1
|
Horien C, Mandino F, Greene AS, Shen X, Powell K, Vernetti A, O’Connor D, McPartland JC, Volkmar FR, Chun M, Chawarska K, Lake EM, Rosenberg MD, Satterthwaite T, Scheinost D, Finn E, Constable RT. What is the best brain state to predict autistic traits? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.24319457. [PMID: 39867399 PMCID: PMC11759253 DOI: 10.1101/2025.01.14.24319457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features. Using connectome-based predictive modelling, we interrogate three datasets to determine scanning conditions that can boost prediction of clinically relevant phenotypes and assess generalizability. In dataset one, a sample of youth with autism and neurotypical participants, we find that a sustained attention task (the gradual onset continuous performance task) results in high prediction performance of autistic traits compared to a free-viewing social attention task and a resting-state condition. In dataset two, we observe the predictive network model of autistic traits generated from the sustained attention task generalizes to predict measures of attention in neurotypical adults. In dataset three, we show the same predictive network model of autistic traits from dataset one further generalizes to predict measures of social responsiveness in data from the Autism Brain Imaging Data Exchange. In sum, our data suggest that an in-scanner sustained attention challenge can help delineate robust markers of autistic traits and support the continued investigation of the optimal brain states under which to predict phenotypes in psychiatric conditions.
Collapse
Affiliation(s)
- Corey Horien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail S. Greene
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Powell
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David O’Connor
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C. McPartland
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R. Volkmar
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Katarzyna Chawarska
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Monica D. Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Emily Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA
| | - R. Todd Constable
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Poulsen R, Williams Z, Dwyer P, Pellicano E, Sowman PF, McAlpine D. How auditory processing influences the autistic profile: A review. Autism Res 2024; 17:2452-2470. [PMID: 39552096 PMCID: PMC11638897 DOI: 10.1002/aur.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
We need to combine sensory data from various sources to make sense of the world around us. This sensory data helps us understand our surroundings, influencing our experiences and interactions within our everyday environments. Recent interest in sensory-focused approaches to supporting autistic people has fixed on auditory processing-the sense of hearing and the act of listening-and its crucial role in language, communications, and social domains, as well as non-social autism-specific attributes, to understand better how sensory processing might differ in autistic people. In this narrative review, we synthesize published research into auditory processing in autistic people and the relationship between auditory processing and autistic attributes in a contextually novel way. The purpose is to understand the relationship between these domains more fully, drawing on evidence gleaned from experiential perspectives through to neurological investigations. We also examine the relationship between auditory processing and diagnosable auditory conditions, such as hyperacusis, misophonia, phonophobia, and intolerance to loud sounds, as well as its relation to sleep, anxiety, and sensory overload. Through reviewing experiential, behavioral and neurological literature, we demonstrate that auditory processes interact with and shape the broader autistic profile-something not previously considered. Through a better understanding of the potential impact of auditory experiences, our review aims to inform future research on investigating the relationship between auditory processing and autistic traits through quantitative measures or using qualitative experiential inquiry to examine this relationship more holistically.
Collapse
Affiliation(s)
- R. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Z. Williams
- Medical Scientist Training Program, Vanderbilt University School of MedicineVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Frist Center for Autism and InnovationVanderbilt University School of EngineeringNashvilleTennesseeUSA
| | - P. Dwyer
- Center for the Mind and BrainDepartment of PsychologyMIND InstituteUniversity of CaliforniaDavisCaliforniaUSA
- Olga Tennison Autism Research Centre, School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
| | - E. Pellicano
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| | - P. F. Sowman
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of Clinical SciencesAuckland University of TechnologyAucklandNew Zealand
| | - D. McAlpine
- Department of Linguistics, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Obuchi C, Kawase T, Sasame Y, Yamamoto Y, Sasaki K, Iwasaki J, Okamoto H, Kaga K. Traits of Developmental Disorders in Adults With Listening Difficulties Without Diagnosis of Autism Spectrum Disorder And/or Attention-Deficit/Hyperactivity Disorder. J Clin Med 2024; 13:6281. [PMID: 39458230 PMCID: PMC11508553 DOI: 10.3390/jcm13206281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Some individuals have a normal audiogram but have listening difficulties (LiD). As many studies have investigated the relationship between listening and developmental disorders, the traits of developmental disorders might explain the symptoms of LiD. In this study, we examined the traits of developmental disorders of adults with LiD to help clarify the cause of LiD symptoms. Methods: In total, 60 adults with LiD and 57 adults without LiD were included. Participants completed a questionnaire for the autism spectrum quotient (AQ) test, the Adult Attention-Deficit Hyperactivity Disorder Self-Rating Scale (A-ADHD), the Adolescent/Adult Sensory Profile (SP), and the severity of subjective LiD in daily life. Results: Before analysis, we excluded participants with LiD who were already diagnosed or met the criteria for autism spectrum disorder (ASD) or ADHD, and the results of the remaining 30 participants (50.0%) with LiD were analyzed. Adults with LiD showed higher scores than those without LiD in the AQ. Attention switching in the AQ and attention ability in the A-ADHD scale were correlated with the severity of LiD symptoms in everyday life. The AQ scores were also significantly correlated with subscales of the SP. Conclusions: Adults with LiD showed greater autistic traits than those without LiD; therefore, LiD symptoms are possibly related to autistic symptoms. Furthermore, adults with LiD might have attention disorder traits of both ASD and ADHD and sensory processing problems. These findings suggest that the attention problems in adults with LiD noted in previous studies might be related to these traits of developmental disorders.
Collapse
Affiliation(s)
- Chie Obuchi
- Institute of Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Yuka Sasame
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Yayoi Yamamoto
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Kaori Sasaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Junya Iwasaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Chiba 286-8686, Japan; (Y.S.); (Y.Y.); (K.S.); (J.I.)
| | - Hidehiko Okamoto
- Department of Physiology, International University of Health and Welfare, Chiba 286-8686, Japan;
| | - Kimitaka Kaga
- National Hospital Organization Tokyo Medical Center, National Institute of Sensory Organs, Tokyo 152-8902, Japan;
| |
Collapse
|
4
|
Chan MMY, Choi CXT, Tsoi TCW, Zhong J, Han YMY. Clinical and neuropsychological correlates of theta-band functional excitation-inhibition ratio in autism: An EEG study. Clin Neurophysiol 2024; 163:56-67. [PMID: 38703700 DOI: 10.1016/j.clinph.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE How abnormal brain signaling impacts cognition in autism spectrum disorder (ASD) remained elusive. This study aimed to investigate the local and global brain signaling in ASD indicated by theta-band functional excitation-inhibition (fE/I) ratio and explored psychophysiological relationships between fE/I, cognitive deficits, and ASD symptomatology. METHODS A total of 83 ASD and typically developing (TD) individuals participated in this study. Participants' interference control and set-shifting abilities were assessed. Resting-state electroencephalography (EEG) was used for estimating theta-band fE/I ratio. RESULTS ASD individuals (n = 31 without visual EEG abnormality; n = 22 with visual EEG abnormality) generally performed slower in a cognitive task tapping interference control and set-maintenance abilities, but only ASD individuals with visually abnormal EEG performed significantly slower than their TD counterparts (Bonferroni-corrected ps < .001). Heightened theta-band fE/I ratios at the whole-head level, left and right hemispheres were observed in the ASD subgroup without visual EEG abnormality only (Bonferroni-corrected ps < .001), which remained highly significant when only data from medication-naïve participants were analyzed. In addition, higher left hemispheric fE/I ratios in ASD individuals without visual EEG abnormality were significantly correlated with faster interference control task performance, in turn faster reaction time was significantly associated with less severe restricted, repetitive behavior (Bonferroni-corrected ps ≤ .0017). CONCLUSIONS Differential theta-band fE/I within the ASD population. Heightened theta-band fE/I in ASD without visual EEG abnormality may be associated with more efficient filtering of distractors and a less severe ASD symptom manifestation. SIGNIFICANCE Brain signaling, indicated by theta-band fE/I, was different in ASD subgroups. Only ASD with visually-normal EEG showed heightened theta-band fE/I, which was associated with faster processing of visual distractors during a cognitive task. More efficient distractor filtering was associated with less restricted, repetitive behaviors.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia QLD 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Junpei Zhong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Hocking DR, Sun X, Haebich K, Darke H, North KN, Vivanti G, Payne JM. Delineating Visual Habituation Profiles in Preschoolers with Neurofibromatosis Type 1 and Autism Spectrum Disorder: A Cross-Syndrome Study. J Autism Dev Disord 2024; 54:1998-2011. [PMID: 36877426 DOI: 10.1007/s10803-023-05913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
Atypical habituation to repetitive information has been commonly reported in Autism Spectrum Disorder (ASD) but it is not yet clear whether similar abnormalities are present in Neurofibromatosis Type 1 (NF1). We employed a cross-syndrome design using a novel eye tracking paradigm to measure habituation in preschoolers with NF1, children with idiopathic ASD and typically developing (TD) children. Eye movements were recorded to examine fixation duration to simultaneously presented repeating and novel stimuli. Children with NF1 showed a bias for longer look durations to repeating stimuli at the expense of novel stimuli, and slower habituation in NF1 was associated with elevated ASD traits. These findings could indicate aberrant modulation of bottom-up attentional networks that interact with the emergence of ASD phenotypes.
Collapse
Affiliation(s)
- Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
| | - Xiaoyun Sun
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kristina Haebich
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, Parkville, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Giacomo Vivanti
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, 19104-3734, Philadelphia, PA, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Zhuo L, Jin Z, Xie K, Li S, Lin F, Zhang J, Li L. Identifying individual's distractor suppression using functional connectivity between anatomical large-scale brain regions. Neuroimage 2024; 289:120552. [PMID: 38387742 DOI: 10.1016/j.neuroimage.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.
Collapse
Affiliation(s)
- Lei Zhuo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Simeng Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Feng Lin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
7
|
Keehn B, Kadlaskar G, McNally Keehn R. Elevated and accelerated: Locus coeruleus activity and visual search abilities in autistic children. Cortex 2023; 169:118-129. [PMID: 37866060 PMCID: PMC10842606 DOI: 10.1016/j.cortex.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Autistic individuals excel at visual search, however, the neural mechanism(s) underlying this advantage remain unclear. The locus coeruleus-norepinephrine (LC-NE) system, which plays a critical role in sensory perception and selective attention, has been shown to function in a persistently elevated state in individuals on the spectrum. However, the relationship between elevated tonic LC-NE activity and accelerated search in autism has not been explored. OBJECTIVE To examine the relationship between visual search abilities and resting pupil diameter (an indirect measure of tonic LC-NE activation) in autistic and neurotypical children. METHODS Participants were 24 school-aged autistic children and 24 age- and IQ-matched neurotypical children aged 8-15 years. Children completed two tasks: a resting eye-tracking task and a visual search paradigm. For the resting eye-tracking task, pupil diameter was monitored while participants fixated a central crosshair. For the visual search paradigm, participants were instructed to find the target (vertical line) embedded within an array of tilted (10°) distractor lines. The target was present on 50% of trials, and displayed within set sizes of 18, 24, and 36 items. RESULTS Consistent with previous studies, autistic children had significantly larger resting pupil size and searched faster and more efficiently compared to their neurotypical peers. Eye-tracking findings revealed that accelerated search was associated with fewer, not shorter, fixations in the autism group. Autistic children also showed reduced leftward search bias. Larger resting pupil size, indicative of increased tonic activation of the LC-NE system, was associated with greater search efficiency, longer fixation durations, and reduced leftward bias. Finally, within both groups reduced leftward bias was associated with increased autism symptomatology. DISCUSSION Together, these findings add to the existing body of research highlighting superior search in autism, suggest that elevated tonic LC-NE activity may contribute to more efficient search, and link non-social visual-spatial processing strengths to autism symptoms.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA; Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Ambarchi Z, Boulton KA, Thapa R, Thomas EE, DeMayo MM, Sasson NJ, Hickie IB, Guastella AJ. Evidence of a reduced role for circumscribed interests in the social attention patterns of children with Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:3999-4011. [PMID: 35927513 PMCID: PMC10499676 DOI: 10.1007/s10803-022-05638-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/27/2022]
Abstract
Reduced social attention is characteristic of Autism Spectrum Disorder (ASD). It has been suggested to result from an early onset and excessive influence of circumscribed interests (CIs) on gaze behaviour, compared to typically developing (TYP) individuals. To date, these findings have been mixed. The current eye-tracking study utilised a visual preference paradigm to investigate the influence of CI versus non-CI objects on attention patterns in children with ASD (aged 3-12 years, n = 37) and their age-matched TYP peers (n = 30). Compared to TYP, social and object attention was reduced in the ASD group irrespective of the presence of CIs. Results suggest a reduced role for CIs and extend recent evidence of atypical attention patterns across social and non-social domains in ASD.
Collapse
Affiliation(s)
- Z Ambarchi
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Sydney, Australia
| | - K A Boulton
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Sydney, Australia
| | - R Thapa
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Sydney, Australia
| | - E E Thomas
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Sydney, Australia
| | - M M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Sydney, Australia
| | - N J Sasson
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, USA
| | - I B Hickie
- Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Sydney, Australia.
| |
Collapse
|
9
|
Dwyer P, Williams ZJ, Vukusic S, Saron CD, Rivera SM. Habituation of auditory responses in young autistic and neurotypical children. Autism Res 2023; 16:1903-1923. [PMID: 37688470 PMCID: PMC10651062 DOI: 10.1002/aur.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Prior studies suggest that habituation of sensory responses is reduced in autism and that diminished habituation could be related to atypical autistic sensory experiences, for example, by causing brain responses to aversive stimuli to remain strong over time instead of being suppressed. While many prior studies exploring habituation in autism have repeatedly presented identical stimuli, other studies suggest group differences can still be observed in habituation to intermittent stimuli. The present study explored habituation of electrophysiological responses to auditory complex tones of varying intensities (50-80 dB SPL), presented passively in an interleaved manner, in a well-characterized sample of 127 autistic (MDQ = 65.41, SD = 20.54) and 79 typically developing (MDQ = 106.02, SD = 11.50) children between 2 and 5 years old. Habituation was quantified as changes in the amplitudes of single-trial responses to tones of each intensity over the course of the experiment. Habituation of the auditory N2 response was substantially reduced in autistic participants as compared to typically developing controls, although diagnostic groups did not clearly differ in habituation of the P1 response. Interestingly, the P1 habituated less to loud 80 dB sounds than softer sounds, whereas the N2 habituated less to soft 50 dB sounds than louder sounds. No associations were found between electrophysiological habituation and cognitive ability or participants' caregiver-reported sound tolerance (Sensory Profile Hyperacusis Index). The results present study results extend prior research suggesting habituation of certain sensory responses is reduced in autism; however, they also suggest that habituation differences observed using this study's paradigm might not be a primary driver of autistic participants' real-world sound intolerance.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis, Davis, CA, USA
| | - Zachary J. Williams
- Medical Scientist Training Program, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Hearing & Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN,
USA
- Frist Center for Autism and Innovation, Vanderbilt University,
Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Svjetlana Vukusic
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- Department of General Practice, Melbourne Medical School, the
University of Melbourne, Melbourne, VIC, Australia
| | - Clifford D. Saron
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis, Sacramento, CA, USA
| | - Susan M. Rivera
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis, Sacramento, CA, USA
| |
Collapse
|
10
|
Bellato A, Arora I, Kochhar P, Ropar D, Hollis C, Groom MJ. Relationship between autonomic arousal and attention orienting in children and adolescents with ADHD, autism and co-occurring ADHD and autism. Cortex 2023; 166:306-321. [PMID: 37459680 DOI: 10.1016/j.cortex.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) may be characterized by different profiles of visual attention orienting. However, there are also many inconsistent findings emerging from the literature, probably due to the fact that the potential effect of autonomic arousal (which has been proposed to be dysregulated in these conditions) on oculomotor performance has not been investigated before. Moreover, it is not known how visual attention orienting is affected by the co-occurrence of ADHD and autism in people with a double diagnosis. METHODS 99 children/adolescents with or without ADHD and/or autism (age 10.79 ± 2.05 years, 65% boys) completed an adapted version of the gap-overlap task (with baseline and overlap trials only). The social salience and modality of stimuli were manipulated between trials. Eye movements and pupil size were recorded. We compared saccadic reaction times (SRTs) between diagnostic groups and investigated if a trial-by-trial association existed between pre-saccadic pupil size and SRTs. RESULTS Faster orienting (shorter SRT) was found for baseline compared to overlap trials, faces compared to non-face stimuli and-more evidently in children without ADHD and/or autism-for multi-modal compared to uni-modal stimuli. We also found a linear negative association between pre-saccadic pupil size and SRTs, in autistic participants (without ADHD), and a quadratic association in children with ADHD (without autism), for which SRTs were slower when intra-individual pre-saccadic pupil size was smallest or largest. CONCLUSION Our findings are in line with previous literature and indicate a possible effect of dysregulated autonomic arousal on oculomotor mechanisms in autism and ADHD, which should be further investigated in future research studies with larger samples, to reliably investigate possible differences between children with single and dual diagnoses.
Collapse
Affiliation(s)
- Alessio Bellato
- School of Psychology, University of Nottingham, Malaysia; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK.
| | - Iti Arora
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK
| | - Puja Kochhar
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK; Neurodevelopmental Specialist Service (NeSS), Nottinghamshire Healthcare NHS Foundation Trust, Highbury Hospital, Highbury Road, Nottingham, NG6 9DR, UK
| | - Danielle Ropar
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Chris Hollis
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; NIHR MindTech Medtech Co-operative, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK NIHR; Nottingham Biomedical Research Centre, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK
| | - Madeleine J Groom
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK; Nottingham Biomedical Research Centre, Institute of Mental Health, Innovation Park, Triumph Road, Nottingham, NG7 2TU, UK
| |
Collapse
|
11
|
Batouli SAH, Razavi F, Sisakhti M, Oghabian Z, Ahmadzade H, Tehrani Doost M. Examining the Dominant Presence of Brain Grey Matter in Autism During Functional Magnetic Resonance Imaging. Basic Clin Neurosci 2023; 14:585-604. [PMID: 38628837 PMCID: PMC11016874 DOI: 10.32598/bcn.2021.1774.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/07/2021] [Accepted: 06/02/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder with symptoms appearing from early childhood. Behavioral modifications, special education, and medicines are used to treat ASD; however, the effectiveness of the treatments depends on early diagnosis of the disorder. The primary approach in diagnosing ASD is based on clinical interviews and valid scales. Still, methods based on brain imaging could also be possible diagnostic biomarkers for ASD. Methods To identify the amount of information the functional magnetic resonance imaging (fMRI) reveals on ASD, we reviewed 292 task-based fMRI studies on ASD individuals. This study is part of a systematic review with the registration number CRD42017070975. Results We observed that face perception, language, attention, and social processing tasks were mainly studied in ASD. In addition, 73 brain regions, nearly 83% of brain grey matter, showed an altered activation between the ASD and normal individuals during these four tasks, either in a lower or a higher activation. Conclusion Using imaging methods, such as fMRI, to diagnose and predict ASD is a great objective; research similar to the present study could be the initial step.
Collapse
Affiliation(s)
- Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Foroogh Razavi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Sisakhti
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Zeinab Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Haady Ahmadzade
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehrani Doost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cañigueral R, Palmer J, Ashwood KL, Azadi B, Asherson P, Bolton PF, McLoughlin G, Tye C. Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD. J Child Psychol Psychiatry 2022; 63:745-761. [PMID: 34477232 DOI: 10.1111/jcpp.13514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) share impairments in top-down and bottom-up modulation of attention. However, it is not yet well understood if co-occurrence of ASD and ADHD reflects a distinct or additive profile of attention deficits. We aimed to characterise alpha oscillatory activity (stimulus-locked alpha desynchronisation and prestimulus alpha) as an index of integration of top-down and bottom-up attentional processes in ASD and ADHD. METHODS Children with ASD, ADHD, comorbid ASD+ADHD, and typically-developing children completed a fixed-choice reaction-time task ('Fast task') while neurophysiological activity was recorded. Outcome measures were derived from source-decomposed neurophysiological data. Main measures of interest were prestimulus alpha power and alpha desynchronisation (difference between poststimulus and prestimulus alpha). Poststimulus activity linked to attention allocation (P1, P3), attentional control (N2), and cognitive control (theta synchronisation, 100-600 ms) was also examined. ANOVA was used to test differences across diagnostics groups on these measures. Spearman's correlations were used to investigate the relationship between attentional control processes (alpha oscillations), central executive functions (theta synchronisation), early visual processing (P1), and behavioural performance. RESULTS Children with ADHD (ADHD and ASD+ADHD) showed attenuated alpha desynchronisation, indicating poor integration of top-down and bottom-up attentional processes. Children with ADHD showed reduced N2 and P3 amplitudes, while children with ASD (ASD and ASD+ADHD) showed greater N2 amplitude, indicating atypical attentional control and attention allocation across ASD and ADHD. In the ASD group, prestimulus alpha and theta synchronisation were negatively correlated, and alpha desynchronisation and theta synchronisation were positively correlated, suggesting an atypical association between attentional control processes and executive functions. CONCLUSIONS ASD and ADHD are associated with disorder-specific impairments, while children with ASD+ADHD overall presented an additive profile with attentional deficits of both disorders. Importantly, these findings may inform the improvement of transdiagnostic procedures and optimisation of personalised intervention approaches.
Collapse
Affiliation(s)
- Roser Cañigueral
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Jason Palmer
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, CoMIT, Suita, Japan.,Institute for Neural Computation, Univeristy of California San Diego, La Jolla, CA, USA
| | - Karen L Ashwood
- Department of Forensic and Neurodevelopmental Sciences, King's College London, London, UK
| | - Bahar Azadi
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Gráinne McLoughlin
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| |
Collapse
|
13
|
Dwyer P, Takarae Y, Zadeh I, Rivera SM, Saron CD. A Multidimensional Investigation of Sensory Processing in Autism: Parent- and Self-Report Questionnaires, Psychophysical Thresholds, and Event-Related Potentials in the Auditory and Somatosensory Modalities. Front Hum Neurosci 2022; 16:811547. [PMID: 35620155 PMCID: PMC9127065 DOI: 10.3389/fnhum.2022.811547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Reconciling results obtained using different types of sensory measures is a challenge for autism sensory research. The present study used questionnaire, psychophysical, and neurophysiological measures to characterize autistic sensory processing in different measurement modalities. Methods Participants were 46 autistic and 21 typically developing 11- to 14-year-olds. Participants and their caregivers completed questionnaires regarding sensory experiences and behaviors. Auditory and somatosensory event-related potentials (ERPs) were recorded as part of a multisensory ERP task. Auditory detection, tactile static detection, and tactile spatial resolution psychophysical thresholds were measured. Results Sensory questionnaires strongly differentiated between autistic and typically developing individuals, while little evidence of group differences was observed in psychophysical thresholds. Crucially, the different types of measures (neurophysiological, psychophysical, questionnaire) appeared to be largely independent of one another. However, we unexpectedly found autistic participants with larger auditory Tb ERP amplitudes had reduced hearing acuity, even though all participants had hearing acuity in the non-clinical range. Limitations The autistic and typically developing groups were not matched on cognitive ability, although this limitation does not affect our main analyses regarding convergence of measures within autism. Conclusion Overall, based on these results, measures in different sensory modalities appear to capture distinct aspects of sensory processing in autism, with relatively limited convergence between questionnaires and laboratory-based tasks. Generally, this might reflect the reality that laboratory tasks are often carried out in controlled environments without background stimuli to compete for attention, a context which may not closely resemble the busier and more complex environments in which autistic people's atypical sensory experiences commonly occur. Sensory questionnaires and more naturalistic laboratory tasks may be better suited to explore autistic people's real-world sensory challenges. Further research is needed to replicate and investigate the drivers of the unexpected association we observed between auditory Tb ERP amplitudes and hearing acuity, which could represent an important confound for ERP researchers to consider in their studies.
Collapse
Affiliation(s)
- Patrick Dwyer
- Neurocognitive Development Lab, Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California, Davis, Davis, CA, United States
| | - Yukari Takarae
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Iman Zadeh
- Oracle Cloud Infrastructure, Oracle Corporation, Los Angeles, CA, United States
| | - Susan M. Rivera
- Neurocognitive Development Lab, Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California, Davis, Davis, CA, United States
| | - Clifford D. Saron
- MIND Institute, University of California, Davis, Davis, CA, United States
- Saron Lab, Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Ford TC, Hugrass LE, Jack BN. The Relationship Between Affective Visual Mismatch Negativity and Interpersonal Difficulties Across Autism and Schizotypal Traits. Front Hum Neurosci 2022; 16:846961. [PMID: 35399350 PMCID: PMC8983815 DOI: 10.3389/fnhum.2022.846961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory deficits are a feature of autism and schizophrenia, as well as the upper end of their non-clinical spectra. The mismatch negativity (MMN), an index of pre-attentive auditory processing, is particularly sensitive in detecting such deficits; however, little is known about the relationship between the visual MMN (vMMN) to facial emotions and autism and schizophrenia spectrum symptom domains. We probed the vMMN to happy, sad, and neutral faces in 61 healthy adults (18-40 years, 32 female), and evaluated their degree of autism and schizophrenia spectrum traits using the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ). The vMMN to happy faces was significantly larger than the vMMNs to sad and neutral faces. The vMMN to happy faces was associated with interpersonal difficulties as indexed by AQ Communication and Attention to Detail subscales, and SPQ associated with more interpersonal difficulties. These data suggest that pre-attentive processing of positive affect might be more specific to the interpersonal features associated with autism and schizophrenia. These findings add valuable insights into the growing body of literature investigating symptom-specific neurobiological markers of autism and schizophrenia spectrum conditions.
Collapse
Affiliation(s)
- Talitha C. Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Laila E. Hugrass
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Bradley N. Jack
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Tse AC, Lee PH, Zhang J, Chan RC, Ho AW, Lai EW. Effects of exercise on sleep, melatonin level, and behavioral functioning in children with autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:1712-1722. [PMID: 35083939 DOI: 10.1177/13623613211062952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LAY ABSTRACT This study examined the impact of physical exercise on sleep and behavioral functioning in children (aged 8-12 years) with autism spectrum disorders. It also investigated whether exercise would alter endogenous melatonin level among the population. Participants were divided into two groups: exercise group (12-week, 30-min morning jogging intervention) and a control group (i.e. did not receive any physical exercise intervention during the study period). Significant improvements on sleep and behavioral functioning were found in the exercise group, but not in the control group Moreover, a significant increase in melatonin level was also shown in the exercise group. Findings of this study reconfirmed the sleep and behavioral benefits of exercise in children with autism spectrum disorder. Melatonin-mediated mechanism should be further explored to develop an effective treatment intervention.
Collapse
Affiliation(s)
- Andy Cy Tse
- The Education University of Hong Kong, Hong Kong
| | | | - Jihui Zhang
- The Chinese University of Hong Kong, Hong Kong
| | - Roy Cy Chan
- The Education University of Hong Kong, Hong Kong
| | - Amy Wy Ho
- The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
16
|
Alho J, Bharadwaj H, Khan S, Mamashli F, Perrachione TK, Losh A, McGuiggan NM, Joseph RM, Hämäläinen MS, Kenet T. Altered maturation and atypical cortical processing of spoken sentences in autism spectrum disorder. Prog Neurobiol 2021; 203:102077. [PMID: 34033856 DOI: 10.1016/j.pneurobio.2021.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is associated with widespread receptive language impairments, yet the neural mechanisms underlying these deficits are poorly understood. Neuroimaging has shown that processing of socially-relevant sounds, including speech and non-speech, is atypical in ASD. However, it is unclear how the presence of lexical-semantic meaning affects speech processing in ASD. Here, we recorded magnetoencephalography data from individuals with ASD (N = 22, ages 7-17, 4 females) and typically developing (TD) peers (N = 30, ages 7-17, 5 females) during unattended listening to meaningful auditory speech sentences and meaningless jabberwocky sentences. After adjusting for age, ASD individuals showed stronger responses to meaningless jabberwocky sentences than to meaningful speech sentences in the same left temporal and parietal language regions where TD individuals exhibited stronger responses to meaningful speech. Maturational trajectories of meaningful speech responses were atypical in temporal, but not parietal, regions in ASD. Temporal responses were associated with ASD severity, while parietal responses were associated with aberrant involuntary attentional shifting in ASD. Our findings suggest a receptive speech processing dysfunction in ASD, wherein unattended meaningful speech elicits abnormal engagement of the language system, while unattended meaningless speech, filtered out in TD individuals, engages the language system through involuntary attention capture.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Graduate School of Education, University of California, Riverside, CA, USA
| | - Nicole M McGuiggan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Matti S Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Husain L, Berggren N, Remington A, Forster S. Intact Goal-Driven Attentional Capture in Autistic Adults. J Cogn 2021; 4:23. [PMID: 33817551 PMCID: PMC7996432 DOI: 10.5334/joc.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Autistic individuals have been found to show increased distractibility by salient irrelevant information, yet reduced distractibility by information of personal motivational salience. Here we tested whether these prior discrepancies reflect differences in the automatic guidance of attention by top-down goals. METHODS Autistic (self-reported diagnoses, confirmed with scores on the Social Responsiveness Scale) and non-autistic adults, without intellectual disability (IQ > 80 on Wechsler Abbreviated Scale of Intelligence), searched for a color-defined target object (e.g., red) among irrelevant color objects. Spatially uninformative cues, matching either the target color or a nontarget/irrelevant color, were presented prior to each display. RESULTS Replicating previous work, only target color cues reliably captured attention, delaying responses when invalidly versus validly predicting target location. Crucially, this capture was robust for both autistic and neurotypical participants, as confirmed by Bayesian analysis. Limitations: While well powered for our research questions, our sample size precluded investigation of the automatic guidance of attention in a diverse group of autistic people (e.g. those with a range of cognitive abilities). CONCLUSIONS Our findings imply that key mechanisms underlying the automatic implementation of top-down attentional goals are intact in autism, challenging theories of reduced top-down control.
Collapse
Affiliation(s)
- Layal Husain
- Centre for Research in Autism and Education, Department of Psychology and Human Development, UCL Institute of Education, University College London, UK
| | - Nick Berggren
- Department of Psychological Sciences, Birkbeck College, University of London, UK
| | - Anna Remington
- Centre for Research in Autism and Education, Department of Psychology and Human Development, UCL Institute of Education, University College London, UK
| | | |
Collapse
|
18
|
Dwyer P, De Meo-Monteil R, Saron CD, Rivera SM. Effects of age on loudness-dependent auditory ERPs in young autistic and typically-developing children. Neuropsychologia 2021; 156:107837. [PMID: 33781752 DOI: 10.1016/j.neuropsychologia.2021.107837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Limited research has investigated the development of auditory ERPs in young children, and particularly how stimulus intensity may affect these auditory ERPs. Previous research has also yielded inconsistent findings regarding differences in the development of auditory ERPs in autism and typical development. Furthermore, stimulus intensity may be of particular interest in autism insofar as autistic people may have atypical experiences of sound intensity (e.g., hyperacusis). Therefore, the present study examined associations between age and ERPs evoked by tones of differing intensities (50, 60, 70, and 80 dB SPL) in a large sample of young children (2-5 years) with and without an autism diagnosis. Correlations between age and P1 latencies were examined, while cluster-based permutation testing was used to examine associations between age and neural response amplitudes, as well as group differences in amplitude, over all electrode sites in the longer time window of 1-350 ms. Older autistic participants had faster P1 latencies, but these effects only attained significance over the right hemisphere in response to soft 50 dB sounds. Autistic participants had slower P1 responses to 80 dB sounds over the right hemisphere. Over the scalp regions associated with the later N2 response, more negative response amplitudes (that is, larger N2 responses) were observed in typically-developing than autistic participants. Furthermore, continuous associations between response amplitudes and age suggested that older typically-developing participants exhibited stronger N2 responses to all intensities, though this effect may have at least in part reflected the absence of small positive voltage deflections in the N2 latency window. Age was associated with amplitudes of responses to 50 dB through 70 dB sounds in autism, but in contrast to Typical Development (TD), little evidence of relationships between age and amplitudes in the N2 latency window was found in autism in the 80 dB condition. Although caution should be exercised in interpretation due to the cross-sectional nature of this study, these findings suggest that developmental changes in auditory responses may differ across diagnostic groups in a manner that depends on perceived loudness and/or stimulus intensity.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, United States; Center for Mind and Brain, UC Davis, United States.
| | | | - Clifford D Saron
- Center for Mind and Brain, UC Davis, United States; MIND Institute, UC Davis, United States
| | - Susan M Rivera
- Department of Psychology, UC Davis, United States; Center for Mind and Brain, UC Davis, United States; MIND Institute, UC Davis, United States
| |
Collapse
|
19
|
Sun JW, Fan R, Wang Q, Wang QQ, Jia XZ, Ma HB. Identify abnormal functional connectivity of resting state networks in Autism spectrum disorder and apply to machine learning-based classification. Brain Res 2021; 1757:147299. [PMID: 33516816 DOI: 10.1016/j.brainres.2021.147299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) patients are often reported altered patterns of functional connectivity (FC) on resting-state functional magnetic resonance imaging (rsfMRI) scans. However, the results in similar brain regions were inconsistent. In this study, we first investigated statistical differences in large-scale resting-state networks (RSNs) on 192 healthy controls (HCs) and 103 ASD patients by using independent component analysis (ICA). Second, an image-based meta-analysis (IBMA) was applied to discover the consistency of spatial patterns from different sites. Last, utilizing these patterns as features, we used Support Vector Machine (SVM) classifier to identify whether a subject was suffering from ASD or not. As a result, six RSNs were obtained with ICA. In each RSN, we identified altered functional connectivity between ASD and HC across the multi-site data. We calculated the area under the receiver operating characteristic curve plots (AUC) to determine the classification performance. The AUC value of classification reaches 0.988. In conclusion, the present study indicates that intrinsic connectivity patterns produced from rsfMRI data could yield a possible biomarker of ASD and contributed to the neurobiology of ASD.
Collapse
Affiliation(s)
- Jia-Wei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China; Integrated Medical School, Jiamusi University, China
| | - Rui Fan
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China; Integrated Medical School, Jiamusi University, China
| | - Qing Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.
| | - Qian-Qian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xi-Ze Jia
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.
| | - Hui-Bin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China; Integrated Medical School, Jiamusi University, China.
| |
Collapse
|
20
|
Allenmark F, Shi Z, Pistorius RL, Theisinger LA, Koutsouleris N, Falkai P, Müller HJ, Falter-Wagner CM. Acquisition and Use of 'Priors' in Autism: Typical in Deciding Where to Look, Atypical in Deciding What Is There. J Autism Dev Disord 2020; 51:3744-3758. [PMID: 33373014 PMCID: PMC8460564 DOI: 10.1007/s10803-020-04828-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 11/27/2022]
Abstract
Individuals with Autism Spectrum Disorder (ASD) are thought to under-rely on prior knowledge in perceptual decision-making. This study examined whether this applies to decisions of attention allocation, of relevance for ‘predictive-coding’ accounts of ASD. In a visual search task, a salient but task-irrelevant distractor appeared with higher probability in one display half. Individuals with ASD learned to avoid ‘attentional capture’ by distractors in the probable region as effectively as control participants—indicating typical priors for deploying attention. However, capture by a ‘surprising’ distractor at an unlikely location led to greatly slowed identification of a subsequent target at that location—indicating that individuals with ASD attempt to control surprise (unexpected attentional capture) by over-regulating parameters in post-selective decision-making.
Collapse
Affiliation(s)
- Fredrik Allenmark
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Zhuanghua Shi
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| | - Rasmus L Pistorius
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laura A Theisinger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann J Müller
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany
| | | |
Collapse
|
21
|
The Influence of Irrelevant Visual Distractors on Eye Movement Control in Chinese Children with Autism Spectrum Disorder: Evidence from the Remote Distractor Paradigm. J Autism Dev Disord 2020; 50:500-512. [PMID: 31673908 PMCID: PMC6994527 DOI: 10.1007/s10803-019-04271-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current study examined eye movement control in autistic (ASD) children. Simple targets were presented in isolation, or with central, parafoveal, or peripheral distractors synchronously. Sixteen children with ASD (47–81 months) and nineteen age and IQ matched typically developing children were instructed to look to the target as accurately and quickly as possible. Both groups showed high proportions (40%) of saccadic errors towards parafoveal and peripheral distractors. For correctly executed eye movements to the targets, centrally presented distractors produced the longest latencies (time taken to initiate eye movements), followed by parafoveal and peripheral distractor conditions. Central distractors had a greater effect in the ASD group, indicating evidence for potential atypical voluntary attentional control in ASD children.
Collapse
|
22
|
Ridderinkhof A, de Bruin EI, van den Driesschen S, Bögels SM. Attention in Children With Autism Spectrum Disorder and the Effects of a Mindfulness-Based Program. J Atten Disord 2020; 24:681-692. [PMID: 30222027 PMCID: PMC7003152 DOI: 10.1177/1087054718797428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Children with autism spectrum disorder (ASD) show atypical attention. Mindfulness-based programs (MBPs), with self-regulation of attention as a basic component, could benefit these children. Method: We investigated how 49 children with ASD differed from 51 typically developing (TD) children in their attention systems; and whether their attention systems were improved by an MBP for children and their parents (MYmind), using a cognitive measure of attention, the Attention Network Test. Results: Children with ASD did not differ from TD children in the speed of the attention systems, but were somewhat less accurate in their orienting and executive attention. Also, MYmind did not significantly improve attention, although trend effects indicated improved orienting and executive attention. Robustness checks supported these improvements. Conclusion: Trend effects of the MBP on the attention systems of children with ASD were revealed, as well as minor differences between children with ASD and TD children in their attention systems.
Collapse
Affiliation(s)
- Anna Ridderinkhof
- Research Institute of Child Development and Education, University of Amsterdam, The Netherlands,Anna Ridderinkhof, Research Institute of Child Development and Education, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands.
| | - Esther I. de Bruin
- Research Institute of Child Development and Education, University of Amsterdam, The Netherlands
| | | | - Susan M. Bögels
- Research Institute of Child Development and Education, University of Amsterdam, The Netherlands,Department of Developmental Psychology, University of Amsterdam, The Netherlands,UvA minds, The Netherlands
| |
Collapse
|
23
|
Edmondson DA, Xia P, McNally Keehn R, Dydak U, Keehn B. A Magnetic Resonance Spectroscopy Study of Superior Visual Search Abilities in Children with Autism Spectrum Disorder. Autism Res 2020; 13:550-562. [PMID: 31909886 DOI: 10.1002/aur.2258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Although diagnosed on the basis of deficits in social communication and interaction, autism spectrum disorder (ASD) is also characterized by superior performance on a variety of visuospatial tasks, including visual search. In neurotypical individuals, region-specific concentrations of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) are associated with individual differences in attention and perception. While it has been hypothesized that ASD may be associated with an excitatory-inhibitory imbalance, it remains unclear how this may contribute to accelerated visual search performance in individuals with ASD. To investigate this, 21 children with ASD and 20 typically developing children participated in a visual search task and a magnetic resonance spectroscopy study to detect neurochemical concentrations, including GABA. Region-specific neurochemicals were examined in the right frontal eye fields, right temporal-parietal junction (rTPJ), and bilateral visual cortex (VIS). GABA concentrations did not differ between groups; however, in children with ASD, greater GABA concentration in the VIS was related to more efficient search. Additionally, lower VIS GABA levels were also associated with increased social impairment. Finally, we found reduced N-acetyl aspartate, total creatine, glutamate and glutamine (Glx), GABA/Glx in the rTPJ, suggestive of neuronal dysfunction in a critical network hub. Our results show that GABA concentrations in the VIS are related to efficient search in ASD, thus providing further evidence of enhanced discrimination in ASD. Autism Res 2020, 13: 550-562. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Children with autism spectrum disorder (ASD) often perform better than their non-ASD peers on visual search tasks; however, it is unclear how they achieve this superior performance. Using magnetic resonance spectroscopy to measure neurochemicals in the brain, we found that the level of one, gamma-aminobutyric acid, in the visual cortex was directly related to search abilities in children with ASD. These results suggest that faster search may relate to enhanced perceptual functioning in children with ASD.
Collapse
Affiliation(s)
- David A Edmondson
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Pingyu Xia
- School of Health Sciences, Purdue University, West Lafayette, Indiana
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana.,Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
24
|
Zacharia TT, Eslinger PJ. Functional MRI activation patterns of cerebellum in patients with epilepsy and brain tumors. Clin Anat 2019; 32:1053-1060. [PMID: 31376291 DOI: 10.1002/ca.23439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/12/2022]
Abstract
Function of cerebellum in control and coordination of motor function has been well established for several years. Recent functional magnetic resonance imaging (MRI) studies reveal activation of cerebellum with memory, speech and language tasks. We hypothesize that during every function in the brain signals are relayed to cerebellum. We seek to analyze cognitive, emotional and social functions of cerebellum in patients with brain tumors and epilepsy utilizing functional Magnetic Resonance Imaging. Fifty-one consecutive adult patients who underwent functional MRI examination were retrospectively analyzed for various activation patterns involving cerebellum. The neuropsychological battery of tasks assessed motor, language, memory, visual and auditory functions. Cognitive ability of all participants was assessed by Montreal cognitive assessment (MOCA). Patterns were analyzed for specific lobes and locations in the cerebellum. We found that simultaneous cerebellar activation is a consistent finding with brain activation during every functional MRI task that we tested except visual task. The patterns of functional MRI cerebellar activation were similar in both patient subgroups and control subjects compared to previously described patterns in normal subjects. Clin. Anat. 32:1053-1060, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- T Thomas Zacharia
- Department of Radiology, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Paul J Eslinger
- Department of Radiology, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania.,Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania.,Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
25
|
Keehn B, Kadlaskar G, McNally Keehn R, Francis AL. Auditory Attentional Disengagement in Children with Autism Spectrum Disorder. J Autism Dev Disord 2019; 49:3999-4008. [PMID: 31201579 DOI: 10.1007/s10803-019-04111-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite early differences in orienting to sounds, no study to date has investigated whether children with ASD demonstrate impairments in attentional disengagement in the auditory modality. Twenty-one 9-15-year-old children with ASD and 20 age- and IQ-matched TD children were presented with an auditory gap-overlap paradigm. Evidence of impaired disengagement in ASD was mixed. Differences in saccadic reaction time for overlap and gap conditions did not differ between groups. However, children with ASD did show increased no-shift trials in the overlap condition, as well as reduced disengagement efficiency compared to their TD peers. These results provide further support for disengagement impairments in ASD, and suggest that these deficits include disengaging from and shifting to unimodal auditory information.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, IN, 47907, USA. .,Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, IN, 47907, USA
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander L Francis
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, IN, 47907, USA
| |
Collapse
|
26
|
Aoki S, Kagitani-Shimono K, Matsuzaki J, Hanaie R, Nakanishi M, Tominaga K, Nagai Y, Mohri I, Taniike M. Lesser suppression of response to bright visual stimuli and visual abnormality in children with autism spectrum disorder: a magnetoencephalographic study. J Neurodev Disord 2019; 11:9. [PMID: 31200639 PMCID: PMC6570891 DOI: 10.1186/s11689-019-9266-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visual abnormality is a common sensory impairment in autism spectrum disorder (ASD), which may cause behavioral problems. However, only a few studies exist on the neural features corresponding to the visual symptoms in ASD. The purpose of this study was to investigate the relationship between cortical responses to visual stimuli and visual abnormality to examine the neurophysiological mechanisms of the visual abnormality in ASD. METHODS Twenty-two high-functioning children with ASD (10.95 ± 2.01 years old) and 23 age-matched typically developing (TD) children (10.13 ± 2.80 years old) participated in this study. We measured the cortical responses (i.e., activated intensity and attenuation ratio) elicited by the Original visual image and other two types of bright images (the Dot noise or Blind image, which includes overlapped particles onto the Original image or the enhanced-brightness version of the Original image, respectively) using magnetoencephalography. RESULTS The severity of visual abnormalities was significantly associated with behavioral problems in children with ASD. In addition, we found the increased cortical activation in response to the Original image in the left supramarginal gyrus (SMG) and middle temporal gyrus in children with ASD. However, there were no inter-group differences in the primary visual and medial orbitofrontal cortices. Furthermore, when we compared cortical responses according to the type of images, children with ASD showed lesser attenuation of the activated intensities than children with TD in response to the bright images compared with the Original image in the right SMG. These attenuation ratios (Dot noise/Original and Blind/Original) were also associated with the severity of visual abnormalities. CONCLUSIONS Our results show that dysfunction of stimulus-driven neural suppression plays a crucial role in the neural mechanism of visual abnormality in children with ASD. To the best of our knowledge, this is the first magnetoencephalography study to demonstrate the association between the severity of visual abnormality and lower attenuation ratios in children with ASD. Our results contribute to the knowledge of the mechanisms underlying visual abnormality in children with ASD, and may therefore lead to more effective diagnosis and earlier intervention.
Collapse
Affiliation(s)
- Sho Aoki
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kuriko Kagitani-Shimono
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Junko Matsuzaki
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mariko Nakanishi
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukie Nagai
- National Institute of Information and Communications Technology, Osaka, Japan
| | - Ikuko Mohri
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Høyland AL, Nærland T, Engstrøm M, Torske T, Lydersen S, Andreassen OA. Atypical event-related potentials revealed during the passive parts of a Go-NoGo task in autism spectrum disorder: a case-control study. Mol Autism 2019; 10:10. [PMID: 30873274 PMCID: PMC6402134 DOI: 10.1186/s13229-019-0259-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background The core features of autism spectrum disorder (ASD) are easily recognizable in non-structured clinical and real-life situations. The features are often difficult to capture in structured laboratory settings, and the results from tests do not necessarily reflect symptom severity. We investigated neurophysiological processing in the passive parts of a cued Go-NoGo task, using the active parts of the test as a comparator. Methods Forty-nine adolescents diagnosed with ASD and 49 typically developing (TD) adolescents (age 12–21 years) were included. Daily life executive function was assessed with the Behavior Rating Inventory of Executive Function (BRIEF). We applied a visual cued Go-NoGo task and recorded event-related potentials (ERPs). We investigated occipital N1, a component related to early perception of visual stimuli, and P3a, a fronto-central component related to switching of attention, in the passive and active parts of the test. Results During the passive parts, the ASD group had statistically significantly longer N1 latency (p < 0.001, Cohens d = 0.75) and enhanced amplitude of P3a (p = 0.002, Cohens d = 0.64) compared to the TD, while no significant differences were observed in the active parts. Both components correlated significantly with the Behavioral Regulation Index of the BRIEF (partial correlation r = 0.35, p = 0.003). Conclusion Delayed N1 response, indicating altered visual perception, and enhanced P3a response, indicating increased neural activation related to attention allocation, were found during the passive parts of a Go-NoGo task in ASD participants. These abnormal ERP signals in the non-structured settings were associated with everyday executive function, suggesting that neurophysiolocal measures related to atypical control of alertness and “hyper-awareness” underlie daily life dysfunction in ASD. Assessments during passive settings have a potential to reveal core neurobiological substrates of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-019-0259-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne L Høyland
- 1Department of Mental Health, Faculty of Medicine and Health Sciences, Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Klostergata 46, N-7030 Trondheim, Norway.,2Department of Pediatrics, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Terje Nærland
- 3NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway.,4NORMENT, KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
| | - Morten Engstrøm
- 5Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,6Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Torske
- 7Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Stian Lydersen
- 1Department of Mental Health, Faculty of Medicine and Health Sciences, Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Klostergata 46, N-7030 Trondheim, Norway
| | - Ole A Andreassen
- 4NORMENT, KG Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway.,8Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathol Commun 2019; 7:40. [PMID: 30867066 PMCID: PMC6417186 DOI: 10.1186/s40478-019-0684-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental connectivity disorder characterized by cortical network disorganization and imbalance in excitation/inhibition. However, little is known about the development of autism pathology and the disruption of laminar-specific excitatory and inhibitory cortical circuits. To begin to address these issues, we examined layer 1 of the lateral prefrontal cortex (LPFC), an area with prolonged development and maturation that is affected in autism. We focused on layer 1 because it contains a distinctive, diverse population of interneurons and glia, receives input from feedback and neuromodulatory pathways, and plays a critical role in the development, maturation, and function of the cortex. We used unbiased quantitative methods at high resolution to study the morphology, neurochemistry, distribution, and density of neurons and myelinated axons in post-mortem brain tissue from children and adults with and without autism. We cross-validated our findings through comparisons with neighboring anterior cingulate cortices and optimally-fixed non-human primate tissue. In neurotypical controls we found an increase in the density of myelinated axons from childhood to adulthood. Neuron density overall declined with age, paralleled by decreased density of inhibitory interneurons labeled by calretinin (CR), calbindin (CB), and parvalbumin (PV). Importantly, we found PV neurons in layer 1 of typically developing children, previously detected only perinatally. In autism there was disorganization of cortical networks within layer 1: children with autism had increased variability in the trajectories and thickness of myelinated axons in layer 1, while adults with autism had a reduction in the relative proportion of thin axons. Neurotypical postnatal changes in layer 1 of LPFC likely underlie refinement of cortical activity during maturation of cortical networks involved in cognition. Our findings suggest that disruption of the maturation of feedback pathways, rather than interneurons in layer 1, has a key role in the development of imbalance between excitation and inhibition in autism.
Collapse
|
29
|
Keehn B, Westerfield M, Townsend J. Brief Report: Cross-Modal Capture: Preliminary Evidence of Inefficient Filtering in Children with Autism Spectrum Disorder. J Autism Dev Disord 2019; 49:385-390. [PMID: 30014248 DOI: 10.1007/s10803-018-3674-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study investigates how task-irrelevant auditory information is processed in children with autism spectrum disorder (ASD). Eighteen children with ASD and 19 age- and IQ-matched typically developing (TD) children were presented with semantically-congruent and incongruent picture-sound pairs, and in separate tasks were instructed to attend to only visual or both audio-visual sensory channels. Preliminary results showed that when required to attend to both modalities, both groups were equally slowed for semantically-incongruent compared to congruent pairs. However, when asked to attend to only visual information, children with ASD were disproportionally slowed by incongruent auditory information, suggesting that they may have more difficulty filtering task-irrelevant cross-modal information. Correlational analyses showed that this inefficient cross-modal attentional filtering was related to greater sociocommunicative impairment.
Collapse
Affiliation(s)
- Brandon Keehn
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, Lyles-Porter Hall, West Lafayette, IN, 47907, USA. .,Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Marissa Westerfield
- Research on Autism and Development Lab, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Jeanne Townsend
- Research on Autism and Development Lab, Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
30
|
Maximo JO, Kana RK. Aberrant "deep connectivity" in autism: A cortico-subcortical functional connectivity magnetic resonance imaging study. Autism Res 2019; 12:384-400. [PMID: 30624021 DOI: 10.1002/aur.2058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
The number of studies examining functional brain networks in Autism Spectrum Disorder (ASD) has risen over the last decade and has characterized ASD as a disorder of altered brain connectivity. However, these studies have focused largely on cortical structures, and only a few studies have examined cortico-subcortical connectivity in regions like thalamus and basal ganglia in ASD. The goal of this study was to characterize the functional connectivity between cortex and subcortical regions in ASD using the Autism Brain Imaging Data Exchange (ABIDE-II). Resting-state functional magnetic resonance imaging data were used from 168 typically developing (TD) and 138 ASD participants across different sites from the ABIDE II dataset. Functional connectivity of basal ganglia and thalamus to unimodal and supramodal networks was examined in this study. Overconnectivity (ASD > TD) was found between unimodal (except for medial visual network) and subcortical regions, and underconnectivity (TD > ASD) was found between supramodal (except for default mode and dorsal attention networks) and subcortical regions; positive correlations between ASD phenotype and unimodal-subcortical connectivity were found and negative ones with supramodal-subcortical connectivity. These findings suggest that brain networks heavily involved in sensory processing had higher connectivity with subcortical regions, whereas those involved in higher-order thinking showed decreased connectivity in ASD. In addition, brain-behavior correlations indicated a relationship between ASD phenotype and connectivity. Thus, differences in cortico-subcortical connectivity may have a significant impact on basic and higher-order cognitive processes in ASD. Autism Res 2019, 12: 384-400 © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study focused on examining the functional connectivity (synchronization of brain activity across regions) of two types of brain networks (unimodal and supramodal) with subcortical areas (thalamus and basal ganglia) in children, adolescents, and adults with autism spectrum disorder (ASD) and how this relates to ASD phenotype. ASD participants showed overconnectivity in unimodal networks and underconnectivity in supramodal networks. These findings provide new insights into cortico-subcortical connections between basic sensory and high-order cognitive processes.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychology, University of Alabama at Birmingham, Alabama
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Alabama
| |
Collapse
|
31
|
Bi XA, Liu Y, Jiang Q, Shu Q, Sun Q, Dai J. The Diagnosis of Autism Spectrum Disorder Based on the Random Neural Network Cluster. Front Hum Neurosci 2018; 12:257. [PMID: 29997489 PMCID: PMC6028564 DOI: 10.3389/fnhum.2018.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
As the autism spectrum disorder (ASD) is highly heritable, pervasive and prevalent, the clinical diagnosis of ASD is vital. In the existing literature, a single neural network (NN) is generally used to classify ASD patients from typical controls (TC) based on functional MRI data and the accuracy is not very high. Thus, the new method named as the random NN cluster, which consists of multiple NNs was proposed to classify ASD patients and TC in this article. Fifty ASD patients and 42 TC were selected from autism brain imaging data exchange (ABIDE) database. First, five different NNs were applied to build five types of random NN clusters. Second, the accuracies of the five types of random NN clusters were compared to select the highest one. The random Elman NN cluster had the highest accuracy, thus Elman NN was selected as the best base classifier. Then, we used the significant features between ASD patients and TC to find out abnormal brain regions which include the supplementary motor area, the median cingulate and paracingulate gyri, the fusiform gyrus (FG) and the insula (INS). The proposed method provides a new perspective to improve classification performance and it is meaningful for the diagnosis of ASD.
Collapse
Affiliation(s)
- Xia-An Bi
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yingchao Liu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qin Jiang
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qing Shu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qi Sun
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jianhua Dai
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
32
|
Jahedi A, Nasamran CA, Faires B, Fan J, Müller RA. Distributed Intrinsic Functional Connectivity Patterns Predict Diagnostic Status in Large Autism Cohort. Brain Connect 2018; 7:515-525. [PMID: 28825309 DOI: 10.1089/brain.2017.0496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Diagnosis of autism spectrum disorder (ASD) currently relies on behavioral observations because brain markers are unknown. Machine learning approaches can identify patterns in imaging data that predict diagnostic status, but most studies using functional connectivity MRI (fcMRI) data achieved only modest accuracies of 60-80%. We used conditional random forest (CRF), an ensemble learning technique protected against bias from feature correlation (which exists in fcMRI matrices). We selected 252 low-motion resting-state functional MRI scans from the Autism Brain Imaging Data Exchange, including 126 typically developing (TD) and 126 ASD participants, matched for age, nonverbal IQ, and head motion. A matrix of functional connectivities between 220 functionally defined regions of interest was used for diagnostic classification. In several runs, we achieved accuracies of 92-99% for classifiers with >300 features (most informative connections). Features, including pericentral somatosensory and motor regions, were disproportionately informative. Findings differed partially from a previous study in the same sample that used feature selection with random forest (which is biased by feature correlations). External validation in a smaller in-house data set, however, achieved only 67-71% accuracy. The large number of features in optimal models can be attributed to etiological heterogeneity under the clinical ASD umbrella. Lower accuracy in external validation is expected due to differences in unknown composition of ASD variants across samples. High accuracy in the main data set is unlikely due to noise overfitting, but rather indicates optimized characterization of a given cohort.
Collapse
Affiliation(s)
- Afrooz Jahedi
- 1 Brain Development Imaging Laboratories, Department of Psychology, San Diego State University , San Diego, California.,2 Computational Science Research Center, San Diego State University , San Diego, California.,3 Department of Mathematics and Statistics, San Diego State University , San Diego, California
| | - Chanond A Nasamran
- 1 Brain Development Imaging Laboratories, Department of Psychology, San Diego State University , San Diego, California.,4 Department of Bioinformatics and Medical Informatics, San Diego State University , San Diego, California
| | - Brian Faires
- 1 Brain Development Imaging Laboratories, Department of Psychology, San Diego State University , San Diego, California.,4 Department of Bioinformatics and Medical Informatics, San Diego State University , San Diego, California
| | - Juanjuan Fan
- 3 Department of Mathematics and Statistics, San Diego State University , San Diego, California
| | - Ralph-Axel Müller
- 1 Brain Development Imaging Laboratories, Department of Psychology, San Diego State University , San Diego, California
| |
Collapse
|
33
|
Bi XA, Wang Y, Shu Q, Sun Q, Xu Q. Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster. Front Genet 2018; 9:18. [PMID: 29467790 PMCID: PMC5808191 DOI: 10.3389/fgene.2018.00018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/15/2018] [Indexed: 01/03/2023] Open
Abstract
Autism spectrum disorder (ASD) is mainly reflected in the communication and language barriers, difficulties in social communication, and it is a kind of neurological developmental disorder. Most researches have used the machine learning method to classify patients and normal controls, among which support vector machines (SVM) are widely employed. But the classification accuracy of SVM is usually low, due to the usage of a single SVM as classifier. Thus, we used multiple SVMs to classify ASD patients and typical controls (TC). Resting-state functional magnetic resonance imaging (fMRI) data of 46 TC and 61 ASD patients were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. Only 84 of 107 subjects are utilized in experiments because the translation or rotation of 7 TC and 16 ASD patients has surpassed ±2 mm or ±2°. Then the random SVM cluster was proposed to distinguish TC and ASD. The results show that this method has an excellent classification performance based on all the features. Furthermore, the accuracy based on the optimal feature set could reach to 96.15%. Abnormal brain regions could also be found, such as inferior frontal gyrus (IFG) (orbital and opercula part), hippocampus, and precuneus. It is indicated that the method of random SVM cluster may apply to the auxiliary diagnosis of ASD.
Collapse
Affiliation(s)
- Xia-An Bi
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Yang Wang
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Qing Shu
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Qi Sun
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| | - Qian Xu
- College of Mathematics and Computer Science, Hunan Normal University, Changsha, China
| |
Collapse
|
34
|
Social Attention, Joint Attention and Sustained Attention in Autism Spectrum Disorder and Williams Syndrome: Convergences and Divergences. J Autism Dev Disord 2018; 47:1866-1877. [PMID: 28349363 DOI: 10.1007/s10803-017-3106-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There is limited knowledge on shared and syndrome-specific attentional profiles in autism spectrum disorder (ASD) and Williams syndrome (WS). Using eye-tracking, we examined attentional profiles of 35 preschoolers with ASD, 22 preschoolers with WS and 20 typically developing children across social and non-social dimensions of attention. Children with ASD and those with WS presented with overlapping deficits in spontaneous visual engagement with the target of others' attention and in sustained attention. Children with ASD showed syndrome-specific abnormalities in monitoring and following a person's referential gaze, as well as a lack of preferential attention to social stimuli. Children with ASD and WS present with shared as well as syndrome-specific abnormalities across social and non-social dimensions of attention.
Collapse
|
35
|
Chukoskie L, Westerfield M, Townsend J. A novel approach to training attention and gaze in ASD: A feasibility and efficacy pilot study. Dev Neurobiol 2017; 78:546-554. [PMID: 29218791 DOI: 10.1002/dneu.22563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022]
Abstract
In addition to the social, communicative and behavioral symptoms that define the disorder, individuals with ASD have difficulty re-orienting attention quickly and accurately. Similarly, fast re-orienting saccadic eye movements are also inaccurate and more variable in both endpoint and timing. Atypical gaze and attention are among the earliest symptoms observed in ASD. Disruption of these foundation skills critically affects the development of higher level cognitive and social behavior. We propose that interventions aimed at these early deficits that support social and cognitive skills will be broadly effective. We conducted a pilot clinical trial designed to demonstrate the feasibility and preliminary efficacy of using gaze-contingent video games for low-cost in-home training of attention and eye movement. Eight adolescents with ASD participated in an 8-week training, with pre-, mid- and post-testing of eye movement and attention control. Six of the eight adolescents completed the 8 weeks of training and all six showed improvement in attention (orienting, disengagement) and eye movement control or both. All game systems remained intact for the duration of training and all participants could use the system independently. We delivered a robust, low-cost, gaze-contingent game system for home use that, in our pilot training sample, improved the attention orienting and eye movement performance of adolescent participants in 8 weeks of training. We are currently conducting a clinical trial to replicate these results and to examine what, if any, aspects of training transfer to more real-world tasks. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 546-554, 2018.
Collapse
Affiliation(s)
- Leanne Chukoskie
- Institute for Neural Computation, University of California, San Diego.,Research on Autism and Development Laboratory, University of California, San Diego
| | - Marissa Westerfield
- Research on Autism and Development Laboratory, University of California, San Diego.,Department of Neurosciences, University of California, San Diego
| | - Jeanne Townsend
- Research on Autism and Development Laboratory, University of California, San Diego.,Department of Neurosciences, University of California, San Diego
| |
Collapse
|
36
|
Zwart FS, Vissers CTWM, Kessels RPC, Maes JHR. Procedural learning across the lifespan: A systematic review with implications for atypical development. J Neuropsychol 2017; 13:149-182. [DOI: 10.1111/jnp.12139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Fenny S. Zwart
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
| | - Constance Th. W. M. Vissers
- Behavioural Science Institute; Nijmegen The Netherlands
- Royal Dutch Kentalis; Sint-Michielsgestel The Netherlands
| | - Roy P. C. Kessels
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
- Department of Medical Psychology; Radboud University Medical Center; Nijmegen The Netherlands
- Vincent van Gogh Institute for Psychiatry; Venray The Netherlands
| | - Joseph H. R. Maes
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
| |
Collapse
|
37
|
Duan X, Chen H, He C, Long Z, Guo X, Zhou Y, Uddin LQ, Chen H. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:434-441. [PMID: 28779909 DOI: 10.1016/j.pnpbp.2017.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Although evidence is accumulating that autism spectrum disorder (ASD) is associated with disruption of functional connections between and within brain networks, it remains largely unknown whether these abnormalities are related to specific frequency bands. To address this question, network contingency analysis was performed on brain functional connectomes obtained from 213 adolescent participants across nine sites in the Autism Brain Imaging Data Exchange (ABIDE) multisite sample, to determine the disrupted connections between and within seven major cortical networks in adolescents with ASD at Slow-5, Slow-4 and Slow-3 frequency bands and further assess whether the aberrant intra- and inter-network connectivity varied as a function of ASD symptoms. Overall under-connectivity within and between large-scale intrinsic networks in ASD was revealed across the three frequency bands. Specifically, decreased connectivity strength within the default mode network (DMN), between DMN and visual network (VN), ventral attention network (VAN), and between dorsal attention network (DAN) and VAN was observed in the lower frequency band (slow-5, slow-4), while decreased connectivity between limbic network (LN) and frontal-parietal network (FPN) was observed in the higher frequency band (slow-3). Furthermore, weaker connectivity within and between specific networks correlated with poorer communication and social interaction skills in the slow-5 band, uniquely. These results demonstrate intrinsic under-connectivity within and between multiple brain networks within predefined frequency bands in ASD, suggesting that frequency-related properties underlie abnormal brain network organization in the disorder.
Collapse
Affiliation(s)
- Xujun Duan
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Heng Chen
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Changchun He
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Zhiliang Long
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiaonan Guo
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yuanyue Zhou
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou Seventh People's Hospital, Hangzhou, PR China
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, United States
| | - Huafu Chen
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
38
|
Autism, Attention, and Alpha Oscillations: An Electrophysiological Study of Attentional Capture. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:528-536. [PMID: 29170759 DOI: 10.1016/j.bpsc.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Autism spectrum disorder (ASD) is associated with deficits in adaptively orienting attention to behaviorally-relevant information. Neural oscillatory activity plays a key role in brain function and provides a high-resolution temporal marker of attention dynamics. Alpha band (8-12 Hz) activity is associated with both selecting task-relevant stimuli and filtering task-irrelevant information. Methods The present study used electroencephalography (EEG) to examine alpha-band oscillatory activity associated with attentional capture in nineteen children with ASD and twenty-one age- and IQ-matched typically developing (TD) children. Participants completed a rapid serial visual presentation paradigm designed to investigate responses to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors, which either did or did not share a behaviorally-relevant feature. Participants also completed six minutes of eyes-open resting EEG. Results In contrast to their TD peers, children with ASD did not evidence posterior alpha desynchronization to behaviorally-relevant targets. Additionally, reduced target-related desynchronization and poorer target detection were associated with increased ASD symptomatology. TD children also showed behavioral and electrophysiological evidence of contingent attention capture, whereas children with ASD showed no behavioral facilitation or alpha desynchronization to distractors that shared a task-relevant feature. Lastly, children with ASD had significantly decreased resting alpha power, and for all participants increased resting alpha levels were associated with greater task-related alpha desynchronization. Conclusions These results suggest that in ASD under-responsivity and impairments in orienting to salient events within their environment are reflected by atypical EEG oscillatory neurodynamics, which may signify atypical arousal levels and/or an excitatory/inhibitory imbalance.
Collapse
|
39
|
Yerys BE, Herrington JD, Satterthwaite TD, Guy L, Schultz RT, Bassett DS. Globally weaker and topologically different: resting-state connectivity in youth with autism. Mol Autism 2017; 8:39. [PMID: 28770039 PMCID: PMC5530457 DOI: 10.1186/s13229-017-0156-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
Background There is a lack of agreement about functional connectivity differences in individuals with autism spectrum disorder (ASD). Studies using absolute strength have found reduced connectivity, while those using relative strength––a measure of system topology––reveal mostly enhanced connectivity. We hypothesized that mixed findings may be driven by the metric of functional connectivity. Methods Resting-state echo planar 3 T functional magnetic resonance imaging scans were acquired on a Siemens Verio Scanner from 6 to 17-year-old youth with ASD (n = 81) and a matched typically developing control group (n = 82). All functional time series data were preprocessed using a confound regression procedure that has been previously validated in large-scale developmental datasets. It has also been shown to be highly effective at reducing the influence of motion artifact on connectivity data. We extracted time series data from a 333-node parcellation scheme, which was previously mapped to 13 functional systems. A Pearson’s correlation was calculated and transformed to Fisher’s z between every pair of nodes to create a weighted 333 × 333 adjacency matrix. Mean absolute functional connectivity strength was the mean Fisher’s z of the matrix. Relative functional connectivity was corrected for individual differences in mean absolute functional connectivity (i.e., each connection in the matrix was divided by their mean z), and functional connectivity was evaluated within and across each of the functional networks in the parcellation scheme. Results Absolute functional connectivity strength was lower in ASD, and lower functional connectivity was correlated with greater ASD symptom severity. Relative functional connectivity was higher for the ASD group in the ventral attention and retrosplenial-temporal systems, with lower cross-system functional connectivity between the ventral attention and somatomotor-mouth systems. Functional connectivity within the ventral attention and retro-splenial systems correlated significantly with ASD symptom severity. Conclusions Within a context of globally weaker functional connectivity, youth with ASD have an atypical topology of brain systems that support social perception and communication. This study clarifies the mixed results reported previously and demonstrates that the functional connectivity metric influences the observed direction of functional connectivity differences for individuals with ASD. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0156-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin E Yerys
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - John D Herrington
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA
| | - Lisa Guy
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Robert T Schultz
- Center for Autism Research and Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, 3535 Market Street, Ste 860, Philadelphia, PA 19104 USA.,Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA USA.,Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Danielle S Bassett
- Departments of Bioengineering and Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
40
|
Igelström KM, Webb TW, Graziano MSA. Functional Connectivity Between the Temporoparietal Cortex and Cerebellum in Autism Spectrum Disorder. Cereb Cortex 2017; 27:2617-2627. [PMID: 27073219 DOI: 10.1093/cercor/bhw079] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The neural basis of autism spectrum disorder (ASD) is not yet understood. ASD is marked by social deficits and is strongly associated with cerebellar abnormalities. We studied the organization and cerebellar connectivity of the temporoparietal junction (TPJ), an area that plays a crucial role in social cognition. We applied localized independent component analysis to resting-state fMRI data from autistic and neurotypical adolescents to yield an unbiased parcellation of the bilateral TPJ into 11 independent components (ICs). A comparison between neurotypical and autistic adolescents showed that the organization of the TPJ was not significantly altered in ASD. Second, we used the time courses of the TPJ ICs as spatially unbiased "seeds" for a functional connectivity analysis applied to voxels within the cerebellum. We found that the cerebellum contained a fine-grained, lateralized map of the TPJ. The connectivity of the TPJ subdivisions with cerebellar zones showed one striking difference in ASD. The right dorsal TPJ showed markedly less connectivity with the left Crus II. Disturbed cerebellar input to this key region for cognition and multimodal integration may contribute to social deficits in ASD. The findings might also suggest that the right TPJ and/or left Crus II are potential targets for noninvasive brain stimulation therapies.
Collapse
Affiliation(s)
- Kajsa M Igelström
- Princeton Neuroscience Institute.,Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Taylor W Webb
- Princeton Neuroscience Institute.,Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Michael S A Graziano
- Princeton Neuroscience Institute.,Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
41
|
Impaired engagement of the ventral attention system in neurofibromatosis type 1. Brain Imaging Behav 2017; 12:499-508. [DOI: 10.1007/s11682-017-9717-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Vivanti G, Hocking DR, Fanning P, Dissanayake C. Verbal labels increase the salience of novel objects for preschoolers with typical development and Williams syndrome, but not in autism. J Neurodev Disord 2017; 8:46. [PMID: 28050217 PMCID: PMC5203722 DOI: 10.1186/s11689-016-9180-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early research has documented that young children show an increased interest toward objects that are verbally labeled by an adult, compared to objects that are presented without a label. It is unclear whether the same phenomenon occurs in neurodevelopmental disorders affecting social development, such as autism spectrum disorder (ASD) and Williams syndrome (WS). METHODS The present study used a novel eye-tracking paradigm to determine whether hearing a verbal label increases the salience of novel objects in 35 preschoolers with ASD, 18 preschoolers with WS, and 20 typically developing peers. RESULTS We found that typically developing children and those with WS, but not those with ASD, spent significantly more time looking at objects that are verbally labeled by an adult, compared to objects that are presented without a label. CONCLUSIONS In children without ASD, information accompanied by the speaker's verbal label is accorded a "special status," and it is more likely to be attended to. In contrast, children with ASD do not appear to attribute a special salience to labeled objects compared to non-labeled objects. This result is consistent with the notion that reduced responsivity to pedagogical cues hinders social learning in young children with ASD.
Collapse
Affiliation(s)
- Giacomo Vivanti
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA 19104-3734 USA ; Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Darren R Hocking
- Developmental Neuromotor and Cognition Lab, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Peter Fanning
- Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Cheryl Dissanayake
- Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
43
|
Abu-Akel A, Apperly IA, Wood SJ, Hansen PC, Mevorach C. Autism Tendencies and Psychosis Proneness Interactively Modulate Saliency Cost. Schizophr Bull 2017; 43:142-151. [PMID: 27217269 PMCID: PMC5216849 DOI: 10.1093/schbul/sbw066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Atypical responses to salient information are a candidate endophenotype for both autism and psychosis spectrum disorders. The present study investigated the costs and benefits of such atypicalities for saliency-based selection in a large cohort of neurotypical adults in whom both autism and psychosis expressions were assessed. Two experiments found that autism tendencies and psychosis proneness interactively modulated the cost incurred in the presence of a task-irrelevant salient distractor. Specifically, expressions of autism and psychosis had opposing effects on responses to salient information such that the benefits associated with high expressions for autism offset costs associated with high expressions for psychosis. The opposing influences observed on saliency cost may be driven by distinct attentional mechanisms that are differentially affected by expressions for autism and psychosis.
Collapse
Affiliation(s)
- Ahmad Abu-Akel
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK;
| | - Ian A. Apperly
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephen J. Wood
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK;,Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Peter C. Hansen
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Carmel Mevorach
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
44
|
Hames EC, Rajmohan R, Fang D, Anderson R, Baker M, Richman DM, O'Boyle M. Attentional Networks in Adolescents with High-functioning Autism: An fMRI Investigation. Open Neuroimag J 2016; 10:102-110. [PMID: 27843514 PMCID: PMC5074002 DOI: 10.2174/1874440001610010102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 01/31/2023] Open
Abstract
Background: Attentional deficits in Autism spectrum disorder (ASD) are often noted, but their specific nature remains unclear. Objective: The present study used the child Attentional Network Task (Child ANT) in combination with functional magnetic resonance imaging (fMRI) to determine if the consistently cited deficits of orienting attention are truly due to dysfunctions of orienting-based networks. We hypothesized that these observations are, in fact, a reflection of executive dysfunctions. As such, we expected that although ASD adolescents would perform worse on the orienting portion of the Child ANT, the strongest differences in activation between them and the neurotypical (NT) control group would be in areas classically associated with executive functioning (e.g., the frontal gyri and anterior cingulate cortex). Method: The brain activity of six high-functioning adolescents with ASD and six NT adolescents was recorded while these individuals performed the three subcomponents of the Child ANT. Results: ASDs were shown to be more accurate than NTs for the alerting, less accurate for the orienting, and similar in accuracy for the executive portions of the Child ANT. fMRI data showed increased bilateral frontal gyri recruitment, areas conventionally associated with executive control, during the orienting task for the ASD group. Conclusion: We submit that the increased activations represent neurocorrelates of signal fixation attributable to the subset of executive control responsible for sustained maintenance signals, not the main components of orienting. Therefore, excessive fixation in ASD adolescents is likely due to dysfunctions of executive control and not the orienting subcomponent of the attention network.
Collapse
Affiliation(s)
- Elizabeth C Hames
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Ravi Rajmohan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Dan Fang
- College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ronald Anderson
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Mary Baker
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - David M Richman
- College of Education, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael O'Boyle
- College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
45
|
Kleberg JL, Thorup E, Falck-Ytter T. Visual orienting in children with autism: Hyper-responsiveness to human eyes presented after a brief alerting audio-signal, but hyporesponsiveness to eyes presented without sound. Autism Res 2016; 10:246-250. [PMID: 27454075 PMCID: PMC5324587 DOI: 10.1002/aur.1668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 01/15/2023]
Abstract
Autism Spectrum Disorder (ASD) has been associated with reduced orienting to social stimuli such as eyes, but the results are inconsistent. It is not known whether atypicalities in phasic alerting could play a role in putative altered social orienting in ASD. Here, we show that in unisensory (visual) trials, children with ASD are slower to orient to eyes (among distractors) than controls matched for age, sex, and nonverbal IQ. However, in another condition where a brief spatially nonpredictive sound was presented just before the visual targets, this group effect was reversed. Our results indicate that orienting to social versus nonsocial stimuli is differently modulated by phasic alerting mechanisms in young children with ASD. Autism Res 2017, 10: 246-250. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Collapse
Affiliation(s)
| | - Emilia Thorup
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Terje Falck-Ytter
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Women's and Children's Health, Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska institutet, Stockholm, Sweden
| |
Collapse
|