18:11795549241290030. [PMID: 39429682 PMCID: PMC11490953 DOI: 10.1177/11795549241290030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024] Open
Abstract
Background Recurrent or metastatic squamous cell carcinoma of the head and neck (R/MHNSCC) is a challenging malignancy with a poor prognosis and limited treatment options. Nivolumab, an immune checkpoint inhibitor (ICI) targeting the programmed cell death/programmed cell death ligand 1 (PD-1/PD-L1) pathway, has emerged as a promising therapy for these patients. However, identifying biomarkers predictive of response to nivolumab remains critical for optimizing treatment strategies. Previous studies have suggested that PD-L1 expression, as determined by the Combined Positive Score (CPS) and other clinical factors, may influence treatment outcome. This study aims to retrospectively examine whether CPS can be a biomarker by staining PD-L1 with 22 C3 antibody in R/MHNSCC patients treated with nivolumab. Methods This retrospective study reviewed the medical records of R/MHNSCC patients treated with ICIs at Tokai University Hospital from April 2017 to December 2022. We examined the relationship between response rate to ICI therapy, PD-L1 staining, biomarkers, and survival. Statistical analyses included t-test, chi-square test, and Cox regression. Results This study included 92 nivolumab-treated patients. Combined Positive Score was evaluable in 53 of these patients. Patients with a CPS of 15 or higher had better progression-free survival (PFS) (P = .0171), with a median PFS) of 13 months. In the Various Definitions analysis, cisplatin-sensitive patients also had good PFS (P = .0295). The cisplatin-sensitive patient population with a CPS of 15 or higher had the best PFS, with a median of 14 months (P = .006). There was no significant difference in overall survival (OS) by CPS value. Immune-related adverse events did not affect OS or PFS. Conclusions CPS ⩾ 15 and cisplatin sensitivity are promising prognostic markers for nivolumab therapy in R/MHNSCC. Considering these biomarkers in patient selection could maximize the therapeutic benefits of nivolumab. This finding may help to optimize ICI therapy strategies.
Collapse
Affiliation(s)
- Hiroaki Iijima
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Akihiro Sakai
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Koji Ebisumoto
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Go Ogura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Mayu Yamauchi
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Takanobu Teramura
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Aritomo Yamazaki
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Takane Watanabe
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Toshihide Inagi
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Ryoko Yanagiya
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Ai Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Hiroshi Ashida
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyuki Ota
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Yurina Sato
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Maki
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Kenji Okami
- Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
9
|
Kazakova A, Zhelnov P, Sidorov R, Rogova A, Vasileva O, Ivanov R, Reshetnikov V, Muslimov A. DNA and RNA vaccines against tuberculosis: a scoping review of human and animal studies. Front Immunol 2024; 15:1457327. [PMID: 39421744 PMCID: PMC11483866 DOI: 10.3389/fimmu.2024.1457327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction To comprehensively identify and provide an overview of in vivo or clinical studies of nucleic acids (NA)-based vaccines against TB we included human or animal studies of NA vaccines for the prevention or treatment of TB and excluded in vitro or in silico research, studies of microorganisms other than M. tuberculosis, reviews, letters, and low-yield reports. Methods We searched PubMed, Scopus, Embase, selected Web of Science and ProQuest databases, Google Scholar, eLIBRARY.RU, PROSPERO, OSF Registries, Cochrane CENTRAL, EU Clinical Trials Register, clinicaltrials.gov, and others through WHO International Clinical Trials Registry Platform Search Portal, AVMA and CABI databases, bioRxiv, medRxiv, and others through OSF Preprint Archive Search. We searched the same sources and Google for vaccine names (GX-70) and scanned reviews for references. Data on antigenic composition, delivery systems, adjuvants, and vaccine efficacy were charted and summarized descriptively. Results A total of 18,157 records were identified, of which 968 were assessed for eligibility. No clinical studies were identified. 365 reports of 345 animal studies were included in the review. 342 (99.1%) studies involved DNA vaccines, and the remaining three focused on mRNA vaccines. 285 (82.6%) studies used single-antigen vaccines, while 48 (13.9%) used multiple antigens or combinations with adjuvants. Only 12 (3.5%) studies involved multiepitope vaccines. The most frequently used antigens were immunodominant secretory antigens (Ag85A, Ag85B, ESAT6), heat shock proteins, and cell wall proteins. Most studies delivered naked plasmid DNA intramuscularly without additional adjuvants. Only 4 of 17 studies comparing NA vaccines to BCG after M. tuberculosis challenge demonstrated superior protection in terms of bacterial load reduction. Some vaccine variants showed better efficacy compared to BCG. Systematic review registration https://osf.io/, identifier F7P9G.
Collapse
Affiliation(s)
- Alisa Kazakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Pavel Zhelnov
- Zheln, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Roman Sidorov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Perm, Russia
| | - Anna Rogova
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
- Laboratory of Nano- and Microencapsulation of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Albert Muslimov
- Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
10
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
11
|
Song D, Heo JW, Kim JS, Jung J, Jang HH, Hwang IG, Shim CK, Ham JS, Park SY, Lee SH. Anti-obesity and immunomodulatory effects of Allium hookeri leaves cultivated with artificial light of different intensities on immune-depressed obese mice. Biomed Pharmacother 2024; 179:117393. [PMID: 39260326 DOI: 10.1016/j.biopha.2024.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
This study was conducted to evaluate the effects of Allium hookeri (AH) leaves cultivated with different light-emitting diode (LED) intensities (L: low, 100 μmol/m2/s; M: medium, 150 μmol/m2/s; H: high, 200 μmol/m2/s). Alliin concentration increased as light intensity increased in AH and showed the highest level at LED-H condition. The anti-obesity and immunomodulatory properties of AH were evaluated in a cyclophosphamide (CPA)-induced immunosuppressed obese animal model. C57BL/6 J mice were randomly divided into control (CON), high-fat diet (HFD) control (CON-H), negative control (NC), positive control (PC, β-glucan, 50 mg/kg body weight (BW)), AH L, M, and H groups. The three kinds of AH extracts were orally administered to the mice at 300 mg/kg BW for 2 weeks. Except for CON and CON-H, all the other groups were intraperitoneally treated with CPA. Epididymal and abdominal fat weight decreased as LED intensity increased while spleen weight increased in the AH groups. Serum glucose decreased as LED intensity increased in the AH groups and H group showed the lowest level. Triglycerides, total, and LDL-cholesterol levels decreased while HDL-cholesterol level increased in the AH groups compared to the NC group. Moreover, AH effectively reduced serum ALT and AST levels and increased the total white blood cell count, particularly elevating lymphocyte and monocyte levels. Furthermore, NK cell activity was higher in the AH groups. These findings suggest that AH cultivated at optimal LED intensity could be used as a novel biomedicine and in pharmacotherapy to treat related diseases to improve public health without any toxicity.
Collapse
Affiliation(s)
- Doyoung Song
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jeong-Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji-Su Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jieun Jung
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hwan-Hee Jang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - In-Guk Hwang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Chang-Ki Shim
- Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; Division of Planning and Coordination, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jun Sang Ham
- Department of Animal Biotechnology and Environment, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Shin-Young Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung-Hyen Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
12
|
Wu S, Zhou Y, Asakawa N, Wen M, Sun Y, Ming Y, Song T, Chen W, Ma G, Xia Y. Engineering CaP-Pickering emulsion for enhanced mRNA cancer vaccines via dual DC and NK activations. J Control Release 2024; 373:837-852. [PMID: 39059499 DOI: 10.1016/j.jconrel.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
mRNA delivery systems, such as lipid nanoparticle (LNP), have made remarkable strides in improving mRNA expression, whereas immune system activation operates on a threshold. Maintaining a delicate balance between antigen expression and dendritic cell (DC) activation is vital for effective immune recognition. Here, a water-in-oil-in-water (w/o/w) Pickering emulsion stabilized with calcium phosphate nanoparticles (CaP-PME) is developed for mRNA delivery in cancer vaccination. CaP-PME efficiently transports mRNA into the cytoplasm, induces pro-inflammatory responses and activates DCs by disrupting intracellular calcium/potassium ions balance. Unlike LNP, CaP-PME demonstrates a preference for DCs, enhancing their activation and migration to lymph nodes. It elicits interferon-γ-mediated CD8+ T cell responses and promotes NK cell proliferation and activation, leading to evident NK cells infiltration and ameliorated tumor microenvironment. The prepared w/o/w Pickering emulsion demonstrates superior anti-tumor effects in E.G7 and B16-OVA tumor models, offering promising prospects as an enhanced mRNA delivery vehicle for cancer vaccinations.
Collapse
Affiliation(s)
- Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Yan Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Mei Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China, Changsha 410083, PR China
| | - Yu Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China
| | - Yali Ming
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wansong Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China, Changsha 410083, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Radpour R, Simillion C, Wang B, Abbas HA, Riether C, Ochsenbein AF. IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion. Blood 2024; 144:888-903. [PMID: 38941612 DOI: 10.1182/blood.2024024000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)-producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM-infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.
Collapse
MESH Headings
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/immunology
- Th1 Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Tumor Microenvironment/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Interferon-gamma/metabolism
- Histone-Lysine N-Methyltransferase/genetics
Collapse
Affiliation(s)
- Ramin Radpour
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bofei Wang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX
| | - Carsten Riether
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
15
|
Rebuffet L, Melsen JE, Escalière B, Basurto-Lozada D, Bhandoola A, Björkström NK, Bryceson YT, Castriconi R, Cichocki F, Colonna M, Davis DM, Diefenbach A, Ding Y, Haniffa M, Horowitz A, Lanier LL, Malmberg KJ, Miller JS, Moretta L, Narni-Mancinelli E, O'Neill LAJ, Romagnani C, Ryan DG, Sivori S, Sun D, Vagne C, Vivier E. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat Immunol 2024; 25:1474-1488. [PMID: 38956378 PMCID: PMC11291291 DOI: 10.1038/s41590-024-01883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.
Collapse
Grants
- Wellcome Trust
- MR/W031698/1 Medical Research Council
- P01 CA111412 NCI NIH HHS
- E.V laboratory at CIML and Assistance-Publique des Hôpitaux de Marseille is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (TILC, grant agreement No. 694502 and MInfla-TILC, grand agreement No. 875102), the Agence Nationale de la Recherche including the PIONEER Project (ANR-17-RHUS-0007), MSDAvenir, Innate Pharma and institutional grants awarded to the CIML (INSERM, CNRS and Aix-Marseille University) and Marseille Immunopole.
- D.M.D laboratory is funded by the Medical Research Council (MR/W031698/1) and the Wellcome Trust (110091/Z/15/Z).
- A.D. laboratory is supported by the European Research Council (ERC AdG ILCAdapt, 101055309 to A.D.) and by the German Research Foundation (DFG) (SFB 1444/427826188 and TRR 241/375876048 to A.D., SPP1937/Di764 /9-2 to A.D.). We are grateful to the Benjamin Franklin Flow Cytometry Facility (BFFC) for support in cell sorting. BFFC is supported by DFG Instrument Grants INST 335/597-1 FUGG und INST 335/777-1 FUGG.
- KJM was supported by the Research Council of Norway, Center of Excellence: Precision Immunotherapy Alliance (332727), the US National Cancer Institute (P01 CA111412, P009500901).
- L.M. is funded by Associazione Italiana contro il Cancro (AIRC), 5xmille project n. 21147.
- C.R. laboratory is supported by the ERC Advanced Grant ‘MEM-CLONK’ (101055157) and the Deutsche Forschungsgemeinschaft (DFG) grants SFB TRR241 B02 and RO 3565/7-1.
- D.G.R is supported by funding from the Medical Research Council (MRC) (MC_UU_00028) and Wellcome Trust-Academy of Medical Sciences (WT-AMS) (SBF009\1119).
- S.S. is funded by Ministero dell’Istruzione, dell’Università e della Ricerca: PRIN 2017WC8499_004 and Fondazione AIRC: AIRC 5×1000 project id. 21147.
Collapse
Affiliation(s)
- Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Janine E Melsen
- Leiden University Medical Center, Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Immunology, Leiden, the Netherlands
| | - Bertrand Escalière
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Sweden Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Davis
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, UK
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Amir Horowitz
- Department of Immunology & Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- The Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Chiara Romagnani
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Berlin University Alliance, Berlin, Germany
| | - Dylan G Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Constance Vagne
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| |
Collapse
|
16
|
Zhou Y, Kuerman M, Zhou Q, Hou B, Li B, Li Y, Zhang L, Liu T. Lacticaseibacillus casei K11 exerts immunomodulatory effects by enhancing natural killer cell cytotoxicity via the extracellular regulated-protein kinase pathway. Eur J Nutr 2024; 63:1867-1876. [PMID: 38592520 DOI: 10.1007/s00394-024-03390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Probiotics can serve as immunomodulators that regulate the activation of immune cells. This study aimed to screen potential probiotic strains that can enhance NK cell toxicity to improve host immunity. METHODS In this investigation, we examined three potential probiotic strains, namely Lactiplantibacillus plantarum YZX21 (YZX21), Bifidobacterium bifidum FL-276.1 (FL-276.1) and Lacticaseibacillus casei K11 (K11), to assess their capacity in modulating NK cytotoxicity both in vitro and in vivo, while elucidating the underlying mechanisms involved. RESULTS The findings demonstrated that K11 exhibited superior efficacy in enhancing NK cytotoxicity. Subsequent analysis revealed that K11 significantly augmented the secretion of perforin and granzyme B by NK cells through activation of receptors NKp30 and NKp46 via the extracellular signal-regulated kinase (ERK) pathway. Furthermore, heat-inactivated K11 also enhanced NK cell activity to an extent comparable to live bacteria, with lipoteichoic acid from K11 identified as a crucial factor mediating the activation of NK cell cytotoxicity. CONCLUSION Our study suggests that K11 may have potential applications as probiotics or postbiotics for regulating NK cell cytotoxicity to enhance immunity.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China
| | - Malina Kuerman
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China
| | - Qi Zhou
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China
| | - Baochao Hou
- National Center of Technology Innovation for Dairy, Hohhot, 010000, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot, 010000, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China.
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China.
| |
Collapse
|
17
|
Pazoki A, Dadfar S, Shadab A, Haghmorad D, Oksenych V. Soluble CD40 Ligand as a Promising Biomarker in Cancer Diagnosis. Cells 2024; 13:1267. [PMID: 39120299 PMCID: PMC11311304 DOI: 10.3390/cells13151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer remains a significant challenge in medicine due to its complexity and heterogeneity. Biomarkers have emerged as vital tools for cancer research and clinical practice, facilitating early detection, prognosis assessment, and treatment monitoring. Among these, CD40 ligand (CD40L) has gained attention for its role in immune response modulation. Soluble CD40 ligand (sCD40L) has shown promise as a potential biomarker in cancer diagnosis and progression, reflecting interactions between immune cells and the tumor microenvironment. This review explores the intricate relationship between sCD40L and cancer, highlighting its diagnostic and prognostic potential. It discusses biomarker discovery, emphasizing the need for reliable markers in oncology, and elucidates the roles of CD40L in inflammatory responses and interactions with tumor cells. Additionally, it examines sCD40L as a biomarker, detailing its significance across various cancer types and clinical applications. Moreover, the review focuses on therapeutic interventions targeting CD40L in malignancies, providing insights into cellular and gene therapy approaches and recombinant protein-based strategies. The clinical effectiveness of CD40L-targeted therapy is evaluated, underscoring the need for further research to unlock the full potential of this signaling pathway in cancer management.
Collapse
Affiliation(s)
- Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Shadab
- Department of Health Science, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
18
|
Spiga M, Martini E, Maffia MC, Ciceri F, Ruggiero E, Potenza A, Bonini C. Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors. Semin Immunopathol 2024; 46:8. [PMID: 39060547 DOI: 10.1007/s00281-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 07/28/2024]
Abstract
Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.
Collapse
Affiliation(s)
- Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Martini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Maffia
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
19
|
Zhang G, Zhang Y, Zhang J, Yang X, Sun W, Liu Y, Liu Y. Immune cell landscapes are associated with high-grade serous ovarian cancer survival. Sci Rep 2024; 14:16140. [PMID: 38997411 PMCID: PMC11245545 DOI: 10.1038/s41598-024-67213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease known to develop resistance to chemotherapy. We investigated the prognostic significance of tumor cell states and potential mechanisms underlying chemotherapy resistance in HGSOC. Transcriptome deconvolution was performed to address cellular heterogeneity. Kaplan-Meier survival curves were plotted to illustrate the outcomes of patients with varying cellular abundances. The association between gene expression and chemotherapy response was tested. After adjusting for surgery status and grading, several cell states exhibited a significant correlation with patient survival. Cell states can organize into carcinoma ecotypes (CE). CE9 and CE10 were proinflammatory, characterized by higher immunoreactivity, and were associated with favorable survival outcomes. Ratios of cell states and ecotypes had better prognostic abilities than a single cell state or ecotype. A total of 1265 differentially expressed genes were identified between samples with high and low levels of C9 or CE10. These genes were partitioned into three co-expressed modules, which were associated with tumor cells and immune cells. Pogz was identified to be linked with immune cell genes and the chemotherapy response of paclitaxel. Collectively, the survival of HGSOC patients is correlated with specific cell states and ecotypes.
Collapse
Affiliation(s)
- Guoan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Jingjing Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Xiaohui Yang
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Wenjie Sun
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, 061001, People's Republic of China
| | - Ying Liu
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China.
| | - Yingfu Liu
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China.
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, 061001, People's Republic of China.
| |
Collapse
|
20
|
Wu T, Gao R, Wang X, Guo D, Xie Y, Dong B, Hao X, Zhu C. Pancreatobiliary reflux increases macrophage-secreted IL-8 and activates the PI3K/NFκB pathway to promote cholangiocarcinoma progression. Transl Oncol 2024; 45:101967. [PMID: 38653100 PMCID: PMC11059331 DOI: 10.1016/j.tranon.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Persistent pancreaticobiliary reflux (PBR) is associated with a high risk of biliary malignancy. This study aimed to evaluate the proportion of PBR in biliary tract diseases and mechanisms by which PBR promoted cholangiocarcinoma progression. METHODS Overall 227 consecutive patients with primary biliary tract disease participated in this study. The amylase levels in the collected bile were analyzed. The mechanisms underlying the effect of high-amylase bile on bile duct epithelial and cholangiocarcinoma cells progression were analyzed. The source of interleukin-8 (IL-8) and its effects on the biological functions of cholangiocarcinoma cells were investigated. RESULTS The bile amylase levels in 148 of 227 patients were higher than the upper serum amylase limit of 135 IU/L. PBR was significantly correlated with sex, pyrexia, and serum gamma-glutamyl transferase (GGT) levels in the patient cohort. High-amylase bile-induced DNA damage and genetic differences in the transcript levels of the gallbladder mucosa and facilitated the proliferation and migration of bile duct cancer cells (HUCCT1 and QBC939 cells). The concentration of many cytokines increased in high-amylase bile. IL-8 is secreted primarily by macrophages via the mitogen-activated protein kinase pathway and partially by bile duct epithelial cells. IL-8 promotes the progression of HUCCT1 and QBC939 cells by regulating the expression of epithelial-mesenchymal transition-associated proteins and activating the phosphatidylinositol 3-kinase/nuclear factor kappa-B pathway. CONCLUSIONS PBR is one of the primary causes of biliary disease. IL-8 secreted by macrophages or bile duct epithelial cells stimulated by high-amylase bile promotes cholangiocarcinoma progression.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Ruiqian Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Xiaowei Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China.
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China; Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
21
|
Santos Freire M, Victor de Oliveira Monteiro A, Moura Martins T, Socorro Silva Lima Duarte M, Carlos Lima A, Luiz Araújo Bentes Leal A, Rodolfo Pereira da Silva F, Fernando Marques Barcellos J. Genetic variations in immune mediators and prostate cancer risk: A field synopsis with Bayesian calculations. Cytokine 2024; 179:156630. [PMID: 38696882 DOI: 10.1016/j.cyto.2024.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE Our study aimed to revaluate the significant data from meta-analyses on genetic variations in immune mediators and the risk of prostate cancer (PCa) by Bayesian approaches. METHODS We performed a search on the literature before September 5th, 2023, for meta-analytic studies on polymorphisms in immune mediator genes and the risk of PCa. Two Bayesian approaches were used to assess the level of noteworthiness in the meta-analytic data: the False-Positive Rate Probability (FPRP) and the Bayesian False Discovery Probability (BFDP) with a statistical power of 1.2 and 1.5 of Odds Ratio at a prior probability of 10-3 and 10-6. The quality evaluation of studies was performed with the Venice criteria. Gene-gene and protein-protein networks were designed for the genes and products enrolled in the results. RESULTS As results, 18 meta-analyses on 17 polymorphisms in several immune mediator genes were included (IL1B rs16944/rs1143627, IL4 rs2243250/rs2227284/rs2070874, IL6 1800795/rs1800796/rs1800797, IL8 rs4073, IL10 rs1800896/rs1800871/rs1800872, IL18 rs1946518, COX2 rs2745557, TNFA rs361525 and PTGS2 rs20417/689470). The Bayesian calculations showed the rs1143627 and the rs1946518 polymorphisms in IL1B and IL18 genes, respectively, were noteworthy. The Venice criteria showed that only four studies received the highest level of evidence. The gene-gene and protein-protein networks reinforced the findings on IL1B and IL18 genes. CONCLUSION In conclusion, this current Bayesian revaluation showed that the rs1143627 and the rs1946518 polymorphisms in the IL1B and IL18 genes, respectively, were noteworthy biomarker candidates for PCa risk.
Collapse
Affiliation(s)
- Matheus Santos Freire
- Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Tayane Moura Martins
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Antonio Carlos Lima
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Felipe Rodolfo Pereira da Silva
- Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil; Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil.
| | | |
Collapse
|
22
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
23
|
Zhang G, Lu S, Ren Z, Wei L, Chen C, Tao P, Pan X. SIRT2 as a Potential Biomarker in Lung Adenocarcinoma: Implications for Immune Infiltration. Mol Biotechnol 2024:10.1007/s12033-024-01198-3. [PMID: 38902578 DOI: 10.1007/s12033-024-01198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
SIRT2 play important roles in cell cycle and cellular metabolism in the development of non-small cell lung cancer (NSCLC), and SIRT2 exhibits its therapeutic effect on NSCLC tumors with high expression of SIRT2. Nevertheless, the clinical relevance of SIRT2 in lung adenocarcinoma (LUAD), particularly its impact on tumor growth and prognostic implications, remains obscure. This investigation entailed a comprehensive analysis of SIRT2 mRNA and protein expression levels in diverse tumor and corresponding healthy tissues, utilizing databases such as TIMER 2.0, UALCAN, and HPA. Prognostic correlations of SIRT2 expression in LUAD patients, stratified by distinct clinicopathological characteristics, were evaluated using the KM Plotter database. Additionally, the TCGA and TIMER 2.0 databases were employed to assess the relationship between SIRT2 and immune infiltration, as well as to calculate immunity, stromal, and estimation scores, thus elucidating the role of SIRT2 in modulating tumor immunotherapy responses. Furthermore, Gene Set Enrichment Analysis (GSEA) was utilized to elucidate SIRT2's biological functions in pan-cancer cells. Our findings revealed a marked reduction in both mRNA and protein levels of SIRT2 in LUAD tumors relative to healthy tissue. Survival analysis indicated that diminished SIRT2 expression correlates with adverse prognostic outcomes in LUAD. Furthermore, SIRT2 expression demonstrated a significant association with various clinicopathologic attributes of LUAD patients, influencing survival outcomes across different clinicopathologic states. Functional enrichment analyses highlighted SIRT2's involvement in cell cycle regulation and immune response. Notably, SIRT2 exhibited a positive correlation with immune cell infiltration, including natural killer (NK) cells, macrophages, and dendritic cells (DCs). In summary, SIRT2 was a potential prognostic biomarker for LUAD and and a new immunotherapy target.
Collapse
Affiliation(s)
- Guining Zhang
- Department of Scientific Research, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Shuyu Lu
- Department of Anaesthesia, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning, 530007, Guangxi, China
| | - Zhiling Ren
- Department of Mental Health, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Lijuan Wei
- Graduate School, Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Chunxi Chen
- Graduate School, Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Pinyue Tao
- Department of Anaesthesia, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning, 530007, Guangxi, China.
| | - Xiao Pan
- The Second Ward of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning, 530007, Guangxi, China.
| |
Collapse
|
24
|
Jiang Y, Li H. The effect of smoking on tumor immunoediting: Friend or foe? Tob Induc Dis 2024; 22:TID-22-108. [PMID: 38887597 PMCID: PMC11181014 DOI: 10.18332/tid/189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
The recognition of smoking as an independent risk factor for lung cancer has become a widely accepted within the realm of respiratory medicine. The emergence of tumor immunotherapy has notably enhanced the prognosis for numerous late-stage cancer patients. Nevertheless, some studies have noted a tendency for lung cancer patients who smoke to derive greater benefit from immunotherapy. This observation has sparked increased interest in the interaction between smoking and the immune response to tumors in lung cancer. The concept of cancer immunoediting has shed light on the intricate and nuanced relationship between the immune system and tumors. Starting from the perspectives of immune surveillance, immune equilibrium, and immune evasion, this narrative review explores how smoking undermines the immune response against tumor cells and induces the generation of tumor neoantigens, and examines other behaviors that trigger tumor immune evasion. By elucidating these aspects, the review concludes that smoking is not conducive to tumor immunoediting.
Collapse
Affiliation(s)
- Yixia Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Benmelech S, Le T, McKay M, Nam J, Subramaniam K, Tellez D, Vlasak G, Mak M. Biophysical and biochemical aspects of immune cell-tumor microenvironment interactions. APL Bioeng 2024; 8:021502. [PMID: 38572312 PMCID: PMC10990568 DOI: 10.1063/5.0195244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
The tumor microenvironment (TME), composed of and influenced by a heterogeneous set of cancer cells and an extracellular matrix, plays a crucial role in cancer progression. The biophysical aspects of the TME (namely, its architecture and mechanics) regulate interactions and spatial distributions of cancer cells and immune cells. In this review, we discuss the factors of the TME-notably, the extracellular matrix, as well as tumor and stromal cells-that contribute to a pro-tumor, immunosuppressive response. We then discuss the ways in which cells of the innate and adaptive immune systems respond to tumors from both biochemical and biophysical perspectives, with increased focus on CD8+ and CD4+ T cells. Building upon this information, we turn to immune-based antitumor interventions-specifically, recent biophysical breakthroughs aimed at improving CAR-T cell therapy.
Collapse
Affiliation(s)
- Shoham Benmelech
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Thien Le
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maggie McKay
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Krupakar Subramaniam
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Daniela Tellez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Grace Vlasak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
26
|
Kurtović M, Piteša N, Čonkaš J, Hajpek H, Vučić M, Musani V, Ozretić P, Sabol M. GLI Transcriptional Targets S100A7 and KRT16 Show Upregulated Expression Patterns in Epidermis Overlying the Tumor Mass in Melanoma Samples. Int J Mol Sci 2024; 25:6084. [PMID: 38892279 PMCID: PMC11172526 DOI: 10.3390/ijms25116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.
Collapse
Affiliation(s)
- Matea Kurtović
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Nikolina Piteša
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Josipa Čonkaš
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Helena Hajpek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Majda Vučić
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
- Department of Pathology, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.K.); (N.P.); (J.Č.); (H.H.); (V.M.); (P.O.)
| |
Collapse
|
27
|
Chen X, Liu Y, Du B, Shi M, Lin Z, Li H, Chen J, Wu M, Shi M. Enhancement of antitumor response of staphylococcal enterotoxin C2 mutant 2M-118 by promoting cell-mediated antitumor immunity. Int Immunopharmacol 2024; 132:111943. [PMID: 38581989 DOI: 10.1016/j.intimp.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Staphylococcal enterotoxin C2 (SEC2) is used as an immunotherapeutic drug in China. However, SEC2 are limited due to its immunosuppressive and toxic effects. A SEC2 2M-118 (H118A/T20L/G22E) mutant generated by site-directed mutagenesis was studied to elucidate the underlying antitumor mechanism. METHODS The effects of 2M-118 on mouse fibrosarcoma (Meth-A) cells and cytokine responses were tested in vitro using a transwell assay and ELISA, respectively. 2M-118 effect on immune function in tumor-bearing mice was tested. Cytokine levels and antitumor responses were measured using ELISA and flow cytometry, respectively. TUNEL staining and immunohistochemistry were employed to detect the tumor apoptosis and CD4+ and CD8+ tumor infiltrating lymphocytes (TILs) in tumor tissue. RESULTS 2M-118 demonstrated the growth inhibition on tumor cells, increase of cytokines production (IL-2, IFN-γ, and TNF-α) and splenocyte proliferation in vitro. 2M-118 effectively inhibited tumor development and increased lymphocytes and cytokines in a tumor-bearing mouse model. Additionally, 2M-118 regulated the tumormicroenvironment by reducing the number of myeloid-derived suppressor cells (MDSCs), increasing the number of TILs, and inducing tumorcell apoptosis. CONCLUSION 2M-118 promotes immune function and enhances antitumor response. This indicates that 2M-118 could potentially be developed as a novel anti-tumor drug with-highefficiencyandlowtoxicity.
Collapse
Affiliation(s)
- Xinlin Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingjie Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hongyi Li
- Shenyang Xiehe Biopharmaceutical Stock Co., Ltd., Shenyang, China
| | - Juyu Chen
- Shenyang Xiehe Biopharmaceutical Stock Co., Ltd., Shenyang, China
| | - Meifen Wu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ming Shi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
28
|
Zhai R, Gong Z, Wang M, Ni Z, Zhang J, Wang M, Zhang Y, Zeng F, Gu Z, Chen X, Wang X, Zhou P, Liu L, Zhu W. Neutrophil extracellular traps promote invasion and metastasis via NLRP3-mediated oral squamous cell carcinoma pyroptosis inhibition. Cell Death Discov 2024; 10:214. [PMID: 38697992 PMCID: PMC11066066 DOI: 10.1038/s41420-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are reticular structures composed of neutrophil elastase (NE), cathepsin G (CG) and DNA-histone enzyme complexes. Accumulating evidence has revealed that NETs play important roles in tumor progression, metastasis, and thrombosis. However, our understanding of its clinical value and mechanism of action in oral squamous cell carcinoma (OSCC) is limited and has not yet been systematically described. Here, we aimed to investigate the clinical significance of NETs in OSCC and the mechanisms by which they affect its invasive and metastatic capacity. Our results demonstrated that high enrichment of NETs is associated with poor prognosis in OSCC, and mechanistic studies have shown that NE in NETs promotes invasion and metastasis via NLRP3-mediated inhibition of pyroptosis in OSCC. These findings may provide a new therapeutic approach for OSCC.
Collapse
Affiliation(s)
- Rundong Zhai
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Zizhen Gong
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Mengqi Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Zihui Ni
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Jiayi Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Mengyao Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Yu Zhang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Fanrui Zeng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Ziyue Gu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xingyu Chen
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Xiudi Wang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Pengcheng Zhou
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Laikui Liu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China.
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China.
| | - Weiwen Zhu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Jiangsu, China.
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China.
| |
Collapse
|
29
|
Wu B, Liang Z, Lan H, Teng X, Wang C. The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem 2024; 80:261-275. [PMID: 38329688 DOI: 10.1007/s13105-024-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huan Lan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Tang Q, Yuan Y, Li L, Xu Y, Ji W, Xiao S, Han Y, Miao W, Cai J, You P, Chen M, Ding S, Li Z, Qi Z, Hou W, Luo H. Comprehensive analysis reveals that LTBR is a immune-related biomarker for glioma. Comput Biol Med 2024; 174:108457. [PMID: 38599071 DOI: 10.1016/j.compbiomed.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Lingjuan Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of General Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Siyu Xiao
- Department of Rehabilitation, Gongan Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Jingzhou, 434300, Hubei Province, China
| | - Yi Han
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Wenrong Miao
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jing Cai
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Pu You
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai, 201210, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Saineng Ding
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China
| | - Zhen Li
- Shanghai QuietD Biotechnology Co., Ltd., Shanghai, 201210, China.
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Weiliang Hou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| | - Hao Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
31
|
Hong GH, Lee SY, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG, Park KY. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2024; 16:1339. [PMID: 38732587 PMCID: PMC11085399 DOI: 10.3390/nu16091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 μg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.
Collapse
Affiliation(s)
- Geun-Hye Hong
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - So-Young Lee
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - In Ah Kim
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Jangmi Suk
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Chaemin Baeg
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Sehee Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Ki Tae Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Min Gee Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Kun-Young Park
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| |
Collapse
|
32
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
33
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
34
|
Yazdi M, Hasanzadeh Kafshgari M, Khademi Moghadam F, Zarezade V, Oellinger R, Khosravi M, Haas S, Hoch CC, Pockley AG, Wagner E, Wollenberg B, Multhoff G, Bashiri Dezfouli A. Crosstalk Between NK Cell Receptors and Tumor Membrane Hsp70-Derived Peptide: A Combined Computational and Experimental Study. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305998. [PMID: 38298098 PMCID: PMC11005703 DOI: 10.1002/advs.202305998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mina Yazdi
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical ElectronicsCampus Klinikum München rechts der IsarTranslaTUMTechnische Universität München81675MunichGermany
| | | | - Vahid Zarezade
- Behbahan Faculty of Medical SciencesBehbahan6361796819Iran
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsSchool of MedicineTechnische Universität München81675MunichGermany
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
| | - Mohammad Khosravi
- Department of PathobiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvaz6135783151Iran
| | - Stefan Haas
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Cosima C. Hoch
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Alan Graham Pockley
- John van Geest Cancer Research CentreSchool of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | - Ernst Wagner
- Pharmaceutical BiotechnologyDepartment of PharmacyLudwig‐Maximilians‐Universität (LMU)81377MunichGermany
| | - Barbara Wollenberg
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM)School of MedicineTechnische Universität München81675MunichGermany
- Department of Radiation OncologySchool of MedicineTechnische Universität München81675MunichGermany
- Department of OtorhinolaryngologySchool of MedicineTechnische Universität München81675MunichGermany
| |
Collapse
|
35
|
Abbaszade Dibavar M, Soleimani M, Mohammadi MH, Zomorrod MS. High yield killing of lymphoma cells by anti-CD22 CAR-NK cell therapy. In Vitro Cell Dev Biol Anim 2024; 60:321-332. [PMID: 38589736 DOI: 10.1007/s11626-024-00895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Chimeric antigen receptors (CARs) offer a promising new approach for targeting B cell malignancies through the immune system. Despite the proven effectiveness of CAR T cells targeting CD19 and CD22 in hematological malignancies, it is imperative to note that their production remains a highly complex process. Unlike T cells, NK cells eliminate targets in a non-antigen-specific manner while avoiding graft vs. host disease (GvHD). CAR-NK cells are considered safer than CAR-T cells because they have a shorter lifespan and produce less toxic cytokines. Due to their unlimited ability to proliferate in vitro, NK-92 cells can be used as a source for CAR-engineered NK cells. We found that CARs created from the m971 anti-CD22 mAb, which specifically targets a proximal CD22 epitope, were more effective at anti-leukemic activity compared to those made with other binding domains. To further enhance the anti-leukemic capacity of NK cells, we used lentiviral transduction to generate the m971-CD28-CD3ζ NK-92. CD22 is highly expressed in B cell lymphoma. To evaluate the potential of targeting CD22, Raji cells were selected as CD22-positive cells. Our study aimed to investigate CD22 as a potential target for CAR-NK-92 therapy in the treatment of B cell lymphoma. We first generated m971-CD28-CD3ζ NK-92 that expressed a CAR for binding CD22 in vitro. Flow cytometric analysis was used to evaluate the expression of CAR. The 7AAD determined the cytotoxicity of the m971-CD28-CD3ζ NK-92 towards target lymphoma cell lines by flow cytometry assay. The ELISA assay evaluated cytokine production in CAR NK-92 cells in response to target cells. The m971-CD28-CD3ζ NK-92 cells have successfully expressed the CD22-specific CAR. m971-CD28-CD3ζ NK-92 cells efficiently lysed CD22-expressing lymphoma cell lines and produced large amounts of cytokines such as IFN-γ and GM-CSF but a lower level of IL-6 after coculturing with target cells. Based on our results, it is evident that transferring m971-CD28-CD3ζ NK-92 cells could be a promising immunotherapy for B cell lymphoma.
Collapse
Affiliation(s)
- Mahnoosh Abbaszade Dibavar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hossein Mohammadi
- HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Lee G, Kim A, Kang HR, Hwang JH, Park JH, Lee MJ, Kim B, Kim SM. Porcine interferon-α linked to the porcine IgG-Fc induces prolonged and broad-spectrum antiviral effects against foot-and-mouth disease virus. Antiviral Res 2024; 223:105836. [PMID: 38360296 DOI: 10.1016/j.antiviral.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.
Collapse
Affiliation(s)
- Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Aro Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Hyo Rin Kang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Hyeon Hwang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Byounghan Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
37
|
Huang H, Zhang S, Zhao Y, Xu R, Tan WS, Cai H. Suspension culture promoted the expansion of NK-92 cells ex vivo by enhancing the expression of IL-2 receptor. Biotechnol J 2024; 19:e2300654. [PMID: 38472089 DOI: 10.1002/biot.202300654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Vigorous ex vivo expansion of NK-92 cells is a pivotal step for clinical adoptive immunotherapy. Interleukin-2 (IL-2) is identified as a key cytokine for NK-92 cells, and it can stimulate cell proliferation after binding to the IL-2 receptor (IL-2R). In this work, the differences in IL-2 consumption and IL-2R expression were investigated between the two culture modes. The results showed that suspension culture favored ex vivo expansion of NK-92 cells compared with static culture. The specific consumption rate of IL-2 in suspension culture was significantly higher than that in static culture. It was further found that the mRNA levels of the two IL-2R subunits remained unchanged in suspension culture, but the proportion of NK-92 cells expressing IL-2Rβ was increased, and the fluorescence intensity of IL-2Rβ was remarkably enhanced. Meanwhile, the proportion of cells expressing IL-2R receptor complex also increased significantly. Correspondingly, the phosphorylation of STAT5, a pivotal protein in the downstream signaling pathway of IL-2, was up-regulated. Notably, the expression level and colocalization coefficient of related endosomes during IL-2/IL-2R complex endocytosis were markedly elevated, suggesting the enhancement of IL-2 endocytosis. Taken together, these results implied that more IL-2 was needed to support cell growth in suspension culture. Therefore, the culture process was optimized from the perspective of cytokine utilization to further improve the NK-92 cell's expansion ability and function. This study provides valuable insight into the efficient ex vivo expansion of NK-92 cells.
Collapse
Affiliation(s)
- Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shumin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruisheng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Schiavoni G, Messina B, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Bon G, Maugeri-Saccà M. Role of Hippo pathway dysregulation from gastrointestinal premalignant lesions to cancer. J Transl Med 2024; 22:213. [PMID: 38424512 PMCID: PMC10903154 DOI: 10.1186/s12967-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Giulia Schiavoni
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
39
|
Saito LM, Ortiz RC, Amôr NG, Lopes NM, Buzo RF, Garlet GP, Rodini CO. NK cells and the profile of inflammatory cytokines in the peripheral blood of patients with advanced carcinomas. Cytokine 2024; 174:156455. [PMID: 38043142 DOI: 10.1016/j.cyto.2023.156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Natural killer (NK) cells are one of the most crucial immune cells that mediate the antitumoral response due to their ability to immediately recognize and eliminate transformed cells. Because of their great cytotoxic activity, the function of NK cells must be robustly regulated to avoid tissue damage. Such regulation is mediated by a coordinated engagement of activating (NKp46) and inhibitory (CD158b) receptors, which tumor cells may use to escape from immunosurveillance. Also, NK cells are generally divided based on surface molecules, such as CD16 and CD56, and can be classified as CD56brightCD16- (regulatory) and CD56dimCD16+ (cytotoxic) NK cells. Here, we aimed to evaluate the frequency and phenotype of circulating NK cells in patients with advanced carcinomas, as well as their systemic cytokine/chemokine and growth factors production. METHODS Peripheral blood was collected from 24 patients with advanced solid cancer during or after treatment and from 10 healthy donors. The frequency and the expression of activating (NKp46) and inhibitory (CD158b) molecules of CD56brightCD16- and CD56dimCD16+ NK cells were assessed by flow cytometry and the multiplex Luminex platform was used to quantify the secreted factors in peripheral blood serum. RESULTS Cancer patients had a lower frequency of the cytotoxic CD56dim CD16+ NK cells subset in comparison with healthy controls. Also, the regulatory CD56bright CD16- NKs isolated from cancer patients exhibited a significantly lower expression of NKp46. Among 29 immunological and growth factors analyzed in the peripheral blood of oncologic patients, MCP-1, IP-10, and eotaxin, and VEGF they have presented a higher proportion. The Pearson correlation test showed that IL-12p40 positively correlates with CD56brightCD16- NK cells. We also observed a positive correlation between MCP-1 and the activating marker NKp46, as well as a negative correlation between IP-10 and TNF-α and NKp46. CD158b expression in CD56dimCD16+ was positively correlated with EGF and negatively correlated with MIP-1β. CONCLUSIONS Taken together, these results suggest that cancer patients present a shift towards a poorly cytotoxic and less activated NK profile which may contribute to tumor development and progression. The understanding of NK cell biology and soluble factors during tumor development could aid in the design of possible targeting therapeutic approaches.
Collapse
Affiliation(s)
- Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil; Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), São Paulo, Brazil.
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
40
|
Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol 2024; 40:101871. [PMID: 38134841 PMCID: PMC10776659 DOI: 10.1016/j.tranon.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia.
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| | | | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| |
Collapse
|
41
|
Ma M, Xie Y, Liu J, Wu L, Liu Y, Qin X. Biological effects of IL-21 on immune cells and its potential for cancer treatment. Int Immunopharmacol 2024; 126:111154. [PMID: 37977064 DOI: 10.1016/j.intimp.2023.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Interleukin-21 (IL-21), a member of the IL-2 cytokine family, is one of the most important effector and messenger molecules in the immune system. Produced by various immune cells, IL-21 has pleiotropic effects on innate and adaptive immune responses via regulation of natural killer, T, and B cells. An anti-tumor role of IL-21 has also been reported in the literature, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the tumor cell. Anti-tumor effect of IL-21 enhances when combined with other agents that target tumor cells, immune regulatory circuits, or other immune-enhancing molecules. Therefore, understanding the biology of IL-21 in the tumor microenvironment (TME) and reducing its systemic toxic and side effects is crucial to ensure the maximum benefits of anti-tumor treatment strategies. In this review, we provide a comprehensive overview on the biological functions, roles in tumors, and the recent advances in preclinical and clinical research of IL-21 in tumor immunotherapy.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
42
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
43
|
Hossenipour Khodaei S, Sabetnam S, Nozad Charoudeh H, Dizaji Asl K, Rafat A, Mazloumi Z. The effect of mitochondria inhibition on natural killer cells cytotoxicity in triple-negative breast cancer cells. Eur J Pharmacol 2023; 960:176106. [PMID: 37839666 DOI: 10.1016/j.ejphar.2023.176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Triple-Negative Breast Cancer (TNBC), the most common invasive breast cancer, depicts cancer poor response to conventional therapies. The clinical management of TNBC is a challenging issue. Natural killer (NK) cell therapy in the field of cancer treatment is rapidly growing however, regarding the immunogenicity of breast cancer cells, this type of therapy has shown limited efficacy. Recently, targeting tumor biomarkers has revolutionized the field of cancer therapy. Mitochondria affects apoptosis and innate immunity. Therefore, in this study, mitochondria were inhibited with Tigecycline in stimulating the cytotoxicity of NK cells against TNBC cell lines. MDA-MB-468 and MDA-MB-231 were cultured and treated with IC50 (the half-maximal inhibitory concentration) level of Tigecycline for 48 h and afterward co-cultured with peripheral blood NK cells for 5 h. Lastly, the inhibitory effects of mitochondria on the cytotoxicity of NK cells and apoptosis of TNBC cells were evaluated. Moreover, the expression of apoptotic-related genes was studied. The results showed that mitochondria inhibition increased NK cells cytotoxicity against TNBC cells. Moreover, NK cell/mitochondria inhibition in a combinative form improved apoptosis in TNBC cells by the upregulation of Bad and Bid expression. In conclusion, Tigecycline inhibited mitochondria and sensitized TNBC cells to NK cell therapy. Therefore, mitochondria inhibition could help NK cells function properly.
Collapse
Affiliation(s)
- Sepide Hossenipour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Turkey
| | - Shahbaz Sabetnam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Mersin 10, Kyrenia, Turkey; Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | | | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Ning Z, Liu Y, Guo D, Lin WJ, Tang Y. Natural killer cells in the central nervous system. Cell Commun Signal 2023; 21:341. [PMID: 38031097 PMCID: PMC10685650 DOI: 10.1186/s12964-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells are essential components of the innate lymphoid cell family that work as both cytotoxic effectors and immune regulators. Accumulating evidence points to interactions between NK cells and the central nervous system (CNS). Here, we review the basic knowledge of NK cell biology and recent advances in their roles in the healthy CNS and pathological conditions, with a focus on normal aging, CNS autoimmune diseases, neurodegenerative diseases, cerebrovascular diseases, and CNS infections. We highlight the crosstalk between NK cells and diverse cell types in the CNS and the potential value of NK cells as novel therapeutic targets for CNS diseases. Video Abstract.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
45
|
Kim HW, Ko MK, Park SH, Shin S, Kim SM, Park JH, Lee MJ. Bestatin, A Pluripotent Immunomodulatory Small Molecule, Drives Robust and Long-Lasting Immune Responses as an Adjuvant in Viral Vaccines. Vaccines (Basel) 2023; 11:1690. [PMID: 38006022 PMCID: PMC10675184 DOI: 10.3390/vaccines11111690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNβ, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (H.W.K.); (M.-K.K.); (S.H.P.); (S.S.); (S.-M.K.); (J.-H.P.)
| |
Collapse
|
46
|
Wang Y, Sun P, Hao X, Cao D, Liu J, Zhang D. Decreased DIO3OS Expression Predicts Poor Prognosis in Hepatocellular Carcinoma and is Associated with Immune Infiltration. Biochem Genet 2023; 61:1791-1806. [PMID: 36802306 DOI: 10.1007/s10528-023-10345-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Hepatocellular carcinoma has become one of the most shared cancers in the whole world because of its high morbidity, poor survival rate, and low recovery rate. LncRNA DIO3 opposite strand upstream RNA (DIO3OS) has been reported to be obviously important in several human cancers, while its biological function in hepatocellular carcinoma (HCC) remains unclear. Here, DIO3OS gene expression data and clinical information of HCC patients were extracted from the Cancer Genome Atlas (TCGA) database and the university of California Santa Cruz (UCSC) Xena database. In our study, the Wilcoxon rank sum test was used to compare DIO3OS expression between healthy individuals and HCC patients. It was found that patients with HCC had significantly lower DIO3OS expression than healthy individuals. Furthermore, Kaplan-Meier curves and Cox regression analysis showed that high DIO3OS expression tended to predict better prognosis and higher survival rate in HCC patients. In addition, the gene set enrichment analysis (GSEA) assay was used to annotate the biological function of DIO3OS. It was found that DIO3OS was significantly correlated with immune invasion in HCC. This was also aided by the subsequent ESTIMATE assay. Our study provides a novel biomarker and therapeutic strategy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China
| | - Ping Sun
- Department of Immunology, Weifang Medical University, Weifang, 261053, Shandong Province, China
| | - Xinping Hao
- Department of Intensive Care Unit, Weifang Traditional Chinese Medicine Hospital, Weifang, 261041, Shandong Province, China
| | - Daihong Cao
- Dpartment of Pathology, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, 030000, Shanxi Province, China
| | - Jiangyue Liu
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Daijuan Zhang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
47
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
48
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
49
|
Platonova N, Lazzari E, Colombo M, Falleni M, Tosi D, Giannandrea D, Citro V, Casati L, Ronchetti D, Bolli N, Neri A, Torricelli F, Crews LA, Jamieson CHM, Chiaramonte R. The Potential of JAG Ligands as Therapeutic Targets and Predictive Biomarkers in Multiple Myeloma. Int J Mol Sci 2023; 24:14558. [PMID: 37834003 PMCID: PMC10572399 DOI: 10.3390/ijms241914558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The NOTCH ligands JAG1 and JAG2 have been correlated in vitro with multiple myeloma (MM) cell proliferation, drug resistance, self-renewal and a pathological crosstalk with the tumor microenvironment resulting in angiogenesis and osteoclastogenesis. These findings suggest that a therapeutic approach targeting JAG ligands might be helpful for the care of MM patients and lead us to explore the role of JAG1 and JAG2 in a MM in vivo model and primary patient samples. JAG1 and JAG2 protein expression represents a common feature in MM cell lines; therefore, we assessed their function through JAG1/2 conditional silencing in a MM xenograft model. We observed that JAG1 and JAG2 showed potential as therapeutic targets in MM, as their silencing resulted in a reduction in the tumor burden. Moreover, JAG1 and JAG2 protein expression in MM patients was positively correlated with the presence of MM cells in patients' bone marrow biopsies. Finally, taking advantage of the Multiple Myeloma Research Foundation (MMRF) CoMMpass global dataset, we showed that JAG2 gene expression level was a predictive biomarker associated with patients' overall survival and progression-free survival, independently from other main molecular or clinical features. Overall, these results strengthened the rationale for the development of a JAG1/2-tailored approach and the use of JAG2 as a predictive biomarker in MM.
Collapse
Affiliation(s)
- Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Elisa Lazzari
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, La Jolla, CA 92093, USA; (L.A.C.); (C.H.M.J.)
- UC San Diego Sanford, Stem Cell Institute, La Jolla, CA 92037, USA
| | - Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Monica Falleni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
- Unit of Pathology A.O. San Paolo, Via A. Di Rudinì 8, 20142 Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
- Unit of Pathology A.O. San Paolo, Via A. Di Rudinì 8, 20142 Milan, Italy
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; (D.R.); (N.B.)
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; (D.R.); (N.B.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Leslie A. Crews
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, La Jolla, CA 92093, USA; (L.A.C.); (C.H.M.J.)
| | - Catriona H. M. Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, La Jolla, CA 92093, USA; (L.A.C.); (C.H.M.J.)
- UC San Diego Sanford, Stem Cell Institute, La Jolla, CA 92037, USA
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (N.P.); (E.L.); (M.C.); (M.F.); (D.T.); (D.G.); (V.C.); (L.C.)
| |
Collapse
|
50
|
Jin M, Kim CA, Bae DJ, Kim SY, Kim TY, Kim WB, Shong YK, Kim WG, Jeon MJ. Changes in peripheral blood immune cell population in thyroid cancer patients treated with lenvatinib. Sci Rep 2023; 13:12765. [PMID: 37550394 PMCID: PMC10406916 DOI: 10.1038/s41598-023-39503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
This study evaluated changes in the peripheral blood immune cell population in patients with advanced thyroid cancer receiving lenvatinib treatment to confirm the immune-modulatory effect of lenvatinib. After obtaining informed consent from patients, we prospectively collected 20 ml of whole blood at 2-3 months intervals 2-4 times from each patient; peripheral blood mononuclear cells (PBMCs) were separated, and the Maxpar Direct Immune Profiling Assay was performed. A total of 10 patients were enrolled, and 31 blood samples were obtained. The median age of patients was 65 years, and all patients showed durable responses to the lenvatinib treatment. When we compared the PBMC profiles between the pre-treatment, on-treatment, and off-treatment samples, the peripheral natural killer (NK) cell proportion differed significantly. The proportion of NK cells among total live cells significantly increased from 9.3 ± 4.5 (%) in the pre-treatment samples to 20.8 ± 7.9 (%) in the on-treatment samples (P = 0.009) and decreased to 13.3 ± 3.1 (%) in the off-treatment samples (P = 0.07). There was a significant increase in the peripheral NK cell population with lenvatinib treatment in advanced thyroid cancer patients. This finding confirms the immune-modulatory effect of lenvatinib.
Collapse
Affiliation(s)
- Meihua Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, Dankook University College of Medicine, Cheonan, 3116, Korea
| | - Chae A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Jun Bae
- PrismCDX Co., Ltd., 593-16, Dongtan Giheung-ro, Hwaseoung-si, 18469, Gyeonggi-do, Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|