1
|
Pan C, Wang K, Hong R, Wang X, Zhang Y, Fan Z, Shi Y, Liu T, Chen H. Chronic microcystin-leucine-arginine exposure induces osteoporosis by breaking the balance of osteoblasts and osteoclasts. ENVIRONMENTAL RESEARCH 2024; 263:120098. [PMID: 39366441 DOI: 10.1016/j.envres.2024.120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Microcystin-leucine-arginine (MC-LR) produced by cyanobacterial harmful algal blooms are hazardous materials. However, the toxicity and mechanisms of continuous exposure to MC-LR on the occurrence of osteoporosis remains poorly documented. In this study, to mimic the chronic influences of MC-LR on the bone tissues in humans, an animal model was constructed in which mice were treated with MC-LR through drinking water at an environmentally relevant level (1-30 μg/L) for 6 months. MC-LR was enriched in the skeletal system, leading to the destruction of bone microstructure, the decrease of bone trabecular number, the reduction of osteoblasts, the enhanced content of lipid droplets, and the activation of osteoclasts, which is the characteristic of osteoporosis. Herein, we revealed ferroptosis is a vital mechanism of osteoblast death in mouse models of MC-LR. MC-LR exposure activates AMPK/ULK1 signaling, further promotes ferritin selective autophagy, causes free iron release and lipid peroxidation deposition, and eventually leads to ferroptosis of osteoblasts. Importantly, the use of AMPK or ferroptosis inhibitors in vivo markedly reduced MC-LR-induced osteoblast death and impaired osteogenic differentiation. Interestingly, MC-LR exposure promotes iron uptake in bone marrow macrophages through the TF-TFR1 pathway, leading to its transformation to TRAP-positive pre-osteoclast cells, thereby promoting bone resorption. Overall, our data innovatively revealed the core mechanism of MC-LR-induced osteoporosis, providing the bi-directional regulation of MC-LR on osteoblast-osteoclast from the perspective of iron homeostasis imbalance.
Collapse
Affiliation(s)
- Chun Pan
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Kehan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Runyang Hong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xinglong Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yao Zhang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujie Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Canalis E, Schilling L, Denker E. TNFα has differential effects on the transcriptome profile of selected populations in murine cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100528. [PMID: 39494399 PMCID: PMC11530803 DOI: 10.1016/j.ocarto.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Objective To further our understanding of the role of tumor necrosis factor (TNF)α on the inflammatory response in chondrocytes. Design We explored the effects of TNFα on the transcriptome of epiphyseal chondrocytes from newborn C57BL/6 mice at the total and single cell (sc) resolution. Results Gene set enrichment analysis of total RNA-Seq from TNFα-treated chondrocytes revealed enhanced response to biotic stimulus, defense and immune response and cytokine signaling and suppressed cartilage and skeletal morphogenesis and development. scRNA-Seq analyzed 14,239 cells and 24,320 genes and distinguished 16 cell clusters. The more prevalent ones were constituted by limb bud and chondrogenic cells and fibroblasts comprising ∼73 % of the cell population. Genes expressed by joint fibroblasts were detected in 5 clusters comprising ∼45 % of the cells isolated. Pseudotime trajectory finding revealed an association between fibroblast and chondrogenic clusters which was not modified by TNFα. TNFα decreased the total cells recovered by 18.5 % and the chondrogenic, limb bud and mesenchymal clusters by 32 %, 27 % and 7 %, respectively. TNFα had profound effects on the insulin-like growth factor (IGF) axis decreasing Igf1, Igf2 and Igfbp4 and inducing Igfbp3 and Igfbp5, explaining an inhibition of collagen biosynthesis, cartilage and skeletal morphogenesis. Ingenuity Pathway Analysis of scRNA-Seq data revealed that TNFα enhanced the osteoarthritis, rheumatoid arthritis, pathogen induced cytokine storm and interleukin 6 signaling pathways and suppressed fibroblast growth factor signaling. Conclusions Epiphyseal chondrocytes are constituted by diverse cell populations distinctly regulated by TNFα to promote inflammation and suppression of matrix biosynthesis and growth.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA
- Departments of Medicine, UConn Health, Farmington, CT 06030, USA
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Emily Denker
- UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Li G, Peng B, Fan J, Lin D, He K, Zou R, Fan X. Risk of myocardial infarction and Osteoporosis: Insights from the 2015-2018 NHANES and Mendelian randomization Studies. IJC HEART & VASCULATURE 2024; 55:101501. [PMID: 39749285 PMCID: PMC11693876 DOI: 10.1016/j.ijcha.2024.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025]
Abstract
Background There are some common pathophysiological risk factors between myocardial infarction and osteoporosis, and the exact relationship between the two is not yet clear. Our study aims to provide evidence on the relationship between myocardial infarction and osteoporosis through the analysis of data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis from 2015 to 2018. Methods A two-sample MR study using summary statistics from genome-wide association studies (GWAS) was conducted to determine the causal relationship between myocardial infarction and osteoporosis. The Inverse Variance Weighted (IVW) method and other supplementary MR methods were used to validate the causal relationship between myocardial infarction and osteoporosis. Sensitivity analysis was performed to verify the robustness of the results. Weighted multivariable adjusted logistic regression was used on the NHANES 2015-2018 data to evaluate the relationship between HDL, LDL, and BMD factors closely related to myocardial infarction. Results An observational study conducted in NHANES included a total of 2516 participants. Weighted multivariable adjusted logistic regression analysis showed that HDL was positively correlated with BMD, with OR and 95 % CI of 0.051 and 0.013-0.088, respectively. LDL was negatively correlated with BMD. The MR analysis also indicated a causal relationship between myocardial infarction and osteoporosis (IVW (OR = 1.16, 95 % CI = 1.02-1.32, P = 0.03)). Sensitivity analysis further confirmed the robustness and reliability of these study results (all P > 0.05). Conclusion There is a causal relationship between myocardial infarction and osteoporosis.
Collapse
Affiliation(s)
- Guanmou Li
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Zhujiang Hospital of Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Bo Peng
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Junqiao Fan
- School of Electrical and Electronic Engineering, Nanyang Technology University, 999002, Singapore
| | - Dongqun Lin
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Kunyang He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| |
Collapse
|
4
|
Hurley-Novatny A, Chang D, Murakami K, Wang L, Li H. Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation. Front Endocrinol (Lausanne) 2024; 15:1398050. [PMID: 39669499 PMCID: PMC11634624 DOI: 10.3389/fendo.2024.1398050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, fatal muscle wasting disease caused by X-linked mutations in the dystrophin gene. Alongside the characteristic muscle weakness, patients face a myriad of skeletal complications, including osteoporosis/osteopenia, high susceptibility to vertebral and long bone fractures, fat embolism post-fracture, scoliosis, and growth retardation. Those skeletal abnormalities significantly compromise quality of life and are sometimes life-threatening. These issues were traditionally attributed to loss of ambulation and chronic corticosteroid use, but recent investigations have unveiled a more intricate etiology. Factors such as vitamin D deficiency, hormonal imbalances, systemic inflammation, myokine release from dystrophic muscle, and vascular dysfunction are emerging as significant contributors as well. This expanded understanding illuminates the multifaceted pathogenesis underlying skeletal issues in DMD. Present therapeutic options are limited and lack specificity. Advancements in understanding the pathophysiology of bone complications in DMD will offer promising avenues for novel treatment modalities. In this review, we summarize the current understanding of factors contributing to bone problems in DMD and delineate contemporary and prospective multidisciplinary therapeutic approaches.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David Chang
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Katsuhiro Murakami
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Ling Wang
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Hongshuai Li
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Shiozawa Y, Parajuli KR, Pienta K, Taichman R. Role of Chemokines and Cytokines in Prostate Cancer Skeletal Metastasis. Curr Osteoporos Rep 2024; 23:3. [PMID: 39585513 DOI: 10.1007/s11914-024-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Once prostate cancer (PCa) bone metastases develop, the prognosis dramatically declines. The precise mechanisms regulating bone metastasis remain elusive. This review will explore recent findings related to cytokines and chemokines in the process of bone metastases. RECENT FINDINGS We discuss the role of cytokines in tumor growth, invasion, bone remodelling and angiogenesis and immune regulation in PCa skeletal metastases. Major advances in our understanding focus on immune evasion, immune checkpoint blockade, tumor-associated macrophages (TAMs), CAR-T cells, cytokine regulation of matrix metalloproteinases, cytokines including IL-10, IL-27, Interferon-γ, prostate transmembrane protein androgen induced 1 (Pmepa1), and regulation of RUNX2 transcription in supporting survival and growth of disseminated tumor cells (DTCs) and metastases development. The review highlights the complexity of cytokine actions in PCa bone metastases, suggesting potential therapeutic targets to disrupt interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA.
| | - Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Pienta
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Russell Taichman
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA.
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
- Department of Basic & Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Han K, Wang X. Clinical efficacy and outcomes of calcitriol combined with bisphosphonates in the treatment of postmenopausal osteoporosis: A quasi-experimental study. Medicine (Baltimore) 2024; 103:e40171. [PMID: 39533562 PMCID: PMC11557120 DOI: 10.1097/md.0000000000040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND A quasi-experimental study was conducted to investigate the clinical efficacy and outcomes of calcitriol combined with bisphosphonates in the treatment of postmenopausal osteoporosis (OP). METHODS A total of 152 patients with postmenopausal OP from March 2019 to June 2021 were enrolled. The patients who received calcitriol treatment were adopted as the control group, and the patients treated with calcitriol combined with bisphosphonates were considered as the intervention group. The treatment effects of patients were compared, and the pain degree of the joints of the patients was evaluated by Visual Analogue Scale/Score (VAS), the Barthel Index score was used to evaluate the daily living ability of patients, the hand and Oswestry Disability Index (ODI) were used to evaluate the dysfunction before and after treatment, and the bone metabolism indexes, immune cytokines and bone mineral density were detected before and after treatment, and the incidence of adverse reactions was calculated. RESULTS Regarding the therapeutic effects, the intervention group indicated an effective rate of 96.05% while the effective rate was 84.21% in the control group. The total effective rate of treatment in the intervention group was higher than the control group. The VAS, ODI scores, and bone metabolism indexes of the intervention group were significantly lower than the control group at 1, 2, and 3 months after treatment. The Barthel Index scores and bone mineral density of the intervention group were higher than the control group at 1, 2, and 3 months after treatment. The improvement of immune cytokines in the intervention group was significantly better than the control group (P < .05). One patient in the intervention group developed dizziness and 1 patient developed chills, with an adverse reaction rate of 2.63%, while in the control group, 2 patients had fever, and 2 patients developed chills, with an adverse reaction rate of 5.26% (P > .05). CONCLUSION Calcitriol combined with bisphosphonates has a significant clinical effect in the treatment of postmenopausal OP, which can significantly relieve bone pain in postmenopausal OP patients, enhance abnormal bone metabolism and immune function, and promote bone mineral density and daily living ability.
Collapse
Affiliation(s)
- Kui Han
- General Practice Department, Shanghai Changfeng Community Health Service Center of Putuo District, Shanghai, China
| | - Xiaoyan Wang
- General Practice Department, Shanghai Changfeng Community Health Service Center of Putuo District, Shanghai, China
| |
Collapse
|
7
|
Liu B, Zhang Q. Systemic Immune-Inflammation-Based Biomarker and Fragility Fractures in People Living With HIV: A 10-Year Follow-Up Cohort Study in China. J Med Virol 2024; 96:e70052. [PMID: 39530247 DOI: 10.1002/jmv.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Fragility fractures are a significant concern among people living with HIV(PLWH) due to the combined effects of chronic inflammation, immune dysregulation, and antiretroviral therapy. Traditional biomarkers have limited predictive value for fragility fractures in this population. This study aims to evaluate the systemic immune inflammation-based scores as novel biomarkers for predicting fragility fractures in PLWH in China. We conducted a cohort study of PLWH in the orthopedic department of Beijing Ditan Hospital from January 2011 to September 2023. We monitored fragility fractures and collected data on demographics, clinical characteristics, and laboratory parameters. Multivariate Cox and logistic regression models were used to assess the predictive value of the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI) for fragility fractures. Restricted cubic splines (RCS) were employed to explore potential nonlinear relationships, and subgroup analyses were conducted to examine the stability of these associations. During a median follow-up of 5.5 years, our study included 1148 PLWH patients, and 204 patients (17.8%) experienced fragility fractures. After adjusting for all covariates, SII and SIRI were identified as independent risk factors for fragility fractures in PLWH, whereas NLR, PLR, and MLR were not. Patients with higher levels of SII and SIRI had a significantly increased risk of fragility fractures compared to those with lower levels (HR: 1.96, 95% CI: 1.24-3.10, p = 0.004; HR: 1.83, 95% CI: 1.16-2.88, p = 0.009). RCS analysis indicated a stable linear relationship between SIRI and fragility fractures. Furthermore, KM curves demonstrated that patients with higher SII and SIRI scores had a higher likelihood of experiencing fragility fractures. Our research shows that SII and SIRI are promising biomarkers for predicting fragility fractures in PLWH. Clinicians should consider incorporating SIRI into clinical practice to improve fracture risk stratification and guide preventive strategies for this vulnerable population.
Collapse
Affiliation(s)
- Bo Liu
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopaedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Cardoso LM, de Carvalho ABG, Anselmi C, Mahmoud AH, Dal-Fabbro R, Basso FG, Bottino MC. Bifunctional naringenin-laden gelatin methacryloyl scaffolds with osteogenic and anti-inflammatory properties. Dent Mater 2024; 40:1353-1363. [PMID: 38876826 DOI: 10.1016/j.dental.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To fabricate and characterize an innovative gelatin methacryloyl/GelMA electrospun scaffold containing the citrus flavonoid naringenin/NA with osteogenic and anti-inflammatory properties. METHODS GelMA scaffolds (15 % w/v) containing 0/Control, 5, 10, or 20 % of NA w/w were obtained via electrospinning. The chemical composition, fiber morphology/diameter, swelling/degradation profile, and NA release were investigated. Cytotoxicity, cell proliferation, adhesion and spreading, total protein/TP production, alkaline phosphatase/ALP activity, osteogenic genes expression (OCN, OPN, RUNX2), and mineralized nodules deposition/MND with human alveolar bone-derived mesenchymal stem cells (aBMSCs) seeded on the scaffolds were assessed. Moreover, aBMSCs seeded on the scaffolds and stimulated with tumor necrosis factor-alpha/TNF-α were submitted to collagen, nitric oxide/NO, interleukin/IL-1α, and IL-6 production assessment. Data were analyzed using ANOVA and t-student/post-hoc tests (α = 5 %). RESULTS NA-laden scaffolds presented increased fiber diameter, lower swelling capacity, and faster degradation profile over 28 days (p < 0.05). NA release was detected over time. Cell adhesion and spreading, and TP production were similar between GelMA and GelMA+NA5 % scaffolds, while cell proliferation, ALP activity, OCN/OPN/RUNX2 gene expression, and MND were higher for GelMA+NA5 % scaffolds (p < 0.05). Cells seeded on control scaffolds and TNF-α-stimulated presented higher levels of NO, IL-1α/IL-6, and lower levels of collagen (p < 0.05). In contrast, cells seeded on GelMA+NA5 % scaffolds showed downregulation of inflammatory markers and higher collagen synthesis (p < 0.05). SIGNIFICANCE GelMA+NA5 % scaffold was cytocompatible, stimulated aBMSCs proliferation and differentiation, and downregulated inflammatory mediators' synthesis, suggesting its therapeutic effect as a multi-target bifunctional scaffold with osteogenic and anti-inflammatory properties for bone tissue engineering.
Collapse
Affiliation(s)
- Lais M Cardoso
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan-School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP)-Araraquara School of Dentistry, Humaitá 1680, Araraquara, SP 14801-903, Brazil
| | - Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan-School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP)-São Jose dos Campos School of Dentistry, Eng. Francisco Jose Longo 777, São Jose Dos Campos, SP 12245-000, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan-School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Morphology and Pediatric Dentistry, São Paulo State University (UNESP)-Araraquara School of Dentistry, Humaitá 1680, Araraquara, SP 14801-903, Brazil
| | - Abdel H Mahmoud
- Department of Oral Biology and Pathology, Stony Brook University-School of Dental Medicine, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan-School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Fernanda G Basso
- Department of Phisiology and Pathology, São Paulo State University (UNESP), Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan-School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Kondo M, Ishigami M, Omoda M, Takeshita M, Arimoto N, Nishimura R, Maehara T, Naito T, Kojima M, Umemura O, Yokota M, Hanada N, Wakai K, Naito M. Association between the number of existing teeth and maintenance dialysis therapy: A cross-sectional study of adult male dentists. PLoS One 2024; 19:e0309012. [PMID: 39150920 PMCID: PMC11329141 DOI: 10.1371/journal.pone.0309012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024] Open
Abstract
Dental caries and periodontal disease are typical oral diseases frequently observed in patients with renal diseases. Tooth loss is an outcome of dental caries and periodontal disease, and the number of existing teeth is an indicator of oral health status. However, the association between the number of existing teeth and end-stage kidney disease (ESKD) has not been investigated in detail. This study aimed to investigate the association between oral health status, expressed by the number of existing teeth, and ESKD. We analyzed data from the second survey of the Longitudinal Evaluation of Multi-phasic, Odontological, and Nutritional Associations in Dentists, a cohort study conducted among members of the Japan Dental Association. From August 2016 to July 2017, self-administered questionnaires were mailed to 16,128 male dentists and 8,722 responded. Among them, 7,479 men with complete data on age, number of existing teeth, and ESKD were included in the analysis. Multivariate logistic regression analysis was conducted, with ESKD as the dependent variable and the number of existing teeth (≥23 teeth and <23 teeth) as the independent variable. Subgroup analysis by age (<65 years and ≥65 years) was also conducted. The <23 teeth group had a significantly higher rate of ESKD than did the ≥23 teeth group. After adjusting for age, body mass index, smoking habits, hypertension, and diabetes mellitus, there was no significant association between having <23 teeth and ESKD in all participants. However, the subgroup analysis revealed a significant association after adjustment for covariates in participants aged <65 years but not in those aged ≥65 years. In conclusion, having <23 teeth was associated with the risk of requiring maintenance dialysis therapy among Japanese men aged <65 years. Therefore, tooth loss may be associated with renal function decline.
Collapse
Affiliation(s)
| | | | - Maho Omoda
- Aoba Ward Welfare and Health Center, Yokohama City, Kanagawa, Japan
| | | | - Nishiki Arimoto
- Department of Oral Health Sciences, Otemae College, Nishinomiya, Hyogo, Japan
| | - Rumi Nishimura
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Maehara
- Department of Public Oral Health, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toru Naito
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | | | | | | | - Nobuhiro Hanada
- Institute of Photochemistry and Photocatalyst, University of Shanghai for Science and Technology, Shanghai, China
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Naito
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Cheng W, Tang X, Feng S, Zhang Z, Liu W. Influence of immunodeficiency on spring-assisted cranioplasty: A study in mice. Curr Probl Surg 2024; 61:101508. [PMID: 39098332 DOI: 10.1016/j.cpsurg.2024.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Wenjie Cheng
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China 100043
| | - Xiaojun Tang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China 100043
| | - Shi Feng
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China 100043
| | - Zhiyong Zhang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China 100043
| | - Wei Liu
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China 100043.
| |
Collapse
|
11
|
Kuroyanagi G, Hioki T, Matsushima-Nishiwaki R, Kozawa O, Tokuda H. Gallein increases the fibroblast growth factor 2-elicited osteoprotegerin synthesis in osteoblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130635. [PMID: 38788984 DOI: 10.1016/j.bbagen.2024.130635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Gallein is known as an inhibitor of Gβγ subunits, but roles of gallein in bone metabolism have not been reported. Fibroblast growth factor 2 (FGF-2) increases angiogenesis and promotes bone regeneration during the early stages of fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in the suppression of bone resorption. Our previous report demonstrated that FGF-2 activates the phosphorylation of p38 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (JNK), and p44/p42 MAPK in osteoblast-like MC3T3-E1 cells. Additionally, FGF-2-activated phosphorylation of p38 MAPK and JNK but not p44/p42 MAPK is positively involved in OPG synthesis in these cells. This work aimed to investigate the effects of gallein on the FGF-2-elicited OPG synthesis in osteoblast-like MC3T3-E1 cells and the mechanism. Our findings demonstrated that gallein significantly increased the FGF-2-elicited OPG synthesis in MC3T3-E1 cells. By contrast, fluorescein, gallein-like compound that does not bind Gβγ, did not affect the FGF-2-elicited OPG synthesis. Gallein significantly enhanced the FGF-2-induced OPG mRNA expression levels. Gallein did not affect the FGF-2-activated phosphorylation of p38 MAPK and p44/p42 MAPK, but significantly increased the FGF-2-activated phosphorylation of JNK, while fluorescein did not affect JNK phosphorylation. SP600125, a specific JNK inhibitor, strongly inhibited gallein-induced enhancement of FGF-2-induced OPG synthesis and mRNA expression levels. Our results indicated that gallein increases the FGF-2-induced OPG synthesis due to the JNK activation in the osteoblast.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopaedic Surgery, Nagoya City University, Nagoya 467-8601, Japan; Department of Rehabilitation Medicine, Nagoya City University, Nagoya 467-8601, Japan; Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Tomoyuki Hioki
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Gifu 505-0034, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| |
Collapse
|
12
|
Tritean N, Dimitriu L, Dima ȘO, Ghiurea M, Trică B, Nicolae CA, Moraru I, Nicolescu A, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Bioactive Hydrogel Formulation Based on Ferulic Acid-Grafted Nano-Chitosan and Bacterial Nanocellulose Enriched with Selenium Nanoparticles from Kombucha Fermentation. J Funct Biomater 2024; 15:202. [PMID: 39057323 PMCID: PMC11277923 DOI: 10.3390/jfb15070202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium nanoparticles (SeNPs) have specific properties that result from their biosynthesis particularities. Chitosan can prevent pathogenic biofilm development. A wide palette of bacterial nanocellulose (BNC) biological and physical-chemical properties are known. The aim of this study was to develop a hydrogel formulation (SeBNCSFa) based on ferulic acid-grafted chitosan and bacterial nanocellulose (BNC) enriched with SeNPs from Kombucha fermentation (SeNPsK), which could be used as an adjuvant for oral implant integration and other applications. The grafted chitosan and SeBNCSFa were characterized by biochemical and physical-chemical methods. The cell viability and proliferation of HGF-1 gingival fibroblasts were investigated, as well as their in vitro antioxidant activity. The inflammatory response was determined by enzyme-linked immunosorbent assay (ELISA) of the proinflammatory mediators (IL-6, TNF-α, and IL-1β) in cell culture medium. Likewise, the amount of nitric oxide released was measured by the Griess reaction. The antimicrobial activity was also investigated. The grafting degree with ferulic acid was approximately 1.780 ± 0.07% of the total chitosan monomeric units, assuming single-site grafting per monomer. Fourier-transform infrared spectroscopy evidenced a convolution of BNC and grafted chitosan spectra, and X-ray diffraction analysis highlighted an amorphous rearrangement of the diffraction patterns, suggesting multiple interactions. The hydrogel showed a high degree of cytocompatibility, and enhanced antioxidant, anti-inflammatory, and antimicrobial potentials.
Collapse
Affiliation(s)
- Naomi Tritean
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
- Faculty of Biology, University of Bucharest, Spl. Independentei nr. 91-95, Sector 5, 50095 Bucharest, Romania;
| | - Luminița Dimitriu
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Ștefan-Ovidiu Dima
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Marius Ghiurea
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Bogdan Trică
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Cristian-Andi Nicolae
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Ionuț Moraru
- Laboratoarele Medica Srl., Frasinului Str. nr. 11, 075100 Otopeni, Romania;
| | - Alina Nicolescu
- “Petru Poni” Institute for Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, Spl. Independentei nr. 91-95, Sector 5, 50095 Bucharest, Romania;
| | - Florin Oancea
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| | - Diana Constantinescu-Aruxandei
- Bioresource and Polymer Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania; (N.T.); (L.D.); (Ș.-O.D.); (M.G.); (B.T.); (C.-A.N.)
| |
Collapse
|
13
|
Wu MF, Zhou WC, Lin JS, Shen S. Role of Trace Cadmium Exposure on the Development of Occlusal Traumatic Temporomandibular Arthritis. J Craniofac Surg 2024:00001665-990000000-01760. [PMID: 38990042 DOI: 10.1097/scs.0000000000010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE To investigate whether heavy metal cadmium acts as a risk factor for temporomandibular joint disorder disease and to study its pathogenic mechanism. METHODS A total of 57 rats were allocated into 6 distinct groups, distinguished by 2 interventions: occlusal elevation and cadmium water gavage. These groups included a blank control group, occlusal elevation group, occlusal elevation + 0.42 mg/mL cadmium water gavage group, occlusal elevation + 4.2 mg/mL cadmium water gavage group, no occlusal elevation + 0.42 mg/mL cadmium water gavage group, and no occlusal elevation + 4.2 mg/mL cadmium water gavage group. The impact of cadmium exposure on cartilage oxidative stress was evaluated through the assessment of SOD, CAT, GST, and GSH-Px enzyme activities. In addition, the influence of cadmium exposure on alterations in the extracellular matrix and inflammatory mediators was examined by analyzing the expression levels of type II collagen, protein aggregation polysaccharide, glycosaminoglycan, IL1β, IL-6, and TNF-α. Histologic examination of the condylar process cartilage of rats in the occlusal elevation + cadmium water gavage group was conducted to ascertain the occurrence of osteoarthritis. RESULTS The variance in the expression levels of inflammatory factors did not demonstrate statistical significance between the occlusal elevation group and the blank control group; however, statistical significance was observed between the occlusal elevation + cadmium water gavage group and both the control and occlusal elevation groups. CONCLUSION The severity of inflammation and condylar lesions correlates directly with the concentration of cadmium.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Department of Stomatology, Sixth People's Hospital, Panyu District, Guangdong Province
| | - Wen-Cheng Zhou
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Hubei Province
| | | | - Shan Shen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangdong Province, China
| |
Collapse
|
14
|
Niu H, Zhou M, Xu X, Xu X. Bone Marrow Adipose Tissue as a Critical Regulator of Postmenopausal Osteoporosis - A Concise Review. Clin Interv Aging 2024; 19:1259-1272. [PMID: 39011312 PMCID: PMC11249116 DOI: 10.2147/cia.s466446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.
Collapse
Affiliation(s)
- Huifang Niu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaojuan Xu
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
15
|
Korgaonkar J, Tarman AY, Ceylan Koydemir H, Chukkapalli SS. Periodontal disease and emerging point-of-care technologies for its diagnosis. LAB ON A CHIP 2024; 24:3326-3346. [PMID: 38874483 DOI: 10.1039/d4lc00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Periodontal disease (PD), a chronic inflammatory disorder that damages the tooth and its supporting components, is a common global oral health problem. Understanding the intricacies of these disorders, from gingivitis to severe PD, is critical for efficient treatment, diagnosis, and prevention in dental care. Periodontal biosensors and biomarkers are critical in improving oral health diagnostic skills. Clinicians may accomplish early identification, tailored therapy, and efficient tracking of periodontal diseases by using these technologies, ushering in a new age of accurate oral healthcare. Traditional periodontitis diagnostic methods frequently rely on physical probing and visual examinations, necessitating the development of point-of-care (POC) devices. As periodontal disorders necessitate more precise and rapid diagnosis, incorporating novel innovations in biosensors and biomarkers becomes increasingly crucial. These innovations improve our capacity to diagnose, monitor, and adapt periodontal therapies, bringing in the next phase of customized and effective dental healthcare. The review discusses the characteristics and stages of PD, clinical treatment techniques, prominent biomarkers and infection-associated factors that may be employed to determine PD, biomedical sensing, and POC appliances that have been created so far to diagnose stages of PD and its progression profile, as well as predicting future developments in this field.
Collapse
Affiliation(s)
- Jayesh Korgaonkar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Azra Yaprak Tarman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Sasanka S Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Mohn C, Troncoso G, Ossola C, Bozzini C, Elverdin JC, Fernández-Solari J. Deleterious effect of chronic high-dose ethanol intake on biomechanical bone properties and periodontal status. Odontology 2024; 112:855-863. [PMID: 38157109 DOI: 10.1007/s10266-023-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024]
Abstract
To evaluate the effect of high-graduation chronic ethanol (EtOH) intake on bone and periodontal tissues of rats. Male Wistar rats (250 g) were divided into two groups of n = 12 each one. EtOH (5 ml of 3 g/kg) was administered to the experimental group by gastric gavage twice a day for 20 days and the control group received water under the same conditions. The rats were euthanized and used to perform biochemical determination in plasma and gingival tissue, and histological and biomechanical studies in the femur and mandibular tissues. Alcohol increased both TNFα (p < 0.01) and PGE2 (p < 0.05) in plasma and gingiva (p < 0.05) as compared to controls. In addition, EtOH increased the alveolar bone loss as evidenced by the increased distance between the cement enamel junction and the alveolar crest (p < 0.01), the lower % of interradicular bone expressed as bone area/total area (B.Ar/T.Ar, p < 0.05) and the larger periodontal space (p < 0.05), as compared to controls. Likewise, the mandibular microtomographic analysis in alcoholized rats revealed a lower % of interradicular bone volume/total volume (BV/TV, p < 0.05), greater trabecular separation (p < 0.05) and greater % trabecular porosity (p < 0.05) than controls. No biomechanical alteration was observed in lower jaws, while the femur of alcoholized rats presented a decrease in the structural bone properties (p < 0.001), as a systemic consequence of deterioration of the diaphyseal architecture (p < 0.01) without changes in material properties. The consumption of high doses of alcohol produces deleterious effects on periodontal tissues that could be due not only to local but also systemic effects.
Collapse
Affiliation(s)
- Claudia Mohn
- Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, 3ºA, CABA, 1122, Buenos Aires, Argentina.
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| | - Gastón Troncoso
- Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, 3ºA, CABA, 1122, Buenos Aires, Argentina
| | - Cesar Ossola
- Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, 3ºA, CABA, 1122, Buenos Aires, Argentina
| | - Clarisa Bozzini
- Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, 3ºA, CABA, 1122, Buenos Aires, Argentina
| | - Juan Carlos Elverdin
- Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, 3ºA, CABA, 1122, Buenos Aires, Argentina
| | - Javier Fernández-Solari
- Faculty of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142, 3ºA, CABA, 1122, Buenos Aires, Argentina
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Thiagarajan S, Gopalakrishnan U. Assessing the Effect of Exogenous Melatonin on Orthodontic Tooth Movement. Cureus 2024; 16:e65885. [PMID: 39219898 PMCID: PMC11364488 DOI: 10.7759/cureus.65885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To examine the effect of orthodontic tooth movement on experimental Wistar rats by synthesizing melatonin formulation for administration and conducting serological analysis of alkaline phosphatase (ALP) and melatonin, along with histological evaluation and immunohistochemistry analysis of ALP and interleukin-6 (IL-6) in both control and experimental groups. METHODOLOGY Nine male Wistar rats were randomly divided into negative (n = 3), positive control (n = 3), and experimental groups (n = 3). Endogenous melatonin levels (pg/mL) were assessed, and an orthodontic force of 10 cN was applied to positive control and experimental groups using a ligature wire. The experimental group received a daily dose of 10 mg/kg melatonin via intraperitoneal injection. After eight weeks, blood samples and radiographs were collected, and mandible sections were prepared for histopathological and immunohistochemical evaluation. RESULTS The radiographic evaluation shows minimal orthodontically induced tooth movement in comparison to the positive control group. In serological analysis, ALP was found to be increased in rats under the melatonin group. And, in the immunohistochemical evaluation, ALP was found to be increased in the melatonin group, whereas IL-6 was found to be decreased in the same (P = 0.027). CONCLUSIONS The study elucidates that the administration of exogenous melatonin during orthodontic tooth movement in Wistar rats induces bone formation and inhibits resorption, eventually decelerating the process of orthodontic tooth movement. Our study emphasizes melatonin's dualistic role in stimulating bone production and suppressing resorption, offering potential therapeutic clinical implications in orthodontics.
Collapse
Affiliation(s)
- Sanjana Thiagarajan
- Department of Orthodontics and Dentofacial Orthopedics, Sri Venkateswara Dental College and Hospital, Chennai, IND
| | - Umarevathi Gopalakrishnan
- Department of Orthodontics and Dentofacial Orthopedics, Sri Venkateswara Dental College and Hospital, Chennai, IND
| |
Collapse
|
18
|
Niu J, Bi F, Tian Q, Tian K. Melittin Treats Periprosthetic Osteolysis in a Rat Model by Inhibiting the NF-kB Pathway and Regulating the Ratio of Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin. J Arthroplasty 2024; 39:1845-1855. [PMID: 38336308 DOI: 10.1016/j.arth.2024.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Aseptic loosening around the prosthesis is a common cause of failure in total joint arthroplasty. Polyethylene wear particles trigger the release of inflammatory factors by macrophages. Key mediators involved in osteoclastogenesis include interleukin-6, tumor necrosis factor-α, receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL), and bone protection hormone (Osteoprotegerin [OPG]). The purpose of our experiment was to see whether melittin can slow down the release of inflammatory mediators through the NF-kB pathway, regulate the RANKL/OPG ratio, reduce osteoclast formation, and delay the onset of arthritis in rats. METHODS A total of 20 male Sprague-Dawley rats (10 months, Specific Pathogen Free, 350 g ± 20 g) were randomly divided into 5 groups: sham group, model group, melittin concentration 1 group (0.2 mg/kg), concentration 2 group (0.4 mg/kg), and concentration 3 group (0.6 mg/kg). All rats were implanted with TA2 high-purity titanium rods. A drill was used to create a bone canal along the long axis of the femur in the intercondylar notch. The model group and experimental groups were exposed to polyethylene particles, while the sham group did not receive any particles. RESULTS The melittin group exhibited significantly increased serum levels of serum P, calcium-phosphorus product, OPG, PINP, PINP/CTX-I, and OPG/RANKKL (P < .05). In the experimental group, micro computed tomography scanning results revealed a decrease in the amount of bone defect around the prosthesis. Immunofluorescence analysis demonstrated a decrease in the expression of IKKα and P65, while the expression of OPG showed an upward trend. Both Hematoxylin-Eosin and Tartrate-Resistant Acid Phosphatase staining revealed less osteoclast and inflammatory cell infiltration in bone resorption pits. CONCLUSIONS Our study demonstrates that melittin has the ability to inhibit the NF-kB pathway in a rat model, and reduce the impact of RANKL/OPG, thereby delaying osteoclast activity and alleviating periprosthetic osteolysis.
Collapse
Affiliation(s)
- Junqi Niu
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Fanggang Bi
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Qing Tian
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Ke Tian
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| |
Collapse
|
19
|
Wichienrat W, Surisaeng T, Sa-Ard-Iam N, Chanamuangkon T, Mahanonda R, Wisitrasameewong W. Alveolar Bone Loss in a Ligature-Induced Periodontitis Model in Rat Using Different Ligature Sizes. Eur J Dent 2024; 18:933-941. [PMID: 38442914 PMCID: PMC11290929 DOI: 10.1055/s-0044-1779426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVES Ligature-induced periodontitis model has been widely used as a preclinical stage for investigating new treatment modalities. However, the effect of different ligature sizes on alveolar bone loss has never been studied. Therefore, we examined alveolar bone loss in this rat model using different sizes of silk ligatures, as well as healing after ligature removal. MATERIALS AND METHODS Left maxillary second molars of Sprague-Dawley rats were ligated with 3-0, 4-0, or 5-0 silk ligatures (n = 4-5/group) for 14 days before harvested maxillae and gingival tissues. For subsequent experiment, animals were ligated for 14 days using the ligature size that induced the most alveolar bone loss before ligature removal and sacrificed at 0, 7 and 14 days (n = 5-6/group). All maxillae and gingival tissues were harvested to evaluate alveolar bone level, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels. STATISTICAL ANALYSIS Data was analyzed using SPSS Statistics 23.0 software (SPSS Inc., Chicago, Illinois, United States). Data from all experiments were tested for normality using Shapiro-Wilk test. Data between ligatured and nonligatured teeth were compared using Student's t-test or Wilcoxon signed-rank test. Differences among different ligature sizes were analyzed by analysis of variance followed by multiple comparisons with post-hoc test. A p-value less than 0.05 was considered statistically significant. RESULTS The alveolar bone loss of ligated teeth was substantially higher than that of control after 14 days of ligation. While 3-0 and 4-0 resulted in significantly greater bone loss than 5-0 silk, the 3-0 group had the lowest rate of ligature loss. Therefore, alveolar bone healing postligature removal was investigated further using 3-0 silk. The results showed no significant bone level change at 2 weeks after ligature removal. In term of IL-1β and TNF-α levels, there was no statistically significant difference in IL-1β level between groups at any time point, while TNF-α was undetectable. CONCLUSION These data showed that 3-0 silk was the most effective ligature size in promoting alveolar bone loss comparing with 4-0 and 5-0 silk. During the 2-week period following ligature removal, spontaneous bone healing was not observed.
Collapse
Affiliation(s)
- Warintorn Wichienrat
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theeraphat Surisaeng
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Center of Excellence in Periodontal Disease and Dental Implant, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wichaya Wisitrasameewong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Patron M, Neset M, Mielkozorova M, Bisson DG, Vigouroux M, Cata JP, Ingelmo PM, Ouellet JA, Haglund L, Komarova SV. Markers of Tissue Deterioration and Pain on Earth and in Space. J Pain Res 2024; 17:1683-1692. [PMID: 38742243 PMCID: PMC11089065 DOI: 10.2147/jpr.s450180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose Pain is an understudied physiological effect of spaceflight. Changes in inflammatory and tissue degradation markers are often associated with painful conditions. Our aim was to evaluate the changes in markers associated with tissue deterioration after a short-term spaceflight. Patients and Methods Plasma levels of markers for systemic inflammation and tissue degeneration markers were assessed in two astronauts before and within 24 h after the 17-day Axiom Space AX-1 mission. Results After the spaceflight, C-reactive protein (CRP) was reduced in both astronauts, while INFγ, GM-CSF, TNFα, BDNF, and all measured interleukins were consistently increased. Chemokines demonstrated variable changes, with consistent positive changes in CCL3, 4, 8, 22 and CXCL8, 9, 10, and consistent negative change in CCL8. Markers associated with tissue degradation and bone turnover demonstrated consistent increases in MMP1, MMP13, NTX and OPG, and consistent decreases in MMP3 and MMP9. Conclusion Spaceflight induced changes in the markers of systemic inflammation, tissue deterioration, and bone resorption in two astronauts after a short, 17-day, which were often consistent with those observed in painful conditions on Earth. However, some differences, such as a consistent decrease in CRP, were noted. All records for the effect of space travel on human health are critical for improving our understanding of the effect of this unique environment on humans.
Collapse
Affiliation(s)
- Madalina Patron
- Shriners Hospital for Children, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Mattias Neset
- Shriners Hospital for Children, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Mariia Mielkozorova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Daniel G Bisson
- Shriners Hospital for Children, Montreal, Canada
- Orthopaedic Research Laboratory, Department of Surgery, McGill University, Montreal, Canada
| | - Marie Vigouroux
- Edwards Family Interdisciplinary Center for Complex Pain, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Juan Pablo Cata
- Department of Anesthesia and Perioperative Medicine, The University of Texas – MD Anderson Cancer Center, Houston, TX, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Pablo M Ingelmo
- Edwards Family Interdisciplinary Center for Complex Pain, Montreal Children’s Hospital, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Research Institute, McGill University Health Center, Montreal, Canada
| | - Jean A Ouellet
- Shriners Hospital for Children, Montreal, Canada
- Orthopaedic Research Laboratory, Department of Surgery, McGill University, Montreal, Canada
| | - Lisbet Haglund
- Shriners Hospital for Children, Montreal, Canada
- Orthopaedic Research Laboratory, Department of Surgery, McGill University, Montreal, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Qi B, Wang Z, Cao Y, Zhao H. Study on the treatment of osteoarthritis by acupuncture combined with traditional Chinese medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2024; 103:e37483. [PMID: 38579081 PMCID: PMC10994424 DOI: 10.1097/md.0000000000037483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 04/07/2024] Open
Abstract
Osteoarthritis (OA) is a major contributor to disability and social costs in the elderly. As the population ages and becomes increasingly obese, the incidence of the disease is higher than in previous decades. In recent years, important progress has been made in the causes and pathogenesis of OA pain. Modern medical treatment modalities mainly include the specific situation of the patient and focus on the core treatment, including self-management and education, exercise, and related weight loss. As an important part of complementary and alternative medicine, TCM has remarkable curative effect, clinical safety, and diversity of treatment methods in the treatment of OA. Traditional Chinese Medicine treatment of OA has attracted worldwide attention. Therefore, this article will study the pathophysiological mechanism of OA based on modern medicine, and explore the treatment of OA by acupuncture combined with Chinese Medicine.
Collapse
Affiliation(s)
- Biao Qi
- Shenzhen Baoan District Shiyan People’s Hospital, Shenzhen, China
| | - Zeyu Wang
- Shenzhen Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Ying Cao
- Shenzhen Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Haishen Zhao
- Community Health Service Center of Nanhui New Town, Shanghai, China
| |
Collapse
|
23
|
Hioki T, Kuroyanagi G, Matsushima-Nishiwaki R, Omura T, Kozawa O, Tokuda H. Gallein but not fluorescein enhances the PGD 2-stimulated synthesis of osteoprotegerin and interleukin-6 in osteoblasts: Amplification of osteoprotegerin/interleukin-6 by gallein. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102639. [PMID: 39270488 DOI: 10.1016/j.plefa.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Gallein, a small molecule related to fluorescein, is established as an inhibitor of Gβγ subunits to inhibit G protein (Gs) signaling. This agent is providing a potential therapeutic strategy to ameliorate organ dysfunctions especially involved in inflammation, however; the effects on bone metabolism have not yet been clarified. Prostaglandins (PGs) play important roles as autacoids including osteoblasts, and d-type prostanoid (DP) receptor, a member of G protein-coupled receptor specific to PGD2, is expressed on osteoblasts. We previously reported that prostaglandin D2 (PGD2) induces the syntheses of osteoprotegerin (OPG) and interleukin-6 (IL-6), essential factors in bone remodelling process, and p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/p42 MAPK are involved in the signal transduction of PGD2 in osteoblast-like MC3T3-E1 cells. Thus, we investigated in this study that the effect and the underlying mechanism of gallein, an inhibitor Gβɤ subunits, on the syntheses of OPG and IL-6 induced by PGD2 in these cells. The cultured cells were treated with gallein or fluorescein, a structurally related compound inactive to Gβɤ subunits, and subsequently stimulated with PGD2. Not fluorescein but gallein amplified the PGD2-stimulated releases of OPG and IL-6. Gallein enhanced the PGD2-upregulated mRNA expression levels of OPG and IL-6. Regarding the signaling mechanism, gallein did not affect the PGD2-induced phosphorylation of p38 MAPK, JNK, or p42 MAPK. In conclusion, gallein upregulates the PGD2-stimulated syntheses of OPG and IL-6 by the specific effect to inhibit Gβγ subunits in osteoblasts, but the effect is not exerted at the upstream of p38 MAPK, JNK, or p44/p42 MAPK activation.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Dermatology, Central Japan International Medical Center, Minokamo 505-8510, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Takuya Omura
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan.
| |
Collapse
|
24
|
Zhang D, Li J, Li X, Liu W, Yu Y, Sun H, Wu J, Ge Z, Lv K, Shao Y, Wang S, Ye X. Anti-osteoporosis activity of casticin in ovariectomized rats. Toxicol Res (Camb) 2024; 13:tfae064. [PMID: 38680951 PMCID: PMC11052697 DOI: 10.1093/toxres/tfae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/06/2024] [Indexed: 05/01/2024] Open
Abstract
Background Postmenopausal osteoporosis (PMPO) is the most familiar type of osteoporosis, a silent bone disease. Casticin, a natural flavonoid constituent, improves osteoporosis in animal model. Nevertheless, the potential mechanism remains to be further explored. Methods A model of PMPO was established in rats treated with ovariectomy (OVX) and RAW 264.7 cells induced with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect and potential mechanism of casticin on PMPO were addressed by pathological staining, measurement of bone mineral density (BMD), three-point bending test, serum biochemical detection, filamentous-actin (F-actin) ring staining, TRAcP staining, reverse transcription quantitative polymerase chain reaction, western blot and examination of oxidative stress indicators. Results The casticin treatment increased the femoral trabecular area, bone maturity, BMD, elastic modulus, maximum load, the level of calcium and estrogen with the reduced concentrations of alkaline phosphatase (ALP) and tumor necrosis factor (TNF)-α in OVX rats. An enhancement in the F-actin ring formation, TRAcP staining and the relative mRNA expression of NFATc1 and TRAP was observed in RANKL-induced RAW 264.7 cells, which was declined by the treatment of casticin. Moreover, the casticin treatment reversed the reduced the relative protein expression of Nrf2 and HO-1 and the concentrations of superoxide dismutase and glutathione peroxidase, and the increased content of malondialdehyde both in vivo and in vitro. Conclusion Casticin improved bone density, bone biomechanics, the level of calcium and estrogen, the release of pro-inflammatory factor and oxidative stress to alleviate osteoporosis, which was associated with the upregulation of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jianmin Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Xuejia Li
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Wanxin Liu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Ying Yu
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Hao Sun
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jiajun Wu
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Zhichao Ge
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Kai Lv
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Yanting Shao
- Laboratory Animal Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Shuqiang Wang
- Department of Spine Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Xiaojian Ye
- Department of Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai 200437, China
- Department of Orthopedics, 2. Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai 200336, China
| |
Collapse
|
25
|
Tan MY, Zhu SX, Wang GP, Liu ZX. Impact of metabolic syndrome on bone mineral density in men over 50 and postmenopausal women according to U.S. survey results. Sci Rep 2024; 14:7005. [PMID: 38523143 PMCID: PMC10961310 DOI: 10.1038/s41598-024-57352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Metabolic Syndrome (MetS) and bone mineral density (BMD) have shown a controversial link in some studies. This research aims to study their association in males over 50 and postmenopausal females using National Health and Nutrition Examination Survey (NHANES) data. Postmenopausal females and males over 50 were included in the study. MetS was defined by the National Cholesterol Education Program Adult Treatment Panel III guidelines. BMD values were measured at the thoracic spine, lumbar spine, and pelvis as the primary outcome. Weighted multivariate general linear models have been employed to explore the status of BMD in patients with MetS. Additionally, interaction tests and subgroup analyses were conducted. Utilizing the NHANES database from 2003 to 2006 and 2011-2018, we included 1924 participants, with 1029 males and 895 females. In postmenopausal women, after adjusting for covariates, we found a positive correlation between MetS and pelvic (β: 0.030 [95%CI 0.003, 0.06]) and thoracic (β: 0.030 [95%CI 0.01, 0.06]) BMD, though not for lumbar spine BMD (β: 0.020 [95%CI - 0.01, 0.05]). In males over 50 years old, MetS was positively correlated with BMD in both Model 1 (without adjusting for covariates) and Model 2 (considering age and ethnicity). Specifically, Model 2 revealed a positive correlation between MetS and BMD at the pelvis (β: 0.046 [95%CI 0.02, 0.07]), thoracic spine (β: 0.047 [95%CI 0.02, 0.07]), and lumbar spine (β: 0.040 [95%CI 0.02, 0.06]). Subgroup analysis demonstrated that the relationship between MetS and BMD remained consistent in all strata, underscoring the stability of the findings. In postmenopausal women, after adjusting for all covariates, a significant positive correlation was observed between MetS and BMD in the pelvis and thoracic spine, whereas this correlation was not significant for lumbar spine BMD. Conversely, in males, positive correlations between MetS and BMD at the lumbar spine, thoracic spine, and pelvis were identified in Model 2, which adjusted for age and ethnicity; however, these correlations disappeared after fully adjusting for all covariates. These findings highlight the potential moderating role of gender in the impact of MetS on BMD.
Collapse
Affiliation(s)
- Mo-Yao Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Si-Xuan Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gao-Peng Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhong-Xing Liu
- Dujiangyan Traditional Chinese Medicine Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Karadayi A, Sarsmaz H, Çigel A, Engiz B, Ünal N, Ürkmez S, Gürgen S. Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development? Physiol Res 2024; 73:157-172. [PMID: 38466013 PMCID: PMC11019611 DOI: 10.33549/physiolres.935148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/15/2024] [Indexed: 04/26/2024] Open
Abstract
Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.
Collapse
Affiliation(s)
- A Karadayi
- Department of Biophysics, Medicine Faculty, Ondokuz Mayis University, Samsun, Republic of Türkiye.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhou J, Jia F, Qu M, Ning P, Huang X, Tan L, Liu D, Zhong P, Wu Q. The prevention effect of pulsed electromagnetic fields treatment on senile osteoporosis in vivo via improving the inflammatory bone microenvironment. Electromagn Biol Med 2024:1-15. [PMID: 38329038 DOI: 10.1080/15368378.2024.2314093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/26/2023] [Indexed: 02/09/2024]
Abstract
This study aimed to assess PEMF in a rat model of senile osteoporosis and its relationship with NLRP3-mediated low-grade inflammation in the bone marrow microenvironment. A total of 24 Sprague Dawley (SD) rats were included in this study. Sixteen of them were 24-month natural-aged male SD rats, which were randomly distributed into the Aged group and the PEMF group (n = 8 per group). The remaining 8 3-month -old rats were used as the Young positive control group (n = 8). Rats in the PEMF group received 12 weeks of PEMF with 40 min/day, five days per week, while the other rats received placebo PEMF intervention. Bone mineral density/microarchitecture, serum levels of CTX-1 and P1CP, and NLRP3-related signaling genes and proteins in rat bone marrow were then analyzed. The 12-week of PEMF showed significant mitigation of aging-induced bone loss and bone microarchitecture deterioration, i.e. PEMF increased the bone mineral density of the proximal femur and L5 vertebral body and improved parameters of the proximal tibia and L4 vertebral body. Further analysis showed that PEMF reversed aging-induced bone turnover, specifically, decreased serum CTX-1 and elevated serum P1CP. Furthermore, PEMF also dramatically inhibited NLRP3-mediated low-grade inflammation in the bone marrow, i.e. PEMF inhibited the levels of NLRP3, proCaspase1, cleaved Caspase1, IL-1β, and GSDMD-N. The study demonstrated that PEMF could mitigate the aging-induced bone loss and reverses the deterioration of bone microarchitecture probably through inhibiting NLRP3-mediated low-grade chronic inflammation to improve the inflammatory bone microenvironment in aged rats.
Collapse
Affiliation(s)
- Jun Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Feiyang Jia
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mengjian Qu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Pengyun Ning
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiarong Huang
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lu Tan
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Danni Liu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peirui Zhong
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi Wu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Acupuncture/Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Liu Y, Li TQ, Bai J, Liu WL, Wang ZR, Feng C, Pu LL, Wang XX, Liu H. Isoquercitrin attenuates the osteoclast-mediated bone loss in rheumatoid arthritis via the Nrf2/ROS/NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166977. [PMID: 38065271 DOI: 10.1016/j.bbadis.2023.166977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
An excess of osteoclastogenesis significantly contributes to the development of rheumatoid arthritis (RA). Activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) ligand (RANKL)-induced reactive oxygen species (ROS)-to-NF-κB signaling cascade are important mechanisms regulating osteoclastogenesis; however, whether Nrf2 is involved in RANKL-induced NF-κB activation is controversial. Isoquercitrin, a natural flavonoid compound, has been shown to have Nrf2-dependent antioxidant effects inprevious studies. We sought to verify whether isoquercitrin could modulate RANKL-induced NF-κB activation by activating Nrf2, thereby affecting osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin ring staining and resorption pit assay suggested that isoquercitrin significantly inhibited osteoclastogenesis and osteolytic function. Mitosox staining showed that RANKL-induced ROS generation was significantly inhibited by isoquercitrin from day 3 of the osteoclast differentiation cycle. Quantitative real-time PCR, Western blot, and immunofluorescence indicated that isoquercitrin activated the Nrf2 signaling pathway and inhibited NF-κB expression. And when we used the Nrf2-specific inhibitor ML385, the inhibition of NF-κB by isoquercitrin disappeared. Moreover, we found that Nrf2 is not uninvolved in RANKL-induced NF-κB activation and may be related to the timing of ROS regulation. When we limited isoquercitrin administration to 2 days, Nrf2 remained activated and the inhibition of NF-κB disappeared. In vivo experiments suggested that isoquercitrin attenuated RA modeling-induced bone loss. Overall, isoquercitrin-activated Nrf2 blocked the RANKL-induced ROS-to-NF-κB signaling cascade response, thereby inhibiting osteoclastogenesis and bone loss. These findings provide new ideas for the treatment of RA.
Collapse
Affiliation(s)
- Yan Liu
- Lanzhou University, Lanzhou 730000, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tian-Qi Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jin Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wei-Li Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zi-Rou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ling-Ling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xin-Xing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Hui Liu
- Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Yun SJ, Sang H, Park SY, Chin SO. Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis. Int J Mol Sci 2024; 25:1474. [PMID: 38338751 PMCID: PMC10855748 DOI: 10.3390/ijms25031474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Prolactin is a hormone secreted from lactotroph cells in the anterior pituitary gland to induce lactation after birth. Hyperprolactinemia unrelated to lactation is a common cause of amenorrhea in women of a childbearing age, and a consequent decrease in the gonadotropin-releasing hormone (GnRH) by a high prolactin level can result in decreased bone mineral density. Osteoporosis is a common skeletal disorder characterized by decreased bone mineral density (BMD) and quality, which results in decreased bone strength. In patients with hyperprolactinemia, changes in BMD can be induced indirectly by the inhibition of the GnRH-gonadal axis due to increased prolactin levels or by the direct action of prolactin on osteoblasts and, possibly, osteoclast cells. This review highlights the recent work on bone remodeling and discusses our knowledge of how prolactin modulates these interactions, with a brief literature review on the relationship between prolactin and bone metabolism and suggestions for new possibilities.
Collapse
Affiliation(s)
| | | | | | - Sang Ouk Chin
- Department of Endocrinology and Metabolism, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea; (S.J.Y.); (H.S.); (S.Y.P.)
| |
Collapse
|
30
|
Gómez-Alonso IS, Betanzos-Cabrera G, Moreno-Lafont MC, Cancino-Diaz ME, García-Pérez BE, Cancino-Diaz JC. Non-biofilm-forming Staphylococcus epidermidis planktonic cell supernatant induces alterations in osteoblast biological function. Sci Rep 2024; 14:1807. [PMID: 38245549 PMCID: PMC10799936 DOI: 10.1038/s41598-024-51899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Staphylococcal biofilms significantly contribute to prosthetic joint infection (PJI). However, 40% of S. epidermidis PJI isolates do not produce biofilms, which does not explain the role of biofilms in these cases. We studied whether the supernatant from planktonic S. epidermidis alters osteoblast function. Non-biofilm-forming S. epidermidis supernatants (PJI- clinical isolate, healthy skin isolate (HS), and ATCC12228 reference strain) and biofilm-forming supernatants (PJI+ clinical isolate, ATCC35984 reference strain, and Staphylococcus aureus USA300 reference strain) were included. Osteoblasts stimulated with supernatants from non-biofilm-forming isolates for 3, 7, and 14 days showed significantly reduced cellular DNA content compared with unstimulated osteoblasts, and apoptosis was induced in these osteoblasts. Similar results were obtained for biofilm-forming isolates, but with a greater reduction in DNA content and higher apoptosis. Alkaline phosphatase activity and mineralization were significantly reduced in osteoblasts treated with supernatants from non-biofilm-forming isolates compared to the control at the same time points. However, the supernatants from biofilm-forming isolates had a greater effect than those from non-biofilm-forming isolates. A significant decrease in the expression of ATF4, RUNX2, ALP, SPARC, and BGLAP, and a significant increase in RANK-L expression were observed in osteoblasts treated with both supernatants. These results demonstrate that the supernatants of the S. epidermidis isolate from the PJI- and HS (commensal) with a non-biofilm-forming phenotype alter the function of osteoblasts (apoptosis induction, failure of cell differentiation, activation of osteoblasts, and induction of bone resorption), similar to biofilm-forming isolates (PJI+, ATCC35984, and S. aureus USA300), suggesting that biofilm status contributes to impaired osteoblast function and that the planktonic state can do so independently of biofilm production.
Collapse
Affiliation(s)
- Itzia Sidney Gómez-Alonso
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla S/N., Pueblo San Juan Tilcuautla, 42160, Pachuca Hidalgo, Mexico
| | - Martha Cecilia Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, 11350, Mexico City, Mexico.
| |
Collapse
|
31
|
Li H, Xu Q, Ye Y, Chang B, Wang R, Li G. Association between obesity and fracture risk in Chinese women above 50 years of age: a prospective cohort study. BMC Public Health 2024; 24:28. [PMID: 38167038 PMCID: PMC10763393 DOI: 10.1186/s12889-023-17494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Fractures present serious health challenges for older adults, including premature mortality and reduced quality of life. Obesity has become significantly prevalent in China. However, the association between obesity and fractures remains unclear. This study aimed to assess the association between obesity and fractures among Chinese women above 50 years of age. METHODS A prospective cohort study was designed based on the China Health and Nutrition Survey, using data from 1997 to 2015. The average follow-up duration was seven years. Trained investigators measured body mass index (BMI) and waist circumference (WC) at baseline. Obesity was defined according to World Health Organization recommendations. Waist-to-height ratio (W-HtR) was calculated, with 0.5 as the cutoff value. Onset of fractures, self-reported by the participants during the follow-up period, was the primary outcome. Cox hazard regression models were used to assess the association between BMI, WC, W-HtR and subsequent risk of fracture. A sensitivity analysis was conducted by multiple imputation of missing data on the variables at baseline. RESULTS A total of 2,641 women aged ≥ 50 years were involved in the study. In all the models, no significant association existed between BMI and fracture risk. However, women with WC ≥ 88 cm had significantly higher risk of fracture than those with WC < 80 cm according to both the unadjusted (HR = 1.744, 95% CI: 1.173-2.591) and adjusted models (HR = 1.796, 95% CI: 1.196-2.695). In addition, W-HtR and fracture risk were positively associated according to both the unadjusted (HR = 1.798, 95% CI: 1.230-2.627) and adjusted models (HR = 1.772, 95% CI: 1.209-2.599). Results of the sensitivity analysis were consistent with those of the above analyses. CONCLUSIONS Abdominal obesity increased the risk of all-cause fractures in Chinese women ≥ 50 years old. Intervention strategies and measures to prevent or address abdominal obesity would be helpful to decrease the fracture incidence.
Collapse
Affiliation(s)
- Hui Li
- School of Public Health, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, 646000, China
| | - Qunying Xu
- School of Public Health, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, 646000, China
| | - Yunli Ye
- School of Public Health, Southwest Medical University, No. 1 Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, 646000, China.
| | - Bei Chang
- Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, 100000, China
| | - Rui Wang
- Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Guangwen Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, No. 10, Section 2, Yunfeng Road, Kuanchang Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
32
|
Canalis E, Yu J, Singh V, Mocarska M, Schilling L. NOTCH2 sensitizes the chondrocyte to the inflammatory response of tumor necrosis factor α. J Biol Chem 2023; 299:105372. [PMID: 37865314 PMCID: PMC10692730 DOI: 10.1016/j.jbc.2023.105372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; Department of Medicine, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA.
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Computational Biology Core, Institute for System Genomics, UConn, Storrs, Connecticut, USA
| | - Magda Mocarska
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
33
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Sellin ML, Klinder A, Bergschmidt P, Bader R, Jonitz-Heincke A. IL-6-induced response of human osteoblasts from patients with rheumatoid arthritis after inhibition of the signaling pathway. Clin Exp Med 2023; 23:3479-3499. [PMID: 37280473 PMCID: PMC10618393 DOI: 10.1007/s10238-023-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL-) 6 is a critical factor in inflammatory processes of rheumatoid arthritis (RA). This is of high interest as the progression of RA may lead to the implantation of joint endoprostheses, which is associated with a pro-inflammatory increase in IL-6 in the periprosthetic tissue. Biological agents such as sarilumab have been developed to inhibit IL-6-mediated signaling. However, IL-6 signaling blockade should consider the inhibition of inflammatory processes and the regenerative functions of IL-6. This in vitro study investigated whether inhibiting IL-6 receptors can affect the differentiation of osteoblasts isolated from patients with RA. Since wear particles can be generated at the articular surfaces of endoprostheses leading to osteolysis and implant loosening, the potential of sarilumab to inhibit wear particle-induced pro-inflammatory processes should be investigated. Both in monocultures and indirect co-cultures with osteoclast-like cells (OLCs), human osteoblasts were stimulated with 50 ng/mL each of IL-6 + sIL-6R and in combination with sarilumab (250 nM) to characterize cell viability and osteogenic differentiation capacity. Furthermore, the influence of IL-6 + sIL-6R or sarilumab on viability, differentiation, and inflammation was evaluated in osteoblasts exposed to particles. Stimulation with IL-6 + sIL-6R and sarilumab did not affect cell viability. Except for the significant induction of RUNX2 mRNA by IL-6 + sIL-6R and a significant reduction with sarilumab, no effects on cell differentiation and mineralization could be detected. Furthermore, the different stimulations did not affect the osteogenic and osteoclastic differentiation of co-cultured cells. Compared to the osteoblastic monocultures, a decreased release of IL-8 was triggered in the co-culture. Among these, treatment with sarilumab alone resulted in the greatest reduction of IL-8. The co-culture also showed clearly increased OPN concentrations than the respective monocultures, with OPN secretion apparently triggered by the OLCs. Particle exposure demonstrated decreased osteogenic differentiation using different treatment strategies. However, sarilumab administration caused a trend toward a decrease in IL-8 production after stimulation with IL-6 + sIL-6R. The blockade of IL-6 and its pathway have no significant effect on the osteogenic and osteoclastic differentiation of bone cells derived from patients with RA. Nonetheless, observed effects on the reduced IL-8 secretion need further investigation.
Collapse
Affiliation(s)
- Marie-Luise Sellin
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Annett Klinder
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Philipp Bergschmidt
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
- Department for Orthopaedic Surgery, Trauma Surgery and Hand Surgery, Suedstadt Hospital Rostock, Suedring 81, 18059, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Research Laboratory for Biomechanics and Implant Technology, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany.
| |
Collapse
|
35
|
Kulkarni A, Bazou D, Santos-Martinez MJ. Bleeding and Thrombosis in Multiple Myeloma: Platelets as Key Players during Cell Interactions and Potential Use as Drug Delivery Systems. Int J Mol Sci 2023; 24:15855. [PMID: 37958838 PMCID: PMC10647631 DOI: 10.3390/ijms242115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy originated in the bone marrow and characterized by unhindered plasma cell proliferation that results in several clinical manifestations. Although the main role of blood platelets lies in hemostasis and thrombosis, platelets also play a pivotal role in a number of other pathological conditions. Platelets are the less-explored components from the tumor microenvironment in MM. Although some studies have recently revealed that MM cells have the ability to activate platelets even in the premalignant stage, this phenomenon has not been widely investigated in MM. Moreover, thrombocytopenia, along with bleeding, is commonly observed in those patients. In this review, we discuss the hemostatic disturbances observed in MM patients and the dynamic interaction between platelets and myeloma cells, along with present and future potential avenues for the use of platelets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Anushka Kulkarni
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, D02 PN40 Dublin, Ireland;
| | - Despina Bazou
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Maria José Santos-Martinez
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, D02 PN40 Dublin, Ireland;
- School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
36
|
Sung J, Barratt KR, Pederson SM, Chenu C, Reichert I, Atkins GJ, Anderson PH, Smitham PJ. Unbiased gene expression analysis of the delayed fracture healing observed in Zucker diabetic fatty rats. Bone Joint Res 2023; 12:657-666. [PMID: 37844909 PMCID: PMC10578971 DOI: 10.1302/2046-3758.1210.bjr-2023-0062.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aims Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as biomarkers to monitor and treat delayed fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Jonghoo Sung
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Kate R. Barratt
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stephen M. Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
| | | | | | - Gerald J. Atkins
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Paul H. Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peter J. Smitham
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Ghosh S, Ghosh R, Sawoo R, Dutta P, Bishayi B. Impact of dual neutralization of TNF-α and IL-1β along with Gentamicin treatment on the functions of blood and splenic neutrophils and its role on improvement of S. aureus induced septic arthritis. Int Immunopharmacol 2023; 123:110766. [PMID: 37572502 DOI: 10.1016/j.intimp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Researches of recent past years have emphasized potential of antibiotics to improve septic arthritis but as multi-drug resistant strains like MRSA are emerging fast, new alternative therapeutic advances are high in demand. This study aims to figure out the role of neutrophils in regulating inflammatory responses of S. aureus induced septic arthritis while using TNF-α Ab or IL-1β Ab along with antibiotic gentamicin or both in combination. In this study, role of anti-oxidant enzymes were investigated and correlated with generated ROS level. While expression of TLR2, TNFR2, MMP2, RANKL, SAPK/JNK in the spleen were evaluated through western blot. Serum activity of IL-8, IL-10, IL-12, OPG, OPN, CRP was assessed using ELISA. Flow cytometry study evaluated inflamed neutrophil population. Results have shown TNF-α neutralization along with gentamicin was able to reduce arthritic swelling prominently. While combination therapy effectively reduced blood neutrophil ROS activity, arginase activity, MPO activity along with spleen bacterial burden. Serum OPG, CRP, IL-10 level got reduced while serum OPN, IL-8 and IL-12 level enhanced in treatment groups, showing mitigation of inflammatory damage. Overall, it is a novel work that observed how antibiotic and antibody therapy enhanced neutrophil function positively to combat sepsis. This study may not be fully applicable in clinical trials as it is performed with animal model. Clinical trials include crystalline and inflammatory arthritides, trauma, neoplasm. Interdisciplinary collaboration between radiology, orthopaedic surgery and knowledge of animal system responses may give better idea to find proper therapeutic approach in future research works.
Collapse
Affiliation(s)
- Sharmistha Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
38
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
39
|
Dalla Volta A, Caramella I, Di Mauro P, Bergamini M, Cosentini D, Valcamonico F, Cappelli C, Laganà M, Di Meo N, Farina D, Pedersini R, Mazziotti G, Berruti A. Role of Body Composition in the Prediction of Skeletal Fragility Induced by Hormone Deprivation Therapies in Cancer Patients. Curr Oncol Rep 2023; 25:1141-1152. [PMID: 37624550 PMCID: PMC10556180 DOI: 10.1007/s11912-023-01447-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW This review paper is intended to show that changes in body composition are key in the pathogenesis of bone fragility amongst patients with breast and prostate cancer receiving hormone deprivation therapies (HDTs) and that the mechanism is based on the development of alterations in bone quality rather than in bone quantity. RECENT FINDINGS Preclinical and clinical data suggest a tight connection amongst bone, adipose and muscular tissues by means of several soluble mediators, potentially leading to (1) bone resorption and bone quality deterioration in sarcopenic obese subjects, (2) bone mineral deposition in healthy trained subjects. Cancer patients treated with HDTs frequently fall into the first condition, named osteosarcopenic obesity. Current clinical guidelines for the prevention of treatment-induced osteoporosis focus on bone mineral density (BMD) as a main predictive factor for fracture risk; however, the pathophysiology underlying HDT-induced bone fragility differs from that of primary and postmenopausal osteoporosis, suggesting a prevalent role for bone quality alterations. Focusing on available data from clinical trials, in our review we suggest osteosarcopenic obesity as a common target for the prevention and treatment of HDTs-related metabolic and skeletal complications, beyond a BMD-centred approach.
Collapse
Affiliation(s)
- Alberto Dalla Volta
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| | - Irene Caramella
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy.
| | - Pierluigi Di Mauro
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| | - Marco Bergamini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| | - Deborah Cosentini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| | - Francesca Valcamonico
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| | - Carlo Cappelli
- Department of Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Marta Laganà
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| | - Nunzia Di Meo
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Radiology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Radiology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Rebecca Pedersini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
- Breast Unit, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, 25123, Brescia, Italy
| |
Collapse
|
40
|
Wong H, Sugimura R. Immune-epigenetic crosstalk in haematological malignancies. Front Cell Dev Biol 2023; 11:1233383. [PMID: 37808081 PMCID: PMC10551137 DOI: 10.3389/fcell.2023.1233383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Haematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms which can arise during any stage of haematopoiesis in the bone marrow. Accumulating evidence suggests that chronic inflammation generated by inflammatory cytokines secreted by tumour and the tumour-associated cells within the bone marrow microenvironment initiates signalling pathways in malignant cells, resulting in activation of master transcription factors including Smads, STAT3, and NF-κB which confer cancer stem cell phenotypes and drive disease progression. Deciphering the molecular mechanisms for how immune cells interact with malignant cells to induce such epigenetic modifications, specifically DNA methylation, histone modification, expression of miRNAs and lnRNAs to perturbate haematopoiesis could provide new avenues for developing novel targeted therapies for haematological malignancies. Here, the complex positive and negative feedback loops involved in inflammatory cytokine-induced cancer stem cell generation and drug resistance are reviewed to highlight the clinical importance of immune-epigenetic crosstalk in haematological malignancies.
Collapse
Affiliation(s)
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Lee Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
41
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
42
|
Nisha Y, Dubashi B, Bobby Z, Sahoo JP, Kayal S, Ananthakrishnan R, Reddy VB, L C, Ganesan P. Negative impact on bone homeostasis in postmenopausal women with non-metastatic breast cancer during cytotoxic chemotherapy. J Bone Miner Metab 2023; 41:682-692. [PMID: 37410202 DOI: 10.1007/s00774-023-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION The burden and mechanisms of endocrine therapy-related bone loss are well known, while there are limited data on chemotherapy-induced bone resorption. The study aimed to evaluate the effect of cytotoxic chemotherapy on bone homeostasis among postmenopausal women with non-metastatic breast cancer. MATERIALS AND METHODS Early and locally advanced postmenopausal non-metastatic breast cancer patients aged 45 to 65 planned for three cycles of anthracycline and four cycles of taxane chemotherapy administered along with dexamethasone (cumulative dose-256 mg) as an antiemetic from June 2018 to December 2021 were included. Bone mineral density (BMD), bone turnover markers, calciotropic hormones, pro-inflammatory cytokines, oxidative stress, and total antioxidant levels (TAS) were measured. RESULTS We recruited 109 patients, with early 34 (31.2%) and locally advanced breast cancer 75 (68.8%) with median age 53 (45-65) years. There was a significant decrease in the % BMD at the lumbar spine, neck of the femur, and total hip post-chemotherapy. There was a significant increase in serum C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels post-chemotherapy. PINP/CTX ratio significantly decreased post-chemotherapy. Serum 25-OH vitamin D was significantly reduced with a compensatory increase in plasma iPTH levels. The change in CTX, PINP/CTX ratio, 25-OH vitamin D, iPTH, and oxidative stress index was more pronounced during anthracycline as taxane chemotherapy. There were no significant changes in pro-inflammatory cytokine levels. CONCLUSION Chemotherapy and dexamethasone as antiemetic resulted in significant bone loss, as evidenced by bone turnover markers. Further studies are required to understand the mechanism of chemotherapy-induced bone loss and the need for bone-strengthening agents during chemotherapy.
Collapse
Affiliation(s)
- Yadav Nisha
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India.
| | - Zachariah Bobby
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Jaya Prakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Ramesh Ananthakrishnan
- Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Vijay Bhaskar Reddy
- Department of Endocrinology, Vijay Diabetes, Thyroid and Endocrine Clinic, Saradambal Nagar, Puducherry, India
| | - Charles L
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| |
Collapse
|
43
|
Zhao T, Zhang Y, Liu L, Deng X, Guo J, Cao S, Zhu D, Xu J, Nikolaevna UV, Maratbek S, Wang Z, Sun Z, Gu X, Zhang H. Systemic Pharmacology Reveals the Potential Targets and Signaling Mechanisms in the Adjuvant Treatment of Brucellosis with Traditional Chinese Medicine. ACS OMEGA 2023; 8:28797-28812. [PMID: 37576692 PMCID: PMC10413447 DOI: 10.1021/acsomega.3c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Human brucellosis is one of the world's most common zoonoses, caused by Brucella infection and characterized by induced inflammation, which in severe cases can lead to abortion and sterility in humans and animals. There is growing evidence that traditional Chinese medicine (TCM) is beneficial as an adjunct to the treatment of brucellosis. However, its specific targets of action and molecular mechanisms remain unclear. In this study, a systematic pharmacological approach was applied to demonstrate pharmacological targets, biological functions, and signaling pathways of TCM as an adjunct to the treatment of brucellosis (TCMTB). The results of network pharmacology were further verified by in vitro experiments. Network analysis revealed that 133 active ingredients and 247 targets were screened in TCMTB. Further data analysis identified 21 core targets and 5 core compounds in TCMTB, including beta-sitosterol, quercetin, kaempferol, luteolin, and paeoniflorin. Gene ontology and the Kyoto Encyclopedia of Gene and Genome analysis showed that TCMTB might actively treat brucellosis by regulating inflammatory response, enhancing immune function, and targeting signaling pathways such as tuberculosis and TNF. Molecular docking results showed that multiple compounds could bind to multiple targets. Further, in vitro experiments confirmed that quercetin, among the active compounds screened, induced the strongest immunomodulatory and pro-inflammatory cytokine production during Brucella abortus infection. Further, quercetin induced nitric oxide production, which attenuated the ability of B. abortus to internalize THP-1 cells as well as intracellular survival. This study reveals the mechanism by which TCMTB aids in the treatment of brucellosis through a synergistic multicomponent, multipathway, and multitarget action. The contribution of quercetin treatment to B. abortus infection was demonstrated for the first time, which may be related to the quercetin-induced production of nitric oxide and immunomodulatory and inflammatory cytokines. These predictions of the core compounds and targets may be used in the future for the clinical treatment of brucellosis.
Collapse
Affiliation(s)
- Tianyi Zhao
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Yu Zhang
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Liangbo Liu
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Xingmei Deng
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Jia Guo
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Shuzhu Cao
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Dexin Zhu
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Jian Xu
- Herbivorous
Animal Bacterial Disease Innovation Team, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, Lanzhou, Gansu 730046, China
| | - Usevich Vera Nikolaevna
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
- College
of Veterinary, Ural State Agricultural University, Yekaterinburg 620000, Russia
| | - Suleimenov Maratbek
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
- College
of Veterinary, Kazakh National Agricultural
University, Nur Sultan 050001, Kazakhstan
| | - Zhen Wang
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Zhihua Sun
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Xinli Gu
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| | - Hui Zhang
- State
International Joint Research Center for Animal Health Breeding, College
of Animal Science and Technology, Shihezi
University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
44
|
Olander J, Barkarmo S, Hammarström Johansson P, Wennerberg A, Stenport VF. Inflammatory Gene Profile and Particle Presence in Peri-Implant Mucosa: a Pilot Study on 9 Patients. J Oral Maxillofac Res 2023; 14:e2. [PMID: 37969950 PMCID: PMC10645473 DOI: 10.5037/jomr.2023.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
Objectives The purpose of this pilot study is to compare gene expression in mucosa around dental implants with zirconia abutment to titanium and investigate presence of particles in mucosa samples and on implant heads. Material and Methods Ten patients with a single implant supported prosthesis connected to zirconia or titanium abutments were invited at the five-year control. A clinical examination and a survey on experience of function and appearance were conducted. A mucosa biopsy taken in close vicinity to the implant were analysed by real-time polymerase chain reaction (qPCR) and presence of particles in a scanning electron microscope/energy-dispersive X-ray spectroscope (SEM/EDX). Cytological smear samples were collected and analysed through inductively coupled plasma mass spectrometry (ICP-MS) to investigate presence of particles on implant heads. Results In total, 9 patients participated in the study, five with titanium abutments and four with zirconia abutments. All patients were satisfied with function and aesthetics. Titanium and iron particles were detected in mucosa biopsies. The ICP - MS analysis demonstrated presence of zirconia and titanium. Several proinflammatory genes were upregulated in the zirconia abutment group. Conclusions Around zirconia abutments a slight increase in proinflammatory response and amount of wear particles was seen as compared to titanium. Wear particles of titanium were present in all soft tissue samples, however zirconia particles only in the samples from implants heads/mucosa with zirconia abutments.
Collapse
Affiliation(s)
- Julia Olander
- Department of Prosthodontics and Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, GothenburgSweden.
| | - Sargon Barkarmo
- Department of Prosthodontics and Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, GothenburgSweden.
| | - Petra Hammarström Johansson
- Department of Prosthodontics and Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, GothenburgSweden.
| | - Ann Wennerberg
- Department of Prosthodontics and Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, GothenburgSweden.
| | - Victoria Franke Stenport
- Department of Prosthodontics and Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, GothenburgSweden.
| |
Collapse
|
45
|
Wei H, Zhao Y, Xiang L. Bone health in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2023; 17:921-935. [PMID: 37589220 DOI: 10.1080/17474124.2023.2248874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a chronic disease characterized by the presence of systemic inflammation, manifesting not only as gastrointestinal symptoms but also as extraintestinal bone complications, including osteopenia and osteoporosis. However, the association between IBD and osteoporosis is complex, and the presence of multifactorial participants in the development of osteoporosis is increasingly recognized. Unlike in adults, delayed puberty and growth hormone/insulin-like growth factor-1 axis abnormalities are essential risk factors for osteoporosis in pediatric patients with IBD. AREAS COVERED This article reviews the potential pathophysiological mechanisms contributing to osteoporosis in adult and pediatric patients with IBD and provides evidence for effective prevention and treatment, focusing on pediatric patients with IBD. A search was performed from PubMed and Web of Science inception to February 2023 to identify articles on IBD, osteoporosis, pediatric, and fracture risk. EXPERT OPINION A comprehensive treatment pattern based on individualized principles can be used to manage pediatric IBD-related osteoporosis.
Collapse
Affiliation(s)
- Hao Wei
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Zhao
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lisha Xiang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Sakr H, Khired Z, Moghadas M. In Rats, Whole and Refined Grains Decrease Bone Mineral Density and Content through Modulating Osteoprotegerin and Receptor Activator of Nuclear Factor Kappa B. Biomedicines 2023; 11:1686. [PMID: 37371781 DOI: 10.3390/biomedicines11061686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat is a staple grain in most parts of the world and is also frequently used in livestock feed. The current study looked at the impact of a wheat grain diet on bone turnover markers. Thirty male rats (n = 10) were separated into three groups of ten. The rats in Group 1 were fed a chow diet, while the rats in Group 2 were provided whole grains. The rats in Group 3 were fed refined grains. Each rat's bone mineral content (BMC) and bone mineral density (BMD) were measured after 12 weeks in the tibia of the right hind limb. We also looked at the amounts of bone turnover indicators in the blood. TRAP-5b (Tartrate-resistant acid Phosphatase 5b), NTx (N-telopeptide of type I collagen), DPD (deoxypyridinoline), alkaline phosphatase (ALP), and osteocalcin (OC), as well as the levels of Receptor Activator of Nuclear Factor Kappa B (RANK) and osteoprotegerin (OPG). Rats fed whole and refined grains showed lower BMC and BMD (p < 0.05) than the control group rats. The grain diet resulted in lower OPG, OC, and ALP levels than the chow-fed rats, as well as significantly higher (p < 0.05) levels of RANK, DPD, TRAB 5b, and NTx. In a rat model, an exclusive whole or refined grain diet lowered bone turnover and mass.
Collapse
Affiliation(s)
- Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Zenat Khired
- Surgical Department, Jazan University, Jazan 45142, Saudi Arabia
| | - Marzieh Moghadas
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
47
|
Wang Y, Wang J, Zheng W, Zhang J, Wang J, Jin T, Tao P, Wang Y, Liu C, Huang J, Lee PY, Yu X, Zhou Q. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design. Immunity 2023:S1074-7613(23)00231-5. [PMID: 37315560 DOI: 10.1016/j.immuni.2023.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1β. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1β and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.
Collapse
Affiliation(s)
- Yusha Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenjie Zheng
- Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinbo Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Taijie Jin
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Panfeng Tao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Yibo Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiqian Huang
- Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University, Hangzhou 311121, Zhejiang, China; Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China.
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
48
|
Purwaningrum M, Giachelli CM, Osathanon T, Rattanapuchpong S, Sawangmake C. Dissecting specific Wnt components governing osteogenic differentiation potential by human periodontal ligament stem cells through interleukin-6. Sci Rep 2023; 13:9055. [PMID: 37270571 PMCID: PMC10239497 DOI: 10.1038/s41598-023-35569-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) play a significant role on periodontal tissue and alveolar bone homeostasis. During inflammation, interleukin (IL)-6 serves as one of key cytokine players controlling tissue reaction as well as alveolar bone tissue remodeling. It is believed that periodontal tissue inflammation causes periodontium degradation, especially alveolar bone. However, in this study, we show that an inflammatory mediator, IL-6, may serve another direction on alveolar bone homeostasis during inflammatory condition. We found that, IL-6 at 10 and 20 ng/mL was not cytotoxic and dose-dependently exerted beneficial effects on osteogenic differentiation of human PDLSCs (hPDLSCs), as demonstrated by increased alkaline phosphatase activity, mRNA expression of osteogenic markers, and matrix mineralization. The presence of physiological and inflammatory level of IL-6, the osteogenic differentiation potential by hPDLSCs was enhanced by several possible mechanisms including transforming growth factor (TGF), Wnt, and Notch pathways. After in-depth and thorough exploration, we found that Wnt pathway serves as key regulator controlling osteogenic differentiation by hPDLSCs amid the IL-6 presentation. Surprisingly, apart from other mesenchymal stem cells, distinct Wnt components are employed by hPDLSCs, and both canonical and non-canonical Wnt pathways are triggered by different mechanisms. Further validation by gene silencing, treatment with recombinant Wnt ligands, and β-catenin stabilization/translocation confirmed that IL-6 governed the canonical Wnt/β-catenin pathway via either WNT2B or WNT10B and employed WNT5A to activate the non-canonical Wnt pathway. These findings fulfill the homeostasis pathway governing periodontal tissue and alveolar bone regeneration and may serve for further therapeutic regimen design for restoring the tissues.
Collapse
Affiliation(s)
- Medania Purwaningrum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Regenerative Dentistry (CERD), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
49
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
50
|
Mills EG, Abbara A, Dhillo WS, Comninos AN. Effects of distinct Polycystic Ovary Syndrome phenotypes on bone health. Front Endocrinol (Lausanne) 2023; 14:1163771. [PMID: 37251667 PMCID: PMC10213631 DOI: 10.3389/fendo.2023.1163771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a highly prevalent and heterogenous endocrinopathy affecting 5-18% of women. Although its cardinal features include androgen excess, ovulatory dysfunction, and/or polycystic ovarian morphology, women often display related metabolic manifestations, including hyperinsulinaemia, insulin resistance, and obesity. Emerging data reveal that the hormonal alterations associated with PCOS also impact bone metabolism. However, inconsistent evidence exists as to whether PCOS is a bone-protective or bone-hindering disorder with an accumulating body of clinical data indicating that hyperandrogenism, hyperinsulinaemia, insulin resistance, and obesity may have a relative protective influence on bone, whereas chronic low-grade inflammation and vitamin D deficiency may adversely affect bone health. Herein, we provide a comprehensive assessment of the endocrine and metabolic manifestations associated with PCOS and their relative effects on bone metabolism. We focus principally on clinical studies in women investigating their contribution to the alterations in bone turnover markers, bone mineral density, and ultimately fracture risk in PCOS. A thorough understanding in this regard will indicate whether women with PCOS require enhanced surveillance of bone health in routine clinical practice.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|