1
|
Sattelberger J, Haque H, Juvonen JJ, Siebenhühner F, Palva JM, Palva S. Local and interareal alpha and low-beta band oscillation dynamics underlie the bilateral field advantage in visual working memory. Cereb Cortex 2024; 34:bhae448. [PMID: 39540759 PMCID: PMC11561930 DOI: 10.1093/cercor/bhae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Visual working memory has a limited maximum capacity, which can be larger if stimuli are presented bilaterally vs. unilaterally. However, the neuronal mechanisms underlying this bilateral field advantage are not known. Visual working memory capacity is predicted by oscillatory delay-period activity, specifically, by a decrease in alpha (8 to 12 Hz) band amplitudes in posterior brain regions reflecting attentional deployment and related shifts in excitation, as well as a concurrent increase of prefrontal oscillation amplitudes and interareal synchronization in multiple frequencies reflecting active maintenance of information. Here, we asked whether posterior alpha suppression or prefrontal oscillation enhancement explains the bilateral field advantage. We recorded brain activity with high-density electroencephalography, while subjects (n = 26, 14 males) performed a visual working memory task with uni- and bilateral visual stimuli. The bilateral field advantage was associated with early suppression of low-alpha (6 to 10 Hz) and alpha-beta (10 to 17 Hz) band amplitudes, and a subsequent alpha-beta amplitude increase, which, along with a concurrent load-dependent interareal synchronization in the high-alpha band (10 to 15 Hz), correlated with hit rates and reaction times and thus predicted higher maximum capacities in bilateral than unilateral visual working memory. These results demonstrate that the electrophysiological basis of the bilateral field advantage in visual working memory is both in the changes in attentional deployment and enhanced interareal integration.
Collapse
Affiliation(s)
- Judith Sattelberger
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Hamed Haque
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Joonas J Juvonen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Jaakko Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, University of Glasgow, G12 8QB Glasgow, United Kingdom
| |
Collapse
|
2
|
Ueda R, Sakakura K, Mitsuhashi T, Sonoda M, Firestone E, Kuroda N, Kitazawa Y, Uda H, Luat AF, Johnson EL, Ofen N, Asano E. Cortical and white matter substrates supporting visuospatial working memory. Clin Neurophysiol 2024; 162:9-27. [PMID: 38552414 PMCID: PMC11102300 DOI: 10.1016/j.clinph.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE In tasks involving new visuospatial information, we rely on working memory, supported by a distributed brain network. We investigated the dynamic interplay between brain regions, including cortical and white matter structures, to understand how neural interactions change with different memory loads and trials, and their subsequent impact on working memory performance. METHODS Patients undertook a task of immediate spatial recall during intracranial EEG monitoring. We charted the dynamics of cortical high-gamma activity and associated functional connectivity modulations in white matter tracts. RESULTS Elevated memory loads were linked to enhanced functional connectivity via occipital longitudinal tracts, yet decreased through arcuate, uncinate, and superior-longitudinal fasciculi. As task familiarity grew, there was increased high-gamma activity in the posterior inferior-frontal gyrus (pIFG) and diminished functional connectivity across a network encompassing frontal, parietal, and temporal lobes. Early pIFG high-gamma activity was predictive of successful recall. Including this metric in a logistic regression model yielded an accuracy of 0.76. CONCLUSIONS Optimizing visuospatial working memory through practice is tied to early pIFG activation and decreased dependence on irrelevant neural pathways. SIGNIFICANCE This study expands our knowledge of human adaptation for visuospatial working memory, showing the spatiotemporal dynamics of cortical network modulations through white matter tracts.
Collapse
Affiliation(s)
- Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan.
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan.
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 2360004, Japan.
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| | - Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama 2360004, Japan.
| | - Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan.
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences, Pediatrics, and Psychology, Northwestern University, Chicago, Illinois 60611, USA.
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, Michigan 48202, USA; Department of Psychology, Wayne State University, Detroit, Michigan 48202, USA.
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan 48201, USA; Translational Neuroscience Program, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
3
|
Kim GW, Park JI, Yang JC. Brain morphological changes and functional neuroanatomy related to cognitive and emotional distractors during working memory maintenance in post-traumatic stress disorder. Brain Res Bull 2024; 211:110946. [PMID: 38614407 DOI: 10.1016/j.brainresbull.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Post-traumatic stress disorder (PTSD) is associated with abnormalities in the processing and regulation of emotion as well as cognitive deficits. This study evaluated the differential brain activation patterns associated with cognitive and emotional distractors during working memory (WM) maintenance for human faces between patients with PTSD and healthy controls (HCs) and assessed the relationship between changes in the activation patterns by the opposing effects of distraction types and gray matter volume (GMV). Twenty-two patients with PTSD and twenty-two HCs underwent T1-weighted magnetic resonance imaging (MRI) and event-related functional MRI (fMRI), respectively. Event-related fMRI data were recorded while subjects performed a delayed-response WM task with human face and trauma-related distractors. Compared to the HCs, the patients with PTSD showed significantly reduced GMV of the inferior frontal gyrus (IFG) (p < 0.05, FWE-corrected). For the human face distractor trial, the patients showed significantly decreased activities in the superior frontal gyrus and IFG compared with HCs (p < 0.05, FWE-corrected). The patients showed lower accuracy scores and slower reaction times for the face recognition task with trauma-related distractors compared with HCs as well as significantly increased brain activity in the STG during the trauma-related distractor trial was observed (p < 0.05, FWE-corrected). Such differential brain activation patterns associated with the effects of distraction in PTSD patients may be linked to neural mechanisms associated with impairments in both cognitive control for confusable distractors and the ability to control emotional distraction.
Collapse
Affiliation(s)
- Gwang-Won Kim
- Advanced Institute of Aging Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Il Park
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
4
|
Chen C, Liang Y, Xu S, Yi C, Li Y, Chen B, Yang L, Liu Q, Yao D, Li F, Xu P. The dynamic causality brain network reflects whether the working memory is solidified. Cereb Cortex 2024; 34:bhad467. [PMID: 38061696 DOI: 10.1093/cercor/bhad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.
Collapse
Affiliation(s)
- Chunli Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shiyun Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Yang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiang Liu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610000, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Güntekin B, Alptekin S, Yıldırım E, Aktürk T, Uzunlar H, Çalışoğlu P, Ada FE, Atay E, Ceran Ö. Immature event-related alpha dynamics in children compared with the young adults during inhibition shown by day-night stroop task. Front Hum Neurosci 2023; 17:1218559. [PMID: 37822709 PMCID: PMC10562703 DOI: 10.3389/fnhum.2023.1218559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Inhibitory control develops gradually from infancy to childhood and improves further during adolescence as the brain matures. Related previous studies showed the indispensable role of task-related alpha power during inhibition both in children and young adults. Nonetheless, none of the studies have been able to investigate the direct differences in brain responses between children and young adults when confronted with a stimulus that should be inhibited. Because, unlike event-related designs, task-related designs involve continuous tasks over a certain period, which precludes the possibility of making such a comparison. Accordingly, by employing event-related design, the present study first time in the literature, aimed to analyze the event-related alpha phase locking and event-related alpha synchronization/ desynchronization to differentiate the inhibitory processes in children compared to young adults. Methods Twenty children between the ages of 6 to 7 years and 20 healthy young adult subjects between the ages of 18 to 30 years were included in the study. Day-night Stroop task was applied to all subjects during 18-channel EEG recordings. Event-related time-frequency analysis was performed with the complex Morlet Wavelet Transform for the alpha frequency band (8-13 Hz). Event related spectral perturbation (ERSP) in three different time windows (0-200 ms, 200-400 ms, 400-600 ms) and Event-related phase locking in the early time window (0-400 ms) was calculated. Results The children had increased alpha power in early and late time windows but decreased alpha phase locking in the early time windows compared to young adults. There were also topological differences between groups; while young adults had increased alpha phase-locking in frontal and parietal electrode sites, children had increased occipital alpha power and phase locking. Discussion The shift in event-related alpha power observed from posterior to anterior regions with age may suggest a progressive maturation of the frontal areas involved in inhibitory processes from childhood to adulthood. The results of the present study showed that children and young adults had different EEG oscillatory dynamics during inhibitory processes at alpha frequency range.
Collapse
Affiliation(s)
- Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
| | - Simay Alptekin
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Ebru Yıldırım
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Türkiye
| | - Tuba Aktürk
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Türkiye
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Türkiye
| | - Hakan Uzunlar
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Pervin Çalışoğlu
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Figen Eroğlu Ada
- Department of Psychology, Humanities and Social Sciences, Istanbul Medipol University, Istanbul, Türkiye
| | - Enver Atay
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Ömer Ceran
- Department of Pediatrics, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
6
|
Gómez CM, Muñoz V, Rodríguez-Martínez EI, Arjona A, Barriga-Paulino CI, Pelegrina S. Child and adolescent development of the brain oscillatory activity during a working memory task. Brain Cogn 2023; 167:105969. [PMID: 36958141 DOI: 10.1016/j.bandc.2023.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The developmental trajectories of brain oscillations during the encoding and maintenance phases of a Working Memory (WM) task were calculated. The Delayed-Match-to-Sample Test (DMTS) was applied to 239 subjects of 6-29 years, while EEG was recorded. The Event-Related Spectral Perturbation (ERSP) was obtained in the range between 1 and 25 Hz during the encoding and maintenance phases. Behavioral parameters of reaction times (RTs) and response accuracy were simultaneously recorded. The results indicate a myriad of transient and sustained bursts of oscillatory activity from low frequencies (1 Hz) to the beta range (up to 19 Hz). Beta and Low-frequency ERSP increases were prominent in the encoding phase in all age groups, while low-frequency ERSP indexed the maintenance phase only in children and adolescents, but not in late adolescents and young adults, suggesting an age-dependent neural mechanism of stimulus trace maintenance. While the latter group showed Beta and Alpha indices of anticipatory attention for the retrieval phase. Mediation analysis showed an important role of early Delta-Theta and late Alpha oscillations for mediation between age and behavioral responses performance. In conclusion, the results show a complex pattern of oscillatory bursts during the encoding and maintenance phases with a consistent pattern of developmental changes.
Collapse
Affiliation(s)
- Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | | | | |
Collapse
|
7
|
Ahveninen J, Uluç I, Raij T, Nummenmaa A, Mamashli F. Spectrotemporal content of human auditory working memory represented in functional connectivity patterns. Commun Biol 2023; 6:294. [PMID: 36941477 PMCID: PMC10027691 DOI: 10.1038/s42003-023-04675-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Recent research suggests that working memory (WM), the mental sketchpad underlying thinking and communication, is maintained by multiple regions throughout the brain. Whether parts of a stable WM representation could be distributed across these brain regions is, however, an open question. We addressed this question by examining the content-specificity of connectivity-pattern matrices between subparts of cortical regions-of-interest (ROI). These connectivity patterns were calculated from functional MRI obtained during a ripple-sound auditory WM task. Statistical significance was assessed by comparing the decoding results to a null distribution derived from a permutation test considering all comparable two- to four-ROI connectivity patterns. Maintained WM items could be decoded from connectivity patterns across ROIs in frontal, parietal, and superior temporal cortices. All functional connectivity patterns that were specific to maintained sound content extended from early auditory to frontoparietal cortices. Our results demonstrate that WM maintenance is supported by content-specific patterns of functional connectivity across different levels of cortical hierarchy.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Işıl Uluç
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Sato J, Safar K, Vogan VM, Taylor MJ. Functional connectivity changes during working memory in autism spectrum disorder: A two-year longitudinal MEG study. Neuroimage Clin 2023; 37:103364. [PMID: 36878149 PMCID: PMC9999263 DOI: 10.1016/j.nicl.2023.103364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Working memory impairments have been reported in adults with autism spectrum disorder (ASD) and associated with functional outcomes and social difficulties. However, little is known about the developmental trajectory of working memory in youth with ASD. The current magnetoencephalography (MEG) study is the first to examine the longitudinal development over two years of working memory networks in youth with ASD. We analysed MEG data from 32 children and adolescents with and without ASD (64 datasets; 7-14 years), all tested twice at a two-year interval, during a visual n-back task, with two loads (1- and 2-back). We performed a whole-brain functional connectivity analysis to examine the networks during the successful recognition of visual stimuli. We demonstrate that youth with ASD show decreased connectivity in the theta frequency (4-7 Hz) in the higher memory load (2-back) condition compared to typically developing (TD) controls. This hypo-connected theta network was anchored in primary visual areas with connections to frontal, parietal and limbic regions. These network differences were found despite similar task performance between ASD and TD groups. Within the TD group, we found an increase in alpha (8-14 Hz) connectivity at Time 2 compared to Time 1 in both the 1- and 2-back conditions. These findings demonstrate the continued development of working memory mechanisms over middle childhood, which were not apparent in youth with ASD. Together, our findings support a network-based approach to understanding atypical neural functioning in ASD and the developmental trajectories of working memory processes over middle childhood.
Collapse
Affiliation(s)
- Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | - Kristina Safar
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Vanessa M Vogan
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Richard S, Gabriel S, John S, Emmanuel M, John-Mary V. The focused quantitative EEG bio-marker in studying childhood atrophic encephalopathy. Sci Rep 2022; 12:13437. [PMID: 35927445 PMCID: PMC9352776 DOI: 10.1038/s41598-022-17062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Although it is a normal involution process in advanced age, brain atrophy—also termed atrophic encephalopathy—can also occur prematurely in childhood as a consequential effect of brain tissues injury through trauma or central nervous system infection, though in both normal and premature occurrences this condition always presents with loss of volume relative to the skull. A common tool for the functional study of brain activities is an electroencephalogram, but analyses of this have reportedly identified mismatches between qualitative and quantitative forms, particularly in the use of Delta-alpha ratio (DAR) indices, meaning that the values may be case dependent. The current study thus examines the value of Focused Occipital Beta-Alpha Ratio (FOBAR) as a modified biomarker for evaluating brain functional changes resulting from brain atrophy. This cross-sectional design study involves 260 patients under 18 years of age. Specifically, 207 patients with brain atrophy are compared with 53 control subjects with CT scan-proven normal brain volume. All the children underwent digital electroencephalography with brain mapping. Results show that alpha posterior dominant rhythm was present in 88 atrophic children and 44 controls. Beta as posterior dominant rhythm was present in an overwhelming 91.5% of atrophic subjects, with 0.009 p-values. The focused occipital Beta-alpha ratio correlated significantly with brain volume loss presented in diagonal brain fraction. The FOBAR and DAR values of the QEEG showed no significant correlation. This work concludes that QEEG cerebral dysfunctional studies may be etiologically and case dependent from the nature of the brain injury. Also, the focused Beta-alpha ratio of the QEEG is a prospective and potential biomarker of consideration in studying childhood atrophic encephalopathy.
Collapse
Affiliation(s)
- Sungura Richard
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania.
| | - Shirima Gabriel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Spitsbergen John
- Department of Neuroscience, Western Michigan University, Kalamazoo, MI, USA
| | - Mpolya Emmanuel
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Vianney John-Mary
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
10
|
Cox E, Tseng J, Bells S, Dockstader C, Laughlin S, Bouffet E, de Medeiros C, Mabbott DJ. Neural and cognitive function in a pediatric brain injury model: The impact of task complexity. Cortex 2022; 155:307-321. [DOI: 10.1016/j.cortex.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
11
|
Killanin AD, Embury CM, Picci G, Heinrichs-Graham E, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Trauma moderates the development of the oscillatory dynamics serving working memory in a sex-specific manner. Cereb Cortex 2022; 32:5206-5215. [PMID: 35106552 PMCID: PMC9667155 DOI: 10.1093/cercor/bhac008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Working memory, the ability to hold items in memory stores for further manipulation, is a higher order cognitive process that supports many aspects of daily life. Childhood trauma has been associated with altered cognitive development including particular deficits in verbal working memory (VWM), but the neural underpinnings remain poorly understood. Magnetoencephalography (MEG) studies of VWM have reliably shown decreased alpha activity in left-lateralized language regions during encoding, and increased alpha activity in parieto-occipital cortices during the maintenance phase. In this study, we examined whether childhood trauma affects behavioral performance and the oscillatory dynamics serving VWM using MEG in a cohort of 9- to 15-year-old youth. All participants completed a modified version of the UCLA Trauma History Profile and then performed a VWM task during MEG. Our findings indicated a sex-by-age-by-trauma three-way interaction, whereby younger females experiencing higher levels of trauma had the lowest d' accuracy scores and the strongest positive correlations with age (i.e. older performed better). Likewise, females with higher levels of childhood trauma exhibited altered age-related alpha changes during the maintenance phase within the right temporal and parietal cortices. These findings suggest that trauma exposure may alter the developmental trajectory of neural oscillations serving VWM processing in a sex-specific way.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA,Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | | | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA
| | | | - Tony W Wilson
- Corresponding author: Tony W. Wilson, Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| |
Collapse
|
12
|
Fodor Z, Horváth A, Hidasi Z, Gouw AA, Stam CJ, Csukly G. EEG Alpha and Beta Band Functional Connectivity and Network Structure Mark Hub Overload in Mild Cognitive Impairment During Memory Maintenance. Front Aging Neurosci 2021; 13:680200. [PMID: 34690735 PMCID: PMC8529331 DOI: 10.3389/fnagi.2021.680200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background: While decreased alpha and beta-band functional connectivity (FC) and changes in network topology have been reported in Alzheimer's disease, it is not yet entirely known whether these differences can mark cognitive decline in the early stages of the disease. Our study aimed to analyze electroencephalography (EEG) FC and network differences in the alpha and beta frequency band during visuospatial memory maintenance between Mild Cognitive Impairment (MCI) patients and healthy elderly with subjective memory complaints. Methods: Functional connectivity and network structure of 17 MCI patients and 20 control participants were studied with 128-channel EEG during a visuospatial memory task with varying memory load. FC between EEG channels was measured by amplitude envelope correlation with leakage correction (AEC-c), while network analysis was performed by applying the Minimum Spanning Tree (MST) approach, which reconstructs the critical backbone of the original network. Results: Memory load (increasing number of to-be-learned items) enhanced the mean AEC-c in the control group in both frequency bands. In contrast to that, after an initial increase, the MCI group showed significantly (p < 0.05) diminished FC in the alpha band in the highest memory load condition, while in the beta band this modulation was absent. Moreover, mean alpha and beta AEC-c correlated significantly with the size of medial temporal lobe structures in the entire sample. The network analysis revealed increased maximum degree, betweenness centrality, and degree divergence, and decreased diameter and eccentricity in the MCI group compared to the control group in both frequency bands independently of the memory load. This suggests a rerouted network in the MCI group with a more centralized topology and a more unequal traffic load distribution. Conclusion: Alpha- and beta-band FC measured by AEC-c correlates with cognitive load-related modulation, with subtle medial temporal lobe atrophy, and with the disruption of hippocampal fiber integrity in the earliest stages of cognitive decline. The more integrated network topology of the MCI group is in line with the "hub overload and failure" framework and might be part of a compensatory mechanism or a consequence of neural disinhibition.
Collapse
Affiliation(s)
- Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - András Horváth
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Alida A. Gouw
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Mamashli F, Khan S, Hämäläinen M, Jas M, Raij T, Stufflebeam SM, Nummenmaa A, Ahveninen J. Synchronization patterns reveal neuronal coding of working memory content. Cell Rep 2021; 36:109566. [PMID: 34433024 PMCID: PMC8428113 DOI: 10.1016/j.celrep.2021.109566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal oscillations are suggested to play an important role in auditory working memory (WM), but their contribution to content-specific representations has remained unclear. Here, we measure magnetoencephalography during a retro-cueing task with parametric ripple-sound stimuli, which are spectrotemporally similar to speech but resist non-auditory memory strategies. Using machine learning analyses, with rigorous between-subject cross-validation and non-parametric permutation testing, we show that memorized sound content is strongly represented in phase-synchronization patterns between subregions of auditory and frontoparietal cortices. These phase-synchronization patterns predict the memorized sound content steadily across the studied maintenance period. In addition to connectivity-based representations, there are indices of more local, “activity silent” representations in auditory cortices, where the decoding accuracy of WM content significantly increases after task-irrelevant “impulse stimuli.” Our results demonstrate that synchronization patterns across auditory sensory and association areas orchestrate neuronal coding of auditory WM content. This connectivity-based coding scheme could also extend beyond the auditory domain. Mamashli et al. use machine learning analyses of human magnetoencephalography (MEG) recordings to study “working memory,” maintenance of information in mind over brief periods of time. Their results show that the human brain maintains working memory content in transient functional connectivity patterns across sensory and association areas.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Departments of Physical Medicine and Rehabilitation and Neurobiology, Northwestern University, 710 North Lake Shore Drive, Chicago, IL 60611, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Plaska CR, Ng K, Ellmore TM. Does rehearsal matter? Left anterior temporal alpha and theta band changes correlate with the beneficial effects of rehearsal on working memory. Neuropsychologia 2021; 155:107825. [PMID: 33713670 PMCID: PMC8102380 DOI: 10.1016/j.neuropsychologia.2021.107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 03/06/2021] [Indexed: 11/30/2022]
Abstract
Rehearsal during working memory (WM) maintenance is assumed to facilitate retrieval. Less is known about how rehearsal modulates WM delay activity. In the present study, 44 participants completed a Sternberg Task with either intact novel scenes or phase-scrambled scenes, which had similar color and spatial frequency but lacked semantic content. During the rehearsal condition participants generated a descriptive label during encoding and covertly rehearsed during the delay period. During the suppression condition participants did not generate a label during encoding and suppressed (repeated "the") during the delay period. This was easy in the former (novel scenes) but more difficult in the later condition (phase-scrambled scenes) where scenes lacked semantic content. Behavioral performance and EEG delay activity was analyzed as a function of maintenance strategy. Performance during WM revealed a benefit of rehearsal for phase-scrambled but not intact scenes. Examination of the absolute amplitude revealed three underlying sources of activity for rehearsal, including the left anterior temporal (ATL) and left and midline parietal regions. Increases in alpha and theta activity in ATL were correlated with improvement in performance on WM with rehearsal only when labeling was not automatic (e.g., phase-scrambled scenes), which may reflect differences in labeling and rehearsal (i.e., semantic associations vs. shallow labels). We conclude that rehearsal only benefits memory for visual stimuli that lack semantic information, and that this is correlated with changes in alpha and theta rhythms.
Collapse
Affiliation(s)
- Chelsea Reichert Plaska
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, USA; Department of Psychology, The City College of New York, USA
| | - Kenneth Ng
- Department of Psychology, The City College of New York, USA
| | - Timothy M Ellmore
- The Behavioral and Cognitive Neuroscience Program, CUNY Graduate Center, USA; Department of Psychology, The City College of New York, USA.
| |
Collapse
|
15
|
M PH, M HG, R M HA, M A G, C AG, I K SC. Multiparity decreases the effect of distractor stimuli on a working memory task: An EEG study. Soc Neurosci 2021; 16:277-288. [PMID: 33686923 DOI: 10.1080/17470919.2021.1899048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Parity modulates the way in which women respond to infant's affective cues. It is known that the cognitive processing of mothers is affected by a baby crying; however, little information is available regarding the effect of reproductive and caregiving experience on efficiency in managing babies' emotional stimuli while other tasks are being attended. This study characterized the affective score, cognitive performance, and electroencephalographic correlation (rEEG) between prefrontal and parietal cortices in first- (FM) and second-time mothers (SM) while solving a working memory task (vsWM) and simultaneously listening to either an emotional or neutral distractor stimulus. During the vsWM-baby crying condition, both groups reported higher arousal. However, SM reported a lower valence and FM lower dominance. In the vsWM-baby crying condition did SM need less time to solve the cognitive task and present a decreased rEEG between prefrontal areas, and between left prefrontal and parietal areas, though an increased rEEG between parietal areas was observed while listening to both distractor stimuli during performance of the vsWM task. These degrees of cortical synchronization could constitute a cerebral mechanism required to achieve better information maintenance and enhance suppression of distractor effects, which allow the SM women to solve the vsWM task more efficiently.
Collapse
Affiliation(s)
- Pérez-Hernández M
- Departamento de Fundamentos del Conocimiento, Centro Universitario Del Norte, Universidad De Guadalajara, Colotlán, Jalisco, México
| | - Hernández-González M
- Departamento de Ciencias Ambientales, Instituto De Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad De Guadalajara, Guadalajara, Jalisco, México
| | - Hidalgo-Aguirre R M
- Departamento de Ciencias de la Salud, Centro Universitario De Los Valles, Universidad De Guadalajara, Ameca, Jalisco, México
| | - Guevara M A
- Departamento de Ciencias Ambientales, Instituto De Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad De Guadalajara, Guadalajara, Jalisco, México
| | - Amezcua-Gutiérrez C
- Departamento de Ciencias Ambientales, Instituto De Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad De Guadalajara, Guadalajara, Jalisco, México
| | - Sandoval-Carrillo I K
- Departamento de Ciencias Ambientales, Instituto De Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad De Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
16
|
Syrjälä J, Basti A, Guidotti R, Marzetti L, Pizzella V. Decoding working memory task condition using magnetoencephalography source level long-range phase coupling patterns. J Neural Eng 2021; 18:016027. [PMID: 33624612 DOI: 10.1088/1741-2552/abcefe] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The objective of the study is to identify phase coupling patterns that are shared across subjects via a machine learning approach that utilises source space magnetoencephalography (MEG) phase coupling data from a working memory (WM) task. Indeed, phase coupling of neural oscillations is putatively a key factor for communication between distant brain areas and is therefore crucial in performing cognitive tasks, including WM. Previous studies investigating phase coupling during cognitive tasks have often focused on a few a priori selected brain areas or a specific frequency band, and the need for data-driven approaches has been recognised. Machine learning techniques have emerged as valuable tools for the analysis of neuroimaging data since they catch fine-grained differences in the multivariate signal distribution. Here, we expect that these techniques applied to MEG phase couplings can reveal WM-related processes that are shared across individuals. APPROACH We analysed WM data collected as part of the Human Connectome Project. The MEG data were collected while subjects (n = 83) performed N-back WM tasks in two different conditions, namely 2-back (WM condition) and 0-back (control condition). We estimated phase coupling patterns (multivariate phase slope index) for both conditions and for theta, alpha, beta, and gamma bands. The obtained phase coupling data were then used to train a linear support vector machine in order to classify which task condition the subject was performing with an across-subject cross-validation approach. The classification was performed separately based on the data from individual frequency bands and with all bands combined (multiband). Finally, we evaluated the relative importance of the different features (phase couplings) for classification by the means of feature selection probability. MAIN RESULTS The WM condition and control condition were successfully classified based on the phase coupling patterns in the theta (62% accuracy) and alpha bands (60% accuracy) separately. Importantly, the multiband classification showed that phase coupling patterns not only in the theta and alpha but also in the gamma bands are related to WM processing, as testified by improvement in classification performance (71%). SIGNIFICANCE Our study successfully decoded WM tasks using MEG source space functional connectivity. Our approach, combining across-subject classification and a multidimensional metric recently developed by our group, is able to detect patterns of connectivity that are shared across individuals. In other words, the results are generalisable to new individuals and allow meaningful interpretation of task-relevant phase coupling patterns.
Collapse
Affiliation(s)
- Jaakko Syrjälä
- Department of Neuroscience, Imaging and Clinical Sciences, 'Gabriele d'Annunzio' University of Chieti-Pescara, Chieti 66013, Italy
| | | | | | | | | |
Collapse
|
17
|
Mossad SI, Vandewouw MM, Smith ML, Taylor MJ. The preterm social brain: altered functional networks for Theory of Mind in very preterm children. Brain Commun 2021; 3:fcaa237. [PMID: 33615217 PMCID: PMC7882208 DOI: 10.1093/braincomms/fcaa237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Neurodevelopmental difficulties emerge in very preterm born children (<32-week gestation) in infancy and continue to early adulthood but little is known about their social-cognitive development. This study utilized the complementary methodological advantages of both functional MRI and magnetoencephalography to examine the neural underpinnings of Theory of Mind in very preterm birth. Theory of Mind, one of the core social-cognitive skills, is the ability to attribute mental states to others, and is crucial for predicting others’ behaviours in social interactions. Eighty-three children (40 very preterm born, 24 boys, age = 8.7 ± 0.5 years, and 43 full-term born, 22 boys, age = 8.6 ± 0.5 years) completed the study. In functional MRI, both groups recruited classic Theory of Mind areas, without significant group differences. However, reduced Theory of Mind connectivity in the very preterm born group was found in magnetoencephalography in distinct theta, alpha and beta-band networks anchored in a set of brain regions that comprise the social brain. These networks included regions such as the angular gyrus, the medial pre-frontal cortex, the superior temporal gyrus and the temporal poles. Very preterm born children showed increased connectivity compared to controls in a network anchored in the occipital gyri rather than classical social-processing regions. Very preterm born children made significantly more attribution errors and mis-construed the social scenarios. Findings offer novel insight into the neural networks, supporting social cognition in very preterm born children and highlight the importance of multimodal neuroimaging to interrogate the social brain in clinical populations.
Collapse
Affiliation(s)
- Sarah I Mossad
- Department of Psychology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Mary Lou Smith
- Department of Psychology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON M5G 0A4, Canada.,Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| |
Collapse
|
18
|
Lin CC, Hsieh SS, Chang YK, Huang CJ, Hillman CH, Hung TM. Up-regulation of proactive control is associated with beneficial effects of a childhood gymnastics program on response preparation and working memory. Brain Cogn 2021; 149:105695. [PMID: 33515859 DOI: 10.1016/j.bandc.2021.105695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 01/06/2023]
Abstract
The current study focused on the effects of an 8-week motor skill-based physical activity (i.e., gymnastics) program on the contingent negative variation derived from event-related brain potentials (CNV-ERP) during a working memory task in children. Children aged 7-10 years old were assigned to a gymnastics group (n = 26) or a wait-list control group (n = 24). The gymnastics group engaged in a gymnastics program whereas children in the control group were asked to maintain their typical routine during the intervention period. Working memory performance was measured by a delayed-matching working memory task, accompanied by CNV-ERP collection. The results revealed significant improvement of response accuracy from pre-test to post-test in the gymnastic group regardless of memory demands. Moreover, significant increase from pre-test to post-test in the initial CNV was observed in the gymnastic group regardless of memory demands. Bivariate correlations further indicated that, in the gymnastic group, increases in response accuracy from pre-test to post-test were correlated with increases in initial CNV from pre-test to post-test in task conditions with lower and higher memory loads. Overall, the current findings suggest that up-regulation of proactive control may characterize the beneficial effects of childhood motor skill-based physical activity on working memory.
Collapse
Affiliation(s)
- Chih-Chien Lin
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Shih Hsieh
- Department of Psychology, Northeastern University, Boston, United States
| | - Yu-Kai Chang
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Ju Huang
- Graduate Institute of Sports Pedagogy, University of Taipei, Taipei, Taiwan
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, United States; Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, United States
| | - Tsung-Min Hung
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan; Institute in Research Excellence and Learning Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
19
|
Audrain SP, Urbain CM, Yuk V, Leung RC, Wong SM, Taylor MJ. Frequency-specific neural synchrony in autism during memory encoding, maintenance and recognition. Brain Commun 2020; 2:fcaa094. [PMID: 32954339 PMCID: PMC7472901 DOI: 10.1093/braincomms/fcaa094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Working memory impairment is associated with symptom severity and poor functional outcome in autistic individuals, and yet the neurobiology underlying such deficits is poorly understood. Neural oscillations are an area of investigation that can shed light on this issue. Theta and alpha oscillations have been found consistently to support working memory in typically developing individuals and have also been shown to be functionally altered in people with autism. While there is evidence, largely from functional magnetic resonance imaging studies, that neural processing underlying working memory is altered in autism, there remains a dearth of information concerning how sub-processes supporting working memory (namely encoding, maintenance and recognition) are impacted. In this study, we used magnetoencephalography to investigate inter-regional theta and alpha brain synchronization elicited during the widely used one-back task across encoding, maintenance and recognition in 24 adults with autism and 30 controls. While both groups performed comparably on the working-memory task, we found process- and frequency-specific differences in networks recruited between groups. In the theta frequency band, both groups used similar networks during encoding and recognition, but different networks specifically during maintenance. In comparison, the two groups recruited distinct networks across encoding, maintenance and recognition in alpha that showed little overlap. These differences may reflect a breakdown of coherent theta and alpha synchronization that supports mnemonic functioning, or in the case of alpha, impaired inhibition of task-irrelevant neural processing. Thus, these data provide evidence for specific theta and widespread alpha synchrony alterations in autism, and underscore that a detailed examination of the sub-processes that comprise working memory is warranted for a complete understanding of cognitive impairment in this population.
Collapse
Affiliation(s)
- Samantha P Audrain
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto M5T 0S8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada
| | - Charline M Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels B-1050, Belgium.,2LCFC - Laboratoire de Cartographie Fonctionnelle du Cerveau at UNI, Erasme Hospital, ULB, Brussels B-1070, Belgium
| | - Veronica Yuk
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Rachel C Leung
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada
| | - Simeon M Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Neurosciences & Mental Health Programme, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, Canada
| |
Collapse
|
20
|
Safron A. An Integrated World Modeling Theory (IWMT) of Consciousness: Combining Integrated Information and Global Neuronal Workspace Theories With the Free Energy Principle and Active Inference Framework; Toward Solving the Hard Problem and Characterizing Agentic Causation. Front Artif Intell 2020; 3:30. [PMID: 33733149 PMCID: PMC7861340 DOI: 10.3389/frai.2020.00030] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.
Collapse
Affiliation(s)
- Adam Safron
- Indiana University, Bloomington, IN, United States
| |
Collapse
|
21
|
Cox E, Bells S, Timmons BW, Laughlin S, Bouffet E, de Medeiros C, Beera K, Harasym D, Mabbott DJ. A controlled clinical crossover trial of exercise training to improve cognition and neural communication in pediatric brain tumor survivors. Clin Neurophysiol 2020; 131:1533-1547. [PMID: 32403066 DOI: 10.1016/j.clinph.2020.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/10/2019] [Accepted: 03/21/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the efficacy of aerobic exercise training to improve controlled attention, information processing speed and neural communication during increasing task load and rest in pediatric brain tumor survivors (PBTS) treated with cranial radiation. METHODS Participants completed visual-motor Go and Go/No-Go tasks during magnetoencephalography recording prior to and following the completion of 12-weeks of exercise training. Exercise-related changes in response accuracy and visual-motor latency were evaluated with Linear Mixed models. The Phase Lag Index (PLI) was used to estimate functional connectivity during task performance and rest. Changes in PLI values after exercise training were assessed using Partial Least Squares analysis. RESULTS Exercise training predicted sustained (12-weeks) improvement in response accuracy (p<0.05) during No-Go trials. Altered functional connectivity was detected in theta (4-7Hz) alpha (8-12Hz) and high gamma (60-100Hz) frequency bands (p<0.001) during Go and Go/No-Go trials. Significant changes in response latency and resting state connectivity were not detected. CONCLUSION These findings support the efficacy of aerobic exercise to improve controlled attention and enhance functional mechanisms under increasing task load in participants. SIGNIFICANCE It may be possible to harness the beneficial effects of exercise as therapy to promote cognitive recovery and enhance brain function in PBTS.
Collapse
Affiliation(s)
- Elizabeth Cox
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Sonya Bells
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Brian W Timmons
- Department of Pediatrics, McMaster University, 1200 Main Street W., Hamilton, ON L8N 3Z5, Canada.
| | - Suzanne Laughlin
- Diagnostic Imaging, SickKids, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Eric Bouffet
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Cynthia de Medeiros
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Kiran Beera
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Diana Harasym
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Donald J Mabbott
- Neurosciences & Mental Health, SickKids, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
22
|
Yurgil KA, Velasquez MA, Winston JL, Reichman NB, Colombo PJ. Music Training, Working Memory, and Neural Oscillations: A Review. Front Psychol 2020; 11:266. [PMID: 32153474 PMCID: PMC7047970 DOI: 10.3389/fpsyg.2020.00266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
This review focuses on reports that link music training to working memory and neural oscillations. Music training is increasingly associated with improvement in working memory, which is strongly related to both localized and distributed patterns of neural oscillations. Importantly, there is a small but growing number of reports of relationships between music training, working memory, and neural oscillations in adults. Taken together, these studies make important contributions to our understanding of the neural mechanisms that support effects of music training on behavioral measures of executive functions. In addition, they reveal gaps in our knowledge that hold promise for further investigation. The current review is divided into the main sections that follow: (1) discussion of behavioral measures of working memory, and effects of music training on working memory in adults; (2) relationships between music training and neural oscillations during temporal stages of working memory; (3) relationships between music training and working memory in children; (4) relationships between music training and working memory in older adults; and (5) effects of entrainment of neural oscillations on cognitive processing. We conclude that the study of neural oscillations is proving useful in elucidating the neural mechanisms of relationships between music training and the temporal stages of working memory. Moreover, a lifespan approach to these studies will likely reveal strategies to improve and maintain executive function during development and aging.
Collapse
Affiliation(s)
- Kate A. Yurgil
- Department of Psychological Sciences, Loyola University, New Orleans, LA, United States
| | | | - Jenna L. Winston
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Noah B. Reichman
- Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paul J. Colombo
- Department of Psychology, Tulane University, New Orleans, LA, United States
- Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
23
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Sato J, Mossad SI, Wong SM, Hunt BAE, Dunkley BT, Urbain C, Taylor MJ. Spectral slowing is associated with working memory performance in children born very preterm. Sci Rep 2019; 9:15757. [PMID: 31673006 PMCID: PMC6823447 DOI: 10.1038/s41598-019-52219-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/13/2019] [Indexed: 11/20/2022] Open
Abstract
Children born very preterm (VPT) often demonstrate selective difficulties in working memory (WM), which may underlie academic difficulties observed in this population. Despite this, few studies have investigated the functional networks underlying WM in young children born VPT, a period when cognitive deficits become apparent. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old VPT (n = 15) and full-term (FT; n = 20) children. Although task performance was similar, VPT children engaged different oscillatory mechanisms during WM maintenance. Within the FT group, we observed higher mean whole-brain connectivity in the alpha-band during the retention (i.e. maintenance) interval associated with correct compared to incorrect responses. VPT children showed reduced whole-brain alpha synchrony, and a different network organization with fewer connections. In the theta-band, VPT children demonstrated a slight increase in whole-brain connectivity during WM maintenance, and engaged similar network hubs as FT children in the alpha-band, including the left dorsolateral prefrontal cortex and superior temporal gyrus. These findings suggest that VPT children rely on the theta-band to support similar task performance. Altered oscillatory mechanisms may reflect a less mature pattern of functional recruitment underlying WM in VPT children, which may affect the processing in complex ecological situations.
Collapse
Affiliation(s)
- Julie Sato
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada. .,Department of Psychology, University of Toronto, Toronto, Canada. .,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
| | - Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Charline Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Neuroscience & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Marzetti L, Basti A, Chella F, D'Andrea A, Syrjälä J, Pizzella V. Brain Functional Connectivity Through Phase Coupling of Neuronal Oscillations: A Perspective From Magnetoencephalography. Front Neurosci 2019; 13:964. [PMID: 31572116 PMCID: PMC6751382 DOI: 10.3389/fnins.2019.00964] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/01/2022] Open
Abstract
Magnetoencephalography has gained an increasing importance in systems neuroscience thanks to the possibility it offers of unraveling brain networks at time-scales relevant to behavior, i.e., frequencies in the 1-100 Hz range, with sufficient spatial resolution. In the first part of this review, we describe, in a unified mathematical framework, a large set of metrics used to estimate MEG functional connectivity at the same or at different frequencies. The different metrics are presented according to their characteristics: same-frequency or cross-frequency, univariate or multivariate, directed or undirected. We focus on phase coupling metrics given that phase coupling of neuronal oscillations is a putative mechanism for inter-areal communication, and that MEG is an ideal tool to non-invasively detect such coupling. In the second part of this review, we present examples of the use of specific phase methods on real MEG data in the context of resting state, visuospatial attention and working memory. Overall, the results of the studies provide evidence for frequency specific and/or cross-frequency brain circuits which partially overlap with brain networks as identified by hemodynamic-based imaging techniques, such as functional Magnetic Resonance (fMRI). Additionally, the relation of these functional brain circuits to anatomy and to behavior highlights the usefulness of MEG phase coupling in systems neuroscience studies. In conclusion, we believe that the field of MEG functional connectivity has made substantial steps forward in the recent years and is now ready for bringing the study of brain networks to a more mechanistic understanding.
Collapse
Affiliation(s)
- Laura Marzetti
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Alessio Basti
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Federico Chella
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Antea D'Andrea
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Jaakko Syrjälä
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| | - Vittorio Pizzella
- Imaging and Clinical Sciences, Department of Neuroscience, University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
26
|
Hunt BAE, Wong SM, Vandewouw MM, Brookes MJ, Dunkley BT, Taylor MJ. Spatial and spectral trajectories in typical neurodevelopment from childhood to middle age. Netw Neurosci 2019; 3:497-520. [PMID: 30984904 PMCID: PMC6444935 DOI: 10.1162/netn_a_00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/24/2018] [Indexed: 11/21/2022] Open
Abstract
Detailed characterization of typical human neurodevelopment is key if we are to understand the nature of mental and neurological pathology. While research on the cellular processes of neurodevelopment has made great advances, in vivo human imaging is crucial to understand our uniquely human capabilities, as well as the pathologies that affect them. Using magnetoencephalography data in the largest normative sample currently available (324 participants aged 6-45 years), we assess the developmental trajectory of resting-state oscillatory power and functional connectivity from childhood to middle age. The maturational course of power, indicative of local processing, was found to both increase and decrease in a spectrally dependent fashion. Using the strength of phase-synchrony between parcellated regions, we found significant linear and nonlinear (quadratic and logarithmic) trajectories to be characterized in a spatially heterogeneous frequency-specific manner, such as a superior frontal region with linear and nonlinear trajectories in theta and gamma band respectively. Assessment of global efficiency revealed similar significant nonlinear trajectories across all frequency bands. Our results link with the development of human cognitive abilities; they also highlight the complexity of neurodevelopment and provide quantitative parameters for replication and a robust footing from which clinical research may map pathological deviations from these typical trajectories.
Collapse
Affiliation(s)
- Benjamin A. E. Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M. Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Marlee M. Vandewouw
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Matthew J. Brookes
- The Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Benjamin T. Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Margot J. Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|