1
|
Zhang Y, Hong W, Zheng D, Li Z, Hu Y, Chen Y, Yang P, Zeng Z, Du S. Increased IFN-β indicates better survival in hepatocellular carcinoma treated with radiotherapy. Clin Exp Immunol 2024; 218:188-198. [PMID: 39185713 DOI: 10.1093/cei/uxae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/12/2024] [Accepted: 08/25/2024] [Indexed: 08/27/2024] Open
Abstract
Preclinical data suggest that type I interferon (IFN) responsiveness is essential for the antitumor effects of radiotherapy (RT). However, its clinical value remains unclear. This study aimed to explore this from a clinical perspective. In cohort 1, data from 152 hepatocellular carcinoma (HCC) patients who received RT were analyzed. Blood samples were taken 1 day before and 2 weeks after RT. RT was found to increase serum levels of IFN-β (a subtype of IFN-I) in HCC patients (3.42 ± 1.57 to 5.51 ± 2.11 pg/ml, P < 0.01), particularly in those with favorable responses. Higher post-RT serum IFN-β levels (≥4.77 pg/ml) were associated with better progression-free survival (HR = 0.58, P < 0.01). Cohort 2 included 46 HCC patients, including 23 who underwent preoperative RT and 23 matched control HCC who received surgical resection without RT. Formalin-fixed paraffin-embedded samples were obtained. Neoadjuvant RT significantly increased IFN-β expression in tumor tissues compared to direct surgery (8.13% ± 5.19% to 15.10% ± 5.89%, P < 0.01). Higher post-RT IFN-β (>median) indicated better disease-free survival (P = 0.049). Additionally, increased CD11c+MHCII+CD141+ antigen-presenting cell subsets and CD103+CD39+CD8+ tumor-infiltrating lymphocytes were found in the higher IFN-β group (P = 0.02, P = 0.03), which may contribute to the favorable prognosis in higher IFN-β group. Collectively, these findings suggest that IFN-β response activated by radiation may serve as a prognostic biomarker for HCC patients undergoing RT.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongjuan Li
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yong Hu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixing Chen
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Nishiyama T, Ohyama A, Miki H, Asashima H, Kondo Y, Tsuboi H, Ohno H, Shimano H, Matsumoto I. Mechanisms of age-related Treg dysfunction in an arthritic environment. Clin Immunol 2024; 266:110337. [PMID: 39111562 DOI: 10.1016/j.clim.2024.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by a polyarticular synovitis. In recent years, elderly onset rheumatoid arthritis (EORA) has been increasing. Treg cells in RA have been reported to be dysfunctional, but the relationship between aging and their functional changes is unclear. Here, we found that Treg cells from EORA patients had increased percentages, but decreased activity compared to those from younger onset RA (YORA) patients. In experiments using arthritis model mice, decreased suppressive function and oxygen consumption rate (OCR) were observed in Treg cells only from old arthritic mice. Furthermore, type I interferon (IFN) signaling was upregulated in Treg cells from old GIA mice, and IFN-β decreased the suppressive function of Treg cells. Our findings demonstrate that increased type I IFN signaling in old Treg cells is induced only in the arthritic environment and relates to decreased suppressive function of Treg cells, gets involved in EORA.
Collapse
Affiliation(s)
- Taihei Nishiyama
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayako Ohyama
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Miki
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Zhang JW, Lai RM, Wang LF, Wang SL, Xue HX, Li C, Zheng ZZ, Li J, Zhu YY, Zeng DW, Chen J, Ou QS, Chen TB, Xun Z, Jiang JJ, Zheng Q. Varied immune responses of HBV-specific B cells in patients undergoing pegylated interferon-alpha treatment for chronic hepatitis B. J Hepatol 2024:S0168-8278(24)02338-9. [PMID: 38992769 DOI: 10.1016/j.jhep.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND & AIMS The changes in HBV-specific B cells in patients with chronic hepatitis B (CHB) undergoing pegylated interferon-α (PEG-IFNα) treatment and achieving functional cure remain unclear. We aimed to evaluate the alterations in HBV-specific B cells during treatment and therefore explored the mechanism of functional recovery of HBsAg-specific B cells. METHODS We included 39 nucleos(t)ide analogue-treated patients with CHB who received sequential combination therapy with PEG-IFNα and eight treatment-naïve patients. HBV-specific B cells were characterized ex vivo using fluorescently labeled hepatitis B surface and core antigens (HBsAg and HBcAg). The frequency, phenotype, and subsets of HBV-specific B cells and follicular helper T cells (Tfh cells) were detected using flow cytometry. The functionality of HBV-specific B cells was quantified through ELISpot assays. RESULTS During treatment, the fraction of activated memory B cells (MBCs) among HBsAg-specific B cells and the expression of IgG, CXCR3, and CD38 increased. The antibody-secretion capacity of HBsAg-specific B cells was only restored in patients achieving a functional cure after treatment and it positively correlated with serum hepatitis B surface antibody levels. The phenotype and function of HBsAg-specific B cells differed between patients with and without functional cure. Patients with functional cure exhibited IgG+ classical MBCs and plasmablasts among HBsAg-specific B cells. HBcAg-specific B cells displayed both attenuated antibody secretion with reduced IgG expression and an IgM+ atypical type of MBC after treatment, irrespective of functional cure. The number of CD40L+ Tfh cells increased after PEG-IFNα treatment and positively correlated with HBsAg-specific B-cell activation. CONCLUSIONS After PEG-IFNα treatment, HBsAg- and HBcAg-specific B cells exhibit various changes in antibody secretion. Their functional differences are reflected in the alterations in phenotypes and subtypes. The presence of CD40L+ Tfh cells is associated with the active recovery of HBsAg-specific B cells. IMPACT AND IMPLICATIONS HBV-related complications and hepatocellular carcinoma remain the leading causes of mortality from chronic liver disease worldwide, and a cure is rarely achieved with antiviral therapies. Elucidating the immunological mechanisms underlying the functional cure of patients with chronic hepatitis B offers a promising therapeutic strategy for viral clearance, e.g. via therapeutic vaccination. We analyzed the alterations in HBV-specific B cells in patients treated with pegylated interferon-α and identified novel pathways for immunotherapeutic boosting of B cell immunity.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Rui-Min Lai
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Long-Fei Wang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Si-Ling Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Amoy 361100, Fujian Province, China
| | - Han-Xin Xue
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Chen Li
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Zi-Zheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Amoy 361100, Fujian Province, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu Province, China
| | - Yue-Yong Zhu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Da-Wu Zeng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Jing Chen
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Qi-Shui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Tian-Bin Chen
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China.
| | - Jia-Ji Jiang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China.
| | - Qi Zheng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China.
| |
Collapse
|
4
|
Qu S, Gan T, Wang YN, Qi YY, Zhang YM, Berthier CC, Liu LJ, Shi SF, Lv JC, Zhang H, Zhou XJ. A cluster of type I interferon-regulated genes associates with disease activity and prognosis in patients with IgA nephropathy. Int Immunopharmacol 2024; 131:111920. [PMID: 38522142 DOI: 10.1016/j.intimp.2024.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The exact pathogenesis of IgA nephropathy (IgAN) is complex and so far, not well defined. Since it has been shown that microbial infections could induce high levels of type I interferon (IFN-I) and there is an evident link between mucosal infection and gross hematuria in IgAN, we hypothesized that IFN-I may play a role in the pathogenic process. In this study, we investigated the type I interferon status in IgAN based on the expression of 17 IFN-regulated genes (IRGs) in whole blood from 59 IgAN patients in a cross-sectional study, of which 34 patients followed longitudinally. Analysis of the IFN-score showed that there was a significant elevated IFN-score in the IgAN patients compared with healthy controls (n = 28, p = 9.80 × 10-3), and we observed an elevated IFN-score in the group with less tubular atrophy/interstitial fibrosis (p = 1.07 × 10-2) and with a lower proportion of mesangial hypercellularity (p = 1.23 × 10-2). In the longitudinal analysis, Cox regression analysis revealed that a higher IFN level was associated with a better renal outcome in IgAN after adjustments for gender and age (hazard ratio, 0.90; 95 % confidence interval, 0.81 to 0.97; p = 4.20 × 10-2). In conclusion, our finding suggested that IFN score may represent a novel type of biomarker in IgAN, which requires further exploration on its mechanism and therapeutic targeting.
Collapse
Affiliation(s)
- Shu Qu
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Gan
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan-Na Wang
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Yuan Qi
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue-Miao Zhang
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Li-Jun Liu
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Su-Fang Shi
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Kamyshnyi A, Koval H, Kobevko O, Buchynskyi M, Oksenych V, Kainov D, Lyubomirskaya K, Kamyshna I, Potters G, Moshynets O. Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. Int J Mol Sci 2023; 24:ijms24086887. [PMID: 37108051 PMCID: PMC10138580 DOI: 10.3390/ijms24086887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Despite several targeted antiviral drugs against SARS-CoV-2 currently being available, the application of type I interferons (IFNs) still deserves attention as an alternative antiviral strategy. This study aimed to assess the therapeutic effectiveness of IFN-α in hospitalized patients with COVID-19-associated pneumonia. The prospective cohort study included 130 adult patients with coronavirus disease (COVID-19). A dose of 80,000 IU of IFN-α2b was administered daily intranasally for 10 days. Adding IFN-α2b to standard therapy reduces the length of the hospital stay by 3 days (p < 0.001). The level of CT-diagnosed lung injuries was reduced from 35% to 15% (p = 0.011) and CT injuries decreased from 50% to 15% (p = 0.017) by discharge. In the group of patients receiving IFN-α2b, the SpO2 index before and after treatment increased from 94 (92-96, Q1-Q3) to 96 (96-98, Q1-Q3) (p < 0.001), while the percentage of patients with normal saturation increased (from 33.9% to 74.6%, p < 0.05), but the level of SpO2 decreased in the low (from 52.5% to 16.9%) and very low (from 13.6% to 8.5%) categories. The addition of IFN-α2b to standard therapy has a positive effect on the course of severe COVID-19.
Collapse
Affiliation(s)
- Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Teatralnaya Square, 2, 58002 Chernivtsi, Ukraine
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Olha Kobevko
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical University, Maiakovskyi Avenue 26, 69000 Zaporizhzhia, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kyiv, Ukraine
| |
Collapse
|
7
|
Zhang Y, Han J, Zhang X, Li F, Guo Y, He J, Mao R, Zhu H, Yu J, Huang Y, Yang F, Zhang J. Lower frequency of MDSCs was significantly related to functional cure in CHB patients treated with peginterferon. Liver Int 2023; 43:329-339. [PMID: 36453086 DOI: 10.1111/liv.15489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND AIMS Myeloid-derived suppressor cells (MDSCs) and CD4+ regulatory T cells (Tregs) expand during chronic hepatitis B virus (HBV) infection and inhibit antiviral immunity. However, the relationship between antiviral effect and the frequencies of those immune suppressive cells after pegylated interferon α-2a (PegIFNα-2a) therapy is not clearly understood. This study aimed to investigate the contribution of monocytic MDSCs (mMDSCs) and CD4+ Tregs to functional cure (HBsAg seroclearance) after PegIFNα-2a therapy and evaluate the effect of PegIFNα-2a therapy on these cells. METHODS Flow cytometry analysis was performed along with longitudinal immune monitoring of 97 hepatitis B e antigen (HBeAg) negative chronic hepatitis B (CHB) patients receiving PegIFNα-2a weekly for 48 weeks. RESULTS The frequencies of mMDSCs and CD4+ Tregs increased in all HBV patients, and they were higher in the HBsAg persistence group than in the HBsAg seroclearance group. A significant decline in the frequency of mMDSCs was found in patients who realized functional cure after PegIFNα-2a treatment. In contrast, the frequency of CD4+ Tregs in both the HBsAg seroclearance and persistence groups significantly increased. Multivariate analyses indicated that the baseline serum HBsAg levels (p < .001) and mMDSCs frequency (p = .027) were independently associated with the HBsAg clearance, and the combined marker (HBsAg plus mMDSCs) displayed the highest specificity (93.1%) than any other markers in predicting HBsAg seroclearance. CONCLUSIONS These results suggest that a poor response to PegIFNα-2a treatment in CHB patients may be related to the frequencies of immune suppressive cells, while the therapeutic targeting of these cells might be effective in boosting anti-HBV immunity.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China.,Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Guo C, Liu Q, Zong D, Zhang W, Zuo Z, Yu Q, Sha Q, Zhu L, Gao X, Fang J, Tao J, Wu Q, Li X, Qu K. Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep 2022; 41:111606. [DOI: 10.1016/j.celrep.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
9
|
Nishiyama N, Nakahashi-Oda C, Shibuya A. Interferon-β promotes the survival and function of induced regulatory T cells. Cytokine 2022; 158:156009. [PMID: 36049243 DOI: 10.1016/j.cyto.2022.156009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines and impact various immune cells, including regulatory T cells (Treg cells). The effect of type-I IFNs on the development and function of Treg cells is quite controversial. Here we induced Treg cells (iTreg cells) from naïve CD4+ T cells in vitro in the presence or absence of IFN-β to elucidate its direct effect on the induction of iTreg cells. We found that IFN-β suppressed the proliferation of iTreg cells but enhanced their expression of anti-apoptotic genes Bcl-2 and Mcl-1 during the development of iTreg cells. We also found that IFN-β promoted suppression of conventional T cell proliferation by iTreg cells. These results suggest that IFN-β promotes the survival and immunomodulatory function of iTreg cells.
Collapse
Affiliation(s)
- Nanako Nishiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
10
|
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022; 13:911151. [PMID: 36032083 PMCID: PMC9411801 DOI: 10.3389/fimmu.2022.911151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.
Collapse
Affiliation(s)
- Arielle Raugh
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Maria Bettini,
| |
Collapse
|
11
|
Bednar KJ, Lee JH, Ort T. Tregs in Autoimmunity: Insights Into Intrinsic Brake Mechanism Driving Pathogenesis and Immune Homeostasis. Front Immunol 2022; 13:932485. [PMID: 35844555 PMCID: PMC9280893 DOI: 10.3389/fimmu.2022.932485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
CD4+CD25highFoxp3+ regulatory T-cells (Tregs) are functionally characterized for their ability to suppress the activation of multiple immune cell types and are indispensable for maintaining immune homeostasis and tolerance. Disruption of this intrinsic brake system assessed by loss of suppressive capacity, cell numbers, and Foxp3 expression, leads to uncontrolled immune responses and tissue damage. The conversion of Tregs to a pathogenic pro-inflammatory phenotype is widely observed in immune mediated diseases. However, the molecular mechanisms that underpin the control of Treg stability and suppressive capacity are incompletely understood. This review summarizes the concepts of Treg cell stability and Treg cell plasticity highlighting underlying mechanisms including translational and epigenetic regulators that may enable translation to new therapeutic strategies. Our enhanced understanding of molecular mechanism controlling Tregs will have important implications into immune homeostasis and therapeutic potential for the treatment of immune-mediated diseases.
Collapse
|
12
|
Liu Y, Hu X, Hu X, Yu L, Ji H, Li W, Cai Y, Cheng G, Jiang Y. T follicular helper cells improve the response of patients with chronic hepatitis B to interferon by promoting HBsAb production. J Gastroenterol 2022; 57:30-45. [PMID: 34988689 DOI: 10.1007/s00535-021-01840-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Hepatitis B surface antigen (HBsAg) seroconversion is considered the optimal outcome of the treatment of chronic hepatitis B virus (HBV) infection. In this study, we aimed to determine the cellular and molecular mechanisms by which pegylated interferon alpha (PEG-IFN-α) improves the seroconversion rate in patients with chronic hepatitis B (CHB). METHODS Flow cytometry was performed using circulating T follicular helper (TFH) cells from 15 healthy individuals and 45 patients with CHB presenting different treatment responses [complete response group (CRG), incomplete response group (ICRG), and nonresponse group (NRG)] to the standard 48-week regimen of PEG-IFN-α monotherapy to examine the significance of circulating TFH cells in the therapeutic response of patients with CHB to PEG-IFN-α. In addition, the capacities of different TFH subsets to activate B cells and stimulate IgG production were assessed by performing coculture experiments. RESULTS Longitudinal analysis revealed specific and significant increases in the numbers of CD40L+CD4+CXCR5+ TFH cells in the CRG compared with the NRG and ICRG. According to the results of in vitro coculture experiments, blocking CD40-CD40L signaling, but not ICOS-ICOSL signaling, specifically inhibits B-cell activation and IgG production. HBV may impair TFH cell function by enhancing inhibitory regulatory T-cell activity. Transcriptome analysis further revealed the upregulation of CD40L, but not of ICOS, in TFH cells isolated from the CRG. CONCLUSIONS TFH cells, particularly those with CD40L expression, stimulate B-cell differentiation and improve the HBsAg seroconversion rate in patients with CHB treated with PEG-IFN-α monotherapy.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoli Hu
- Department of Infectious Disease, Heilongjiang Provincial Hospital, Harbin, China
| | - Lei Yu
- Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Huifan Ji
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Wanyu Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yanjun Cai
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Ding M, Malhotra R, Ottosson T, Lundqvist M, Mebrahtu A, Brengdahl J, Gehrmann U, Bäck E, Ross-Thriepland D, Isaksson I, Magnusson B, Sachsenmeier KF, Tegel H, Hober S, Uhlén M, Mayr LM, Davies R, Rockberg J, Schiavone LH. Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells. Sci Rep 2021; 11:16767. [PMID: 34408239 PMCID: PMC8373891 DOI: 10.1038/s41598-021-96184-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.
Collapse
Affiliation(s)
- Mei Ding
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Ottosson
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Lundqvist
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Aman Mebrahtu
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johan Brengdahl
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- grid.418151.80000 0001 1519 6403Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- grid.418151.80000 0001 1519 6403Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Douglas Ross-Thriepland
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ida Isaksson
- grid.418151.80000 0001 1519 6403Sample Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Magnusson
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Hanna Tegel
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lorenz M. Mayr
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rick Davies
- grid.417815.e0000 0004 5929 4381Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Johan Rockberg
- grid.5037.10000000121581746Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- grid.418151.80000 0001 1519 6403Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
14
|
Loss of regulatory capacity in Treg cells following rhinovirus infection. J Allergy Clin Immunol 2021; 148:1016-1029.e16. [PMID: 34153372 DOI: 10.1016/j.jaci.2021.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Respiratory infections with rhinoviruses (RV) are strongly associated with development and exacerbations of asthma, and they pose an additional health risk for subjects with allergy. OBJECTIVE How RV infections and chronic allergic diseases are linked and what role RV plays in the breaking of tolerance in regulatory T (Treg) cells is unknown. Therefore, this study aims to investigate the effects of RV on Treg cells. METHODS Treg cells were isolated from subjects with asthma and controls after experimental infection with the RV-A16 (RV16) and analyzed with next-generation sequencing. Additionally, suppression assays, quantitative PCR assays, and protein quantifications were performed with Treg cells after in vitro RV16 infection. RESULTS RV16 induced a strong antiviral response in Treg cells from subjects with asthma and controls, including the upregulation of IFI44L, MX1, ISG15, IRF7, and STAT1. In subjects with asthma, the inflammatory response was exaggerated and showed a dysregulated immune response compared with that in the controls. Furthermore, subjects with asthma failed to upregulate several immunosuppressive molecules such as CTLA4 and CD69, and they upregulated the inflammasome-related genes PYCARD and AIM2. Additionally, RV16 reduced the suppressive capacity of Treg cells from healthy subjects and subjects with asthma in vitro and increased TH2 cell-type cytokine production. CONCLUSIONS Treg cells from healthy subjects and subjects with asthma displayed an antiviral response after RV infection and showed reduced suppressive capacity. These data suggest that Treg cell function might be altered or impaired during RV infections, which might play an important role in the association between RV and the development of asthma and asthma exacerbations.
Collapse
|
15
|
Chen M, Fang JP, Zhou CX, Li XY, Lin SF, Xu LH. Efficacy and safety of eltrombopag in the treatment of Chinese children with chronic immune thrombocytopenia. ACTA ACUST UNITED AC 2021; 26:31-36. [PMID: 33357172 DOI: 10.1080/16078454.2020.1856511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Our aim is to evaluate initial efficacy, safety, and durable response of eltrombopag in the treatment of Chinese children with chronic immune thrombocytopenia (cITP). METHODS This was a retrospective, single-center cohort study including 30 pediatric patients with cITP administered eltrombopag between 1 July 2017 and 1 January 2019. Patients with at least 12 weeks of eltrombopag treatment and available follow-up data were included. Initial response rate, durable response rate, bleeding events, and adverse events were assessed during the follow-up period. RESULTS The median duration of eltrombopag administration was 6 months (range 3-8 months). The initial response rate was 73.3%. Patients with megakaryocyte count ≥100/slide or Treg <4.5% were more likely to achieve initial response. The median follow-up period was 10 months (range 6-20 months). A total of 53.2% of pediatric patients had a durable response of up to 20 months. Patients with megakaryocyte count ≥100/slide and Treg<4.5% had more than 60% durable response rates compared with individuals with megakaryocyte count<100/slide and Treg≥4.5%, respectively. No serious bleeding events or serious adverse events occurred during the study period. CONCLUSION Eltrombopag not only shows excellent initial response but also has continued efficacy and safety. Patients with megakaryocyte count ≥100/slide and Treg<4.5% achieve increased initial response and more frequent durable response.
Collapse
Affiliation(s)
- Mo Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Department of Pediatrics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Jian-Pei Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chuan-Xin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Department of Pediatrics, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Xin-Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shao-Fen Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lu-Hong Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. Int Immunopharmacol 2021; 92:107350. [PMID: 33444921 DOI: 10.1016/j.intimp.2020.107350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by unresolved colitis and epithelial injury. Intestinal microbiota and its interaction with immune system are critical etiologic factors. In response to gut virome and bacteria derived nucleic acid, interferon regulatory factors (IRFs) are activated to promote the production of cytokines, including type I interferons (IFN-Is), to help maintain intestinal homeostasis under both physiological and pathophysiological conditions. However, derailed IRF/IFN-I pathway other-wisely contributes to the progression of IBD with distinct IRF member exerting differential regulatory effect. Here, we summarize the recent advances regarding the role of IRF/IFN-I pathway in the development of IBD. We emphasize that IFN-I is a double-edged sword in IBD pathogenesis, as IFN-Is are protective in acute colitis while becoming pro-inflammatory during the chronic recovery phase. Besides, the functional outcome of IRFs is diverse and complex, which hinges on the cell types affected and the presence of other immune mediators. All in all, IRF/IFN-I pathway serves as a versatile regulator in IBD pathogenesis and holds the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dan-Dan Cui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
18
|
Vitale S, Russo V, Dettori B, Palombi C, Baev D, Proietti E, Le Bon A, Belardelli F, Pace L. Type I interferons induce peripheral T regulatory cell differentiation under tolerogenic conditions. Int Immunol 2020; 33:59-77. [PMID: 32840576 DOI: 10.1093/intimm/dxaa058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The type I interferons (type I IFNs) are central to a vast array of immunological functions. The production of these immune-modulatory molecules is initiated at the early stages of the innate immune responses and, therefore, plays a dominant role in shaping downstream events in both innate and adaptive immunity. Indeed, the major role of IFNα/β is the induction of priming states, relevant for the functional differentiation of T lymphocyte subsets. Among T cell subtypes, the CD4 +CD25 +Foxp3 + T regulatory cells (Tregs) represent a specialized subset of CD4 + T cells with a critical role in maintaining peripheral tolerance and immune homeostasis. Although the role of type I IFNs in maintaining the function of thymus-derived Tregs has been previously described, the direct contribution of these innate factors to peripheral Treg (pTreg) and induced Treg (iTreg) differentiation and suppressive function is still unclear. We now show that, under tolerogenic conditions, IFNα/β play a critical role in antigen-specific and also polyclonal naïve CD4 + T cell conversion into peripheral antigen-specific CD4 +CD25 +Foxp3 + Tregs and inhibit CD4 + T helper (Th) cell expansion in mice. While type I IFNs sustain the expression and the activation of the transcription master regulators Foxp3, Stat3 and Stat5, these innate molecules reciprocally inhibit Th17 cell differentiation. Altogether, these results indicate a new pivotal role of IFNα/β on pTreg differentiation and induction of peripheral tolerance, which may have important implications in the therapeutic control of inflammatory disorders, such as of autoimmune diseases.
Collapse
Affiliation(s)
- Sara Vitale
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Russo
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine (IIGM), Candiolo (TO), Italy.,Candiolo Cancer Institute, FPO- IRCCS Candiolo (TO), Italy
| | - Beatrice Dettori
- Laboratory of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Cecilia Palombi
- Laboratory of Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Denis Baev
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine (IIGM), Candiolo (TO), Italy.,Candiolo Cancer Institute, FPO- IRCCS Candiolo (TO), Italy
| | | | - Agnes Le Bon
- Inserm Pôle Infrastructures, Faculté de Médecine Pitié salpétrière, Paris, France
| | - Filippo Belardelli
- Istituto Superiore di Sanità, Rome, Italy.,Istitute of Traslational Pharmacology, CNR, Rome, Italy
| | - Luigia Pace
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine (IIGM), Candiolo (TO), Italy.,Candiolo Cancer Institute, FPO- IRCCS Candiolo (TO), Italy
| |
Collapse
|
19
|
Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, Hippen KL, Loschi M, Thangavelu G, Corrado M, Edwards-Hicks J, Grzes KM, Pearce EJ, Blazar BR, Pearce EL. Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function. Cell Metab 2020; 31:422-437.e5. [PMID: 31883840 PMCID: PMC7001036 DOI: 10.1016/j.cmet.2019.11.021] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) subdue immune responses. Central to Treg activation are changes in lipid metabolism that support their survival and function. Fatty acid binding proteins (FABPs) are a family of lipid chaperones required to facilitate uptake and intracellular lipid trafficking. One family member, FABP5, is expressed in T cells, but its function remains unclear. We show that in Tregs, genetic or pharmacologic inhibition of FABP5 function causes mitochondrial changes underscored by decreased OXPHOS, impaired lipid metabolism, and loss of cristae structure. FABP5 inhibition in Tregs triggers mtDNA release and consequent cGAS-STING-dependent type I IFN signaling, which induces heightened production of the regulatory cytokine IL-10 and promotes Treg suppressive activity. We find evidence of this pathway, along with correlative mitochondrial changes in tumor infiltrating Tregs, which may underlie enhanced immunosuppression in the tumor microenvironment. Together, our data reveal that FABP5 is a gatekeeper of mitochondrial integrity that modulates Treg function.
Collapse
Affiliation(s)
- Cameron S Field
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ryan L Kyle
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Alanna M Cameron
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mauro Corrado
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
20
|
Nidoieva ZM, Peterson AA, Ruban TP, Dzuba GV, Kuchuk MV, Lukash LL. The Influence of Recombinant Interferon α2b Synthesized in Plants on the Reparative Enzyme MGMT Expression in Human Somatic Cells in vitro. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Sambucci M, Gargano F, Guerrera G, Battistini L, Borsellino G. One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Front Immunol 2019; 10:2947. [PMID: 31956323 PMCID: PMC6955595 DOI: 10.3389/fimmu.2019.02947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
As the Nobel laureate Luigi Pirandello wrote in his novels, identities can be evanescent. Although a quarter of a century has passed since regulatory T cells (Treg) were first described, new studies continue to reveal surprising and contradictory features of this lymphocyte subset. Treg cells are the core of the immunological workforce engaged in the restraint of autoimmune or inflammatory reactions, and their characterization has revealed substantial heterogeneity and complexity in the phenotype and gene expression profiles, proving them to be a most versatile and adaptive cell type, as exemplified by their plasticity in fine-tuning immune responses. Defects in Treg function are associated with several autoimmune diseases, including multiple sclerosis, which is caused by an inappropriate immune reaction toward brain components; conversely, the beneficial effects of immunomodulating therapies on disease progression have been shown to partly act upon the biology of these cells. Both in animals and in humans the pool of circulating Treg cells is a mixture of natural (nTregs) and peripherally-induced Treg (pTregs). Particularly in humans, circulating Treg cells can be phenotypically subdivided into different subpopulations, which so far are not well-characterized, particularly in the context of autoimmunity. Recently, Treg cells have been rediscovered as mediators of tissue healing, and have also shown to be involved in organ homeostasis. Moreover, stability of the Treg lineage has recently been addressed by several conflicting reports, and immune-suppressive abilities of these cells have been shown to be dynamically regulated, particularly in inflammatory conditions, adding further levels of complexity to the study of this cell subset. Finally, Treg cells exert their suppressive function through different mechanisms, some of which—such as their ectoenzymatic activity—are particularly relevant in CNS autoimmunity. Here, we will review the phenotypically and functionally discernible Treg cell subpopulations in health and in multiple sclerosis, touching also upon the effects on this cell type of immunomodulatory drugs used for the treatment of this disease.
Collapse
Affiliation(s)
- Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | |
Collapse
|
22
|
Abstract
Over the past decade, preclinical and clinical research have confirmed the essential role of interferons for effective host immunological responses to malignant cells. Type I interferons (IFNα and IFNβ) directly regulate transcription of >100 downstream genes, which results in a myriad of direct (on cancer cells) and indirect (through immune effector cells and vasculature) effects on the tumour. New insights into endogenous and exogenous activation of type I interferons in the tumour and its microenvironment have given impetus to drug discovery and patient evaluation of interferon-directed strategies. When combined with prior observations or with other effective modalities for cancer treatment, modulation of the interferon system could contribute to further reductions in cancer morbidity and mortality. This Review discusses new interferon-directed therapeutic opportunities, ranging from cyclic dinucleotides to genome methylation inhibitors, angiogenesis inhibitors, chemoradiation, complexes with neoantigen-targeted monoclonal antibodies, combinations with other emerging therapeutic interventions and associations of interferon-stimulated gene expression with patient prognosis - all of which are strategies that have or will soon enter translational clinical evaluation.
Collapse
|
23
|
Wei K, Jiang BC, Guan JH, Zhang DN, Zhang MX, Wu JL, Zhu GZ. Decreased CD4 +CD25 +CD127 dim/- Regulatory T Cells and T Helper 17 Cell Responsiveness to Toll-Like Receptor 2 in Chronic Hepatitis C Patients with Daclatasvir Plus Asunaprevir Therapy. Viral Immunol 2018; 31:559-567. [PMID: 30067145 DOI: 10.1089/vim.2018.0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Direct-acting antivirals (DAAs) not only rapidly inhibited hepatitis C virus (HCV) replication but also modulated innate and adaptive immune response in chronic hepatitis C patients. However, the regulatory activity of DAAs to Toll-like receptor 2 (TLR2) stimulation on CD4+CD25+CD127dim/- regulatory T cells (Tregs) and T helper (Th) 17 cells was not completely understood. In the present study, a total of 23 patients with chronic HCV genotype 1b infection were enrolled, and blood samples were collected at baseline (treatment naive), end of therapy (EOT), and 12 weeks after EOT (SVR12) with daclatasvir plus asunaprevir therapy. TLR2 expression on Tregs and Th17 cells was measured by flow cytometry. Cellular proliferation, cytokine production, and suppressive activity were also tested in purified CD4+CD25+CD127dim/- Tregs in response to the stimulation of Pam3Csk4, an agonist of TLR2. Inhibition of HCV RNA by daclatasvir and asunaprevir did not affect either percentage of Tregs/Th17 cells or TLR2 expression on Tregs/Th17 cells. Pam3Csk4 stimulation also did not influence either cellular proliferation or Tregs/Th17 proportion at each time point. Stimulation with Pam3Csk4 only enhanced the suppressive function and interleukin (IL)-35 production by Tregs purified from baseline, but not those from EOT or SVR12. Similarly, Pam3Csk4 stimulation only elevated Th17 cell frequency of CD4+ T cells from baseline, but not those from EOT or SVR12. Moreover, daclatasvir and asunaprevir therapy did not promote TLR2-induced shift of Tregs toward Th17-like phenotype and function. These data suggested that daclatasvir plus asunaprevir therapy resulted in the decreased responsiveness of Tregs/Th17 cells to TLR2 stimulation in chronic hepatitis C patients, which might provide a novel mechanism underlying DAA-induced immunoregulation.
Collapse
Affiliation(s)
- Kun Wei
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Jing-Hui Guan
- 2 Department of Blood Transfusion, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Dong-Na Zhang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Meng-Xuan Zhang
- 3 Clinical Medicine College, Changchun University of Chinese Medicine , Changchun, China
| | - Jun-Long Wu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
24
|
Chenna Narendra S, Chalise JP, Biggs S, Kalinke U, Magnusson M. Regulatory T-Cells Mediate IFN-α-Induced Resistance against Antigen-Induced Arthritis. Front Immunol 2018. [PMID: 29515584 PMCID: PMC5826073 DOI: 10.3389/fimmu.2018.00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective CD4+FoxP3+CD25+ regulatory T-cells (Tregs) are important for preventing tissue destruction. Here, we investigate the role of Tregs for protection against experimental arthritis by IFN-α. Methods Arthritis was triggered by intra-articular injection of methylated bovine serum albumin (mBSA) in wild-type mice, Foxp3DTReGFP+/− mice [allowing selective depletion of Tregs by diphtheria toxin (DT)] and CD4-Cre+/− IFNA1R flox/flox mice (devoid of IFNAR signaling in T-cells) earlier immunized with mBSA, with or without treatment with IFN-α or the indoleamine 2,3-dioxygenase (IDO)-metabolite kynurenine. Tregs were depleted in DT-treated Foxp3DTReGFP+/− mice and enumerated by FoxP3 staining. Suppressive capacity of FACS-sorted CD25+highCD4+ Tregs was tested in vivo by adoptive transfer and ex vivo in cocultures with antigen-stimulated CFSE-stained T-responder (CD25−CD4+) cells. IDO was inhibited by 1-methyl tryptophan. Results Both control mice and mice devoid of IFNAR-signaling in T helper cells were protected from arthritis by IFN-α. Depletion of Tregs in the arthritis phase, but not at immunization, abolished the protective effect of IFN-α and kynurenine against arthritis. IFN-α increased the number of Tregs in ex vivo cultures upon antigen recall stimulation but not in naïve cells. IFN-α also increased the suppressive capacity of Tregs against mBSA-induced T-responder cell proliferation ex vivo and against arthritis when adoptively transferred. The increased suppressive activity against proliferation conferred by IFN-α was clearly reduced by in vivo inhibition of IDO at immunization, which also abolished the protective effect of IFN-α against arthritis. Conclusion By activating IDO during antigen sensitization, IFN-α activates Tregs, which prevent arthritis triggered by antigen rechallenge. This is one way by which IFN-α suppresses inflammation.
Collapse
Affiliation(s)
- Sudeep Chenna Narendra
- Division of Rheumatology, Autoimmunity and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Sophie Biggs
- Division of Rheumatology, Autoimmunity and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ulrich Kalinke
- Twincore, Zentrum für Experimentelle und Klinische Infektionsforschung, Hannover, Germany
| | - Mattias Magnusson
- Division of Rheumatology, Autoimmunity and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
25
|
Langhans B, Nischalke HD, Krämer B, Hausen A, Dold L, van Heteren P, Hüneburg R, Nattermann J, Strassburg CP, Spengler U. Increased peripheral CD4 + regulatory T cells persist after successful direct-acting antiviral treatment of chronic hepatitis C. J Hepatol 2017; 66:888-896. [PMID: 28040549 DOI: 10.1016/j.jhep.2016.12.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS CD4+ regulatory T cells (Tregs) expand during chronic hepatitis C virus (HCV) infection, inhibit antiviral immunity and promote fibrosis. Direct-acting antiviral agents (DAA) have revolutionized HCV therapy. However, it is unclear if Tregs are normalized after DAA-induced HCV elimination. METHODS We analyzed Tregs before (baseline), at end of therapy (EOT), 12 and 24weeks (SVR12, SVR24) and long-term (51±14weeks) after EOT in 26 genotype-1-infected patients who were successfully treated with sofosbuvir (SOF) plus interferon (IFN)/ribavirin (n=12) and IFN-free DAA regimens (SOF plus daclatasvir or simeprevir; n=14). Frequency, phenotype and suppressor function of peripheral Foxp3+ CD25+ CD4+ T cells were studied by multi-color flow cytometry and co-culture inhibition assays. RESULTS Frequencies and activation status of Foxp3+ CD25+ CD4+ T cells remained elevated above those of normal controls in both treatment groups even long-term after HCV elimination. Co-culture assays indicated a dose-response relationship for functional inhibition of autologous CD4+ effector T cells and confirmed that activation of Tregs remained largely unchanged over the observation period. Unlike IFN-free regimens, SOF plus IFN/ribavirin induced a transiently increased frequency of Foxp3+ CD25+ CD4+ T cells at EOT (5.0% at baseline to 6.1% at EOT; p=0.001). These Foxp3+ CD25+ CD4+ T cells co-expressed the activation markers glycoprotein A repetitions predominant (GARP; p=0.012) and tumor necrosis factor receptor superfamily, member 4 (OX-40; p=0.001) but showed unchanged in vitro inhibitory activity. CONCLUSION Although IFN-based DAA therapy induced transient expansion of activated Foxp3+ CD25+ CD4+ T cells, neither IFN-based nor IFN-free DAA regimens normalized frequencies and activation status of Tregs one year after viral elimination. Persistence of immunosuppressive Tregs may thus contribute to complications of liver disease even long-term after HCV cure. LAY SUMMARY In chronic hepatitis C virus (HCV) infection, CD4+ regulatory T cells (Tregs) can reduce antiviral immune responses, promote liver fibrosis and may increase the risk for liver cancer, because they gradually expand during disease. Modern direct-acting antiviral agents (DAA) can "cure" hepatitis C in almost all treated patients. However, our study shows that DAA do not normalize the increased frequency and activation status of Tregs even long-term after HCV elimination. Tregs may persistently modulate functions of the immune system even after "cure" of hepatitis C.
Collapse
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany.
| | - Hans Dieter Nischalke
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Annekristin Hausen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Leona Dold
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Peer van Heteren
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany, and the German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| |
Collapse
|
26
|
Wang D, Ghosh D, Islam SMT, Moorman CD, Thomason AE, Wilkinson DS, Mannie MD. IFN-β Facilitates Neuroantigen-Dependent Induction of CD25+ FOXP3+ Regulatory T Cells That Suppress Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2992-3007. [PMID: 27619998 PMCID: PMC5101178 DOI: 10.4049/jimmunol.1500411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/07/2016] [Indexed: 12/11/2022]
Abstract
This study introduces a flexible format for tolerogenic vaccination that incorporates IFN-β and neuroantigen (NAg) in the Alum adjuvant. Tolerogenic vaccination required all three components, IFN-β, NAg, and Alum, for inhibition of experimental autoimmune encephalomyelitis (EAE) and induction of tolerance. Vaccination with IFN-β + NAg in Alum ameliorated NAg-specific sensitization and inhibited EAE in C57BL/6 mice in pretreatment and therapeutic regimens. Tolerance induction was specific for the tolerogenic vaccine Ag PLP178-191 or myelin oligodendrocyte glycoprotein (MOG)35-55 in proteolipid protein- and MOG-induced models of EAE, respectively, and was abrogated by pretreatment with a depleting anti-CD25 mAb. IFN-β/Alum-based vaccination exhibited hallmarks of infectious tolerance, because IFN-β + OVA in Alum-specific vaccination inhibited EAE elicited by OVA + MOG in CFA but not EAE elicited by MOG in CFA. IFN-β + NAg in Alum vaccination elicited elevated numbers and percentages of FOXP3+ T cells in blood and secondary lymphoid organs in 2D2 MOG-specific transgenic mice, and repeated boosters facilitated generation of activated CD44high CD25+ regulatory T cell (Treg) populations. IFN-β and MOG35-55 elicited suppressive FOXP3+ Tregs in vitro in the absence of Alum via a mechanism that was neutralized by anti-TGF-β and that resulted in the induction of an effector CD69+ CTLA-4+ IFNAR+ FOXP3+ Treg subset. In vitro IFN-β + MOG-induced Tregs inhibited EAE when transferred into actively challenged recipients. Unlike IFN-β + NAg in Alum vaccines, vaccination with TGF-β + MOG35-55 in Alum did not increase Treg percentages in vivo. Overall, this study indicates that IFN-β + NAg in Alum vaccination elicits NAg-specific, suppressive CD25+ Tregs that inhibit CNS autoimmune disease. Thus, IFN-β has the activity spectrum that drives selective responses of suppressive FOXP3+ Tregs.
Collapse
Affiliation(s)
- Duncheng Wang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - S M Touhidul Islam
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Ashton E Thomason
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Disease Research, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
27
|
Abstract
The immune system is essential for host defense against pathogen infections; however dysregulated immune response may lead to inflammatory or autoimmune diseases. Elevated activation of both innate immune cells and T cells such as Th17 cells are linked to many autoimmune diseases, including Multiple Sclerosis (MS), arthritis and inflammatory bowel disease (IBD). To keep immune homeostasis, the immune system develops a number of negative feedback mechanisms, such as the production of anti-inflammatory cytokine IL-10, to dampen excessive production of inflammatory cytokines and uncontrolled activation of immune cells. Our recent studies uncover a novel immunoregulatory function of interferon (IFN) pathways on the innate and antigen-specific immune response. Our results show that IFNα/β induced IL-10 production from macrophages and Th17 cells, which in turn negatively regulated Th17 function in autoimmune diseases such as Experimental Allergic Encephalomyelitis (EAE), an animal model of human MS. In a chronic colitis model resembling human IBD, we also found that IL-10 inhibited inflammasome/IL-1 pathway, and the pathogenicity of Th17 cells, leading to reduced chronic intestinal inflammation. Results from our and other studies further suggest that IL-10 produced by both macrophages and regulatory T cells may shift Th17 into more regulatory phenotypes, leading to reduced inflammatory response.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040, USA; Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040, USA
| |
Collapse
|
28
|
Pacella I, Timperi E, Accapezzato D, Martire C, Labbadia G, Cavallari EN, D'Ettorre G, Calvo L, Rizzo F, Severa M, Coccia EM, Vullo V, Barnaba V, Piconese S. IFN-α promotes rapid human Treg contraction and late Th1-like Treg decrease. J Leukoc Biol 2016; 100:613-23. [PMID: 26921346 DOI: 10.1189/jlb.5a0415-140r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Type I IFNs are pleiotropic cytokines that exert concerted activities in the development of antiviral responses. Regulatory T cells represent a physiologic checkpoint in the balance between immunity and tolerance, requiring fine and rapid controls. Here, we show that human regulatory T cells are particularly sensitive to the sequential effects of IFN-α. First, IFN-α exerts a rapid, antiproliferative and proapoptotic effect in vitro and in vivo, as early as after 2 d of pegylated IFN/ribavirin therapy in patients with chronic hepatitis C. Such activities result in the decline, at d 2, in circulating regulatory T cell frequency and specifically of the activated regulatory T cell subset. Later, IFN-based therapy restrains the fraction of regulatory T cells that can be polarized into IFN-γ-producing Th1-like regulatory T cells known to contribute to chronic immune activation in type 1 inflammation. Indeed, Th1-like regulatory T cell frequency significantly declines after 30 d of therapy in vivo in relation to the persistent decline of relevant IL-12 sources, namely, myeloid and 6-sulfo LacNAc-expressing dendritic cells. This event is recapitulated by experiments in vitro, providing evidence that it may be attributable to the inhibitory effect of IFN-α on IL-12-induced, Th1-like regulatory T cell polarization. In summary, our results suggest that IFN-α-driven, early regulatory T cell depletion contributes to the development of antiviral immunity, ultimately resulting in the resolution of type 1 inflammation.
Collapse
Affiliation(s)
- Ilenia Pacella
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Eleonora Timperi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Daniele Accapezzato
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Giancarlo Labbadia
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Eugenio N Cavallari
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | - Ludovica Calvo
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy;
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
29
|
Abstract
Regulatory T (Treg) cells that express the transcription factor FoxP3 play a key role in self-tolerance and the control of inflammation. In mice and humans, there is a wide interindividual range in Treg frequency, but little is known about the underlying genetic or epigenetic mechanisms. We explored this issue in inbred strains of mice, with a special focus on the low proportion of Treg cells found in NZW mice. Mixed bone marrow chimera experiments showed this paucity to be intrinsic to NZW Treg cells, a dearth that could be tied to poor stability of the Treg pool and of FoxP3 expression. This instability was not a consequence of differential epigenetic marks, because Treg-specific CpG hypomethylation profiles at the Foxp3 locus were similar in all strains tested. It was also unrelated to the high expression of IFN signature genes in NZW, as shown by intercross to mice with an Ifnar1 knockout. NZW Tregs were less sensitive to limiting doses of trophic cytokines, IL-2 and -33, for population homeostasis and for maintenance of FoxP3 expression. Gene-expression profiles highlighted specific differences in the transcriptome of NZW Tregs compared with those of other strains, but no single defect could obviously account for the instability. Rather, NZW Tregs showed a general up-regulation of transcripts normally repressed in Treg cells, and we speculate that this network-level bias may account for NZW Treg instability.
Collapse
|