1
|
de Souza KR, Nunes LO, Salnikov ES, Mundim HM, Munhoz VHO, Lião LM, Aisenbrey C, Resende JM, Bechinger B, Verly RM. Elucidating the conformational behavior and membrane-destabilizing capability of the antimicrobial peptide ecPis-4s. Biophys Chem 2025; 317:107353. [PMID: 39579655 DOI: 10.1016/j.bpc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Here we present studies of the structure and membrane interactions of ecPis-4 s, a new antimicrobial peptide from the piscidin family, which shows a wide-range of potential biotechnological applications. In order to understand the mode of action ecPis-4 s, the peptide was chemically synthesized and structural investigations in the presence of anionic POPC:POPG (3:1, mol:mol) membrane and SDS micelles were performed. CD spectroscopy demonstrated that ecPis-4 s has a high content of helical structure in both membrane mimetic media, which is in line with solution NMR spectroscopy that revealed an amphipathic helical conformation throughout the entire peptide chain. Solid-state NMR experiments of ecPis-4 s selectively labeled with 15N/2H and reconstituted into uniaxially oriented POPC:POPG membranes revealed an ideal partition of hydrophilic and hydrophobic residues within the bilayer interface. The peptide aligns in parallel to the membrane surface, a topology stabilized by aromatic side-chain interactions of the Phe-1, Phe-2 and Trp-9 with the phospholipids. 2H NMR experiments using deuterated lipids revealed that anionic lipid accumulates in the vicinity of the cationic peptide upon peptide-membrane binding.
Collapse
Affiliation(s)
- K R de Souza
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil; Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - L O Nunes
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - E S Salnikov
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - H M Mundim
- Instituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - V H O Munhoz
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - L M Lião
- Instituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - C Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - J M Resende
- Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - B Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France; Institut Universitaire de France (IUF), France
| | - R M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil.
| |
Collapse
|
2
|
Bauer M, Glowacka M, Kamysz W, Kleczkowska P. Marine Peptides: Potential Basic Structures for the Development of Hybrid Compounds as Multitarget Therapeutics for the Treatment of Multifactorial Diseases. Int J Mol Sci 2024; 25:12601. [PMID: 39684313 PMCID: PMC11641501 DOI: 10.3390/ijms252312601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Marine-derived peptides display potent antihypertensive, antioxidant, analgesic and antimicrobial biological effects. Some of them have also been found to have anticancer activity via various mechanisms differing from those of continental organisms. This diversity of properties-together with the peptides' efficacy, which has been confirmed in several in vitro and in vivo studies-make these compounds attractive as functional ingredients in pharmacy, especially in regard to multitarget drugs known as hybrids. Given the possibilities offered by chimeric structures, it is expected that a hybridization strategy based on a marine-derived compound could result in a long-awaited success in the development of new effective compounds to combat a range of complex diseases. However, despite the fact that the biological activity of such new hybrids may exceed that of their parent compounds, there is still an urgent need to carefully determine their potential off-targets and thus possible clinically important side effects. Given the above, the aim of this paper is to provide information on compounds of marine origin with peptide structures and to verify the occurrence and usage of hybrid compounds built from these structures. Furthermore, the authors believe that information presented here will serve to increase public awareness of the new opportunities arising from the combination of hybridization strategies with marine molecules with known structures and biological properties, thereby accelerating the development of effective drug candidates.
Collapse
Affiliation(s)
- Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Magdalena Glowacka
- Institute of Psychology and Human Sciences, WSEI Academy, 20-209 Lublin, Poland;
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Patrycja Kleczkowska
- Institute of Psychology and Human Sciences, WSEI Academy, 20-209 Lublin, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| |
Collapse
|
3
|
Alesci A, Marino S, D'Iglio C, Morgante S, Miller A, Rigano G, Ferri J, Fernandes JMO, Capillo G. Investigating Development and Defense Systems in Early Reproductive Stages of Male and Female Gonads in Black Scorpionfish Scorpaena porcus (Linnaeus, 1758). BIOLOGY 2024; 13:587. [PMID: 39194525 DOI: 10.3390/biology13080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
One of the most crucial biological indicators in tracking long-term variations in the reproductive cycle is sexual development. Scorpaena porcus (Linnaeus, 1758), commonly known as the black scorpionfish, is a small teleost from the family Scorpaenidae. Much is known about its ecology, but data on its reproductive and defense systems are still lacking. Antimicrobial peptides (AMPs), such as piscidins, are integral components of the innate immune system in fish. These peptides exhibit a wide range of activity against bacteria, fungi, viruses, and protozoa and act as the first line of host defense. This study aims to investigate the primary sexual development stages in male and female gonads of black scorpionfish, providing additional knowledge on the reproductive biology of this teleost while evaluating concomitant changes in the expression of a Piscidin-1 antimicrobial peptide. The results show a histological, morpho-structural change from the immature stage to the developing virgin stage. Immunohistochemical analyses show that germinal and somatic cells are strongly reactive to Piscidin-1 in both gonads at an early ontogeny stage. These data suggest that Piscidin-1 may play a key role in the local defense system of scorpionfish gonads at this delicate stage, which is critical for the continuation and maintenance of the species. The present findings are potentially useful for a better understanding of the reproductive cycle of this fish, improving our knowledge of the interaction between the immune system and reproduction.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sebastian Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Claudio D'Iglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Silvana Morgante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, 98166 Messina, Italy
| | - Gabriele Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Josipa Ferri
- University Department of Marine Studies, University of Split, 21000 Split, Croatia
| | | | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Sea in Health and Life SRL., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98164 Messina, Italy
| |
Collapse
|
4
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
5
|
Asensio-Calavia P, González-Acosta S, Otazo-Pérez A, López MR, Morales-delaNuez A, Pérez de la Lastra JM. Teleost Piscidins-In Silico Perspective of Natural Peptide Antibiotics from Marine Sources. Antibiotics (Basel) 2023; 12:antibiotics12050855. [PMID: 37237758 DOI: 10.3390/antibiotics12050855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Fish, like all other animals, are exposed to constant contact with microbes, both on their skin and on the surfaces of their respiratory and digestive systems. Fish have a system of non-specific immune responses that provides them with initial protection against infection and allows them to survive under normal conditions despite the presence of these potential invaders. However, fish are less protected against invading diseases than other marine vertebrates because their epidermal surface, composed primarily of living cells, lacks the keratinized skin that serves as an efficient natural barrier in other marine vertebrates. Antimicrobial peptides (AMPs) are one type of innate immune protection present in all life forms. AMPs have been shown to have a broader range of biological effects than conventional antibiotics, including antibacterial, antiviral, antiprotozoal, and antifungal effects. Although other AMPs, such as defensins and hepcidins, are found in all vertebrates and are relatively well conserved, piscidins are found exclusively in Teleost fish and are not found in any other animal. Therefore, there is less information on the expression and bioactivity of piscidins than on other AMPs. Piscidins are highly effective against Gram-positive and Gram-negative bacteria that cause disease in fish and humans and have the potential to be used as pharmacological anti-infectives in biomedicine and aquaculture. To better understand the potential benefits and limitations of using these peptides as therapeutic agents, we are conducting a comprehensive study of the Teleost piscidins included in the "reviewed" category of the UniProt database using bioinformatics tools. They all have amphipathic alpha-helical structures. The amphipathic architecture of piscidin peptides and positively charged residues influence their antibacterial activity. These alpha-helices are intriguing antimicrobial drugs due to their stability in high-salt and metal environments. New treatments for multidrug-resistant bacteria, cancer, and inflammation may be inspired by piscidin peptides.
Collapse
Affiliation(s)
- Patricia Asensio-Calavia
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Spain
- School of Doctoral and Graduate Studies, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Spain
- School of Doctoral and Graduate Studies, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Spain
- School of Doctoral and Graduate Studies, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo. 456, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel R López
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Spain
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de La Laguna, Spain
| |
Collapse
|
6
|
Wu YX, Hu SY, Lu XJ, Hu JR. Identification and characterization of two novel antimicrobial peptides from Japanese sea bass (Lateolabrax japonicus) with antimicrobial activity and MO/MФ activation capability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104726. [PMID: 37149238 DOI: 10.1016/j.dci.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Piscidins participate in the innate immune response of fish, which aims to eliminate recognized foreign microbes and restore the homeostasis of immune system. We characterized two piscidin-like antimicrobial peptides (LjPL-3 and LjPL-2) isolated from Japanese sea bass (Lateolabrax japonicus). LjPL-3 and LjPL-2 showed different expression patterns in tissues. After Vibrio harveyi infection, the mRNA expression of LjPL-3 and LjPL-2 was upregulated in the liver, spleen, head kidney, and trunk kidney. The synthetic mature peptides LjPL-3 and LjPL-2 exhibited different antimicrobial spectra. Furthermore, LjPL-3 and LjPL-2 treatments decreased inflammatory cytokine production while promoting chemotaxis and phagocytosis in monocytes/macrophages (MO/MФ). LjPL-2, but not LjPL-3, displayed bacterial killing capability in MO/MФ. LjPL-3 and LjPL-2 administration increased Japanese sea bass survival after V. harveyi challenge, which was accompanied by a decline in bacterial burden. These data suggested that LjPL-3 and LjPL-2 participate in immune response through direct bacterial killing and MO/MФ activation.
Collapse
Affiliation(s)
- Yi-Xin Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shuai-Yue Hu
- Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jian-Rao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
7
|
Sathyan N, Muhammed Musthafa S, Anju MV, Archana K, Athira PP, Prathap N, Chaithanya ER, Priyaja P, Bright Singh IS, Philip R. Functional characterization of a histone H2A derived antimicrobial peptide HARRIOTTIN-1 from sicklefin chimaera, Neoharriotta pinnata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104554. [PMID: 36185036 DOI: 10.1016/j.dci.2022.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial peptides (AMPs) are gene encoded short peptides which play an important role in the innate immunity of almost all living organisms ranging from bacteria to mammals. Histones play a very important role in defense as precursors to bioactive peptides. The present study is an attempt to decipher the antimicrobial activity of a histone H2A derived peptide, Harriottin-1 from sicklefin chimaera, Neoharriotta pinnata. Analysis in silico predicted the molecule with potent antibacterial and anticancer property. The Harriottin-1 was recombinantly produced and the recombinant peptide rHar-1 demonstrated potent antibacterial activity at 25 μM besides anticancer activity. The study strongly suggests the importance of histone H2A derived peptides as a model for the design and synthesis of potent peptide drugs.
Collapse
Affiliation(s)
- Naveen Sathyan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - S Muhammed Musthafa
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - K Archana
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - P P Athira
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Namitha Prathap
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - E R Chaithanya
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - P Priyaja
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
8
|
Naiel MAE, Abd El-Hack ME, Patra AK. The Role of Antimicrobial Peptides (AMPs) in Aquaculture Farming. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:215-234. [DOI: 10.2174/9789815049015122010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the vital constituents that stimulate the
innate immune defense system against pathogens and perform several biological
activities, which provide the first defensive line against infectious diseases. Owing to
their unique structure, they can be utilized as a therapeutic strategy for infectious
diseases in fishes. Several kinds of AMPs are reported in fishes with broad-spectrum
antimicrobial properties. Besides, the bacterial cells cannot develop resistance strains
against these cationic compounds with low molecular weight. Thus, AMPs may be
considered an alternative to antibiotics to prevent or control infectious diseases in
aquaculture. It is essential to provide sufficient knowledge about the mode of action of
AMPs against fish pathogenic agents and their future applications.
Collapse
Affiliation(s)
| | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| |
Collapse
|
9
|
Dai M, Yang J, Liu X, Gu H, Li F, Li B, Wei J. Parasitism by the Tachinid Parasitoid Exorista japonica Leads to Suppression of Basal Metabolism and Activation of Immune Response in the Host Bombyx mori. INSECTS 2022; 13:insects13090792. [PMID: 36135493 PMCID: PMC9506100 DOI: 10.3390/insects13090792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/26/2023]
Abstract
The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid Exoristajaponica, a pest of the silkworm, causes pupation defects in Bombyx mori. However, the underlying mechanism is not fully understood. Here, we performed transcriptome analysis of the fat body of B. mori parasitized by E. japonica. We identified 1361 differentially expressed genes, with 394 genes up-regulated and 967 genes down-regulated. The up-regulated genes were mainly associated with immune response, endocrine system and signal transduction, whereas the genes related to basal metabolism, including energy metabolism, transport and catabolism, lipid metabolism, amino acid metabolism and carbohydrate metabolism were down-regulated, indicating that the host appeared to be in poor nutritional status but active in immune response. Moreover, by time-course gene expression analysis we found that genes related to amino acid synthesis, protein degradation and lipid metabolism in B. mori at later parasitization stages were inhibited. Antimicrobial peptides including Cecropin A, Gloverin and Moricin, and an immulectin, CTL11, were induced. These results indicate that the tachinid parasitoid perturbs the basal metabolism and induces the energetically costly immunity of the host, and thus leading to incomplete larval-pupal ecdysis of the host. This study provided insights into how tachinid parasitoids modify host basal metabolism and immune response for the benefit of developing parasitoid larvae.
Collapse
Affiliation(s)
- Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jin Yang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Xinyi Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Sericulture Institute, Soochow University, Suzhou 215123, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Serna-Duque JA, Cuesta A, Sánchez-Ferrer Á, Esteban MÁ. Two duplicated piscidin genes from gilthead seabream (Sparus aurata) with different roles in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2022; 127:730-739. [PMID: 35835383 DOI: 10.1016/j.fsi.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
From the discovery of pleurocidin in skin mucus of winter flounder, many new related sequences have been found, forming a fish-exclusive family of antimicrobial peptides (AMP) called piscidin. Their mature peptides have a broad-spectrum antimicrobial activity and can be involved in the innate immune response. In the present work, two paralogous tripartite piscidin genes are formally described for the first time in gilthead seabream (Sparus aurata), an important marine farmed fish. Gene synteny and protein phylogeny clearly indicated a massive pisc gene expansion in a cluster of the chromosome 22 as well as a special evolution of piscidin in gilthead seabream compared to the rest of piscidins studied in other fish species. Despite being highly similar genes, they show totally different expression patterns in tissues and head-kidney leucocytes under both naïve and Vibrio/nodavirus-stimulated conditions. Moreover, these paralogous genes coded very different proteins according to their physicochemical properties. In this way, these piscidin genes have distinct roles not only related to their microbicide activity but also to their immune modulation. In addition, the present study improves the knowledge of duplication of AMP genes and adaptative diversification of teleost immune system.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
11
|
Liu F, Feng Y, Geng Y, Chen D, Ou Yang P, Huang X, Guo H, Zuo Z, Deng H, Fang J. Epitheliocystis caused by a novel Chlamydia emerging in Spinibarbus denticulatus in China. DISEASES OF AQUATIC ORGANISMS 2022; 150:31-36. [PMID: 35796509 DOI: 10.3354/dao03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epitheliocystis is an emerging and global aquaculture disease caused by a diverse range of bacteria of the order Chlamydiales. Here we report a case of epitheliocystis caused by a novel Chlamydia bacterium, which resulted in 40% mortality in cultured cyprinids (Spinibarbus denticulatus). The affected fish exhibited lethargy, were observed swimming near the oxygen pump and subsequently died. Histopathology analysis revealed that lesions were concentrated mainly on the gills. The epithelial cells of the damaged gill lamellae showed hyperplasia, fusion and adhesion, and were characterized by inflammation and necrosis. Inclusion bodies were observed in some proliferating epithelial cells at the tips of the gill lamellae and were accompanied by different degrees of mucous cell proliferation. Transmission electron microscopy examination clearly showed the morphological characteristics of chlamydia-like bacteria in epithelial cells. In addition, 16S rRNA sequencing (752 bp) and molecular phylogenetic analyses revealed that epitheliocystis agents detected in S. denticulatus belonged to a novel family, Chlamydiaceae. This is the first report of epitheliocystis in cultured fish in China, and the findings in this study increase the range of hosts affected by epitheliocystis.
Collapse
Affiliation(s)
- Fan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu E, Huang T, Gu W, Wang G, Dong F, Ma H, Zhang L, He X, Yao Z, Jiao W, Li C, Wang B, Xu G. Molecular characterization and antibacterial immunity functional analysis of the antimicrobial peptide hepcidin from Coregonus ussuriensis berg. FISH & SHELLFISH IMMUNOLOGY 2022; 122:78-86. [PMID: 35051564 DOI: 10.1016/j.fsi.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides are immune system molecules existing in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine rich antimicrobial peptides, which plays an important role in fish response to a variety of pathogens. In this study, we cloned and identified Hepcidin from the Coregonus ussuriensis Berg, and its functions in vivo and in vitro was investigated. Our results showed that, CuHepc contains a 267 bp coding sequence (CDS) region that encodes 88 putative amino acids with a molecular weight of 9.77 kD. Hepcidin transcripts were most abundant in the liver of healthy C. ussuriensis Berg. The synthesized Hepcidin peptide exhibited a wide range of antibacterial activity against Gram-positive and Gram-negative bacteria in vitro, and the results of in vivo bacterial attack assays showed that the CuHepc gene was differentially up-regulated in the six tissues investigated after infection with Aeromonas hydrophila. To analyze the changes in protein levels in C. ussuriensis, we generated Hepc polyclonal antibodies in rabbits and verified that the protein expression was increased after bacterial infection with Western blot assay. MIC assay results showed a geometric mean value of 5.513 μM for CuHepc peptide. In the in vivo experiment, immune-related genes IL-10, NF-κB, TLR3 were up-regulated post-infection CuHepc peptide in liver and intestine. Finally, CuHepc peptide reduced the tissues microbial load compared to infection with Aeromonas hydrophila. The above results indicate that Hepc plays a role in the immune response of C. ussuriensis to exogenous disturbances, indicate that CuHepc might act a candidate for modulation of the innate immune system in C. ussuriensis.
Collapse
Affiliation(s)
- Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Gaochao Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Haibing Ma
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Lanlan Zhang
- Heilongjiang Fisheries Technology Extension Center, Harbin, PR China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, PR China
| | - Zuochun Yao
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, PR China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Limited Liability Company, Yili, PR China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| |
Collapse
|
13
|
Lauriano ER, Capillo G, Icardo JM, Fernandes JMO, Kiron V, Kuciel M, Zuwala K, Guerrera MC, Aragona M, Germana' A, Zaccone G. Neuroepithelial cells (NECs) and mucous cells express a variety of neurotransmitters and neurotransmitter receptors in the gill and respiratory air-sac of the catfish Heteropneustes fossilis (Siluriformes, Heteropneustidae): a possible role in local immune defence. ZOOLOGY 2021; 148:125958. [PMID: 34399394 DOI: 10.1016/j.zool.2021.125958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Heteropneustes fossilis is an air-breathing teleost inhabiting environments with very poor O2 conditions, and so it has evolved to cope with hypoxia. In the gills and respiratory air-sac, the sites for O2 sensing and the response to hypoxia rely on the expression of acetylcholine (Ach) acting via its nicotinic receptor (nAChR). This study examined the expression patterns of neuronal markers and some compounds in the NECs of the gills and respiratory air sac having an immunomodulatory function in mammalian lungs. Mucous cells, epithelial cells and neuroepithelial cells (NECs) were immunopositive to a variety of both neuronal markers (VAChT, nAChR, GABA-B-R1 receptor, GAD679) and the antimicrobial peptide piscidin, an evolutionary conserved humoral component of the mucosal immune system in fish. We speculate that Ach release via nAChR from mucous cells may be modulated by GABA production in the NECs and it is required for the induction of mucus production in both normoxic and hypoxic conditions. The presence of piscidin in mucous cells may act in synergy with the autocrine/paracrine signals of Ach and GABA binding to GABA B R1B receptor that may play a local immunomodulatory function in the mucous epithelia of the gills and the respiratory air sac. The potential role of the NECs in the immunobiological behaviour of the gill/air-sac is at moment a matter of speculation. The extent to which the NECs as such may participate is elusive at this stage and waits investigation.
Collapse
Affiliation(s)
- Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy; Institute of Marine Biological Resources and Biotechnology - National Research Council (IRBIM, CNR), Spianata S. Raineri, 86, 98122, Messina, Italy.
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Poligono de Cazona, Faculty of Medicine, University of Cantabria, Santander, 39011, Spain
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodo, Norway
| | - Michal Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30501, Cracow, Poland
| | - Krystyna Zuwala
- Department of Comparative Anatomy, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, 30387, Poland
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Antonino Germana'
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giacomo Zaccone
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| |
Collapse
|
14
|
Fasina YO, Obanla T, Dosu G, Muzquiz S. Significance of Endogenous Antimicrobial Peptides on the Health of Food Animals. Front Vet Sci 2021; 8:585266. [PMID: 34262957 PMCID: PMC8273337 DOI: 10.3389/fvets.2021.585266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Acquired resistance to in-feed antibiotic growth promoters continues to be an imperative problem in the livestock industries, thereby necessitating continuous pursuit for alternatives. Antimicrobial peptides (AMPs) represent a critical part of the host's innate immune system and have been documented to have immunomodulatory activity. Increasing research evidence suggests that in contrast to antibiotics, AMPs exert broad-spectrum antibacterial activity in a manner that reduces bacterial acquisition of resistance genes. This review summarizes current knowledge on the protective effects of endogenous (natural) AMPs in the gastrointestinal tract of food animals. Factors limiting the efficacy of these AMPs were also discussed and mitigating strategies were proposed.
Collapse
Affiliation(s)
- Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Temitayo Obanla
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - George Dosu
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Sierra Muzquiz
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
15
|
Comert F, Heinrich F, Chowdhury A, Schoeneck M, Darling C, Anderson KW, Libardo MDJ, Angeles-Boza AM, Silin V, Cotten ML, Mihailescu M. Copper-binding anticancer peptides from the piscidin family: an expanded mechanism that encompasses physical and chemical bilayer disruption. Sci Rep 2021; 11:12620. [PMID: 34135370 PMCID: PMC8208971 DOI: 10.1038/s41598-021-91670-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
In the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu2+ is an effective chemical strategy to improve their cytotoxicity on cancer cells. Mechanistically, we find that prepared as Cu2+-complexes, the peptides not only physically but also chemically damage lipid membranes. Our testing ground features piscidins 1 and 3 (P1/3), two amphipathic, histidine-rich, membrane-interacting, and cell-penetrating HDPs that are α-helical bound to membranes. To investigate their membrane location, permeabilization effects, and lipid-oxidation capability, we employ neutron reflectometry, impedance spectroscopy, neutron diffraction, and UV spectroscopy. While P1-apo is more potent than P3-apo, metallation boosts their cytotoxicities by up to two- and seven-fold, respectively. Remarkably, P3-Cu2+ is particularly effective at inserting in bilayers, causing water crevices in the hydrocarbon region and placing Cu2+ near the double bonds of the acyl chains, as needed to oxidize them. This study points at a new paradigm where complexing HDPs with Cu2+ to expand their mechanistic reach could be explored to design more potent peptide-based anticancer therapeutics.
Collapse
Affiliation(s)
- Fatih Comert
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Mason Schoeneck
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Caitlin Darling
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Kyle W Anderson
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - M Daben J Libardo
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Vitalii Silin
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Myriam L Cotten
- Department of Applied Science, William and Mary, Williamsburg, VA, 23185, USA.
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
16
|
Dezfuli BS, Maestri C, Lorenzoni M, Carosi A, Maynard BJ, Bosi G. The impact of Anguillicoloides crassus (Nematoda) on European eel swimbladder: histopathology and relationship between neuroendocrine and immune cells. Parasitology 2021; 148:612-622. [PMID: 33557973 PMCID: PMC10950382 DOI: 10.1017/s0031182021000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The swimbladder functions as a hydrostatic organ in most bony fishes, including the European eel, Anguilla anguilla. Infection by the nematode Anguillicoloides crassus impairs swimbladder function, significantly compromising the success of the eel spawning migration. Swimbladders from 32 yellow eels taken from Lake Trasimeno (Central Italy) were analysed by histopathology- and electron microscopy-based techniques. Sixteen eels (50%) harboured A. crassus in their swimbladders and intensity of infection ranged from 2 to 17 adult nematodes per organ (6.9 ± 1.6, mean ± s.e.). Gross observations of heavily infected swimbladders showed opacity and histological analysis found a papillose aspect to the mucosa and hyperplasia of the lamina propria, muscularis mucosae and submucosa. Inflammation, haemorrhages, dilation of blood vessels and epithelial erosion were common in infected swimbladders. In the epithelium of parasitized swimbladders, many empty spaces and lack of apical junctional complexes were frequent among the gas gland cells. In heavily infected swimbladders, we observed hyperplasia, cellular swelling and abundant vacuolization in the apical portion of the gas gland cells. Numerous mast cells and several macrophage aggregates were noticed in the mucosal layer of infected swimbladders. We found more nervous and endocrine elements immunoreactive to a panel of six rabbit polyclonal antibodies in infected swimbladders compared to uninfected.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Chiara Maestri
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Barbara J Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO80523, USA
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134Milan, Italy
| |
Collapse
|
17
|
Firmino JP, Fernández-Alacid L, Vallejos-Vidal E, Salomón R, Sanahuja I, Tort L, Ibarz A, Reyes-López FE, Gisbert E. Carvacrol, Thymol, and Garlic Essential Oil Promote Skin Innate Immunity in Gilthead Seabream ( Sparus aurata) Through the Multifactorial Modulation of the Secretory Pathway and Enhancement of Mucus Protective Capacity. Front Immunol 2021; 12:633621. [PMID: 33777020 PMCID: PMC7994269 DOI: 10.3389/fimmu.2021.633621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.
Collapse
Affiliation(s)
- Joana P Firmino
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain.,TECNOVIT-FARMFAES, S.L. Pol. Ind. Les Sorts, Alforja, Spain.,Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eva Vallejos-Vidal
- Departamento de Biología, Facultad de Química y Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Ricardo Salomón
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain.,Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| |
Collapse
|
18
|
Portelinha J, Heilemann K, Jin J, Angeles-Boza AM. Unraveling the implications of multiple histidine residues in the potent antimicrobial peptide Gaduscidin-1. J Inorg Biochem 2021; 219:111391. [PMID: 33770667 DOI: 10.1016/j.jinorgbio.2021.111391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
The development of antimicrobial peptides (AMPs) as potential therapeutics requires resolving the foundational principles behind their structure-activity relationships. The role of histidine residues within AMPs remains a mystery despite the fact that several potent peptides containing this amino acid are being considered for further clinical development. Gaduscidin-1 (Gad-1) is a potent AMP from Atlantic cod fish that has a total of five His residues. Herein, the role of His residues and metal-potentiated activity of Gad-1 was studied. The five His residues contribute to the broad-spectrum activity of Gad-1. We demonstrated that Gad-1 can coordinate two Cu2+ ions, one at the N-terminus and one at the C-terminus, where the C-terminal binding site is a novel Cu2+ binding motif. High affinity Cu2+ binding at both sites was observed using mass spectrometry and isothermal titration calorimetry. Electron paramagnetic resonance was used to determine the coordination environment of the Cu2+ ions. Cu2+ binding was shown to be responsible for an increase in antimicrobial activity and a new mode of action. Along with the traditional AMP mode of action of pore formation, Gad-1 in the presence of Cu2+ (per)oxidizes lipids. Importantly, His3, His11, His17, and His21 were found to be important to lipid (per)oxidation. This insight will help further understand the inclusion and role of His residues in AMPs, the role of the novel C-terminal binding site, and can contribute to the field of designing potent AMPs that bind metal ions to potentiate activity.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, United States of America
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, United States of America
| | - Jing Jin
- Magnetic Resonance Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States of America
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, United States of America; Institute of Material Science, University of Connecticut, 97 N. Eagleville Road, Storrs, CT 06269, United States of America.
| |
Collapse
|
19
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
Zheng LB, Hong YQ, Sun KH, Wang J, Hong YJ. Characteristics delineation of piscidin 5 like from Larimichthys crocea with evidence for the potent antiparasitic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103778. [PMID: 32710907 DOI: 10.1016/j.dci.2020.103778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Several researches reported that piscidin members of teleosts owned strong antiparasitic activity. Cryptocaryon irritans, a type of ectoparasite, could infect most of the marine teleosts. Larimichthys crocea could severely suffer from marine white spot disease caused by C. irritans, and their mortality rate was significantly high. Concentrating on this problem, we have done many related works. Piscidin 5 like (termed Lc-P5L) was another piscidin member isolated from a comparative transcriptome of C. irritans-immuned L. crocea. In the paper, quantitative Real-time PCR (qRT-PCR) showed Lc-P5L was upregulated in examined tissues, including gill, head kidney, muscle, liver, spleen and intestine after challenged by C. irritans, the significant upregulation time was in accordance to key developmental stages of C. irritans, which implied different infection stages could result in host immune response. Furthermore, using microscope techniques, we observed theronts or trophonts became weakly motile, cilia became detached, cells were out of shape, membranes eventually lysed in different cell positions and cytoplasmic contents leaked. Laser confocal scanning microscope (LCSM) observed theronts macronucleus grew swell and depolymerized after treated by recombinant Lc-P5L (rLc-P5L). Data suggested rLc-P5L was significantly lethal to C. irritans, and the death state of the parasite incubated with rLc-P5L was remarkably similar to other piscidin members or other antiparasitic peptides (APPs). Thus, these data provided new insights into L. crocea immunity against C. irritans and potential of rLc-P5L as a therapeutic agent against pathogen invasion.
Collapse
Affiliation(s)
- Li-Bing Zheng
- Guangdong Yuequn Ocean Biological Research Development CO., LTD, Jieyang, 515500, China.
| | - Yue-Qun Hong
- Guangdong Yuequn Ocean Biological Research Development CO., LTD, Jieyang, 515500, China
| | - Kai-Hui Sun
- Guangdong Yuequn Ocean Biological Research Development CO., LTD, Jieyang, 515500, China
| | - Jun Wang
- Guangdong Yuequn Ocean Biological Research Development CO., LTD, Jieyang, 515500, China.
| | - Yu-Jian Hong
- Guangdong Yuequn Ocean Biological Research Development CO., LTD, Jieyang, 515500, China.
| |
Collapse
|
21
|
Mahrous KF, Aboelenin MM, Abd El-Kader HAM, Mabrouk DM, Gaafar AY, Younes AM, Mahmoud MA, Khalil WKB, Hassanane MS. Piscidin 4: Genetic expression and comparative immunolocalization in Nile tilapia (Oreochromis niloticus) following challenge using different local bacterial strains. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103777. [PMID: 32634526 DOI: 10.1016/j.dci.2020.103777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The antimicrobial activity of tilapia piscidin 4 (TP4) was determined in vitro against four bacterial strains, Aeromonas hydrophilla, Pseudomonas fluorescens, Streptococcus iniae and Vibrio anguillarum. Nile tilapia were infected with low and high doses of the tested pathogens; after 3, 6, 24 h and 7 days of the specific TP4 gene expression, tissue immunolocalization was also performed. Histopathological examination revealed septicaemia and necrosis of hemopoietic tissue for all of the tested bacteria. Immunolocalization showed abundance in S. iniae-infected fish tissues. Quantitative RT-PCR analysis revealed that high doses raised mRNA expression levels compared to low doses and expression levels increased in the infected fish, particularly after 24 h, indicating that TP4 exerts potent bactericidal activity against some fish pathogens and plays an essential role in fish immunity.
Collapse
Affiliation(s)
- Karima F Mahrous
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mohamad M Aboelenin
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Heba A M Abd El-Kader
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Dalia M Mabrouk
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Abdelgayed M Younes
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mahmoud A Mahmoud
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Wagdy K B Khalil
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| | - Mohamed S Hassanane
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., 12622, Dokki, Giza, Egypt.
| |
Collapse
|
22
|
Ghodsi Z, Kalbassi MR, Farzaneh P, Mobarez AM, Beemelmanns C, Amiri Moghaddam J. Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). FISH & SHELLFISH IMMUNOLOGY 2020; 104:55-61. [PMID: 32473358 DOI: 10.1016/j.fsi.2020.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Hepcidins, a group of antimicrobial peptides (AMPs), play a key role in the innate immune system of fishes and act against different pathogens. In this study, antimicrobial and immune-inflammatory activity of a synthetic EC-hepcidin1, previously identified from orange-spotted grouper, were evaluated. EC-hepcidin1 showed weak activity against the zoonotic fish pathogen Streptococcus iniae (MIC 100 μg mL-1 and MBC 150 μg mL-1). To study the effect of AMPs in general, and EC-hepcidin1 in particular, a primary cell culture (SC) from the fin tissue of the Caspian Trout (Salmo trutta caspius) was established. The neutral Red method on SC cells revealed that EC-hepcidin1 has no or very low cytotoxic properties. Treatment of cells with either EC-hepcidin1 (150 μg mL-1) or fish pathogen Streptococcus iniae (MOI = 10) and a mixture of both resulted in the up-regulation of gene expression of MHC-UBA, IL-6, and TNFα indicating the modulatory function on inflammatory processes. These findings indicate that EC-hepcidin1 might act as a candidate for modulation of the innate immune system in S. iniae-based infection.
Collapse
Affiliation(s)
- Zohreh Ghodsi
- Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Kalbassi
- Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center, ACECR, Tehran, Iran
| | - Ashraf Mohebati Mobarez
- Department of Bacteriology, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany
| | - Jamshid Amiri Moghaddam
- Leibniz Institute for Natural Product Research and Infection Biology e.V. Hans-Knöll-Institute (HKI), Jena, Germany.
| |
Collapse
|
23
|
Mahrous KF, Mabrouk DM, Aboelenin MM, Abd El-Kader HAM, Gaafar AY, Younes AM, Mahmoud MA, Khalil WKB, Hassanane MS. Molecular characterization and immunohistochemical localization of tilapia piscidin 3 in response to Aeromonas hydrophila infection in Nile tilapia. J Pept Sci 2020; 26:e3280. [PMID: 32812302 DOI: 10.1002/psc.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
The antimicrobial activity of tilapia piscidin 3 (TP3) was determined in vitro against a locally isolated Aeromonas hydrophila. A 388 bp fragment was amplified from the TP3 cDNA and sequenced. The coding sequence (CDS) of TP3 was estimated to be 231 bp codes for 76 amino acids long and stop codon. In silico analysis was performed to detect both the signal peptide and the prodomain cleavage sites to follow the amino acids number 22 and 70, respectively. Based on this, a peptide 23 amino acids long with a remarkably high computed antimicrobial probability was synthesized and used in the subsequent experiments. The antimicrobial activity of TP3 was determined with minimum inhibitory concentration (MIC) and minim um bactericidal concentration (MBC) methods. TP3 exhibited relatively weak antimicrobial activities against the tested bacteria. A challenge experiment was then performed in Nile tilapia with low and high doses of A. hydrophila, followed by timely recognition; after 3, 6, 24 h, and 7 days of the specific TP3 gene expression, immunohistochemical localization was also performed. Histopathological examination revealed provoked inflammatory responses and congestion in the same organs of TP3 expression. Immunohistochemical localization showed that A. hydrophila induced tilapia fish to express TP3 after 24 h within the gills, intestine, hepatopancreas, spleen, and posterior kidney. In quantitative real time (RT)-polymerase chain reaction analysis, the high dose showed higher mRNA expression levels than the low dose, and its expression levels increased in the A. hydrophila-infected fish. It was therefore concluded that TP3 plays an essential role in fish immunity.
Collapse
Affiliation(s)
- Karima F Mahrous
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Dalia M Mabrouk
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamad M Aboelenin
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Heba A M Abd El-Kader
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Alkhateib Y Gaafar
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Abdelgayed M Younes
- Hydrobiology Department, Veterinary Research Division, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud A Mahmoud
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wagdy K B Khalil
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed S Hassanane
- Cell Biology Department, Genetic Engineering and Biotechnology Division Research, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
24
|
Lee PT, Wen CM, Nan FH, Yeh HY, Lee MC. Immunostimulatory effects of Sarcodia suiae water extracts on Nile tilapia Oreochromis niloticus and its resistance against Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 103:159-168. [PMID: 32416250 DOI: 10.1016/j.fsi.2020.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
In this study, water extracts of the red seaweed Sarcodia suiae were obtained using solid-liquid extraction (SLE) or pressurized liquid extraction (PLE) methods. The extracts were used to investigate immunostimulatory activity by measuring the phagocytic activity of Nile tilapia (Oreochromis niloticus) hepatic and splenic macrophages and the tilapia head kidney (THK) cell line, and modulation of immune-related genes in primary head kidney (HK) cells and THK cells. At 10 μg/ml, both extracts promoted the proliferation of hepatic and splenic macrophages. Expression levels of proinflammatory cytokines (IL-1β and IL-8), antimicrobial peptides (TP2 and TP4), and pattern recognition receptors (TLR5) were elevated in SLE extracts-treated primary HK leukocytes. Similarly, IL-1β, IL-8, and TNFα expression was also induced by SLE extract in THK cells. Phagocytic activity in primary HK cells and THK cells was induced by SLE extract 12 h and 24 h post-stimulation, while PLE extract only induced phagocytic activity in THK cells at early time points. SLE extract (100 μg/g body weight) increased the expression of IL-1β, IL-8, TNFα, TP2, TP4, TLR2 and TLR5 in the spleen and immunoprotective efficiency against Streptococcus agalactiae infection. Taken together, these results show that S. suiae can differentially stimulate the immune response of tilapia in vitro and in vivo and could potentially be used as an immunomodulator in tilapia culture.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung City, 81148, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Han-Yang Yeh
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center of Excellence for Ocean Engineering, National Taiwan Ocean University Keelung City, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University Keelung City, Taiwan, ROC.
| |
Collapse
|
25
|
Paredes SD, Kim S, Rooney MT, Greenwood AI, Hristova K, Cotten ML. Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183236. [DOI: 10.1016/j.bbamem.2020.183236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
|
26
|
Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Zheng L, Qiu J, Chen J, Zheng WQ, Pan Y. Histopathological changes and piscidin 5-like location in infected Larimichthys crocea with parasite Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 99:52-58. [PMID: 31935553 DOI: 10.1016/j.fsi.2020.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Cryptocaryon irritans infection could cause huge economic losses to the marine fish industry. Larimichthys crocea, a special economic species in China, suffered from the threat of serious infection, and L. crocea could enhance the level of piscidin 5-like to defense against the infection. This study set out to observe the main histopathological changes of some key tissues caused by infection, and determineed how an ectoparasite affected the expression of piscidin-5 like in its hosts. Pathological changes and immune response were assessed using histological and in situ hybridization (ISH) technologies. The infection induced inflammation occurring, especially in the gill where epithelium cells swell, hyperplasia, necrosis shedding adjacent to the parasites attachment sites. Infected hepatic cells grown big vacuoles in the cytoplasm. The boundary between red pulp and white pulp turned indistinct, splenic corpuscle lost the normal structure, the number and size of melano-macrophage centers increased apparently in the infected spleen. The whole structure of head kidney became loose. Immunostaining with RNA probes against piscidin 5-like showed subpopulations of mast cells (MCs) were positive. Piscidin 5-like-positive MCs existed mainly in the head kidney where they distributed around melano-macrophage center, followed in the gill located at different positions they also distributed in the margin of spleen, and randomly and sparsely existed in the liver. After being infected by C. irritans, the gill arch arose positive MCs groups, and they also migrated to spleen, while the positive staining deepen in other detected tissues. Therefore, organism enhanced the expression level through improving expression ability of positive MCs, or increasing the number of positive MCs.
Collapse
Affiliation(s)
- Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China.
| | - Jiayin Qiu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China.
| |
Collapse
|
28
|
Li F, Li M, Wang H, Mao T, Chen J, Lu Z, Qu J, Fang Y, Li B. Effects of phoxim pesticide on the immune system of silkworm midgut. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:58-64. [PMID: 32284137 DOI: 10.1016/j.pestbp.2019.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 06/11/2023]
Abstract
Silkworm (Bombyx mori) is an important economic insect. Bombyx mori, which is exposed to sublethal doses of pesticides, has a low or no mortality rate, while it is susceptible to infections triggered by foreign pathogens. The immune regulatory mechanism of silkworms caused by trace pesticides still remains unclear. The midgut is the major organ of silkworm for digestion and nutrient absorption, and it plays a critical defensive role against pathogens. In the present study, the silkworm was susceptible to Enterobacter cloacae sp. (E. cloacae) after exposure to sublethal dose of phoxim. The body weight and survival rate of the phoxim-E. cloacae co-treatment group were significantly decreased after 120 h of treatment compared with the phoxim treatment group. The immune responses and expressions of immune-related genes were dysregulated in the midgut of silkworm following exposure to phoxim. Digital gene expression (DGE) analysis revealed that 44 immune response-related and immune defense-related genes were differentially expressed. qRT-PCR results indicated that the transcriptional levels of antimicrobial peptide genes Bmdefensin1, BmcecA, Bmglv1, Bmglv2, Bmmoricin and BmmoricinB3 were down-regulated by 0.77-, 0.37-, 0.05-, 0.19-, 0.34- and 0.54-fold, respectively. The transcriptional levels of Toll signaling pathway genes Bmcactus, Bmspatzle and Bmrel were down-regulated by 0.4-, 0.37- and 0.96-fold, respectively. Peritrophic membrane (PM) protein-related genes BmCBP-02, BmPM-41, BmPM-43 and BmCDA7 were down-regulated by 0.18-, 0.02-, 0.66- and 0.16-fold, respectively. The expressions of Toll signaling pathway genes were down-regulated at 48 h and 72 h. Immune deficiency (IMD) and Janus kinase and signal transducer and activator of transcription (JAK/STAT) signaling pathway genes were dysregulated after phoxim exposure. These results indicated that phoxim might cause damage to the PM and reduce the immune response of the silkworm, leading to susceptibility of silkworm to disease and damage from foreign pathogens.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
29
|
Yaacob EN, Norouzitallab P, De Geest BG, Bajek A, Dierckens K, Bossier P, Vanrompay D. Recombinant DnaK Orally Administered Protects Axenic European Sea Bass Against Vibriosis. Front Immunol 2020; 10:3162. [PMID: 32117214 PMCID: PMC7033693 DOI: 10.3389/fimmu.2019.03162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (105 CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture.
Collapse
Affiliation(s)
- Eamy Nursaliza Yaacob
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Aline Bajek
- Écloserie Marine de Gravelines, Gravelines, France
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Li F, Li M, Mao T, Wang H, Chen J, Lu Z, Qu J, Fang Y, Gu Z, Li B. Effects of phoxim exposure on gut microbial composition in the silkworm, Bombyx mori. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110011. [PMID: 31796255 DOI: 10.1016/j.ecoenv.2019.110011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/16/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate pesticides are widely applied worldwide for agricultural purposes, and their exposures often result in adverse effects on Bombyx mori. The insect gut is a complicated ecosystem inhabited by a large number of microbes that play important roles in insect physiology and behavior. Recent studies have reported that alteration of their microbiota due to stressful conditions or environmental changes has been linked to a compromised health status and a susceptibility to diseases. In the present study, we aimed to assess the effects of phoxim exposure on intestinal microbes in silkworms. The results showed that phoxim exposure increased the bacterial community evenness and altered the structure of gut microbiota in silkworm larvae. The abundances of several genera, such as Methylobacterium and Aurantimonadaceae, in phoxim-treated larval guts were significantly reduced compared with the H2O-treated group, whereas the abundances of non-dominant bacteria, such as Staphylococcus, were significantly increased. Moreover, phoxim inhibited the expressions of antimicrobial peptides (AMPs) at the mRNA level and enhanced the pathogenesis of Enterobacter cloacae (E. cloacae) against silkworm larvae, suggesting that the immune system was inhibited after phoxim exposure. Therefore, the gut microbial community shifts were apparent after phoxim exposure. The compositional and structural changes of intestinal microbes caused by phoxim exposure might affect the normal function of the intestinal tract of silkworm. These results highlighted the importance of the gut bacterial community when investigating the mechanisms of midgut injury after pesticide exposure in Bombyx mori.
Collapse
Affiliation(s)
- Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhiya Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
31
|
Comert F, Greenwood A, Maramba J, Acevedo R, Lucas L, Kulasinghe T, Cairns LS, Wen Y, Fu R, Hammer J, Blazyk J, Sukharev S, Cotten ML, Mihailescu M. The host-defense peptide piscidin P1 reorganizes lipid domains in membranes and decreases activation energies in mechanosensitive ion channels. J Biol Chem 2019; 294:18557-18570. [PMID: 31619519 PMCID: PMC6901303 DOI: 10.1074/jbc.ra119.010232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Indexed: 11/06/2022] Open
Abstract
The host-defense peptide (HDP) piscidin 1 (P1), isolated from the mast cells of striped bass, has potent activities against bacteria, viruses, fungi, and cancer cells and can also modulate the activity of membrane receptors. Given its broad pharmacological potential, here we used several approaches to better understand its interactions with multicomponent bilayers representing models of bacterial (phosphatidylethanolamine (PE)/phosphatidylglycerol) and mammalian (phosphatidylcholine/cholesterol (PC/Chol)) membranes. Using solid-state NMR, we solved the structure of P1 bound to PC/Chol and compared it with that of P3, a less potent homolog. The comparison disclosed that although both peptides are interfacially bound and α-helical, they differ in bilayer orientations and depths of insertion, and these differences depend on bilayer composition. Although Chol is thought to make mammalian membranes less susceptible to HDP-mediated destabilization, we found that Chol does not affect the permeabilization effects of P1. X-ray diffraction experiments revealed that both piscidins produce a demixing effect in PC/Chol membranes by increasing the fraction of the Chol-depleted phase. Furthermore, P1 increased the temperature required for the lamellar-to-hexagonal phase transition in PE bilayers, suggesting that it imposes positive membrane curvature. Patch-clamp measurements on the inner Escherichia coli membrane showed that P1 and P3, at concentrations sufficient for antimicrobial activity, substantially decrease the activating tension for bacterial mechanosensitive channels. This indicated that piscidins can cause lipid redistribution and restructuring in the microenvironment near proteins. We conclude that the mechanism of piscidin's antimicrobial activity extends beyond simple membrane destabilization, helping to rationalize its broader spectrum of pharmacological effects.
Collapse
Affiliation(s)
- Fatih Comert
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Alexander Greenwood
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23185
| | - Joseph Maramba
- Biology Department, University of Maryland, College Park, Maryland 20742
| | - Roderico Acevedo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Laura Lucas
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Thulasi Kulasinghe
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Leah S Cairns
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Janet Hammer
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701
| | - Jack Blazyk
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701
| | - Sergei Sukharev
- Biology Department, University of Maryland, College Park, Maryland 20742
| | - Myriam L Cotten
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23185.
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850.
| |
Collapse
|
32
|
An insight into piscidins: The discovery, modulation and bioactivity of greater amberjack, Seriola dumerili, piscidin. Mol Immunol 2019; 114:378-388. [PMID: 31450183 DOI: 10.1016/j.molimm.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/19/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the innate immune response of vertebrates by creating a hostile environment for any invading pathogens. Piscidins are potent teleost specific AMPs, which have a broad spectrum activity. We have identified a novel piscidin active peptide, in the greater amberjack, Seriola dumerili, that consists of 25 aa, which forms an amphipathic helix with distinct hydrophobic and positively charged regions. Following homology and phylogenetic analysis the greater amberjack piscidin was deemed to belong to the group 3 family of piscidins. Piscidin was expressed constitutively at immune sites, with transcript level highest in the spleen and gut, at an intermediate level in the gills and lowest in the head kidney. Following in vivo stimulation with PAMPs (poly I:C, LPS and flagellin) piscidin transcript level increased in gills in response to flagellin, in gut and spleen in response to poly I:C, and in head kidney in response to poly I:C, LPS and flagellin. Head kidney and spleen cells were then isolated from greater amberjack and incubated with each of the PAMPs for 4, 12 and 24 h. Piscidin expression was unchanged at 4 and 12 h post PAMP stimulation in head kidney cells but at 24 h transcript level was markedly upregulated compared to control (unstimulated) cells, especially with the bacterial PAMPs. In contrast, spleen cells upregulated piscidin expression by 4 h post stimulation with poly I:C and flagellin, and remained upregulated to 24 h with flagellin exposure, but had returned to baseline levels by 12 h using poly I:C. To determine if piscidin expression could be modulated by diet, greater amberjack were fed diets supplemented with MOS and cMOS for 30 days when transcript level was determined. It was found that MOS supplemented diets increased expression in the spleen, cMOS supplemented diets upregulated transcript levels in the gills and head kidney, whilst a diet containing both MOS and cMOS upregulated transcript in the gut, when compared to fish fed the control diet. Finally, a synthetic greater amberjack piscidin was produced and showed bacteriostatic activity against a number of bacterial strains, including both Gram positive and Gram negative fish pathogens.
Collapse
|
33
|
Buonocore F, Picchietti S, Porcelli F, Della Pelle G, Olivieri C, Poerio E, Bugli F, Menchinelli G, Sanguinetti M, Bresciani A, Gennari N, Taddei AR, Fausto AM, Scapigliati G. Fish-derived antimicrobial peptides: Activity of a chionodracine mutant against bacterial models and human bacterial pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:9-17. [PMID: 30790604 DOI: 10.1016/j.dci.2019.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The increasing resistance to conventional antibiotics is an urgent problem that can be addressed by the discovery of new antimicrobial drugs such as antimicrobial peptides (AMPs). AMPs are components of innate immune system of eukaryotes and are not prone to the conventional mechanisms that are responsible of drug resistance. Fish are an important source of AMPs and, recently, we have isolated and characterized a new 22 amino acid residues peptide, the chionodracine (Cnd), from the Antarctic icefish Chionodraco hamatus. In this paper we focused on a new Cnd-derived mutant peptide, namely Cnd-m3a, designed to improve the selectivity against prokaryotic cells and the antimicrobial activity against human pathogens of the initial Cnd template. Cnd-m3a was used for immunization of rabbits, which gave rise to a polyclonal antibody able to detect the peptide. The interaction kinetic of Cnd-m3a with the Antarctic bacterium Psychrobacter sp. (TAD1) was imaged using a transmission electron microscopy (TEM) immunogold method. Initially the peptide was associated with the plasma membrane, but after 180 min of incubation, it was found in the cytoplasm interacting with a DNA target inside the bacterial cells. Using fluorescent probes we showed that the newly designed mutant can create pores in the outer membrane of the bacteria E. coli and Psychrobacter sp. (TAD1), confirming the results of TEM analysis. Moreover, in vitro assays demonstrated that Cnd-m3a is able to bind lipid vesicles of different compositions with a preference toward negatively charged ones, which mimics the prokaryotic cell. The Cnd-m3a peptide showed quite low hemolytic activity and weak cytotoxic effect against human primary and tumor cell lines, but high antimicrobial activity against selected Gram - human pathogens. These results highlighted the high potential of the Cnd-m3a peptide as a starting point for developing a new human therapeutic agent.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Simona Picchietti
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Giulia Della Pelle
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Cristina Olivieri
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA.
| | - Elia Poerio
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Francesca Bugli
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy; Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giulia Menchinelli
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy; Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy; Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | - Nadia Gennari
- IRBM Science Park SpA, Biology Department, Rome, Italy.
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Viterbo, Italy.
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy.
| |
Collapse
|
34
|
Mihailescu M, Sorci M, Seckute J, Silin VI, Hammer J, Perrin BS, Hernandez JI, Smajic N, Shrestha A, Bogardus KA, Greenwood AI, Fu R, Blazyk J, Pastor RW, Nicholson LK, Belfort G, Cotten ML. Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization. J Am Chem Soc 2019; 141:9837-9853. [PMID: 31144503 DOI: 10.1021/jacs.9b00440] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.
Collapse
Affiliation(s)
- Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , Maryland 20850 , United States
| | - Mirco Sorci
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jolita Seckute
- Department of Molecular Biology and Genetics , Cornell University , Ithaca , New York 14853 , United States
| | - Vitalii I Silin
- Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , Maryland 20850 , United States
| | - Janet Hammer
- Department of Biomedical Sciences , Ohio University , Athens , Ohio 45701 , United States
| | - B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jorge I Hernandez
- Department of Bioengineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Nedzada Smajic
- Department of Chemistry , Hamilton College , Clinton , New York 13323 , United States
| | - Akritee Shrestha
- Department of Chemistry , Hamilton College , Clinton , New York 13323 , United States
| | - Kimberly A Bogardus
- Department of Chemistry , Hamilton College , Clinton , New York 13323 , United States
| | - Alexander I Greenwood
- Department of Applied Science , College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory , Tallahassee , Florida 32310 , United States
| | - Jack Blazyk
- Department of Biomedical Sciences , Ohio University , Athens , Ohio 45701 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics , Cornell University , Ithaca , New York 14853 , United States
| | - Georges Belfort
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Myriam L Cotten
- Department of Applied Science , College of William and Mary , Williamsburg , Virginia 23185 , United States
| |
Collapse
|
35
|
Pan Y, Zheng LB, Mao Y, Wang J, Lin LS, Su YQ, Li Y. The antibacterial activity and mechanism analysis of piscidin 5 like from Larimichthys crocea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:43-49. [PMID: 30359623 DOI: 10.1016/j.dci.2018.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Chemical drugs, such as antibiotics, were still important materials to prevent and cure diseases of aquatic organisms. However, antibiotics abuse do not only make the effects little, but also cause other bad problems, such as bacterial resistance and drug residues. Therefore, seeking the effective substitutes of antibiotics was an approach needed to be explored. Antibacterial peptides (AMPs) attracted more and more attention in the recent years. The parasitism and secondary bacterial invasion caused by ectroparasite Cryptocaryon irritans was a disaster to almost all host fish, including Larimichthys crocea. Reports indicated many AMPs played a key role in the whole parasitic infection cycle. Piscidin 5 like was a member of piscidin family. In the study, the antibacterial activity and mechanisms of piscidin 5 like from L.coreca (Lc-P5L) were detected. Liquid growth inhibition results showed recombinant Lc-P5L (rLc-P5L) had broad antibacterial spectrum and strong bactericidal activity. The bactericidal activity functioned in dose- and time-dependent manners. SEM (scanning electron microscope) observed the relatively detailed bactericidal process, rLc-P5L treatment resulted in a mass of bacteria piling together, appearing plenty of strange filaments and covering on the bacteria. Besides, S.aureus overgrowed plenty of granules, formed holes on the membrane of a few cells, and contents poured out from the holes. At the same time, antibacterial mechanisms were explored. After direct incubation with bacteria, western blot detected the apparently positive signal of rLc-P5L on bacteria; secondly, the incubation first with LPS (lipopolysaccharide) or LTA (lipoteichoic acid) significantly affect the binding of rLc-P5L to bacteria again, which indicated rLc-P5L could bind to bacteria through interaction with some PAMPs (pathogen-associated molecular patterns). In addition, rLc-P5L could interact with bacterial genome DNA by dose- and time-dependent means. In summary, rLc-P5L binded to bacteria surface through targeting to some PAMPs to damage membrane, and entered into cells to interact with genome DNA to disturb normal metabolism when it reached to some certain time and concentration thresholds, which were likely to be its pathway to exert antibacterial activity.
Collapse
Affiliation(s)
- Ying Pan
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Li-Bing Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China.
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Long-Shan Lin
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Yuan Li
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China.
| |
Collapse
|
36
|
Zhou Q, Zhang J, Huang R, Huang S, Wu Y, Huang L, He J, Xie J. An affinity peptide exerts antiviral activity by strongly binding nervous necrosis virus to block viral entry. FISH & SHELLFISH IMMUNOLOGY 2019; 86:465-473. [PMID: 30521966 DOI: 10.1016/j.fsi.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Nervous necrosis virus (NNV) causes viral nervous necrosis (VNN), a disease that leads to almost 100% mortality among larvae and juvenile fish, severely affecting the aquaculture industry. VNN vaccines based on inactivated viruses or virus-like particles (VLPs) are unsuitable for fish fry with immature adaptive immune systems. Here, we applied an anti-NNV strategy based on affinity peptides (AFPs). Three phage display peptide libraries were screened against RBS, the VLP of orange-spotted grouper nervous necrosis virus (OGNNV). From the positive clones, a dodecapeptide with the highest binding capacity (BC) to RBS was selected. This AFP agglutinated or disrupted virion particles, inhibiting RBS entry into sea bass (SB) cells. To enhance BC and solubility, we amended the AFP sequence as "LHWDFQSWVPLL" and named as 12C. One to three copies of 12C in tandem were prokaryotically expressed with a maltose binding protein (MBP) linked by a flexible peptide. Of the recombinant proteins expressed, MBP-triple-12C (MBP-T12C) exhibited the highest BC, efficiently blocked RBS entry, and strongly inhibited OGNNV infection at viral entry. Moreover, MBP-T12C bound the VLPs of all NNV serotypes, displaying broad-spectrum anti-NNV ability, and recognized only OGNNV and mud crab virus, demonstrating binding specificity. Therefore, these anti-NNV AFPs specifically bound NNV, aggregating or disrupting the viral particles, to reduce the contact probability between the virus and cell surface, subsequently inhibiting viral infection. Our results not only provided a candidate of anti-NNV AFP, but a framework for the development of antiviral AFP.
Collapse
Affiliation(s)
- Qiong Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runqing Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yujia Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lijie Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Rai RK, Angelis AD, Greenwood A, Opella SJ, Cotten ML. Metal-ion Binding to Host Defense Peptide Piscidin 3 Observed in Phospholipid Bilayers by Magic Angle Spinning Solid-state NMR. Chemphyschem 2019; 20:295-301. [PMID: 30471190 PMCID: PMC6494093 DOI: 10.1002/cphc.201800855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system. They have attracted interest as novel compounds with the potential to treat infections associated with multi-drug resistant bacteria. In this study, we investigate piscidin 3 (P3), an AMP that was first discovered in the mast cells of hybrid striped bass. Prior studies showed that P3 is less active than its homolog piscidin 1 (P1) against planktonic bacteria. However, P3 has the advantage of being less toxic to mammalian cells and more active on biofilms and persister cells. Both P1 and P3 cross bacterial membranes and co-localize with intracellular DNA but P3 is more condensing to DNA while P1 is more membrane active. Recently, we showed that both peptides coordinate Cu2+ through an amino-terminal copper and nickel (ATCUN) motif. We also demonstrated that the bactericidal effects of P3 are linked to its ability to form radicals that nick DNA in the presence of Cu2+ . Since metal binding and membrane crossing by P3 is biologically important, we apply in this study solid-state NMR spectroscopy to uniformly 13 C-15 N-labeled peptide samples to structurally characterize the ATCUN motif of P3 bound to bilayers and coordinated to Ni2+ and Cu2+ . These experiments are supplemented with density functional theory calculations. Taken together, these studies refine the arrangement of not only the backbone but also side chain atoms of an AMP simultaneously bound to metal ions and phospholipid bilayers.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Anna De Angelis
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Alexander Greenwood
- Department of Applied Science, Department of Physics The College of William and Mary Williamsburg, VA 23185 (USA), Fax: (757)-221-2050,
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093-0307 (USA)
| | - Myriam L. Cotten
- Department of Applied Science, Department of Physics The College of William and Mary Williamsburg, VA 23185 (USA), Fax: (757)-221-2050,
| |
Collapse
|
38
|
Kim SY, Zhang F, Gong W, Chen K, Xia K, Liu F, Gross R, Wang JM, Linhardt RJ, Cotten ML. Copper regulates the interactions of antimicrobial piscidin peptides from fish mast cells with formyl peptide receptors and heparin. J Biol Chem 2018; 293:15381-15396. [PMID: 30158246 DOI: 10.1074/jbc.ra118.001904] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 08/20/2018] [Indexed: 11/06/2022] Open
Abstract
Phagocytic cells in fish secrete antimicrobial peptides (AMPs) such as piscidins, glycosaminoglycans such as heparin, and copper ions as first-line immune defenses. Recently, we established that Cu2+ coordination by piscidins 1 (P1) and 3 (P3) enhances their antibacterial activity against membranes and DNA. Interestingly, we noted that physicochemical similarities exist between both piscidins and other AMPs that interact with heparin and induce immune-cell chemotaxis through formyl peptide receptors (FPRs) involved in innate immunity. Thus, we postulated that P1 and P3 interact with heparin and FPRs but that these interactions distinctively depend on Cu2+ Here, we investigate the interactome potentiated by piscidins, heparin, FPR, and Cu2+ Utilizing FPR-transfected cells and neutrophils, we demonstrate that both piscidins exclusively use FPR1 and FPR2 to induce chemotaxis and that Cu2+ reduces their chemotaxis induction. P1 is more effective at activating FPR1 than P3 and other known AMP ligands. Furthermore, the expression of Fpr2 on the surface of neutrophils is down-regulated by both peptides. Copper conjugation of the peptides does not further increase down-regulation, suggesting that the conformational changes induced by the metal translate into reduced FPR efficacy without altering the binding affinity. Using surface plasmon resonance, we show that piscidin-heparin interactions are Cu2+-dependent and reduced at the acidic pH of phagosomes. Although heparin decreases the antimicrobial activity of P3-Cu2+, it does not affect bacterial killing by P1-Cu2+ Copper's effects on modulating the micromolar-range interactions of both piscidins with FPR and heparin suggest that the interactome of these distinct immune agents plays an important role in innate immunity. The interactions between diverse host-defense molecules uncovered here may help inform the design of novel therapeutics to treat immune-related diseases.
Collapse
Affiliation(s)
- So Young Kim
- From the Biochemistry and Biophysics Graduate Program
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180,
| | - Wanghua Gong
- the Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Keqiang Chen
- the Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Kai Xia
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Fei Liu
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Richard Gross
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ji Ming Wang
- the Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, and
| | - Robert J Linhardt
- From the Biochemistry and Biophysics Graduate Program, .,Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Myriam L Cotten
- the Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185
| |
Collapse
|
39
|
Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R. Fish antimicrobial peptides (AMP's) as essential and promising molecular therapeutic agents: A review. Microb Pathog 2017; 114:50-56. [PMID: 29180291 DOI: 10.1016/j.micpath.2017.11.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/23/2023]
Abstract
Antimicrobial peptides (AMPs) are generally considered as an essential component of innate immunity, thereby providing the first line of defense against wide range of pathogens. In addition, they can also kill the pathogens which are generally resistant to number of antibiotics, thereby providing the avenues for the development of future therapeutic agents. Fishes are constantly challenged by variety of pathogens which not only shows detrimental effect on their health but also increases risk of becoming resistant to conventional antibiotics. As fishes rely more on innate immunity, AMPs can serve as a potential defensive weapons in fishes for combating emerging devastating diseases. Generally, AMPs show multidimensional properties like rapid diffusion to the site of infection, recruitment of other immune cells to infected tissues and vigorous potential to rapidly neutralize broad range of pathogens (bacterial, fungal and viral). AMPs also exhibit diverse biological effect like endotoxin neutralization, immunomodulation and induction of angiogenesis in mammals. Due to these properties AMPs have become one of the most promising therapeutic agents to be studied. Till date, many AMPs have been isolated from the fishes but not fully characterized at molecular level. This review provides an overview of the structures, functions, and putative mechanisms of major families of fish AMPs. Further, we also highlighted how fish AMPs can be used as a novel therapeutic tool which is the theme of future research in drug development.
Collapse
Affiliation(s)
- Uzma Shabir
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Aqib Rehman Magray
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India.
| | - Parveena Firdous
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Toyeeba Hassan
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Ruqeya Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| |
Collapse
|
40
|
Libardo MDJ, Bahar AA, Ma B, Fu R, McCormick LE, Zhao J, McCallum SA, Nussinov R, Ren D, Angeles-Boza AM, Cotten ML. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J 2017; 284:3662-3683. [PMID: 28892294 PMCID: PMC6361529 DOI: 10.1111/febs.14263] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
Host-defense peptides (HDPs) feature evolution-tested potency against life-threatening pathogens. While piscidin 1 (p1) and piscidin 3 (p3) are homologous and potent fish HDPs, only p1 is strongly membranolytic. Here, we hypothesize that another mechanism imparts p3 strong potency. We demonstrate that the N-termini of both peptides coordinate Cu2+ and p3-Cu cleaves isolated DNA at a rate on par with free Cu2+ but significantly faster than p1-Cu. On planktonic bacteria, p1 is more antimicrobial but only p3 features copper-dependent DNA cleavage. On biofilms and persister cells, p3-Cu is more active than p1-Cu, commensurate with stronger peptide-induced DNA damage. Molecular dynamics and NMR show that more DNA-peptide interactions exist with p3 than p1, and the peptides adopt conformations simultaneously poised for metal- and DNA-binding. These results generate several important conclusions. First, homologous HDPs cannot be assumed to have identical mechanisms since p1 and p3 eradicate bacteria through distinct relative contributions of membrane and DNA-disruptive effects. Second, the nuclease and membrane activities of p1 and p3 show that naturally occurring HDPs can inflict not only physicochemical but also covalent damage. Third, strong nuclease activity is essential for biofilm and persister cell eradication, as shown by p3, the homolog more specific toward bacteria and more expressed in vascularized tissues. Fourth, p3 combines several physicochemical properties (e.g., Amino Terminal Copper and Nickel binding motif; numerous arginines; moderate hydrophobicity) that confer low membranolytic effects, robust copper-scavenging capability, strong interactions with DNA, and fast nuclease activity. This new knowledge could help design novel therapeutics active against hard-to-treat persister cells and biofilms.
Collapse
Affiliation(s)
| | - Ali A Bahar
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | | | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Scott A McCallum
- Rennselaer Polytechnic Institute, Center for Biotechnology & Interdisciplinary Studies, Troy, NY, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, NY, USA
- Department of Civil and Environmental Engineering, Syracuse University, NY, USA
- Department of Biology, Syracuse University, NY, USA
| | | | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
41
|
Gómez González NE, Cabas I, Montero J, García Alcázar A, Mulero V, García Ayala A. Histamine and mast cell activator compound 48/80 are safe but inefficient systemic adjuvants for gilthead seabream vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:1-8. [PMID: 28193449 DOI: 10.1016/j.dci.2017.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Histamine has a key role in the regulation of inflammatory and innate immune responses in vertebrates. Gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost of great commercial value, was the first fish species shown to possess histamine-containing mast cells (MCs) at mucosal tissues. MCs are highly abundant in the peritoneal exudate of gilthead seabream and compound 48/80 (Co 48/80), often used to promote MC activation and histamine release, is able to promote histamine release from gilthead seabream MCs in vitro and in vivo. The aim of the present study was to analyze the effect of histamine and Co 48/80 on the immune responses of gilthead seabream. For this purpose, histamine and Co 48/80 were intraperitoneally injected alone or combined with 109 heat-killed Vibrio anguillarum cells and their effects on head kidney and peritoneal exudate were analyzed. The results indicated that although histamine and Co 48/80 were both able to alter the percentage of peritoneal exudate and head kidney immune cell types, only Co 48/80 increased reactive oxygen species production by peritoneal leukocytes. In addition, histamine, but not Co 48/80, was able to slightly impair the humoral adaptive immune response, i.e. production of specific IgM to V. anguillarum. Notably, both histamine and Co 48/80 reduced the expression of the gene encoding histamine receptor H2 in peritoneal exudate leukocytes. These results show for the first time in fish that although systemic administration of histamine and Co 48/80 is safe, neither compound can be regarded as an efficient adjuvant for gilthead seabream vaccination.
Collapse
Affiliation(s)
- N E Gómez González
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - I Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - J Montero
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - A García Alcázar
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - V Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - A García Ayala
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
42
|
Salger SA, Reading BJ, Noga EJ. Tissue localization of piscidin host-defense peptides during striped bass (Morone saxatilis) development. FISH & SHELLFISH IMMUNOLOGY 2017; 61:173-180. [PMID: 28034834 DOI: 10.1016/j.fsi.2016.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Infectious diseases are a major cause of larval mortality in finfish aquaculture. Understanding ontogeny of the fish immune system and thus developmental timing of protective immune tissues and cells, may help to decrease serious losses of larval fishes when they are particularly vulnerable to infection. One component of the innate immune system of fishes is the host-defense peptides, which include the piscidins. Piscidins are small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and protozoan pathogens. We describe for the first time the cellular and tissue localization of three different piscidins (1, 3, and 4) during striped bass (Morone saxatilis) larval ontogeny using immunofluorescent histochemistry. From 16 days post hatch to 12 months of age, piscidin staining was observed in cells of the epithelial tissues of gill, digestive tract, and skin, mainly in mast cells. Staining was also seen in presumptive hematopoietic cells in the head kidney. The three piscidins showed variable cellular and tissue staining patterns, possibly relating to differences in tissue susceptibility or pathogen specificity. This furthers our observation that the piscidins are not a monolithic family of antimicrobials, but that different AMPs have different (more specialized) functions. Furthermore, no immunofluorescent staining of piscidins was observed in post-vitellogenic oocytes, embryos, or larvae from hatch to 14 days post hatch, indicating that this critical component of the innate immune system is inactive in pre-hatch and young larval striped bass.
Collapse
Affiliation(s)
- Scott A Salger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States.
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Edward J Noga
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
43
|
Galindo-Villegas J, Garcia-Garcia E, Mulero V. Role of histamine in the regulation of intestinal immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:178-186. [PMID: 26872545 DOI: 10.1016/j.dci.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
In mammals, during the acute inflammatory response, the complex interrelationship and cross-talk among histamine and the immune system has been fairly well characterized. There is a substantial body of information on its structure, metabolism, receptors, signal transduction, physiologic and pathologic effects. However, for early vertebrates, there is little such knowledge. In the case of teleost fish, this lack of knowledge has been due to the widely held belief that histamine is not present in this phylogenetic group. However, it has been recently demonstrated, that granules of mast cells in perciforms contain biologically active histamine. More importantly, the inflammatory response was clearly demonstrated to be regulated by the direct action of histamine on professional phagocytes. Nevertheless, the molecular basis and exact role of this biogenic amine in perciforms is still a matter of speculation. Therefore, this review intends to summarize recent experimental evidence regarding fish mast cells and correlate the same with their mammalian counterparts to establish the possible role of histamine in the fish intestinal inflammatory response.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| | - Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Campus Universitario de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
44
|
Bae JS, Jung JM, An CM, Kim JW, Hwang SD, Kwon MG, Park MA, Kim MC, Park CI. Piscidin: Antimicrobial peptide of rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2016; 51:136-142. [PMID: 26876358 DOI: 10.1016/j.fsi.2016.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The piscidin family consists of antimicrobial peptides (AMPs) that are mainly found in fish and are crucial effectors of fish innate immune responses. The piscidin family typically has broad-spectrum antimicrobial activity and can modulate immune responses. In this study, we cloned rock bream piscidin (Rbpisc) and investigated its gene expression and biological activity (including antimicrobial and cytotoxic activities). The coding region of Rbpisc consisted of 213 base pairs (bp) encoding 70 amino acid residues. The tertiary structure predicted for Rbpisc includes an amphipathic helix-loop-helix structure. The Rbpisc gene was highly expressed in the gills of healthy fish. The gene expression of Rbpisc increased in the gills after pathogen infection, while the expression was down-regulated in other tissues. A synthetic peptide based on the AMP 12 domain amino acid sequence of Rbpisc appeared to have broad-spectrum antimicrobial activity against various bacteria. However, the synthetic peptide exhibited weak haemolytic activity against fish erythrocytes. These results suggest that Rbpisc might play an important role in the innate immune responses of rock bream.
Collapse
Affiliation(s)
- Jin-Sol Bae
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Ji-Min Jung
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Seong Don Hwang
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Mu-Chan Kim
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Chan-Il Park
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea.
| |
Collapse
|
45
|
Havixbeck JJ, Barreda DR. Neutrophil Development, Migration, and Function in Teleost Fish. BIOLOGY 2015; 4:715-34. [PMID: 26561837 PMCID: PMC4690015 DOI: 10.3390/biology4040715] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
It is now widely recognized that neutrophils are sophisticated cells that are critical to host defense and the maintenance of homeostasis. In addition, concepts such as neutrophil plasticity are helping to define the range of phenotypic profiles available to cells in this group and the physiological conditions that contribute to their differentiation. Herein, we discuss key features of the life of a teleost neutrophil including their development, migration to an inflammatory site, and contributions to pathogen killing and the control of acute inflammation. The potent anti-microbial mechanisms elicited by these cells in bony fish are a testament to their long-standing evolutionary contributions in host defense. In addition, recent insights into their active roles in the control of inflammation prior to induction of apoptosis highlight their importance to the maintenance of host integrity in these early vertebrates. Overall, our goal is to summarize recent progress in our understanding of this cell type in teleost fish, and to provide evolutionary context for the contributions of this hematopoietic lineage in host defense and an efficient return to homeostasis following injury or infection.
Collapse
Affiliation(s)
- Jeffrey J Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| |
Collapse
|
46
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
47
|
Piscidin is highly active against carbapenem-resistant Acinetobacter baumannii and NDM-1-producing Klebsiella pneumonia in a systemic Septicaemia infection mouse model. Mar Drugs 2015; 13:2287-305. [PMID: 25874924 PMCID: PMC4413212 DOI: 10.3390/md13042287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022] Open
Abstract
This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice were infected with (NDM-1)-producing K. pneumonia and multi-drug resistant Acinetobacter baumannii, and subsequently treated with TP3, TP4, or antibiotics for different periods of time (up to 168 h). Mouse survival and bacterial colony forming units (CFU) in various organs were measured after each treatment. Toxicity was determined based on observation of behavior and measurement of biochemical parameters. TP3 and TP4 exhibited strong activity against K. pneumonia and A. baumannii in vitro. Administration of TP3 (150 μg/mouse) or TP4 (50 μg/mouse) 30 min after infection with K. pneumonia or A. baumannii significantly increased survival in mice. TP4 was more effective than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to be non-toxic, and did not affect mouse behavior. TP3 and TP4 are able at potentiate anti-Acinetobacter baumannii or anti-Klebsiella pneumonia drug activity, reduce bacterial load, and prevent drug resistance, indicating their potential for use in combating multidrug-resistant bacteria.
Collapse
|
48
|
Meloni M, Candusso S, Galeotti M, Volpatti D. Preliminary study on expression of antimicrobial peptides in European sea bass (Dicentrarchus labrax) following in vivo infection with Vibrio anguillarum. A time course experiment. FISH & SHELLFISH IMMUNOLOGY 2015; 43:82-90. [PMID: 25542381 DOI: 10.1016/j.fsi.2014.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Antimicrobial polypeptides (AMPPs) are humoral components of the vertebrates and invertebrates innate immune system. Their potent broad spectrum antimicrobial activities have drawn the attention of the scientific community to their potential use not only as an alternative to antibiotics but also as functional targets for immunostimulants in order to enhance the host immunity. Fish synthesize a great number of these peptides but in European sea bass, an important fish species in the Mediterranean aquaculture, only a few AMPPs have been studied and these surveys have highlighted their functional role as predictive markers of stressful conditions. Many aspects concerning AMPP mode of action in the host during bacterial infections are still unknown. In this work a 72 h time course experiment, performed on juvenile sea bass intraperitoneally (i.p.) injected with a sub-lethal dose of Vibrio anguillarum, was aimed to investigate the mRNA expression of four specific AMPP genes and interleukin-1β (IL-1β) in skin, gills, spleen, and head kidney. AMPP genes were: dicentracin (DIC), histone-like protein 1 (HLP-1), histone-like protein 2 (HLP-2) and hemoglobin-like protein (Hb-LP). The delta-delta C(T) method in real-time RT-PCR allowed to gain more knowledge about temporal dynamics, preferential sites of expression as well as immunological and physiological role of these molecular markers. DIC was significantly up-regulated mainly in head kidney at 1.5-3 h post-infection (p.i.). HLP-1 showed an extended-time overexpression in gills and a significant up-regulation in spleen. HLP-2 was interestingly overexpressed in gills at 24 h p.i., while Hb-LP showed a significant up-regulation in skin for all the 72 h trial as well as lower but always significant values either in gills or in spleen. Different was the response of IL-1β that showed a dramatic up-regulation in spleen and head kidney at 8 h p.i. whilst in gills it displayed a severe inhibition. During this survey the i.p. stimulus surely conditioned the AMPP expression in skin and gills, especially as regards the DIC that as piscidin-related gene has an important defensive role in the mucosal tissues. However, two unconventional AMPP genes such as HLP-2 and Hb-LP, strictly related to the physiological mechanisms of fish, were less affected in terms of expression by the route of infection, being more evident in peripheral loci. These findings might suggest them as potential markers to be analyzed within plans of health survey in fish farms.
Collapse
Affiliation(s)
- Mauro Meloni
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | - Sabrina Candusso
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Marco Galeotti
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| | - Donatella Volpatti
- Department of Food Sciences, Section of Veterinary Pathology, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
| |
Collapse
|
49
|
Sfacteria A, Brines M, Blank U. The mast cell plays a central role in the immune system of teleost fish. Mol Immunol 2015; 63:3-8. [DOI: 10.1016/j.molimm.2014.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
50
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|