1
|
Bentley-Hewitt KL, Flammensbeck CK, Crowhurst RN, Hedderley DI, Wellenreuther M. Development of a Novel Stress and Immune Gene Panel for the Australasian Snapper ( Chrysophrys auratus). Genes (Basel) 2024; 15:1390. [PMID: 39596589 PMCID: PMC11594050 DOI: 10.3390/genes15111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Snapper (Chrysophrys auratus) is a commercially, recreationally and culturally important teleost species in New Zealand and has been selected as a potential new species for aquaculture. Selective breeding to enhance stress tolerance, survival and growth are major breeding targets, yet research into snapper immune and stress responses has been limited. METHODS We explored a set of candidate genes in the fin, head kidney and liver tissues of 50 individuals by exposing 20 fish to increasing temperature (up to 31 °C) and 20 fish to decreasing temperature (down to 7 °C) for up to 37 h. Of these, we analysed 10 temperature-sensitive and 10 temperature-tolerant fish, along with 10 fish kept at 18 °C (acclimation temperature) as a control group. RESULTS Expression analyses of candidate stress genes in the three tissue types via NanoString Technologies, Inc., Seattle, WA, USA. showed that 20 out of 25 genes significantly changed in each experiment, demonstrating the significant impact of temperature on stress and immune responses. We further document that 10 key gene biomarkers can be used to predict genotypes that are tolerant to extreme temperatures. CONCLUSIONS Taken together, our novel NanoString method can be used to monitor stress in snapper rapidly, and applications of this tool in this and potentially closely related teleost species can provide insights into stress resilience of wild stocks and inform the selection of grow-out locations for aquaculture.
Collapse
Affiliation(s)
- Kerry L. Bentley-Hewitt
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Christina K. Flammensbeck
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, Box 5114, Port Nelson, Nelson 7043, New Zealand (M.W.)
- The School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ross N. Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Duncan I. Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, Box 5114, Port Nelson, Nelson 7043, New Zealand (M.W.)
- The School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Su YT, Chen CH, Kang JW, Kuo HY, Yang CC, Tian YF, Yeh CF, Chou CL, Chen SH. Predictive value of FCGBP expression for treatment response and survival in rectal cancer patients undergoing chemoradiotherapy. Aging (Albany NY) 2024; 16:7889-7901. [PMID: 38709264 PMCID: PMC11131975 DOI: 10.18632/aging.205791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024]
Abstract
Despite neoadjuvant chemoradiotherapy (CRT) being the established standard for treating advanced rectal cancer, clinical outcomes remain suboptimal, necessitating the identification of predictive biomarkers for improved treatment decisions. Previous studies have hinted at the oncogenic properties of the Fc fragment of IgG binding protein (FCGBP) in various cancers; however, its clinical significance in rectal cancer remains unclear. In this study, we first conducted an analysis of a public transcriptome comprising 46 rectal cancer patients. Focusing on cell adhesion during data mining, we identified FCGBP as the most upregulated gene associated with CRT resistance. Subsequently, we assessed FCGBP immunointensity using immunohistochemical staining on 343 rectal cancer tissue blocks. Elevated FCGBP immunointensity correlated with lymph node involvement before treatment (p = 0.001), tumor invasion, and lymph node involvement after treatment (both p < 0.001), vascular invasion (p = 0.001), perineural invasion (p = 0.041), and reduced tumor regression (p < 0.001). Univariate analysis revealed a significant association between high FCGBP immunoexpression and inferior disease-specific survival, local recurrence-free survival, and metastasis-free survival (all p ≤ 0.0002). Furthermore, high FCGBP immunoexpression independently emerged as an unfavorable prognostic factor for all three survival outcomes in the multivariate analysis (all p ≤ 0.025). Enriched pathway analysis substantiated the role of FCGBP in conferring resistance to radiation. In summary, our findings suggest that elevated FCGBP immunoexpression in rectal cancer significantly correlates with a poor response to CRT and diminished patient survival. FCGBP holds promise as a valuable prognostic biomarker for rectal cancer patients undergoing CRT.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chia-Lin Chou
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shang-Hung Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| |
Collapse
|
3
|
Zhang W, Huang H, Liu X, Zhang L, Li L, Ding Y, Xiao Y, Ali MJ, Sun H, Xiao C. scRNA-Seq: First Atlas and Cellular Landscape of Lacrimal Sac: Implications in Primary Acquired Nasolacrimal Duct Obstruction Pathogenesis. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38551583 PMCID: PMC10981439 DOI: 10.1167/iovs.65.3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose The aim of this study was to describe the transcriptional changes of individual cellular components in the lacrimal sac in patients with primary acquired nasolacrimal duct obstruction (PANDO) and attempt to construct the first lacrimal sac cellular atlas to elucidate the potential mechanisms that may drive the disease pathogenesis. Methods Lacrimal sac samples were obtained intra-operatively during the endoscopic dacryocystorhinostomy (EnDCR) procedure from five patients. Single-cell RNA sequencing was performed to analyze each individual cell population including epithelial and immune cells during the early inflammatory and late inflammatory phases of the disease. Results Eleven cell types were identified among 25,791 cells. T cells and B cells were the cell populations with the greatest variation in cell numbers between the two phases and were involved in immune response and epithelium migration-related pathways. The present study showed that epithelial cells highly expressed the genes of senescence-associated secretory phenotype (SASP) and were involved in influencing the inflammation, neutrophil chemotaxis, and migration during the late inflammatory stage. Enhanced activity of CXCLs-CXCRs between the epithelial cells and neutrophils was noted by the cell-cell communication analysis and is suspected to play a role in inflammation by recruiting more neutrophils. Conclusions The study presents a comprehensive single-cell landscape of the lacrimal sac cells in different phases of PANDO. The contribution of T cells, B cells, and epithelial cells to the inflammatory response, and construction of the intercellular signaling networks between the cells within the lacrimal sac has further enhanced the present understanding of the PANDO pathogenesis.
Collapse
Affiliation(s)
- Wenyue Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueru Liu
- Ophthalmic Center, Xinjiang 474 Hospital, Urumqi, Xinjiang, China
| | - Leilei Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lunhao Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Caiwen Xiao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
4
|
El-Mansi AA, Rady AM, Ibrahim EH, ElBealy E. Cellular patterning and cyto-architectural organization of the skin of electric catfish (Malapterurus electricus, Siluriformes) with a particular emphasis on its ampullary electroreceptor. ZOOLOGY 2024; 163:126159. [PMID: 38471427 DOI: 10.1016/j.zool.2024.126159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The functional morphology of the skin of Malapteruridae is presumably evolved to cope with a diversified range of ambient physiological, environmental, and behavioral conditions. Herein, we firstly characterized the microstructures and intriguing patterning of the skin of twelve adult electric catfish (Malapterurus electricus, Malapteruridae) using histological, histochemical, immunofluorescent, and ELISA standard methodology. The skin comprises three sequentially-oriented layers: the epidermis, dermis, and hypodermis with a significantly increased thickness of the former. The epidermis contains four types of cells: the surface epithelial cells, mucous cells, granular cells, and club cells. We defined distinctive ampullary electroreceptors in the outer epidermis that possess flask-shaped sensory crypt containing electroreceptor cells together with vertical collagen rods. Dermis and hypodermis are composed of connective tissue; however, the former is much more coarse and dense with comparable reactivity for Masson-Goldner trichrome (MT). Placing our data in the context of the limited body of previous work, we showed subtle changes in the expression of mucin subunits together with cytoskeletal fractions of collagens, myosin, F-actin, keratins, and tubulins. Taken as a whole, our results convincingly showed that the skin of M. electricus shares some structural similarities to other Siluriformes, however, it has some functional modifications that are implicated in protection, defense, and foraging behavior.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Ahmed M Rady
- Biology Dept., Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esam H Ibrahim
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Eman ElBealy
- Biology Dept., Faculty of Science, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
5
|
Ding Q, Lin F, Huang Z, Li Y, Cai S, Chen X, Liu H, Qiu S. Non-coding RNA-related FCGBP downregulation in head and neck squamous cell carcinoma: a novel biomarker for predicting paclitaxel resistance and immunosuppressive microenvironment. Sci Rep 2024; 14:4426. [PMID: 38396056 PMCID: PMC10891054 DOI: 10.1038/s41598-024-55210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
In head and neck squamous cell carcinoma (HNSC), chemoresistance is a major reason for poor prognosis. Nevertheless, there is a lack of validated biomarkers to screen for patients for categorical chemotherapy. Fc gamma binding protein (FCGBP) is a mucus protein associated with mucosal epithelial cells and has immunological functions that protect against tumors and metastasis. However, the effect of FCGBP on HNSC is unclear. In pan-cancer tissues, the expression of FCGBP and the survival status of patients were analyzed using information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Correlation analysis and Cox regression analysis were conducted to confirm the relationship and survival outcome. Bioinformatics analysis was utilized to predict the probable upstream non-coding RNA. FCGBP functioned as a potential tumor suppressor gene in HNSC. Notably, FCGBP expression was negatively correlated with enriched tumor-infiltrating macrophages and paclitaxel resistance. Cox regression with gene, clinical, and immune factors showed that FCGBP was a risk factor acting in an independent manner. In HNSC, the utmost possibly upstream non-coding RNA-related pathway of FCGBP was also discovered to be the PART1/AC007728.2/LINC00885/hsa-miR-877-5p/FCGBP axis. According to the present study, non-coding RNA-related low levels of FCGBP are a prognostic indicator and are linked to an HNSC-related immunosuppressive state.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Fengjie Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Zongwei Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Sunqin Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Hui Liu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
6
|
Zhang D, Zhou G, Thongda W, Li C, Ye Z, Zhao H, Beck BH, Mohammed H, Peatman E. Early divergent responses to virulent and attenuated vaccine isolates of Flavobacterium covae sp. nov. In channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109248. [PMID: 38030028 DOI: 10.1016/j.fsi.2023.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.
Collapse
Affiliation(s)
- Dongdong Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Bilology and Fisheries, Hainan University, Haikou, 570228, PR China; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, PR China
| | - Gengfu Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Bilology and Fisheries, Hainan University, Haikou, 570228, PR China
| | - Wilawan Thongda
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chao Li
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, 36832, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Bachar-Wikstrom E, Dhillon B, Gill Dhillon N, Abbo L, Lindén SK, Wikstrom JD. Mass Spectrometry Analysis of Shark Skin Proteins. Int J Mol Sci 2023; 24:16954. [PMID: 38069276 PMCID: PMC10707392 DOI: 10.3390/ijms242316954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage in which proteins play a key role. While proteins in the skin mucus layer of various common bony fish species have been explored, the proteins of shark skin mucus remain unexplored. In this pilot study, we examine the protein composition of the skin mucus in spiny dogfish sharks and chain catsharks through mass spectrometry (NanoLC-MS/MS). Overall, we identified 206 and 72 proteins in spiny dogfish (Squalus acanthias) and chain catsharks (Scyliorhinus retifer), respectively. Categorization showed that the proteins belonged to diverse biological processes and that most proteins were cellular albeit a significant minority were secreted, indicative of mucosal immune roles. The secreted proteins are reviewed in detail with emphasis on their immune potentials. Moreover, STRING protein-protein association network analysis showed that proteins of closely related shark species were more similar as compared to a more distantly related shark and a bony fish, although there were also significant overlaps. This study contributes to the growing field of molecular shark studies and provides a foundation for further research into the functional roles and potential human biomedical implications of shark skin mucus proteins.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Braham Dhillon
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, IFAS, University of Florida, Davie, FL 33314, USA
| | - Navi Gill Dhillon
- Department of Biological Sciences, Nova Southeastern University, Davie, FL 33314, USA
| | - Lisa Abbo
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Dermato-Venereology Clinic, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
8
|
Šešelja K, Bazina I, Vrecl M, Farger J, Schicht M, Paulsen F, Baus Lončar M, Pirman T. Tff3 Deficiency Differentially Affects the Morphology of Male and Female Intestines in a Long-Term High-Fat-Diet-Fed Mouse Model. Int J Mol Sci 2023; 24:16342. [PMID: 38003531 PMCID: PMC10671422 DOI: 10.3390/ijms242216342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Trefoil factor family protein 3 (Tff3) protects the gastrointestinal mucosa and has a complex mode of action in different tissues. Here, we aimed to determine the effect of Tff3 deficiency on intestinal tissues in a long-term high-fat-diet (HFD)-fed model. A novel congenic strain without additional metabolically relevant mutations (Tff3-/-/C57Bl6NCrl strain, male and female) was used. Wild type (Wt) and Tff3-deficient mice of both sexes were fed a HFD for 36 weeks. Long-term feeding of a HFD induces different effects on the intestinal structure of Tff3-deficient male and female mice. For the first time, we found sex-specific differences in duodenal morphology. HFD feeding reduced microvilli height in Tff3-deficient females compared to that in Wt females, suggesting a possible effect on microvillar actin filament dynamics. These changes could not be attributed to genes involved in ER and oxidative stress, apoptosis, or inflammation. Tff3-deficient males exhibited a reduced cecal crypt depth compared to that of Wt males, but this was not the case in females. Microbiome-related short-chain fatty acid content was not affected by Tff3 deficiency in HFD-fed male or female mice. Sex-related differences due to Tff3 deficiency imply the need to consider both sexes in future studies on the role of Tff in intestinal function.
Collapse
Affiliation(s)
- Kate Šešelja
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Iva Bazina
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Mirela Baus Lončar
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Wang LC, Chen LH, Chiu YC, Liou CY, Chen HC, Lu CY, Chen JL. Teleost skin microbiome: An intimate interplay between the environment and the host immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108869. [PMID: 37285875 DOI: 10.1016/j.fsi.2023.108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The mucosal microbiome plays a role in regulating host health. The research conducted in humans and mice has governed and detailed the information on microbiome-host immunity interactions. Teleost fish, different from humans and mice, lives in and relies on the aquatic environment and is subjected to environmental variation. The growth of teleost mucosal microbiome studies, the majority in the gastrointestinal tract, has emphasized the essential role of the teleost microbiome in growth and health. However, research in the teleost external surface microbiome, as the skin microbiome, has just started. In this review, we examine the general findings in the colonization of the skin microbiome, how the skin microbiome is subjected to environmental change and the reciprocal regulation with the host immune system, and the current challenges that potential study models can address. The information collected from teleost skin microbiome-host immunity research would help future teleost culturing from the potential parasitic infestation and bacterial infection as foreseeing growing threats.
Collapse
Affiliation(s)
- Liang-Chun Wang
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Committee of Fisheries Extension Service, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| | - Li-Hsuan Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan; Department of Veterinary and Animal Sciences, Aarhus University, Tjele, Denmark
| | - Yu-Che Chiu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chung-Yi Liou
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Han-Chung Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chia-Yun Lu
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Jian-Lin Chen
- Marine and Pathogenic Microbiology Laboratory, Department of Marine Biotechnology and Resources, College of Marine Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| |
Collapse
|
10
|
Ozdemir E, Abdelhamed H, Ozdemir O, Lawrence M, Karsi A. Development of Bioluminescent Virulent Aeromonas hydrophila for Understanding Pathogenicity. Pathogens 2023; 12:pathogens12050670. [PMID: 37242340 DOI: 10.3390/pathogens12050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Virulent Aeromonas hydrophila (vAh) strains that cause motile Aeromonas septicemia (MAS) in farmed channel catfish (Ictalurus punctatus) have been an important problem for more than a decade. However, the routes of infection of vAh in catfish are not well understood. Therefore, it is critical to study the pathogenicity of vAh in catfish. To this goal, a new bioluminescence expression plasmid (pAKgfplux3) with the chloramphenicol acetyltransferase (cat) gene was constructed and mobilized into vAh strain ML09-119, yielding bioluminescent vAh (BvAh). After determining optimal chloramphenicol concentration, plasmid stability, bacteria number-bioluminescence relationship, and growth kinetics, the catfish were challenged with BvAh, and bioluminescent imaging (BLI) was conducted. Results showed that 5 to 10 µg/mL chloramphenicol was suitable for stable bioluminescence expression in vAh, with some growth reduction. In the absence of chloramphenicol, vAh could not maintain pAKgfplux3 stably, with the half-life being 16 h. Intraperitoneal injection, immersion, and modified immersion (adipose fin clipping) challenges of catfish with BvAh and BLI showed that MAS progressed faster in the injection group, followed by the modified immersion and immersion groups. BvAh was detected around the anterior mouth, barbels, fin bases, fin epithelia, injured skin areas, and gills after experimental challenges. BLI revealed that skin breaks and gills are potential attachment and entry portals for vAh. Once vAh breaches the skin or epithelial surfaces, it can cause a systemic infection rapidly, spreading to all internal organs. To our best knowledge, this is the first study that reports the development of a bioluminescent vAh and provides visual evidence for catfish-vAh interactions. Findings are expected to provide a better understanding of vAh pathogenicity in catfish.
Collapse
Affiliation(s)
- Eda Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Ozan Ozdemir
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Mark Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
11
|
Lu Z, Feng L, Jiang W, Wu P, Liu Y, Jiang J, Kuang S, Tang L, Li S, Zhong C, Zhou X. Mannan oligosaccharides alleviate oxidative injury in the head kidney and spleen in grass carp (Ctenopharyngodon idella) via the Nrf2 signaling pathway after Aeromonas hydrophila infection. J Anim Sci Biotechnol 2023; 14:58. [PMID: 37060042 PMCID: PMC10105433 DOI: 10.1186/s40104-023-00844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Mannan oligosaccharides (MOS) are recommended as aquaculture additives owing to their excellent antioxidant properties. In the present study, we examined the effects of dietary MOS on the head kidney and spleen of grass carp (Ctenopharyngodon idella) with Aeromonas hydrophila infection. METHODS A total of 540 grass carp were used for the study. They were administered six gradient dosages of the MOS diet (0, 200, 400, 600, 800, and 1,000 mg/kg) for 60 d. Subsequently, we performed a 14-day Aeromonas hydrophila challenge experiment. The antioxidant capacity of the head kidney and spleen were examined using spectrophotometry, DNA fragmentation, qRT-PCR, and Western blotting. RESULTS After infection with Aeromonas hydrophila, 400-600 mg/kg MOS supplementation decreased the levels of reactive oxygen species, protein carbonyl, and malonaldehyde and increased the levels of anti-superoxide anion, anti-hydroxyl radical, and glutathione in the head kidney and spleen of grass carp. The activities of copper-zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase were also enhanced by supplementation with 400-600 mg/kg MOS. Furthermore, the expression of most antioxidant enzymes and their corresponding genes increased significantly with supplementation of 200-800 mg/kg MOS. mRNA and protein levels of nuclear factor erythroid 2-related factor 2 also increased following supplementation with 400-600 mg/kg MOS. In addition, supplementation with 400-600 mg/kg MOS reduced excessive apoptosis by inhibiting the death receptor pathway and mitochondrial pathway processes. CONCLUSIONS Based on the quadratic regression analysis of the above biomarkers (reactive oxygen species, malondialdehyde, and protein carbonyl) of oxidative damage in the head kidney and spleen of on-growing grass carp, the recommended MOS supplementation is 575.21, 557.58, 531.86, 597.35, 570.16, and 553.80 mg/kg, respectively. Collectively, MOS supplementation could alleviate oxidative injury in the head kidney and spleen of grass carp infected with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Shuwei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Chengbo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Weste J, Houben T, Harder S, Schlüter H, Lücke E, Schreiber J, Hoffmann W. Different Molecular Forms of TFF3 in the Human Respiratory Tract: Heterodimerization with IgG Fc Binding Protein (FCGBP) and Proteolytic Cleavage in Bronchial Secretions. Int J Mol Sci 2022; 23:ijms232315359. [PMID: 36499686 PMCID: PMC9737082 DOI: 10.3390/ijms232315359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The polypeptide TFF3 belongs to the trefoil factor family (TFF) of lectins. TFF3 is typically secreted from mucous epithelia together with mucins. Both intestinal and salivary TFF3 mainly exist as disulfide-linked heterodimers with IgG Fc binding protein (FCGBP). Here, we investigated bronchial tissue specimens, bronchial secretions, and bronchoalveolar lavage (BAL) fluid from patients with a chronic obstructive pulmonary disease (COPD) background by fast protein liquid chromatography and proteomics. For the first time, we identified different molecular forms of TFF3 in the lung. The high-molecular mass form represents TFF3-FCGBP oligomers, whereas the low-molecular mass forms are homodimeric and monomeric TFF3 with possibly anti-apoptotic activities. In addition, disulfide-linked TFF3 heterodimers with an Mr of about 60k and 30k were detected in both bronchial secretions and BAL fluid. In these liquids, TFF3 is partly N-terminally truncated probably by neutrophil elastase cleavage. TFF3-FCGBP is likely involved in the mucosal innate immune defense against microbial infections. We discuss a hypothetical model how TFF3 might control FCGBP oligomerization. Furthermore, we did not find indications for interactions of TFF3-FCGBP with DMBT1gp340 or the mucin MUC5AC, glycoproteins involved in mucosal innate immunity. Surprisingly, bronchial MUC5AC appeared to be degraded when compared with gastric MUC5AC.
Collapse
Affiliation(s)
- Jens Weste
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Till Houben
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eva Lücke
- Department of Pneumology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
13
|
Li X, Hu X, Lv A, Guan Z. Skin immune response to Aeromonas hydrophila infection in crucian carp Carassius auratus revealed by multi-omics analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:866-875. [PMID: 35850458 DOI: 10.1016/j.fsi.2022.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Fish skin is an essential protective barrier and functions as the first line of immune defense against pathogens. However, the molecular mechanism at the proteome-level remains unclear in the skin of fish. In this study, the comparative proteomics of skin immune responses of crucian carp Carassius auratus infected with Aeromonas hydrophila was investigated by isobaric tags for relative and absolute quantification (iTRAQ), two-dimensional gel electrophoresis combined with mass spectrometry (2-DE/MS) as well as high-throughput transcriptome (RNA-seq) techniques. A total of 241 and 178 differentially expressed proteins (DEPs) at 6 and 12 h post-infection (hpi) were respectively identified by iTRAQ, and key-DEPs were furtherly verified with 2-DE/MS analysis. GO and KEGG analysis showed that these DEPs were mostly related to metabolism, regulation of the cytoskeleton, stress and immune responses. Co-association results of proteome and transcriptome revealed the lysozyme (LYZ), complement C3, DnaJ (Hsp40) homolog subfamily C member 8 (DNAJC8) and allograft inflammatory factor 1-like (AIF1L) play important roles in skin immune responses of crucian carp. The significantly up-regulated expression of detected immune-related genes (c3, mapk3, f5, nlr, hsp90, itgb2, fnl, flnca, p47, mhc and pros1) were validated by qRT-PCR analysis. To our knowledge, this is first report on multi-omics analysis of the differential proteomics for the skin immune response of C. auratus against A.hydrophila infection, which contribute to the understanding the mechanisms of skin mucosal immunity in cyprinid fish.
Collapse
Affiliation(s)
- Xiaowei Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Zhenguo Guan
- S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin, 300383, China
| |
Collapse
|
14
|
Liu Q, Niu X, Li Y, Zhang JR, Zhu SJ, Yang QY, Zhang W, Gong L. Role of the mucin-like glycoprotein FCGBP in mucosal immunity and cancer. Front Immunol 2022; 13:863317. [PMID: 35936008 PMCID: PMC9354016 DOI: 10.3389/fimmu.2022.863317] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
IgGFc-binding protein (FCGBP) is a mucin first detected in the intestinal epithelium. It plays an important role in innate mucosal epithelial defense, tumor metastasis, and tumor immunity. FCGBP forms disulfide-linked heterodimers with mucin-2 and members of the trefoil factor family. These formed complexes inhibit bacterial attachment to mucosal surfaces, affect the motility of pathogens, and support their clearance. Altered FCGBP expression levels may be important in the pathologic processes of Crohn’s disease and ulcerative colitis. FCGBP is also involved in regulating the infiltration of immune cells into tumor microenvironments. Thus, the molecule is a valuable marker of tumor prognosis. This review summarizes the functional relevance and role of FCGBP in immune responses and disease development, and highlights the potential role in diagnosis and predicting tumor prognosis.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xia Niu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia-rui Zhang
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Shao-jun Zhu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Qi-yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wei Zhang
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Li Gong, ; Wei Zhang,
| | - Li Gong
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Li Gong, ; Wei Zhang,
| |
Collapse
|
15
|
Aeromonas hydrophila Induces Skin Disturbance through Mucosal Microbiota Dysbiosis in Striped Catfish ( Pangasianodon hypophthalmus). mSphere 2022; 7:e0019422. [PMID: 35766485 PMCID: PMC9429897 DOI: 10.1128/msphere.00194-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens are well equipped to adhere to and initiate infection in teleost fish. Fish skin mucus serves as the first barrier against environmental pathogens. The mucus harbors commensal microbes that impact host physiological and immunological responses. However, how the skin mucosal microbiota responds to the presence of pathogens remains largely unexplored. Thus, little is known about the status of skin mucus prior to infection with noticeable symptoms. In this study, we investigated the interactions between pathogens and the skin mucosal microbiota as well as the fish skin immune responses in the presence of pathogens. Striped catfish (Pangasianodon hypophthalmus) were challenged with different concentrations of the bacterial pathogen Aeromonas hydrophila (AH), and the skin immune response and the mucosal microbiota were examined by quantitative PCR (qPCR) and 16S rRNA gene sequence analysis. We determined that the pathogen concentration needed to stimulate the skin immune response was associated with significant mucosal microbiota changes, and we reconfirmed these observations using an ex vivo fish skin model. Further analysis indicated that changes in the microbiota were attributed to a significant increase in opportunistic pathogens over AH. We concluded that the presence and increase of AH result in dysbiosis of the mucosal microbiota that can stimulate skin immune responses. We believe that our work sheds light on host-pathogen-commensal microbiota interactions and therefore contributes to aquaculture fish health. IMPORTANCE The fish skin mucosal microbiota is essential in modulating the host response to the presence of pathogens. Our study provides a platform to study both the correlation and causation of the interactions among the pathogen, fish skin, and the skin mucosal microbiota. Based on these findings, we provide the first mechanistic information on how mucosal microbiota changes induced by the pathogen AH result in skin disturbance with immune stimulation in striped catfish in the natural state and a potential direction for early-infection screening. Thus, this study is highly significant in the prevention of fish disease.
Collapse
|
16
|
Lin YH, Yang YF, Shiue YL. Multi-Omics Analyses to Identify FCGBP as a Potential Predictor in Head and Neck Squamous Cell Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051178. [PMID: 35626334 PMCID: PMC9140089 DOI: 10.3390/diagnostics12051178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
(Purpose) Previous studies have pointed out the significance of IgG Fc binding protein (FCGBP) in carcinogenesis, cancer progression, and tumor immunity in certain malignancies. However, its prognostic values, molecular interaction, and immune characteristics in the head and neck squamous cell carcinoma (HNSC) remained unclear. (Methods) To evaluate the potential role of the FCGBP gene, we used GEPIA2 and UALCAN platforms to explore the differential levels, survivals, and genetic alteration through cBioPortal (based on The Cancer Genome Atlas dataset). STRING, GeneMania, and TIMER2.0 identified the interacting networks. LinkedOmics performed Gene enrichment analysis, and TISIDB and TIMER2.0 evaluated the role of FCGBP in the tumor microenvironment. (Results) The expression level of FCGBP is lower in cancer tissues. A high FCGBP level is significantly associated with better overall- and disease-specific-survivals, regardless of human papillomavirus infection. Low FCGBP levels correlated to a higher tumor protein p53 (TP53) mutation rate (p = 0.018). FCGBP alteration significantly co-occurred with that of TP53 (q = 0.037). Interacting networks revealed a significant association between FGFBP and trefoil factor 3 (TFF3), a novel prognostic marker in various cancers, at transcriptional and translational levels. Enrichment analyses identified that the top gene sets predominantly related to immune and inflammatory responses. Further investigation found that the FCGBP mRNA level positively correlated to the infiltration rates of B cells, Th17/CD8+ T lymphocytes, T helper follicular cells, mast cells, and expression levels of various immune molecules and immune checkpoints in HNSC. (Conclusions) We found that the FCGBP mRNA level negatively correlated to TP53 mutation status while positively correlated to the TFF3 level. Additionally, FCGBP may regulate the tumor microenvironment. These findings support the FCGBP as a potential biomarker to estimate HNSC prognoses.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000; Fax: +886-7-525-0197
| |
Collapse
|
17
|
Profiling of the Bacterial Microbiota along the Murine Alimentary Tract. Int J Mol Sci 2022; 23:ijms23031783. [PMID: 35163705 PMCID: PMC8836272 DOI: 10.3390/ijms23031783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Here, the spatial distribution of the bacterial flora along the murine alimentary tract was evaluated using high throughput sequencing in wild-type and Tff3-deficient (Tff3KO) animals. Loss of Tff3 was linked to increased dextran sodium sulfate-induced colitis. This systematic study shows the results of 13 different regions from the esophagus to the rectum. The number of bacterial species (richness) increased from the esophagus to the rectum, from 50 to 200, respectively. Additionally, the bacterial community structure changed continuously; the highest changes were between the upper/middle and lower gastrointestinal compartments when comparing adjacent regions. Lactobacillus was the major colonizer in the upper/middle gastrointestinal tract, especially in the esophagus and stomach. From the caecum, a drastic diminution of Lactobacillus occurred, while members of Lachnospiraceae significantly increased. A significant change occurred in the bacterial community between the ascending and the transverse colon with Bacteroidetes being the major colonizers with relative constant abundance until the rectum. Interestingly, wild-type and Tff3KO animals did not show significant differences in their bacterial communities, suggesting that Tff3 is not involved in alterations of intraluminal or adhesive microbiota but is obviously important for mucosal protection, e.g., of the sensitive stem cells in the colonic crypts probably by a mucus plume.
Collapse
|
18
|
Liu QN, Huang L, Wang SY, Li YT, Tang YY, Zhang DZ, Tang BP, Yang H, He JX, Ding F. Transcriptome analysis of differentially expressed genes in the red swamp crayfish Procambarus clarkii challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 119:280-288. [PMID: 34571158 DOI: 10.1016/j.fsi.2021.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
As an important economic species in China, aquaculture of the crayfish Procambarus clarkii has suffered huge losses due to infection by pathogenic bacteria, mainly by Aeromonas hydrophila, which leads to high mortality and huge economic loss. To better understand the immune response of crayfish against bacterial infection, we compared and analyzed transcriptome data of hepatopancreatic tissue from P. clarkii that were either challenged with A. hydrophila or treated with PBS. After assembly and annotation of the data, 32,041 unigenes with an average length of 1512 base pairs were identified. Compared to control group, Differential gene expression (DEG) analysis revealed 608 DEGs were obtained, of which 274 unigenes were upregulated and 334 were downregulated in the A. hydrophila group. Furthermore, the expression levels of eight selected immune-related DEGs were validated by qRT-PCR, substantiating the reliability of RNA-seq results. This study not only provides effective data support for immune defense strategies of P. clarkii in response to bacterial infections, but also provides new information about the P. clarkii immune system and defense mechanisms, and a valuable basis for further studies to elucidate the molecular immune mechanisms of this species.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Long Huang
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Shu-Yu Wang
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| | - Ji-Xiang He
- Anhui Province Key Laboratory of Aquaculture ampersand Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
19
|
Wise AL, LaFrentz BR, Kelly AM, Khoo LH, Xu T, Liles MR, Bruce TJ. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals (Basel) 2021; 11:ani11113240. [PMID: 34827972 PMCID: PMC8614398 DOI: 10.3390/ani11113240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Catfish aquaculture is a prominent agricultural sector for foodfish production in the Southern United States. Catfish producers often experience high-level mortality events due to bacterial pathogens. In many instances, co-infections caused by multiple bacterial fish pathogens are isolated during diagnostic cases. These bacterial–bacterial interactions may alter the infection dynamics, and many of these mechanisms and interactions remain unclear. Furthermore, these co-infections may complicate disease management plans and treatment strategies. The current review provides an overview of the prevalent bacterial pathogens in catfish culture and previously reported instances of co-infections in catfish and other production fish species. Abstract Catfish production is a major aquaculture industry in the United States and is the largest sector of food fish production. As producers aim to optimize production yields, diseases caused by bacterial pathogens are responsible for high pond mortality rates and economic losses. The major bacterial pathogens responsible are Edwardsiella ictaluri, Aeromonas spp., and Flavobacterium columnare. Given the outdoor pond culture environments and ubiquitous nature of these aquatic pathogens, there have been many reports of co-infective bacterial infections within this aquaculture sector. Co-infections may be responsible for altering disease infection mechanics, increasing mortality rates, and creating difficulties for disease management plans. Furthermore, proper diagnoses of primary and secondary pathogens are essential in ensuring the correct treatment approaches for antimicrobials and chemical applications. A thorough understanding of the interactions and infectivity dynamics for these warm water bacterial pathogens will allow for the adoption of new prevention and control methods, particularly in vaccine development. This review aims to provide an overview of co-infective pathogens in catfish culture and present diagnostic case data from Mississippi and Alabama to define prevalence for these multiple-species infections better.
Collapse
Affiliation(s)
- Allison L. Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Benjamin R. LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA;
| | - Anita M. Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Lester H. Khoo
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Tingbi Xu
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Mark R. Liles
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
- Correspondence:
| |
Collapse
|
20
|
Salivary Trefoil Factor Family (TFF) Peptides and Their Roles in Oral and Esophageal Protection: Therapeutic Potential. Int J Mol Sci 2021; 22:ijms222212221. [PMID: 34830103 PMCID: PMC8624312 DOI: 10.3390/ijms222212221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.
Collapse
|
21
|
Kobayashi K, Tachibana M, Tsutsumi Y. Neglected roles of IgG Fc-binding protein secreted from airway mucin-producing cells in protecting against SARS-CoV-2 infection. Innate Immun 2021; 27:423-436. [PMID: 34521229 PMCID: PMC8504265 DOI: 10.1177/17534259211043159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both innate immunity and acquired immunity are involved in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The induction of Abs that neutralize the virus has been described, and certain Abs against endemic coronaviruses may cross-react with SARS-CoV-2. Detailed mechanisms to protect against the pandemic of SARS-CoV-2 remain unresolved. We previously reported that IgG Fc-binding protein (Fcγbp), a unique, large molecular weight, and mucin-like secretory Fc receptor protein, secreted from goblet cells of human small and large intestine, mediates the transportation of serum IgG onto the mucosal surface. In this review, we show that mucous bronchial gland cells and some goblet cells are immunoreactive for Fcγbp. Fcγbp traps the cross-reactive (both neutralizing and non-neutralizing) IgG bound to the virus and can consequently eliminate the virus from the mucosal surface to decrease viral loads. Fcγbp can also suppress immune overreaction by interfering with Fc-binding by macrophages and competing with complement fixation. Fcγbp secreted from mucin-producing cells of the airway functions as an important anti-infection mucosal defense. The Fcγbp-mediated mechanism can be a key factor in explaining why SARS-CoV-2 is less infective/lethal in children, and may also be involved in the unique Ab response, recurrent infection, and effects of serum therapy and vaccination.
Collapse
Affiliation(s)
| | - Mitsuhiro Tachibana
- Department of Diagnostic Pathology, Shimada General Medical Center, Shimada, Shizuoka, Japan
| | - Yutaka Tsutsumi
- Department of Diagnostic Pathology, Shimada General Medical Center, Shimada, Shizuoka, Japan.,Diagnostic Pathology Clinic, Pathos Tsutsumi, Inazawa, Aichi, Japan.,Yokkaichi Nursing and Health Care University, School of Medical Technology, Yokkaichi, Mie, Japan
| |
Collapse
|
22
|
Simora RMC, Wang W, Coogan M, El Husseini N, Terhune JS, Dunham RA. Effectiveness of Cathelicidin Antimicrobial Peptide against Ictalurid Catfish Bacterial Pathogens. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:178-189. [PMID: 34121235 DOI: 10.1002/aah.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
One of the major goals in aquaculture is to protect fish against infectious diseases as disease outbreaks could lead to economic losses if not controlled. Antimicrobial peptides (AMPs), a class of highly conserved peptides known to possess direct antimicrobial activities against invading pathogens, were evaluated for their ability to protect Channel Catfish Ictalurus punctatus and hybrid catfish (female Channel Catfish × male Blue Catfish I. furcatus) against infection caused by the fish pathogen Aeromonas hydrophila ML09-119. To identify effective peptides, the minimum inhibitory concentrations against bacterial pathogens Edwardsiella ictaluri S97-773, Edwardsiella piscicida E22-10, A. hydrophila ML09-119, Aeromonas veronii 03X03876, and Flavobacterium columnare GL-001 were determined in vitro. In general and overall, cathelicidins derived from alligator and sea snake exhibited more potent and rapid antimicrobial activities against the tested catfish pathogens as compared to cecropin and pleurocidin AMPs and ampicillin, the antibiotic control. When the peptides (2.5 µg of peptide/g of fish) were injected into fish and simultaneously challenged with A. hydrophila through immersion, increased survival rates in Channel Catfish and hybrid catfish were observed in both cathelicidin (alligator and sea snake) treatments as compared to other peptides and the infected control (P < 0.001) with alligator cathelicidin being the overall best treatment. Bacterial numbers in the kidney and liver of Channel Catfish and hybrid catfish also decreased (P < 0.05) for cathelicidin-injected groups at 24 and 48 h after challenge infection. These results show the potential of cathelicidin to protect catfish against bacterial infections and suggest that an approach overexpressing the peptide in transgenic fish, which is the long-term goal of this research program, may provide a method of decreasing bacterial disease problems in catfish as delivering the peptides via individual injection or feeding would not be economically feasible.
Collapse
Affiliation(s)
- Rhoda Mae C Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo, 5023, Philippines
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Nour El Husseini
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742, USA
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, 36849, USA
| |
Collapse
|
23
|
Liu J, Shen R, Feng L, Cheng S, Chen J, Xiao T, Zhao S. Proteomics study of Mycoplasma pneumoniae pneumonia reveals the Fc fragment of the IgG-binding protein as a serum biomarker and implicates potential therapeutic targets. Front Med 2021; 16:378-388. [PMID: 34241785 DOI: 10.1007/s11684-021-0840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 10/20/2022]
Abstract
Macrolide and corticosteroid resistance has been reported in patients with Mycoplasma pneumoniae (MP) pneumonia (MPP). MP clearance is difficult to achieve through antibiotic treatment in sensitive patients with severe MPP (SMPP). SMPP in children might progress to airway remodeling and even bronchiolitis/bronchitis obliterans. Therefore, identifying serum biomarkers that indicate MPP progression and exploring new targeted drugs for SMPP treatment require urgency. In this study, serum samples were collected from patients with general MPP (GMPP) and SMPP to conduct proteomics profiling. The Fc fragment of the IgG-binding protein (FCGBP) was identified as the most promising indicator of SMPP. Biological enrichment analysis indicated uncontrolled inflammation in SMPP. ELISA results proved that the FCGBP level in patients with SMPP was substantially higher than that in patients with GMPP. Furthermore, the FCGBP levels showed a decreasing trend in patients with GMPP but the opposite trend in patients with SMPP during disease progression. Connectivity map analyses identified 25 possible targeted drugs for SMPP treatment. Among them, a mechanistic target of rapamycin kinase (mTOR) inhibitor, which is a macrolide compound and a cell proliferation inhibitor, was the most promising candidate for targeting SMPP. To our knowledge, this study was the first proteomics-based characterization of patients with SMPP and GMPP.
Collapse
Affiliation(s)
- Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Rongfang Shen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Chen
- Beijing Engineering Research Center of Pediatric Surgery, Engineering and Transformation Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
24
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
25
|
Bandeira Junior G, Baldisserotto B. Fish infections associated with the genus Aeromonas: a review of the effects on oxidative status. J Appl Microbiol 2021; 131:1083-1101. [PMID: 33382188 DOI: 10.1111/jam.14986] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
The aim of this review was to summarize the current knowledge regarding the effects of aeromonosis on fish oxidative status. The bibliographic survey was carried out on the research platforms: Scopus and Science Direct. The keywords 'Aeromonas', 'fish' and 'oxidative status' (or 'oxidative stress', 'oxidative damage' and similar terms) were used. Scientific papers and short communications were considered. Studies involving fish aeromonosis and enzymatic or non-enzymatic markers of oxidative status were selected. The results of antioxidant enzymes activities/expressions after infection lack consistency, suggesting that these findings should be interpreted with caution. Most of the analysed studies pointed to an increase in reactive oxygen species, malondialdehyde and protein carbonylation levels, indicating possible oxidative damage caused by the infection. Thus, these three biomarkers are excellent indicators of oxidative stress during infection. Regarding respiratory burst activity, several studies have indicated increased activity, but other studies have indicated unchanged activity after infection. Nitric oxide levels also increased after infection in most studies. Therefore, it is suggested that the fish's immune system tries to fight a bacterial infection by releasing reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- G Bandeira Junior
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
26
|
Zhu Y, Shan S, Zhao H, Liu R, Wang H, Chen X, Yang G, Li H. Identification of an IRF10 gene in common carp (Cyprinus carpio L.) and analysis of its function in the antiviral and antibacterial immune response. BMC Vet Res 2020; 16:450. [PMID: 33213475 PMCID: PMC7678311 DOI: 10.1186/s12917-020-02674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN- stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7–89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN-stimulated genes PKR and ISG15. Conclusions These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02674-z.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
27
|
Bai J, Hu X, Wang R, Lü A, Sun J. MicroRNA expression profile analysis of skin immune response in crucian carp (Carassius auratus) infected by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 104:673-685. [PMID: 32505719 DOI: 10.1016/j.fsi.2020.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression in fish, but its regulatory mechanism of the skin mucosal immune response remains poorly understood. In order to investigate the immunological role of miRNAs, three sRNA libraries (mSC, mST1, mST2) from skin samples of crucian carp (Carassiusauratus) infected with Aeromonas hydrophila at three time points (0, 6 and 12 hpi) were constructed and examined using Illumina Hiseq 2000 platform. All of the identified miRNA, rRNA and tRNA were 69444 (13.39%), 29550 (5.70%) and 10704 (2.06%) in skin, respectively. At 6 and 12 hpi, 829 and 856 miRNAs were differentially expressed, respectively. Among these DEMs, 53 known and 10 novel miRNAs were all significantly differentially expressed during early infection (p < 0.01). GO and KEGG enrichment analyses revealed that 118111 target-genes were primarily involved in cellular process, metabolic process, biological regulation and stress response, such as antigen processing and presentation, complement and coagulation cascades, phagosome, MAPK, TLR, NF-κB and JAK-STAT signaling pathways. These results will help to elucidate the mechanism of miRNAs involved in the skin mucosal immune response of crucian carp against Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
28
|
Ji X, Liu X, Li X, Zhou S, Xiu Y. Characterization and functional study of Galectin3 from Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2020; 102:73-81. [PMID: 32272257 DOI: 10.1016/j.fsi.2020.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Galectins belong to the β-galactoside binding protein family and participate in both innate and acquired immunity. In this study, we described the molecular characteristics of Galectin3 gene from Japanese flounder (Paralichthys olivaceus), designed as PoGalectin3. Its open reading frame was 1128 bp, encoding a protein composed of 375 amino acids. PoGalectin3 belongs to chimeric galactose agglutinin, which contains a C-terminal carbohydrate recognition domain (CRD) (L250-P372), and its N-terminal is rich in proline (P) and glycine (G). Multiple sequence alignment and phylogenetic tree showed that PoGalectin3 was conservative in different aquatic animals. Tissue distribution confirmed that PoGalectin3 showed significantly highest expression in brain, moderate expression in liver, intestine and muscle. PoGalectin3 was significantly increased post infection with Edwardsiella tarda from intestine tissue of P. olivaceus. In order to investigate the binding ability of PoGalectin3 to pathogen-associated molecular patterns, the recombinant PoGalectin3 protein (rPoGalectin3) was successfully expressed and purified, and an Enzyme linked immunosorbent assay (ELISA) experiment was performed. ELISA refers to the qualitative and quantitative detection method of immune response by combining soluble antigen or antibody with solid-phase carrier. It was confirmed that rPoGalectin3 exhibited high affinity to lipopolysaccharide and peptidoglycan. The rPoGalectin3 also exhibited a concentration dependent binding capacity with Gram-positive bacteria (Bacillus pumilus, Bacillus subtilis, Bacillus cereus) and Gram-negative bacteria (Aeromonas salmonicida, E. tarda, Vibrio vulnificus). In addition, the results of microbial agglutination experiment showed that rPoGalectin3 could agglutinate Gram-positive bacteria (B. pumilus, B. subtilis) and Gram-negative bacteria (A. salmonicida, E. tarda) in the presence of Ca2+. In conclusion, this research laid an important foundation for the specific function analysis of PoGalectin3, which provide theoretical basis for the prevention and control of aquatic diseases.
Collapse
Affiliation(s)
- Xinxin Ji
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaofei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaojing Li
- Department of Implantology, Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, 266071, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
29
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
30
|
Heuer J, Heuer F, Stürmer R, Harder S, Schlüter H, Braga Emidio N, Muttenthaler M, Jechorek D, Meyer F, Hoffmann W. The Tumor Suppressor TFF1 Occurs in Different Forms and Interacts with Multiple Partners in the Human Gastric Mucus Barrier: Indications for Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21072508. [PMID: 32260357 PMCID: PMC7177788 DOI: 10.3390/ijms21072508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
TFF1 is a protective peptide of the Trefoil Factor Family (TFF), which is co-secreted with the mucin MUC5AC, gastrokine 2 (GKN2), and IgG Fc binding protein (FCGBP) from gastric surface mucous cells. Tff1-deficient mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas, indicating that Tff1 is a tumor suppressor. As a hallmark, TFF1 contains seven cysteine residues with three disulfide bonds stabilizing the conserved TFF domain. Here, we systematically investigated the molecular forms of TFF1 in the human gastric mucosa. TFF1 mainly occurs in an unusual monomeric form, but also as a homodimer. Furthermore, minor amounts of TFF1 form heterodimers with GKN2, FCGBP, and an unknown partner protein, respectively. TFF1 also binds to the mucin MUC6 in vitro, as shown by overlay assays with synthetic 125I-labeled TFF1 homodimer. The dominant presence of a monomeric form with a free thiol group at Cys-58 is in agreement with previous studies in Xenopus laevis and mouse. Cys-58 is likely highly reactive due to flanking acid residues (PPEEEC58EF) and might act as a scavenger for extracellular reactive oxygen/nitrogen species protecting the gastric mucosa from damage by oxidative stress, e.g., H2O2 generated by dual oxidase (DUOX).
Collapse
Affiliation(s)
- Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nayara Braga Emidio
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
31
|
Zhu D, Huang R, Chu P, Chen L, Li Y, He L, Li Y, Liao L, Zhu Z, Wang Y. Characterization and expression of galectin-3 in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103567. [PMID: 31830501 DOI: 10.1016/j.dci.2019.103567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Galectins are members of evolutionary conserved lectin family and play important roles in the innate and adaptive immunity of both vertebrates and invertebrates. Galectin-3 is the only chimera galectin with one C-terminal carbohydrate recognition domain (CRD) connected to the N-terminal end. Here, a galectin-3 (named CiGal3) from grass carp was identified and characterized, which encodes polypeptides 362 amino acids with a predicted molecular mass of 36.45 kDa and theoretical isoelectric point of 4.91. The sugar binding motifs involved in carbohydrate binding activity (H-N-R, V-N and W--E-R) were detected in CRD. In comparison to other species, CiGal3 showed the highest similarity and identity to Cyprinus carpio (95.3% sequence similarity and 92.5% sequence identity). The subcellular localization of CiGal3 was distributed in the cytoplasm and nucleus of transfected cells. The CiGal3 transcripts were ubiquitously expressed in all checked tissues and highly expressed in immune tissues. In addition, the expression of CiGal3 in liver and spleen was induced post grass carp reovirus (GCRV), lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid (poly I:C) challenge. These results suggest that CiGal3 plays a vital role in the immune system.
Collapse
Affiliation(s)
- Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Kuebutornye FKA, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, Xie CX, Hlordzi V. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2020; 97:83-95. [PMID: 31846773 DOI: 10.1016/j.fsi.2019.12.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 05/06/2023]
Abstract
Skin and intestinal mucosa lymphoid tissues are known to be the fish's first line of defence since they serve as the first point of contact for pathogens. Only few studies have investigated the influence of host-associated Bacillus on mucosal immunity. In this study, the effects of three host-associated Bacillus species on mucosal immunity, intestinal morphology, intestinal digestive enzymes activity, intestinal microbiome and resistance of Nile tilapia against Aeromonas hydrophila infection was evaluated. The fish were divided into five treatment groups and fed with diets containing no bacteria denoted as Control, Bacillus velezensis TPS3N denoted as group V, Bacillus subtilis TPS4 denoted as group S, Bacillus amyloliquefaciens TPS17 denoted as group A and a 5th group containing the three Bacillus species at a ratio 1:1:1 denoted as group CB. At the end of the feeding trial, significant enhancement of both skin mucus and intestinal immune titres were recorded in terms of nitric oxide (NO) (except in the mucus of V and S groups), immunoglobulin M (IgM) (except in the intestine of group V), lysozyme (LZM), and alkaline phosphatase (AKP) in all fish fed the Bacillus supplemented groups relative to the untreated group. Intestinal antioxidant enzymes (catalase (CAT) (except in the intestine of group S) and superoxide dismutase (SOD)) capacity of Nile tilapia were higher in the Bacillus groups. Intestinal lipase activity was elevated in the Bacillus supplemented groups. The intestinal morphological parameters (villus height, villus width, goblet cells count (except in group S and A), and intestinal muscle thickness) were significantly enhanced in the Bacillus supplemented groups relative to the Control group. Dietary probiotic supplementation also influenced the intestinal microflora composition of Nile tilapia. Proteobacteria recorded the highest abundance followed by Firmicutes, Fusobacteria, and Bacteroidetes at the phylum level in this study. At the genus level, the abundance of pathogenic bacteria viz Staphylococcus and Aeromonas were reduced in the Bacillus supplemented groups in comparison to the Control group. A challenge test with A. hydrophila resulted in lower mortalities (%) in the Bacillus treated groups thus 86.67%, 50.00%, 43.33%, 63.33%, and 30.00% for Nile tilapia fed Control, V, S, A, and CB diets respectively. In conclusion, the inclusion of B. velezensis TPS3N, B. subtilis TPS4, and B. amyloliquefaciens TPS17 in the diet of Nile tilapia singularly or in combination, could enhance the mucosal immunity, intestinal health, and resistance of Nile tilapia against A. hydrophila infection.
Collapse
Affiliation(s)
- Felix K A Kuebutornye
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Zhiwen Wang
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Emmanuel Delwin Abarike
- Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| | - Michael Essien Sakyi
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
| | - Yuan Li
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Cai Xia Xie
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Vivian Hlordzi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
33
|
Znalesniak EB, Salm F, Hoffmann W. Molecular Alterations in the Stomach of Tff1-Deficient Mice: Early Steps in Antral Carcinogenesis. Int J Mol Sci 2020; 21:ijms21020644. [PMID: 31963721 PMCID: PMC7014203 DOI: 10.3390/ijms21020644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.
Collapse
|
34
|
Different Forms of TFF3 in the Human Saliva: Heterodimerization with IgG Fc Binding Protein (FCGBP). Int J Mol Sci 2019; 20:ijms20205000. [PMID: 31658587 PMCID: PMC6834163 DOI: 10.3390/ijms20205000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The peptide TFF3 is a member of a family of secretory lectins, and is typically synthesized by mucous epithelia together with mucins. It is mainly released from intestinal goblet cells as a high-molecular mass heterodimer with IgG Fc binding protein (FCGBP). Herein, we investigated human saliva by fast protein liquid chromatography (FPLC) and proteomics and identified high- and low-molecular-mass forms of TFF3. Whereas the high-molecular-mass forms represent a heterodimer with FCGBP, the low-molecular-mass forms represent homodimeric TFF3 forms. Proteomic analysis also revealed a C-terminally truncated form of TFF3. We hypothesize that salivary TFF3-FCGBP might play a role in the innate immune defense of the oral cavity and that TFF3 might also bind to microbial glycans. The known interaction of TFF3 with the agglutinin DMBT-1, a typical constituent of human saliva, further supports this protective role.
Collapse
|
35
|
Coelho GR, Neto PP, Barbosa FC, Dos Santos RS, Brigatte P, Spencer PJ, Sampaio SC, D'Amélio F, Pimenta DC, Sciani JM. Biochemical and biological characterization of the Hypanus americanus mucus: A perspective on stingray immunity and toxins. FISH & SHELLFISH IMMUNOLOGY 2019; 93:832-840. [PMID: 31425832 DOI: 10.1016/j.fsi.2019.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.
Collapse
Affiliation(s)
| | | | | | | | - Patrícia Brigatte
- Faculdade de Medicina, Universidade Cidade de São Paulo-UNICID, Brazil
| | | | | | | | | | - Juliana Mozer Sciani
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Brazil; Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Brazil.
| |
Collapse
|
36
|
Yáñez JM, Yoshida GM, Parra Á, Correa K, Barría A, Bassini LN, Christensen KA, López ME, Carvalheiro R, Lhorente JP, Pulgar R. Comparative Genomic Analysis of Three Salmonid Species Identifies Functional Candidate Genes Involved in Resistance to the Intracellular Bacterium Piscirickettsia salmonis. Front Genet 2019; 10:665. [PMID: 31428125 PMCID: PMC6690157 DOI: 10.3389/fgene.2019.00665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Piscirickettsia salmonis is the etiologic agent of salmon rickettsial syndrome (SRS) and is responsible for considerable economic losses in salmon aquaculture. The bacterium affects coho salmon (CS; Oncorhynchus kisutch), Atlantic salmon (AS; Salmo salar), and rainbow trout (RT; Oncorhynchus mykiss) in several countries, including Norway, Canada, Scotland, Ireland, and Chile. We used Bayesian genome-wide association study analyses to investigate the genetic architecture of resistance to P. salmonis in farmed populations of these species. Resistance to SRS was defined as the number of days to death and as binary survival (BS). A total of 828 CS, 2130 RT, and 2601 AS individuals were phenotyped and then genotyped using double-digest restriction site-associated DNA sequencing and 57K and 50K Affymetrix® Axiom® single nucleotide polymorphism (SNP) panels, respectively. Both traits of SRS resistance in CS and RT appeared to be under oligogenic control. In AS, there was evidence of polygenic control of SRS resistance. To identify candidate genes associated with resistance, we applied a comparative genomics approach in which we systematically explored the complete set of genes adjacent to SNPs, which explained more than 1% of the genetic variance of resistance in each salmonid species (533 genes in total). Thus, genes were classified based on the following criteria: i) shared function of their protein domains among species, ii) shared orthology among species, iii) proximity to the SNP explaining the highest proportion of the genetic variance, and iv) presence in more than one genomic region explaining more than 1% of the genetic variance within species. Our results allowed us to identify 120 candidate genes belonging to at least one of the four criteria described above. Of these, 21 of them were part of at least two of the criteria defined above and are suggested to be strong functional candidates influencing P. salmonis resistance. These genes are related to diverse biological processes, such as kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation, and innate immune response, which seem essential in the host response against P. salmonis infection. These results provide fundamental knowledge on the potential functional genes underpinning resistance against P. salmonis in three salmonid species.
Collapse
Affiliation(s)
- José M. Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| | - Grazyella M. Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ángel Parra
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | | | - Agustín Barría
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, United Kingdom
| | - Liane N. Bassini
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | - Maria E. López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
- National Council for Scientific and Technological Development (CNPq), Brasília, Brazil
| | | | - Rodrigo Pulgar
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| |
Collapse
|
37
|
Abdel-Shafi S, Osman A, Al-Mohammadi AR, Enan G, Kamal N, Sitohy M. Biochemical, biological characteristics and antibacterial activity of glycoprotein extracted from the epidermal mucus of African catfish (Clarias gariepinus). Int J Biol Macromol 2019; 138:773-780. [PMID: 31351952 DOI: 10.1016/j.ijbiomac.2019.07.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023]
Abstract
Catfish glycoprotein (CFG) was extracted from the cutaneous mucus of Egyptian catfish by ammonium sulphate precipitation and purified on gel filtration column (sephadex G-50). After purification, CFG produced one band on SDS-PAGE (22 kDa). Urea-PAGE and the pH-solubility of CFG indicated its positive charge (IEP 8). CFG contained 12 saccharides. FTIR spectrum shows 3 groups of bands at 1800-2900, 1100-1700 and 700-1100 cm-1. CFG exhibited antibacterial activity against 9 pathogenic bacteria with low MIC (50 μg/mL), where two Gram+ bacteria, i.e.; Streptococcus pyogenes (St. pyogenes) and Listeria ivanovii (L. ivanovii) were the most sensitive. The growth curves of the bacteria subjected to 1 MIC of CFG during 30 h showed general growth inhibition, particularly in case of Gram- bacteria such as E. coli. TEM images showed evidently reduced relative content of the intact cells and clear incurred cellular malformations. Combining CFG with specific antibiotic at equal ratios induced synergistic antibacterial actions, amounting to 40% of the mathematical sum of the combination. Substituting the antibiotic chloramphenicol with gradual increasing ratios of CFG of its starting concentration (30 μg/mL), produced proportionally bigger antibacterial actions against St. pyogenes growth and increasing synergistic effect up to 37% at 80% of CFG substitution.
Collapse
Affiliation(s)
- Seham Abdel-Shafi
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Gamal Enan
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nehal Kamal
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
38
|
Lange MD, Abernathy J, Farmer BD. Evaluation of a Recombinant Flavobacterium columnare DnaK Protein Vaccine as a Means of Protection Against Columnaris Disease in Channel Catfish ( Ictalurus punctatus). Front Immunol 2019; 10:1175. [PMID: 31244827 PMCID: PMC6562308 DOI: 10.3389/fimmu.2019.01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Flavobacterium columnare causes substantial losses among cultured finfish species. The Gram-negative bacterium is an opportunistic pathogen that manifests as biofilms on the host's mucosal surfaces as the disease progresses. We previously demonstrated that the dominant mucosal IgM antibody response to F. columnare is to the chaperone protein DnaK that is found in the extracellular fraction. To establish the efficacy of using recombinant protein technology to develop a new vaccine against columnaris disease, we are reporting on two consecutive years of vaccine trials using a recombinant F. columnare DnaK protein (rDnaK). In year one, three groups of channel catfish (n = 300) were immunized by bath immersion with a live attenuated F. columnare isolate, rDnaK or sham immunized. After 6 weeks, an F. columnare laboratory challenge showed a significant increase in survival (>30%) in both the live attenuated and rDnaK vaccines when compared to the non-immunized control. A rDnaK-specific ELISA revealed significant levels of mucosal IgM antibodies in the skin of catfish immunized with rDnaK at 4- and 6-weeks post immunization. In the second year, three groups of channel catfish (n = 300) were bath immunized with rDnaK alone or with rDnaK after a brief osmotic shock or sham immunized. After 6 weeks a laboratory challenge with F. columnare was conducted and showed a significant increase in survival in the rDnaK (> 25%) and in rDnaK with osmotic shock (>35%) groups when compared to the non-immunized control. The rDnaK-specific ELISA demonstrated significant levels of mucosal IgM antibodies in the skin of catfish groups immunized with rDnaK at 4- and 6-weeks post immunization. To further understand the processes which have conferred immune protection in the rDnaK group, we conducted RNA sequencing of skin samples from the non-immunized (n = 6) and rDnaK treated channel catfish at 1-week (n = 6) and 6 weeks (n = 6) post immunization. Significantly altered gene expression was identified and results will be discussed. Work to further enhance the catfish immune response to F. columnare rDnaK is underway as this protein remains a promising candidate for additional optimization and experimental trials in a production setting.
Collapse
Affiliation(s)
- Miles D Lange
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| | - Jason Abernathy
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| | - Bradley D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, Agricultural Research Service, United States Department of Agriculture, Stuttgart, AR, United States
| |
Collapse
|
39
|
Tian M, Yang N, Zhang L, Fu Q, Tan F, Li C. Expression profiling and functional characterization of galectin-3 of turbot (Scophthalmus maximus L.) in host mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 84:333-340. [PMID: 30296481 DOI: 10.1016/j.fsi.2018.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Galectins, a family of evolutionary conserved β-galactoside-binding proteins, have been characterized in a wide range of species. Galectin-3 is the only member in the chimera type, which is a monomeric lectin with one CRD domain. A growing body of evidence have indicated vital roles of galectin-3 in innate immune responses against infection. Here, one galectin-3 gene was captured in turbot (SmLgals3) with a 1203 bp open reading frame (ORF). In comparison to other species, SmLgals3 showed the highest similarity and identity to large yellow croaker and medaka, respectively. The genomic structure analysis showed that SmLgals3 had 5 exons similar to other vertebrate species. The syntenic analysis revealed that galectin-3 had the same neighboring genes across all the selected species, which suggested the synteny encompassing galectin-3 region during vertebrate evolution. Subsequently, SmLgals3 was widely expressed in all the examined tissues, with the highest expression level in brain and the lowest expression level in skin. In addition, SmLgals3 was significantly down-regulated in intestine following both Gram-negative bacteria Vibrio anguillarum, and Gram-positive bacteria Streptococcus iniae immersion challenge. Finally, the rSmLgals3 showed strong binding ability to all the examined microbial ligands. Taken together, our results suggested SmLgals3 played vital roles in fish innate immune responses against infection. However, the knowledge of SmLgals3 are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.
Collapse
Affiliation(s)
- Mengyu Tian
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Lu Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, PR China.
| |
Collapse
|
40
|
Yang H, Gao X, Li X, Zhang H, Chen N, Zhang Y, Liu X, Zhang X. Comparative transcriptome analysis of red swamp crayfish (Procambarus clarkia) hepatopancreas in response to WSSV and Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 83:397-405. [PMID: 30244087 DOI: 10.1016/j.fsi.2018.09.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
To better study the immune system of shrimp and understand the similarities and differences between the host's immune defense against viral and bacterial infections, this study used a comparative transcriptomics method to systematically analyze the hepatopancreas of the crayfish Procambarus clarkia in response to WSSV and A. hydrophila infection. After assembly, there was an average of 24,404,837 clean reads were obtained after filtering out low-quality reads. Unigenes were annotated by comparing against nr, Swiss-Prot\KEGG\COG\KOG\GO and Pfam databases, and 17,954 unigenes were annotated in at least one database. 2600 and 2073 differentially expressed genes (DEGs) in the hepatopancreas in response to WSSV and A. hydrophila infections were identified respectively. The GO and KEGG enrichment analyses of DEGs were conducted to further explore their functions. The pathways like PI3K-Akt signaling pathway, mTOR signaling pathway, Jak-STAT signaling pathway, NF-κB signaling pathway, VEGF signaling pathway, Ras signaling pathway, were the most prominent for immunity-related DEGs in C-/W-Groups, while Endocytosis, Lysozyme, Focal adhesion, Phagosome, Peroxisome, MAPK signaling pathway were observed in C-/A-Groups. Furthermore, the expression levels of nine selected immune-related DEGs were validated by qRT-PCR, substantiating the reliability of RNA-Seq results. This study not only provides effective data support to reveal the different immune defense strategies by P. clarkia to cope with bacterial and WSSV infections, but also to provide new information about the immune system and defense mechanisms of shrimp.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Honghua Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
41
|
Abarike ED, Cai J, Lu Y, Yu H, Chen L, Jian J, Tang J, Jun L, Kuebutornye FKA. Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:229-238. [PMID: 30125705 DOI: 10.1016/j.fsi.2018.08.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluated a commercial probiotic designated as BS (a mix of B. subtilis and B. licheniformis) to ascertain its efficacy and the dose necessary to improve growth, immune response, and disease resistance in tilapia, Oreochromis niloticus. Fish (53.01 ± 1.0 g) were fed with a basal diet supplemented with 0 g kg−1 (CT), 3 g kg−1(BS3), 5 g kg−1 (BS5), 7 g kg−1 (BS7), and 10 g kg−1 (BS10) [corrected] of the probiotic BS for 4 weeks. At the end of the feeding trial, the weight gain, specific growth rate, and feed conversion ration were enhanced in all probiotic BS enriched groups but with better (P < 0.05) improvement in the BS10 group. The lysozyme, protease, anti-protease, superoxide dismutase activities, and immunoglobulin M level were significantly (P < 0.05) highest in the BS10 group in both serum and skin mucus. Enhanced (P > 0.05) catalse activity in all treated groups in the serum and myeloperoxidase activity in the B10 group in both serum and skin mucus were observed. The expression of C-lysozyme, heat shock protein 70, β-defensin, transforming growth factor beta, and small body size decapentaplegic homolog 3, genes in the mid-intestines and the head-kidney were up-regulated in all treated groups with the BS10 group provoking the highest up-regulation (P < 0.05). After challenge with Streptococcus agalactiae, cumulative mortality was 80 %, 47.5 %, 42.8 %, 30 %, and 20 % [corrected] for fish fed with CT, BS3, BS5, BS7, BS10 groups respectively. In conclusion, probiotic BS application at 10 g kg−1(BS10) [corrected] can be considered to improve growth and immunological status in tilapia farming.
Collapse
Affiliation(s)
- Emmanuel Delwin Abarike
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Huang Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Lihua Chen
- Langye Animal Husbandry Company Limited, Gaozhou City, Guangdong province, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China.
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China.
| | - Liang Jun
- Langye Animal Husbandry Company Limited, Gaozhou City, Guangdong province, China
| | - Felix K A Kuebutornye
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China; Key Laboratory of Control for Diseases of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| |
Collapse
|
42
|
Gobi N, Vaseeharan B, Chen JC, Rekha R, Vijayakumar S, Anjugam M, Iswarya A. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:501-508. [PMID: 29305993 DOI: 10.1016/j.fsi.2017.12.066] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluated the dietary supplementation of probiotic Bacillus licheniformis Dahb1 on the growth performance, immune parameters and antioxidant enzymes activities in serum and mucus as well as resistance against Aeromonas hydrophila in Mozambique tilapia Oreochromis mossambicus. Fish (24 ± 2.5 g) were fed separately with three diets, 1) commercial diet (control), 2) diet containing probiotic at 105 cfu g-1 (D1) and 3) diet containing probiotic at 107 cfu g-1 (D2) for 4 weeks. Growth performance in term of final weight (FW) specific growth rate (SGR) and feed conversion ratio (FCR), immune parameters of total protein (TP), alkaline phosphatase (ALP), myeloperoxidase (MPO), lysozyme (LYZ), reactive oxygen species (ROS), reactive nitrogen species (RNS) and antioxidant parameters of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in serum and mucus were evaluated after 2nd and 4th weeks. The FW, SGR, and FCR of fish fed with D1 and D2 significantly improved (p < 0.05). The activities of ALP, LYZ and MPO in the mucus were significantly higher (p < 0.05) in fish that fed D1 and D2. The TP, ROS, RNS, SOD and GPx in the serum were significantly higher (p < 0.05) in fish that fed D1 and D2. In addition, the challenge test showed that fish fed D1 and D2 enhanced significantly (p < 0.05) the resistance against A. hydrophila (1 × 107 cells ml-1). In conclusion, probiotic B. licheniformis Dahb1 can be applied in diet at 107 cfu g-1 to improve healthy status and resistance against A. hydrophila in tilapia farming.
Collapse
Affiliation(s)
- Narayanan Gobi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India..
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Mahalingam Anjugam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Arokiadhas Iswarya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| |
Collapse
|
43
|
Functional characterization of the mucus barrier on the Xenopus tropicalis skin surface. Proc Natl Acad Sci U S A 2018; 115:726-731. [PMID: 29311327 PMCID: PMC5789918 DOI: 10.1073/pnas.1713539115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The production of mucus helps to trap pathogens, preventing their entry into the body, while it also acts as an interface for many important physiological events (e.g., gas and nutrient exchange). In mammalian models, a detailed study of mucus and its component parts is hindered by the difficulty in accessing these internally located tissues. The Xenopus tropicalis tadpole skin offers a complementary nonmammalian model system to study mucosal epithelia. Using this, we identify a mucin, similar to human mucins, that protects against infection. This system offers an experimentally tractable approach to study mucins and the mucus barrier and their role in conferring protection at mucosal surfaces. Mucosal surfaces represent critical routes for entry and exit of pathogens. As such, animals have evolved strategies to combat infection at these sites, in particular the production of mucus to prevent attachment and to promote subsequent movement of the mucus/microbe away from the underlying epithelial surface. Using biochemical, biophysical, and infection studies, we have investigated the host protective properties of the skin mucus barrier of the Xenopus tropicalis tadpole. Specifically, we have characterized the major structural component of the barrier and shown that it is a mucin glycoprotein (Otogelin-like or Otogl) with similar sequence, domain organization, and structural properties to human gel-forming mucins. This mucin forms the structural basis of a surface barrier (∼6 μm thick), which is depleted through knockdown of Otogl. Crucially, Otogl knockdown leads to susceptibility to infection by the opportunistic pathogen Aeromonas hydrophila. To more accurately reflect its structure, tissue localization, and function, we have renamed Otogl as Xenopus Skin Mucin, or MucXS. Our findings characterize an accessible and tractable model system to define mucus barrier function and host–microbe interactions.
Collapse
|
44
|
Xu Y, Yu Y, Zhang X, Huang Z, Li H, Dong S, Liu Y, Dong F, Xu Z. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus). FISH & SHELLFISH IMMUNOLOGY 2018; 72:484-493. [PMID: 29155029 DOI: 10.1016/j.fsi.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The complement component 3 (C3) is a central component of complement system. All three pathways converge at formation of C3 convertases and share the terminal pathways of membrane attack complex (MAC) formation. In this study, three isoforms of C3 were discovered in Misgurnus anguillicaudatus, named "C3-1", "C3-2" and "C3-3", respectively. The full-length of C3-1 cDNA sequence was firstly identified and analyzed from dojo loach (Misgurnus anguillicaudatus). The Ma-C3-1 cDNA sequence comprised of 4509 bp encoding 1454 amino acids with a putative signal peptide of 20 amino acid residues. The deduced amino acid sequence showed that Ma-C3-1 has conserved residues and domain, which are known to be crucial for C3 function. Interestingly, an amino acid substitution of the highly conserved GCGEQ was discovered in Ma-C3-1. Phylogenetic analysis showed that Ma-C3-1 was closely related to Cyprinidae. The mRNA expression levels of three isoforms of C3 were detected in kidney, eye, spleen, gonad, heart, fin ray, gut, muscle, brain, gill, skin, blood and liver. The expression of Ma-C3-1 and Ma-C3-3 were mainly detected in liver, followed by spleen, gonad. However, the high expression of Ma-C3-2 was found in kidney, followed by blood and gonad. The morphological changes of gill and skin, and the expression pattern of these three isoforms C3 molecular following the infection with Aeromonas hydrophila were investigated. The mRNA expression levels of three C3 isoforms were up-regulated in the gill, skin, liver and spleen after infection with A.hydrophila. Similarly, challenge experiments resulted in significant up-regulated expression of other complement-relevant genes in gill, liver and skin, such as C4, C5, C8b, especially at 24 h and 36 h. These results suggest that complement system might play an important role not only in liver, but also in the mucosal tissues as gill and skin of teleost fish.
Collapse
Affiliation(s)
- Yongsheng Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huili Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yangzhou Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
45
|
Qin C, Gong Q, Wen Z, Yuan D, Shao T, Wang J, Li H. Transcriptome analysis of the spleen of the darkbarbel catfish Pelteobagrus vachellii in response to Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:498-506. [PMID: 28927687 DOI: 10.1016/j.fsi.2017.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Intensive aquaculture has increased the susceptibility of fish to Aeromonas hydrophila, and this has led to severe economic damage. There has been little study of the host defense mechanism against A. hydrophila infection in scaleless fish. Therefore, in the present study, the transcriptome profiles of the spleen of Pelteobagrus vachellii were examined after infection with A. hydrophila. In total, 37,730 unigenes from 322 KEGG pathways were identified. Following A. hydrophila infection, 27,803 differentially expressed genes were identified, including 13,934 upregulated and 13,869 downregulated genes. Significant enrichment analysis of these differentially expressed unigenes showed that the major immune pathways were involved, including toll-like receptor pathways, B-cell receptor signaling pathways, Fcγ receptor-mediated phagocytosis, complement and coagulation cascades, and natural killer cell-mediated cytotoxicity pathways. From these pathways, 59 key immune-related differentially expressed genes were selected: 53 genes that were upregulated, including those coding for complement components, interferons, and interleukins, and six DEGs that were downregulated, including inhibitor of nuclear factor kappa-B kinase. Finally, nine DEGs, which were randomly selected, were confirmed by qRT-PCR to be differentially expressed. The results indicated that complement components, interferons and Fcγ receptor-mediated phagocytosis played key role in the response to A. hydrophila infection in the spleen of P. vachellii, which may prove useful in the future for the development of therapeutic regimens.
Collapse
Affiliation(s)
- Chuanjie Qin
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China.
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 611731, PR China
| | - Zhengyong Wen
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Dengyue Yuan
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Ting Shao
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Jun Wang
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Huatao Li
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| |
Collapse
|
46
|
Lange MD, Farmer BD, Declercq AM, Peatman E, Decostere A, Beck BH. Sickeningly Sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence. JOURNAL OF FISH DISEASES 2017; 40:1613-1624. [PMID: 28581211 DOI: 10.1111/jfd.12629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. The current work sought to evaluate the effect of L-rhamnose on the growth characteristics of F. columnare. While we initially did not observe any key changes during the total growth of F. columnare isolates tested when treated with L-rhamnose, it soon became apparent that the difference lies in the ability of this carbohydrate to facilitate the formation of biofilms. The addition of different concentrations of L-rhamnose consistently promoted the development of biofilms among different F. columnare isolates; however, it does not appear to be sufficient as a sole carbon source for biofilm growth. Our data also suggest that iron acquisition machinery is required for biofilm development. Finally, the addition of different concentrations of L-rhamnose to F. columnare prior to a laboratory challenge increased mortality rates in channel catfish (Ictalurus punctatus) as compared to controls. These results provide further evidence that biofilm formation is an integral virulence factor in the initiation of disease in fish.
Collapse
Affiliation(s)
- M D Lange
- Harry K. Dupree Stuttgart National Aquaculture Research Center, U.S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - B D Farmer
- Harry K. Dupree Stuttgart National Aquaculture Research Center, U.S. Department of Agriculture, Agricultural Research Service, Stuttgart, AR, USA
| | - A M Declercq
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Stress Physiology Research Group, Department of Bio-analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - E Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - A Decostere
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - B H Beck
- Aquatic Animal Health Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Auburn, AL, USA
| |
Collapse
|
47
|
Brinchmann MF. Immune relevant molecules identified in the skin mucus of fish using -omics technologies. MOLECULAR BIOSYSTEMS 2017; 12:2056-63. [PMID: 27173837 DOI: 10.1039/c5mb00890e] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review will give an overview of immune relevant molecules in fish skin mucus. The skin of fish is continuously exposed to a water environment, and unlike that of terrestrial vertebrates, it is a mucosal surface with a thin epidermis of live cells covered by a mucus layer. The mucosa plays an important role in maintaining the homeostasis of the fish and preventing the entry of invading pathogens. This review provides an overview of proteins, RNA, DNA, lipids and carbohydrates found in the skin mucus of studied species. Proteins such as actin, histones, lectins, lysozyme, mucin, and transferrin have extracellular immune relevant functions. Complement complement molecules, heat shock molecules and superoxide dismutase present in mucus show differential expression during pathogen challenge in some species, but their functions in mucus, if any, need to be shown. RNA, DNA, lipids, carbohydrates and metabolites in mucus have been studied to a limited extent in fish, the current knowledge is summarized and knowledge gaps are pointed out.
Collapse
|
48
|
Zhu J, Fu Q, Ao Q, Tan Y, Luo Y, Jiang H, Li C, Gan X. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 62:202-212. [PMID: 28111359 DOI: 10.1016/j.fsi.2017.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Innate immune system is the primary defense mechanism against pathogen infection in teleost, which are living in pathogen-rich aquatic environment. It has been long hypothesized that the disease resistance in teleost are strongly correlated to the activities of innate immune genes. Tilapia is an important economical fish around the world, especially in China, where the production accounts for nearly half of the global production. Recently, S. agalactiae has become one of the most serious bacterial diseases in southern China, resulted in high cumulative mortality and economic loss to tilapia industry. Therefore, we sought here to characterize the expression profiles of tilapia against S. agalactiae infection at whole transcriptome level by RNA-seq technology. A total of 2822 genes were revealed significantly expressed in tilapia spleen with a general trend of induction. Notably, most of the genes were rapidly the most induced at the early timepoint. The significantly changed genes highlighted the function of pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal rearrangement, and immune activation. Collectively, the induced expression patterns suggested the strong ability of tilapia to rapidly recognize the invasive bacteria, and activation of downstream immune signaling pathways to clear the bacteria and prevent the tissue damage and bacteria triggered cell apoptosis. Our results heighted important roles of novel candidate genes which were often missed in previous tilapia studies. Further studies are needed to characterize the molecular relationships between key immune genes and disease resistance, and to identify the candidate genes for molecular-assistant selection of disease-resistant broodstock and evaluation of disease prevention and treatment measures.
Collapse
Affiliation(s)
- Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China; Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiang Fu
- Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiuwei Ao
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | - Yun Tan
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China
| | | | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xi Gan
- Guangxi Academy of Fishery Sciences, Guangxi Key Lab of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, Guangxi, 530021, China.
| |
Collapse
|
49
|
Boltaña S, Sanchez M, Valenzuela V, Gallardo-Escárate C. Density-dependent effects of Caligus rogercresseyi infestation on the immune responses of Salmo salar. FISH & SHELLFISH IMMUNOLOGY 2016; 59:365-374. [PMID: 27818345 DOI: 10.1016/j.fsi.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Sea lice infestations are a particular concern in the salmonid aquaculture industry due to damaging effects on fish growth, disease/infection susceptibility, and survival. Despite the impacts of sea lice parasitism, few studies have determined corresponding physiological thresholds, or the quantity of sea lice that can trigger measurable effects in the host immune response. The present study evaluated the mRNA expressions of immune-related genes in Salmo salar (Atlantic salmon) under infestation challenges with contrasting loads of the sea louse Caligus rogercresseyi. Specifically, two groups of S. salar were infected with either 35 (i.e. low parasitic load) or 100 (i.e. high parasitic load) copepodids per fish. At 14 days post-infestation, the mRNA levels of immune-related genes (e.g. related to oxidative stress, pro- and inflammatory responses, and the adaptive TH1/TH2 pathways) were assessed through RT-qPCR. Significant differences were found in relation to parasitic load, suggesting density-dependent effects that activated the S. salar immune system. Higher parasitic load promoted strong inflammatory and oxidative stress responses that were correlated with the TH1 immune response. This study highlights the molecular signatures for distinct parasitic loads, providing new perspectives towards fully understanding parasite-host interactions.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Biotechnology Center, University of Concepción, Concepción, Chile
| | - Marcos Sanchez
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Biotechnology Center, University of Concepción, Concepción, Chile
| | - Valentina Valenzuela
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Biotechnology Center, University of Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Biotechnology Center, University of Concepción, Concepción, Chile.
| |
Collapse
|
50
|
Dong X, Fu Q, Liu S, Gao C, Su B, Tan F, Li C. The expression signatures of neuronal nitric oxide synthase (NOS1) in turbot (Scophthalmus maximus L.) mucosal surfaces against bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 59:406-413. [PMID: 27825948 DOI: 10.1016/j.fsi.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The mucosal surfaces constitute the first immune barrier of host defense and also serve as the dynamic interfaces that simultaneously mediate a diverse array of critical physiological processes. It has been long hypothesized that observed difference of disease resistance among different fish strains and species are strongly correlated to the activities of the immune actors in mucosal surfaces. Particularly, neuronal NOS (nNOS or NOS1) is a constitutively expressed gene that catalyzes the oxidation of l-arginine and water to nitric oxide (NO), which is known as a potent host defence effector in immune system with antimicrobial activity. Moreover, NOS1 was detected to be expressed in fish mucosal surfaces, but its activities in mucosal immune responses were always overlooked. In this regard, we identified the NOS1 of turbot and characterized its expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. The results showed that the NOS1 gene had a 4389 bp open reading frame (ORF) that encoded 1462 amino acids. Phylogenetic analysis showed the turbot NOS1 had the strongest relationship to Larimichthys crocea. And the syntenic analysis revealed the similar neighboring genes associated with turbot NOS1, compared with other teleost and mammals. In addition, NOS1 was widely expressed in all examined tissues with the highest expression level in brain, followed by intestine and gill. Finally, the NOS1 showed a general trend of up-regulation in mucosal tissues following both bacterial challenge, with the highest up-regulation in intestine. The significant quick induction of NOS1 in mucosal surfaces against infection indicated its key roles to prevent pathogen attachment and entry in mucosal immunity. More functional studies are needed to conduct in teleost to better understand the roles of NOS1 in maintaining the integrity of the mucosal barriers against infection.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Song Liu
- Functional Zone Coordinating Office of Huangdao District (West Coast New Area), Qingdao 266555, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|