1
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Neuropsychological Alterations in Patients with Congenital Hypothyroidism Treated with Levothyroxine: Linked Factors and Thyroid Hormone Hyposensitivity. J Clin Med 2022; 11:jcm11123427. [PMID: 35743497 PMCID: PMC9224966 DOI: 10.3390/jcm11123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Eighty-five percent of the studies of patients with congenital hypothyroidism (CH) treated with Levothyroxine (L-T4) report neuropsychological sequelae throughout life. In neonates and infants, there is a deficit in sensorimotor skills (impaired balance). In preschool and elementary school children and adolescents, there are alterations in intellectual quotient (low scores), language (delayed phonological acquisition), memory (visual, verbal, visuospatial, visuoconstructive, autobiographical, and semantic), sensorimotor skills (impaired fine and gross motor control), and visuoconstructive–visuospatial domain (low scores in spatial location, block design, and object assembly). These neuropsychological domains are also affected in young adults, except for language (adequate verbal fluency) and visuoconstructive–visuospatial domain (no data). The onset and severity of neuropsychological sequelae in patients with treated CH depend on several factors: extrinsic, related to L-T4 treatment and social aspects, and intrinsic, such as severity and etiology of CH, as well as structural and physiological changes in the brain. In this review, we hypothesized that thyroid hormone hyposensitivity (THH) could also contribute to neuropsychological alterations by reducing the effectiveness of L-T4 treatment in the brain. Thus, further research could approach the THH hypothesis at basic and clinical levels to implement new endocrinological and neuropsychological therapies for CH patients.
Collapse
|
3
|
Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol Sci 2021; 183:195-213. [PMID: 34460931 PMCID: PMC9038230 DOI: 10.1093/toxsci/kfab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Susan E Thomas
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Carmen R Wood
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Wendy O Oshiro
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Richard L Ford
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Michelle Gatien Hotchkiss
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jermaine L Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
4
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Sustained attention in school-age children with congenital hypothyroidism: influence of episodes of overtreatment in the first three years of life. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Abstract
This paper discusses the problem of the role of language in autobiographical memory, that is barely considered in studies on autobiographical memories and narratives. As a matter of fact, most of the current studies on autobiographical memory confounded memory and narrative together. The present paper focuses on two main issues. Firstly, it debates how narratives contribute to the construction of autobiographical memories through self-other communication. Secondly, it reflects on how language and communication should be manipulated in studies about autobiographical memory. This paper is made of three sections: the first section discusses the role of language, particularly in the form of narrative, as a social tool by which autobiographical memories can be organised in a life story; the second section examines previous methods of investigation used in the study of autobiographical memories; finally, the third section proposes different methodological alternatives to overcome the problems emerging from our analysis of literature.
Collapse
|
7
|
Hales C, Taylor PN, Channon S, Paradice R, McEwan K, Zhang L, Gyedu M, Bakhsh A, Okosieme O, Muller I, Draman MS, Gregory JW, Dayan C, Lazarus JH, Rees DA, Ludgate M. Controlled Antenatal Thyroid Screening II: Effect of Treating Maternal Suboptimal Thyroid Function on Child Cognition. J Clin Endocrinol Metab 2018; 103:1583-1591. [PMID: 29346569 DOI: 10.1210/jc.2017-02378] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
CONTEXT AND OBJECTIVE The Controlled Antenatal Thyroid Screening (CATS) study investigated treatment of suboptimal gestational thyroid function (SGTF) on childhood cognition and found no difference in intelligence quotient (IQ) at 3 years between children of treated and untreated SGTF mothers. We have measured IQ in the same children at age 9.5 years and included children from normal gestational thyroid function (normal-GTF) mothers. DESIGN, SETTING, AND PARTICIPANTS One examiner, blinded to participant group, assessed children's IQ (Wechsler Intelligence Scale for Children, Fourth Edition UK), long-term memory, and motor function (Developmental Neuropsychological Assessment II) from children of 119 treated and 98 untreated SGTF mothers plus children of 232 mothers with normal-GTF. Logistic regression explored the odds and percentages of an IQ < 85 in the groups. RESULTS There was no difference in IQ < 85 between children of mothers with normal-GTF and combined SGTF, i.e., treated and untreated (fully adjusted odds ratio [OR] = 1.15 [95% confidence interval (CI) 0.52, 2.51]; P = 0.731). Furthermore, there was no significant effect of treatment [untreated OR = 1.33 (95% CI 0.53, 3.34); treated OR = 0.75 (95% CI 0.27, 2.06) P = 0.576]. IQ < 85 was 6.03% in normal-GTF, 7.56% in treated, and 11.22% in untreated groups. Analyses accounting for treated-SGTF women with free thyroxine > 97.5th percentile of the entire CATS-I cohort revealed no significant effect on a child's IQ < 85 in CATS-II. IQ at age 3 predicted IQ at age 9.5 (P < 0.0001) and accounted for 45% of the variation. CONCLUSIONS Maternal thyroxine during pregnancy did not improve child cognition at age 9.5 years. Our findings confirmed CATS-I and suggest that the lack of treatment effect may be a result of the similar proportion of IQ < 85 in children of women with normal-GTF and SGTF.
Collapse
Affiliation(s)
- Charlotte Hales
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Peter N Taylor
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Sue Channon
- Centre for Trials Research, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ruth Paradice
- St David's Hospital, Cardiff and Vale University Health Board, Cardiff, Wales, United Kingdom
| | - Kirsten McEwan
- Centre for Trials Research, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lei Zhang
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Michael Gyedu
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ameen Bakhsh
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Ilaria Muller
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Mohd S Draman
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - John W Gregory
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Colin Dayan
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - John H Lazarus
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| | - Marian Ludgate
- School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
8
|
Gothié JD, Demeneix B, Remaud S. Comparative approaches to understanding thyroid hormone regulation of neurogenesis. Mol Cell Endocrinol 2017; 459:104-115. [PMID: 28545819 DOI: 10.1016/j.mce.2017.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Thyroid hormone (TH) signalling, an evolutionary conserved pathway, is crucial for brain function and cognition throughout life, from early development to ageing. In humans, TH deficiency during pregnancy alters offspring brain development, increasing the risk of cognitive disorders. How TH regulates neurogenesis and subsequent behaviour and cognitive functions remains a major research challenge. Cellular and molecular mechanisms underlying TH signalling on proliferation, survival, determination, migration, differentiation and maturation have been studied in mammalian animal models for over a century. However, recent data show that THs also influence embryonic and adult neurogenesis throughout vertebrates (from mammals to teleosts). These latest observations raise the question of how TH availability is controlled during neurogenesis and particularly in specific neural stem cell populations. This review deals with the role of TH in regulating neurogenesis in the developing and the adult brain across different vertebrate species. Such evo-devo approaches can shed new light on (i) the evolution of the nervous system and (ii) the evolutionary control of neurogenesis by TH across animal phyla. We also discuss the role of thyroid disruptors on brain development in an evolutionary context.
Collapse
Affiliation(s)
- Jean-David Gothié
- CNRS, UMR 7221, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - Barbara Demeneix
- CNRS, UMR 7221, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| | - Sylvie Remaud
- CNRS, UMR 7221, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| |
Collapse
|
9
|
García Morales L, Rodríguez Arnao MD, Rodríguez Sánchez A, Dulín Íñiguez E, Álvarez González MA. Sustained attention in school-age children with congenital hypothyroidism: Influence of episodes of overtreatment in the first three years of life. Neurologia 2017; 35:226-232. [PMID: 29162287 DOI: 10.1016/j.nrl.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Children with congenital hypothyroidism (CH) are at risk of developing mild cognitive impairment despite normal overall intellectual performance. These deficits may be caused by disease-related and treatment-related factors. This study explores the impact of abnormal thyroid function during the first 3 years of life on attention performance at school age. METHODS We included 49 children diagnosed with CH and receiving treatment for the condition: 14 boys (mean age 9.5±2.8 years) and 35 girls (9.6±2.6 years). The number of episodes of normal, under-, and overtreatment were estimated based on TSH levels during their first 3 years of life (at 12, 18, 24, 30, and 36 months). Children were assessed using a computerised version of a Sustained attention test. General linear models were calculated with the attention index as the dependent variable and sex, aetiology, and number of episodes of normal, under-, and overtreatment as independent variables. RESULTS Higher numbers of episodes of overtreatment (low TSH level) were associated with poorer attention performance at school age (P=.005, r=-0.45). CONCLUSIONS Children with CH should be monitored closely during the first 3 years of life in order to prevent not only hypothyroidism but also any adverse effects of overtreatment that may affect attentional function at school age.
Collapse
Affiliation(s)
| | - M D Rodríguez Arnao
- Unidad Endocrina Pediátrica, Laboratorio de Desórdenes Metabólicos del Hospital Universitario Gregorio Marañón, Madrid, España
| | - A Rodríguez Sánchez
- Unidad Endocrina Pediátrica, Laboratorio de Desórdenes Metabólicos del Hospital Universitario Gregorio Marañón, Madrid, España
| | - E Dulín Íñiguez
- Laboratorio de Desórdenes Metabólicos del Hospital Universitario Gregorio Marañón, Madrid, España
| | - M A Álvarez González
- Instituto Superior de Diseño, Universidad de La Habana, Instituto de Neurología y Neurocirugía de La Habana, La Habana, Cuba
| |
Collapse
|
10
|
Deficiency of the Thyroid Hormone Transporter Monocarboxylate Transporter 8 in Neural Progenitors Impairs Cellular Processes Crucial for Early Corticogenesis. J Neurosci 2017; 37:11616-11631. [PMID: 29109240 DOI: 10.1523/jneurosci.1917-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs) are essential for establishing layered brain structures, a process called corticogenesis, by acting on transcriptional activity of numerous genes. In humans, deficiency of the monocarboxylate transporter 8 (MCT8), involved in cellular uptake of THs before their action, results in severe neurological abnormalities, known as the Allan-Herndon-Dudley syndrome. While the brain lesions predominantly originate prenatally, it remains unclear how and when exactly MCT8 dysfunction affects cellular processes crucial for corticogenesis. We investigated this by inducing in vivo RNAi vector-based knockdown of MCT8 in neural progenitors of the chicken optic tectum, a layered structure that shares many developmental features with the mammalian cerebral cortex. MCT8 knockdown resulted in cellular hypoplasia and a thinner optic tectum. This could be traced back to disrupted cell-cycle kinetics and a premature shift to asymmetric cell divisions impairing progenitor cell pool expansion. Birth-dating experiments confirmed diminished neurogenesis in the MCT8-deficient cell population as well as aberrant migration of both early-born and late-born neuroblasts, which could be linked to reduced reelin signaling and disorganized radial glial cell fibers. Impaired neurogenesis resulted in a reduced number of glutamatergic and GABAergic neurons, but the latter additionally showed decreased differentiation. Moreover, an accompanying reduction in untransfected GABAergic neurons suggests hampered intercellular communication. These results indicate that MCT8-dependent TH uptake in the neural progenitors is essential for early events in corticogenesis, and help to understand the origin of the problems in cortical development and function in Allan-Herndon-Dudley syndrome patients.SIGNIFICANCE STATEMENT Thyroid hormones (THs) are essential to establish the stereotypical layered structure of the human forebrain during embryonic development. Before their action on gene expression, THs require cellular uptake, a process facilitated by the TH transporter monocarboxylate transporter 8 (MCT8). We investigated how and when dysfunctional MCT8 can induce brain lesions associated with the Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation. We used the layered chicken optic tectum to model cortical development, and induced MCT8 deficiency in neural progenitors. Impaired cell proliferation, migration, and differentiation resulted in an underdeveloped optic tectum and a severe reduction in nerve cells. Our data underline the need for MCT8-dependent TH uptake in neural progenitors and stress the importance of local TH action in early development.
Collapse
|
11
|
Yu D, Zhou H, Zou L, Jiang Y, Wu X, Jiang L, Zhou Q, Yang Y, Xu L, Mao R. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats. Front Cell Neurosci 2017; 11:223. [PMID: 28824379 PMCID: PMC5534464 DOI: 10.3389/fncel.2017.00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT4) administration increased the level of free triiodothyronine (FT3) and free tetraiodothyroxine (FT4) not only in serum but also in hippocampus. In addition, a single systemic LT4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT4 did not affect rats’ locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders.
Collapse
Affiliation(s)
- Dafu Yu
- Department of Nuclear Medicine, First People's Hospital of Yunnan ProvinceKunming, China.,Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Heng Zhou
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China.,School of Life Sciences, University of Science and Technology of ChinaHefei, China
| | - Lin Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yong Jiang
- Department of Nuclear Medicine, First People's Hospital of Yunnan ProvinceKunming, China
| | - Xiaoqun Wu
- Respiratory Department, First People's Hospital of Yunnan ProvinceKunming, China
| | - Lizhu Jiang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China.,Department of Neuropsychopathy, Clinical Medical School, Dali UniversityDali, China
| | - Qixin Zhou
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Yuexiong Yang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Lin Xu
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| | - Rongrong Mao
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| |
Collapse
|
12
|
Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017; 342:68-100. [PMID: 26434624 PMCID: PMC4819012 DOI: 10.1016/j.neuroscience.2015.09.070] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Thyroid hormones (THs) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence TH synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. Recent evidence suggests that even more moderate forms of maternal thyroid dysfunction, particularly during early gestation, may have a long-lasting influence on child cognitive development and risk of neurodevelopmental disorders. Moreover, these observed alterations appear to be largely irreversible after birth. It is, therefore, important to gain a better understanding of the role of maternal thyroid dysfunction on offspring neurodevelopment in terms of the nature, magnitude, time-specificity, and context-specificity of its effects. With respect to the issue of context specificity, it is possible that maternal stress and stress-related biological processes during pregnancy may modulate maternal thyroid function. The possibility of an interaction between the thyroid and stress systems in the context of fetal brain development has, however, not been addressed to date. We begin this review with a brief overview of TH biology during pregnancy and a summary of the literature on its effect on the developing brain. Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programing of brain development, with implications for early identification of risk, primary prevention and intervention.
Collapse
Affiliation(s)
- N K Moog
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany
| | - S Entringer
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA
| | - C Heim
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, 219 Biobehavioral Health Building, University Park, PA 16802, USA
| | - P D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA
| | - N Kathmann
- Department of Clinical Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - C Buss
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA.
| |
Collapse
|
13
|
Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 16:234-47. [PMID: 26530244 DOI: 10.3758/s13415-015-0385-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300-500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400-700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180-220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional--particularly unpleasant--backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.
Collapse
|
14
|
Armson MJ, Abdi H, Levine B. Bridging naturalistic and laboratory assessment of memory: the Baycrest mask fit test. Memory 2016; 25:999-1008. [DOI: 10.1080/09658211.2016.1241281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michael J. Armson
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Hervé Abdi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| |
Collapse
|
15
|
Lischinsky JE, Skocic J, Clairman H, Rovet J. Preliminary Findings Show Maternal Hypothyroidism May Contribute to Abnormal Cortical Morphology in Offspring. Front Endocrinol (Lausanne) 2016; 7:16. [PMID: 26941710 PMCID: PMC4766309 DOI: 10.3389/fendo.2016.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
In rodents, insufficient thyroid hormone (TH) gestationally has adverse effects on cerebral cortex development. Comparable studies of humans examining how TH insufficiency affects cortical morphology are limited to children with congenital hypothyroidism or offspring of hypothyroxinemic women; effects on cortex of children born to women with clinically diagnosed hypothyroidism are not known. We studied archived MRI scans from 22 children aged 10-12 years born to women treated for preexisting or de novo hypothyroidism in pregnancy (HYPO) and 24 similar age and sex controls from euthyroid women. FreeSurfer Image Analysis Suite software was used to measure cortical thickness (CT) and a vertex-based approach served to compare HYPO versus control groups and Severe versus Mild HYPO subgroups as well as to perform regression analyses examining effects of trimester-specific maternal TSH on CT. Results showed that relative to controls, HYPO had multiple regions of both cortical thinning and thickening, which differed for left and right hemispheres. In HYPO, thinning was confined to medial and mid-lateral regions of each hemisphere and thickening to superior regions (primarily frontal) of the left hemisphere and inferior regions (particularly occipital and temporal) of the right. The Severe HYPO subgroup showed more thinning than Mild in frontal and temporal regions and more thickening in bilateral posterior and frontal regions. Maternal TSH values predicted degree of thinning and thickening within multiple brain regions, with the pattern and direction of correlations differing by trimester. Notably, some correlations remained when cases born to women with severe hypothyroidism were removed from the analyses, suggesting that mild variations of maternal TH may permanently affect offspring cortex. We conclude that maternal hypothyroidism during pregnancy has long-lasting manifestations on the cortical morphology of their offspring with specific effects reflecting both severity and timing of maternal TH insufficiency.
Collapse
Affiliation(s)
- Julieta E. Lischinsky
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, USA
| | - Jovanka Skocic
- Neuroscience and Mental Health Program, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Hayyah Clairman
- Neuroscience and Mental Health Program, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Joanne Rovet
- Neuroscience and Mental Health Program, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Préau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:112-21. [PMID: 24980696 DOI: 10.1016/j.bbagrm.2014.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/14/2014] [Accepted: 06/20/2014] [Indexed: 12/11/2022]
Abstract
The essential roles of thyroid hormone (TH) in perinatal brain development have been known for decades. More recently, many of the molecular mechanisms underlying the multiple effects of TH on proliferation, differentiation, migration, synaptogenesis and myelination in the developing nervous system have been elucidated. At the same time data from both epidemiological studies and animal models have revealed that the influence of thyroid signaling on development of the nervous system, extends to all periods of life, from early embryogenesis to neurogenesis in the adult brain. This review focuses on recent insights into the actions of TH during early neurogenesis. A key concept is that, in contrast to the previous ideas that only the unliganded receptor was implicated in these early phases, a critical role of the ligand, T3, is increasingly recognized. These findings are considered in the light of increasing knowledge of cell specific control of T3 availability as a function of deiodinase activity and transporter expression. These requirements for TH in the early stages of neurogenesis take on new relevance given the increasing epidemiological data on adverse effects of TH lack in early pregnancy on children's neurodevelopmental outcome. These ideas lead logically into a discussion on how the actions of TH during the first phases of neurogenesis can be potentially disrupted by gestational iodine lack and/or chemical pollution. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Laetitia Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Jean Baptiste Fini
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Ghislaine Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Barbara Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| |
Collapse
|