1
|
Şenol AA, Karabulut Gençer B, Tarçın B, Kahramanoğlu E, Yılmaz Atalı P. Microleakage and Marginal Integrity of Ormocer/Methacrylate-Based Bulk-Fill Resin Restorations in MOD Cavities: SEM and Stereomicroscopic Evaluation. Polymers (Basel) 2023; 15:polym15071716. [PMID: 37050330 PMCID: PMC10096632 DOI: 10.3390/polym15071716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This in vitro study aimed to compare the microleakage and marginal integrity of methacrylate/ormocer-based bulk-fill composite (BFC) restorations used in cervical marginal relocation with two different layering thicknesses in mesio-occlusal-distal (MOD) cavities exposed to thermo-mechanical loading. Standard MOD cavities were prepared in 60 mandibular molars and assigned into three groups: x-tra fil/AF + x-tra base/XB, Tetric N-Ceram Bulk Fill/TNB + Tetric N-Flow Bulk Fill/TFB, and Admira Fusion x-tra/AFX + Admira Fusion x-base/AFB. Each group was further divided into two subgroups (2 mm and 4 mm) based on the thickness of flowable BFCs (n = 10). The specimens were subjected to thermo-mechanical loading (240,000 cycles) and immersed in 0.2% methylene blue. Following mesiodistal sectioning, the specimens were examined under stereomicroscope (×25) and scored (0-3) for microleakage. Marginal integrity was examined using a scanning electron microscope (SEM). Descriptive statistical methods and the chi-square test were used to evaluate the data (p < 0.05). While there was no statistically significant difference in gingival cement microleakage in the XB and AFB specimens with a 4 mm thickness, microleakage was significantly increased in the TFB specimen (p = 0.604, 0.481, 0.018 respectively). A significantly higher amount of score 0 coronal microleakage was detected in the AFX2 mm + AFB4 mm compared to the TNB2 mm + TFB4 mm (p = 0.039). The SEM examination demonstrated better marginal integrity in groups with 2 mm thick flowable BFCs. Ormocer and methacrylate-based materials can be used in marginal relocation with thin layers.
Collapse
Affiliation(s)
- Aslı A Şenol
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkey
| | - Büşra Karabulut Gençer
- Department of Restorative Dentistry, Faculty of Dentistry, Nişantaşı University, Istanbul 34398, Turkey
| | - Bilge Tarçın
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkey
| | - Erkut Kahramanoğlu
- Department of Prosthodontic Dentistry, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkey
| | - Pınar Yılmaz Atalı
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkey
| |
Collapse
|
2
|
Lehmann A, Nijakowski K, Drożdżyńska A, Przybylak M, Woś P, Surdacka A. Influence of the Polymerization Modes on the Methacrylic Acid Release from Dental Light-Cured Materials-In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248976. [PMID: 36556780 PMCID: PMC9786925 DOI: 10.3390/ma15248976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 05/14/2023]
Abstract
The study focuses on the problem of lowering the pH around a composite filling concerning the polymerization modes and methacrylic acid release, which may affect not only the oral health but also the whole organism. A total of 90 specimens (30 of each: Filtek Bulk Fill, Evetric and Riva LC) were placed in 90 sterile hermetic polyethene containers with saline and incubated at 37 °C. Ten samples of each material were light-cured for 40 s with one of the three curing modes: full power mode (FPM), ramping mode (RM) and pulse mode (PM). The pH and methacrylic acid release evaluation were performed at the following time points: after 2 h and after 3, 7, 21 and 42 days from the specimen preparation. Regardless of light-curing mode, all used materials were characterized by a gradual elevation in methacrylic acid concentration. Only for Filtek Bulk Fill, increased methacrylic acid release was closely associated with lower pH. The choice of the polymerization mode has no significant influence on the methacrylic acid release. However, further research about composite light-curing is necessary to create the procedure algorithm, reducing the local and systemic complications associated with composite fillings.
Collapse
Affiliation(s)
- Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Correspondence:
| | - Agnieszka Drożdżyńska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Martyna Przybylak
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Patryk Woś
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
3
|
Strini BS, Marques JFDL, Pereira R, Sobral-Souza DF, Pecorari VGA, Liporoni PCS, Aguiar FHB. Comparative Evaluation of Bulk-Fill Composite Resins: Knoop Microhardness, Diametral Tensile Strength and Degree of Conversion. Clin Cosmet Investig Dent 2022; 14:225-233. [PMID: 35957701 PMCID: PMC9359371 DOI: 10.2147/ccide.s376195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose Bulk-fill composite resins were developed to reduce time and facilitate the restorative procedure. However, considering their recent introduction on the market and the new formulations, their performance still requires evaluation. This study aimed to evaluate Knoop microhardness (KHN), diametral tensile strength (DTS) and degree of conversion (DC) of three Bulk-Fill composite resins and a conventional one. Materials and Methods Sixty samples (n = 15; 8 mm ø x 4 mm height) were confectioned using a mold. Filtek Bulk-Fill (FBF), Tetric N-Ceram Bulk-Fill (TNC) and SonicFill 2 (SF2) were placed in 4 mm increments, and Filtek Z350 (FZ350) was placed in 2 mm increments. The KHN of top and bottom surfaces were tested using Knoop Hardness tester at 10 gf/10s. The DTS was tested under compressive load at 1.0 mm/min. The DC was measured by Fourier Transform Infrared (FTIR) spectroscopy. Differences in DTS and DC were analyzed by ANOVA and Tukey post hoc test. For KHN, Kruskal-Wallis and Wilcoxon tests were performed at α = 0.05. Results Top surfaces of all composite resins had higher KHN than bottom surfaces. At top and bottom surfaces, FZ350 showed higher KHN than TNC and SF2. The highest DTS was obtained by FBF, followed by FZ350 and SF2. The highest DC was obtained by SF2, the lowest one was obtained by FBF. Conclusion From Bulk-Fill composite resins, FBF presented the best KHN and DTS results. The SF2 showed the best DC. Further studies are required to ensure whether these differences can negatively influence the behavior of in vivo restorations.
Collapse
Affiliation(s)
- Bruna Scarcello Strini
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Renata Pereira
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
4
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. Monomer Release from Dental Resins: The Current Status on Study Setup, Detection and Quantification for In Vitro Testing. Polymers (Basel) 2022; 14:polym14091790. [PMID: 35566958 PMCID: PMC9100225 DOI: 10.3390/polym14091790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Improvements in mechanical properties and a shift of focus towards esthetic dentistry led to the application of dental resins in various areas of dentistry. However, dental resins are not inert in the oral environment and may release monomers and other substances such as Bisphenol-A (BPA) due to incomplete polymerization and intraoral degradation. Current research shows that various monomers present cytotoxic, genotoxic, proinflammatory, and even mutagenic effects. Of these eluting substances, the elution of BPA in the oral environment is of particular interest due to its role as an endocrine disruptor. For this reason, the release of residual monomers and especially BPA from dental resins has been a cause for public concern. The assessment of patient exposure and potential health risks of dental monomers require a reliable experimental and analytical setup. However, the heterogeneous study design applied in current research hinders biocompatibility testing by impeding comparative analysis of different studies and transfer to the clinical situation. Therefore, this review aims to provide information on each step of a robust experimental and analytical in vitro setup that allows the collection of clinically relevant data and future meta-analytical evaluations.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
- Correspondence:
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany;
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| |
Collapse
|
5
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect eluates from bulk fill resin-based-composites. Dent Mater 2022; 38:489-507. [DOI: 10.1016/j.dental.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
6
|
De Angelis F, Sarteur N, Buonvivere M, Vadini M, Šteffl M, D'Arcangelo C. Meta-analytical analysis on components released from resin-based dental materials. Clin Oral Investig 2022; 26:6015-6041. [PMID: 35870020 PMCID: PMC9525379 DOI: 10.1007/s00784-022-04625-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.
Collapse
Affiliation(s)
- Francesco De Angelis
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| | - Nela Sarteur
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Matteo Buonvivere
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mirco Vadini
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Michal Šteffl
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Camillo D'Arcangelo
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
7
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. A comparative in vitro study on monomer release from bisphenol A-free and conventional temporary crown and bridge materials. Eur J Oral Sci 2021; 129:e12826. [PMID: 34879174 DOI: 10.1111/eos.12826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the release of common monomers from two conventional and two bisphenol A (BPA)-free temporary crown and bridge materials. Cylindrical samples of all materials were prepared (N = 90; five samples for each material and cycle of analysis). All samples were immersed in high-performance liquid chromatography (HPLC)-grade water and incubated for 1 h, 12 h, 24 h, and 7 days in an incubation shaker at 37°C and 112 rpm. Extraction was performed in accordance with ISO 10993-12. Eluted monomers were detected and quantified by HPLC coupled with ultraviolet-visible spectroscopy and mass spectrometry (HPLC-UV/Vis-MS). Analysis of BPA was performed by HPLC coupled with ultraviolet-visible spectroscopy (HPLC-UV/Vis) and positive results were verified by HPLC-tandem mass spectrometry (HPLC-MS/MS). Neither bisphenol A-glycidyl methacrylate (Bis-GMA) nor BPA was quantifiable in any of the crown and bridge samples investigated in the present study. However, all samples contained triethylene glycol dimethacrylate (TEGDMA) and/or urethane dimethacrylate (UDMA) after 24 h of incubation. Statistical analysis showed that significantly more UDMA was released from the BPA-free materials than from the conventional materials. All concentrations of UDMA measured were below the effective cytotoxic concentrations previously reported. However, for a few materials, especially BPA-free temporary crown and bridge materials, the levels of UDMA were above previously reported potentially harmful concentrations for local cells. As BPA-free materials were introduced as being more biocompatible than materials containing BPA, substitution of Bis-GMA with UDMA should be further investigated.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, Göttingen, Germany
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect monomer elution from an RBC product family. Dent Mater 2021; 37:1601-1614. [PMID: 34454738 DOI: 10.1016/j.dental.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To develop a model for quantitative comparison of elutable substances by direct elution from resin-bonded composite (RBC) test specimens versus indirect elutability of substances from RBC-restored teeth. Furthermore, it was to be investigated whether the different composites of the Tetric® RBC product family release different types and amounts of substances. METHODS Four different composite materials from the Tetric® product family were studied. For each material subgroup ten human third molar teeth were prepared with standard Class-I occlusal cavities. These 'tooth group' specimens were provided with a three-step adhesive system (incorporating TEGDMA) and the respective composite restoration. Same sized control specimens, of each RBC restorative material, were prepared ('direct RBC' groups). All specimens were placed in individual elution chambers such that the elution media (ethanol/water, 3:1) only came into contact with either the tooth root or ¾ height of the 'direct RBC' materials. They were incubated at 37 °C for up to 7 d. Samples of the eluant were taken after 1, 2, 4 and 7 d and were analysed by high-temperature gas chromatography/mass spectrometry. RESULTS Bisphenol A ethoxylate dimethacrylate (bisEMA), bisphenol A glycidyldimethacrylate (bisGMA), tetraethylene glycol dimethacrylate (TEEGDMA), decan-1,10-diol dimethacrylate (DDDMA) were mostly found in the eluates of the 'direct RBC' groups in statistically significantly greater amounts than in the eluates of the 'tooth groups'. Such quantitative differences were also the case with eluates containing bisphenol A (BPA), dicyclohexyl phthalate (DCHP) and drometrizole, which are common in the environment. In contrast to the behavior found with all the other monomers, up to 3 orders of magnitude more triethylene glycol dimethacrylate (TEGDMA) was found in the 'tooth groups' compared to the 'direct RBC' groups, evidently released by the adhesive system. SIGNIFICANCE The release of most of the substances was clearly delayed in the 'tooth groups' indicative of their chronic, rather than acute, elution to the oral environment. A barrier function of the residual dentin layer and the adhesion layer can be inferred. The different release patterns of substances from the various composites of the RBC product family is a manifestation of their different and indication-specific compositions. Consideration of an overall restorative care (RBC plus adhesive) system, when assessing the total amount of released substances, is emphasized.
Collapse
Affiliation(s)
- Jürgen Durner
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany.
| | - Klaus Schrickel
- Thermo Fisher Scientific, Im Steingrund 4 - 6, 63303 Dreieich, Germany
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Marc Becker
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany
| | - Miriam E Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
9
|
Roussou K, Nikolaidis AK, Ziouti F, Arhakis A, Arapostathis K, Koulaouzidou EA. Cytotoxic Evaluation and Determination of Organic and Inorganic Eluates from Restorative Materials. Molecules 2021; 26:molecules26164912. [PMID: 34443499 PMCID: PMC8399195 DOI: 10.3390/molecules26164912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the last years, diverse commercial resin-based composites have dominated as dental filling materials. The purpose of the present study was to determine organic and inorganic eluates from five restorative materials using GC/MS and ICP–OES and to compare the effect on cell survival of human gingival fibroblasts of a conventional and a bioactive resin. Five commercially available restorative materials were employed for this study: ActivaTM Bioactive Restorative, ENA HRi, Enamel plus HRi Biofunction, Fuji II LC Capsule, and Fuji IX Capsule. Disks that were polymerized with a curing LED light or left to set were immersed in: 1 mL methanol or artificial saliva for GC/MS analysis, 5mL deionized water for ICP–OES, and 5mL of culture medium for cell viability. Cell viability was investigated with a modified staining sulforhodamine B assay.The following organic substances were detected: ACP, BHT, BPA, 1,4-BDDMA, CQ, DBP, DMABEE, HEMA, MCE, MeHQ, MOPA, MS, TMPTMA, and TPSb and the ions silicon, aluminum, calcium, sodium, and barium. Activa Bioactive Restorative was found to be biocompatible. Elution of organic substances depended on material’s composition, the nature of the solvent and the storage time. Ions’ release depended on material’s composition and storage time. The newly introduced bioactive restorative was found to be more biocompatible.
Collapse
Affiliation(s)
- Konstantina Roussou
- Department of Pediatric Dentistry, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.R.); (A.A.); (K.A.)
| | - Alexandros K. Nikolaidis
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.Z.); (E.A.K.)
- Correspondence: ; Tel.: +30-2310-999616
| | - Fani Ziouti
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.Z.); (E.A.K.)
| | - Aristidis Arhakis
- Department of Pediatric Dentistry, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.R.); (A.A.); (K.A.)
| | - Konstantinos Arapostathis
- Department of Pediatric Dentistry, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.R.); (A.A.); (K.A.)
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.Z.); (E.A.K.)
| |
Collapse
|
10
|
De Nys S, Duca RC, Vervliet P, Covaci A, Boonen I, Elskens M, Vanoirbeek J, Godderis L, Van Meerbeek B, Van Landuyt KL. Bisphenol A as degradation product of monomers used in resin-based dental materials. Dent Mater 2021; 37:1020-1029. [PMID: 33896600 DOI: 10.1016/j.dental.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE There is still much debate about the release of bisphenol-A (BPA) from dental materials. Therefore, this study aimed to quantify BPA present as an impurity in both BPA-based and non-BPA-based monomers and to evaluate whether these monomers may degrade to BPA upon salivary, bacterial, and chemical challenges. METHODS BPA was determined in three different amounts (1, 2, and 3 μmol) of each monomer (TEGDMA, UDMA, mUDMA, BisGMA, BisEMA-3, -6, -10, -30, BisPMA, EBPADMA urethane, BADGE, and BisDMA). Next, the monomers (3 μmol) were immersed in whole human pooled saliva collected from adults, Streptococcus mutans (2 × 107 CFU/mL), and acidic (0.1 M HCl), alkaline (0.1 M NaOH), and control media. The amount of BPA was quantified using a specific and highly sensitive UPLC-MS/MS method including derivatization of BPA by pyridine-3-sulfonyl chloride. RESULTS The monomers BisGMA and BisEMA-3 contained trace amounts (0.0006% and 0.0025%, respectively) of BPA as impurities of their synthesis process. BPA concentrations increased when the monomers BisGMA, BisEMA-3, BisEMA-6, BisEMA-10, BisPMA and BADGE were exposed to saliva and S. mutans, indicating degradation of a small amount of monomer into BPA. In addition, BisPMA and BADGE degraded into BPA under alkaline conditions. The conversion rate of the monomers into BPA ranged between 0.0003% and 0.0025%. SIGNIFICANCE Impurities and degradation of BPA-based monomers may account for the release of BPA from resin-based dental materials. Even though the detected amounts of BPA due to monomer impurity were small, manufacturers of dental materials can reduce the BPA content by using only monomers of the highest purity. Considering the overall current trend towards BPA-free materials, it may be recommendable to investigate whether non-BPA based monomers can be used in dental resin-based materials.
Collapse
Affiliation(s)
- Siemon De Nys
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, 3000 Leuven, Belgium
| | - Radu Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), 3555 Dudelange, Luxembourg
| | - Philippe Vervliet
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, D.S.551, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, D.S.551, 2610 Wilrijk, Belgium
| | - Imke Boonen
- Laboratory of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Ixelles, Belgium
| | - Marc Elskens
- Laboratory of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Ixelles, Belgium
| | - Jeroen Vanoirbeek
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, 3000 Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Penha KJDS, Souza AF, Dos Santos MJ, Júnior LJDSA, Tavarez RRDJ, Firoozmand LM. Could sonic delivery of bulk-fill resins improve the bond strength and cure depth in extended size class I cavities? J Clin Exp Dent 2020; 12:e1131-e1138. [PMID: 33282133 PMCID: PMC7700785 DOI: 10.4317/jced.57310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 11/05/2022] Open
Abstract
Background The implementation of restorative procedures that guarantee success and optimize clinical time is the target of investigations in Restorative Dentistry. This study aimed to analyze the influence of sonic insertion of bulk-fill (BF) and conventional (C) resin composites on the microtensile bond-strength (µ-TBS) and cure depth (CD) of large and deep class I restorations. Material and Methods Fifty-six healthy human premolars were selected and occlusal cavities (4 x 4 x 3 mm; factor C = 5) were prepared. TC - Tetric N-Ceram (BF), SF - SonicFill (BF), and Z350 - Filtek Z350 XT (C) composite resins were used to restore the cavities, using sonic (S) and non-sonic (NS) insertion techniques. A group restored with conventional incremental insertion (I) using Z350 XT resin was performed serving as a control. Teeth were prepared for microtensile bond-strength test (µ-TBS). And also, restoration depths of 1 and 4 mm were measured with an automatic microhardness indenter (50 g -15 s) to determine the CD. Results were evaluated using ANOVA, Scheffe, and Games-Howel posthoc test (α = 0.05). Results Types of resins and insertion techniques present statistical differences for µ-TBS and CD (p ≤ 0.001). The µ-TBS was higher respectively for the groups SF > TC > Z350; however, the sonic insertion for SF and Z350 (I) did not present significant differences in µ-TBS. Higher microhardness values were observed on the surface (1mm). At a depth of 4 mm Z350 (I)> SF(S)> SF(NS)> TC(S/NS)> Z350(S/NS) (p< 0.001). Pearson's Correlation of bond strength and base micro-hardness was significant (p ≤ 0.001), strong, and positive (0.955). Conclusions The influence of sonic insertion is material dependent, influenced only the microhardness of the SonicFill resin and did not interfere with the bond strength and cure depth of other bulk fill and conventional resin composite. Key words:Composite resins, dentin, hardness tests, tensile strength, Bulk-fill resins, sonic insertion.
Collapse
Affiliation(s)
- Karla-Janilee-de Souza Penha
- DDS, MSc, PhD student, Department of Dentistry, Federal University of Maranhão (UFMA), São Luís, Maranhão, Brazil
| | | | | | | | | | - Leily-Macedo Firoozmand
- DDS, MSc, PhD student, Department of Dentistry, Federal University of Maranhão (UFMA), São Luís, Maranhão, Brazil
| |
Collapse
|
12
|
Xu T, Li X, Wang H, Zheng G, Yu G, Wang H, Zhu S. Polymerization shrinkage kinetics and degree of conversion of resin composites. J Oral Sci 2020; 62:275-280. [PMID: 32493864 DOI: 10.2334/josnusd.19-0157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study compared shrinkage strain, polymerization shrinkage kinetics, and degree of conversion (DC) of a set of resin composites and investigated their influencing factors. Ten commercial resin composites were assessed, and 5 specimens (n = 5) were developed for material and subjected to light curing using light emitting diode light at 650 mW/cm2 for 40 s. The laser triangulation method was adopted to assess the shrinkage strain, and Fourier transform infrared spectroscopy was used to measure DC. The shrinkage strain was monitored for 5 min in real time and its data were subjected to differential calculations to get the shrinkage strain rate curve with respect to time, obtaining the maximum shrinkage strain rate (Rmax) and gel time. The values of shrinkage strain varied from 1.28% to 2.10%. The Rmax values were between 5.17 μm/s and 21.83 μm/s. Gel time values varied from 3.08 s to 4.32 s. The DC yielded values ranging from 53.62% to 87.01%. The values of polymerization shrinkage and DC were dependent on the composition of materials, including the monomer matrix and filler system. Compared to the micro-filler materials, the nano-filler resin composites had higher values of DC. Some resin composites are suitable for clinical applications because of their superior polymerization shrinkage properties and DC.
Collapse
Affiliation(s)
- Tong Xu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Xuan Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Han Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Gang Zheng
- Department of Dental Materials, School and Hospital of Stomatology, Peking University
| | - Gaigai Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Huimin Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| |
Collapse
|
13
|
Barutcigil K, Dündar A, Batmaz SG, Yıldırım K, Barutçugil Ç. Do resin-based composite CAD/CAM blocks release monomers? Clin Oral Investig 2020; 25:329-336. [PMID: 32488490 DOI: 10.1007/s00784-020-03377-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aimed to identify and quantify the elution of monomers of five different resin-based CAD/CAM blocks (RCBs) using HPLC. METHODS Five different RCBs were used in the study: GC Cerasmart (CS), Voco Grandio blocs (GR), 3M Lava Ultimate (LU), Shofu Block (SB), and Vita Enamic (VE). Fifteen samples from each material were prepared using a low-speed precision diamond saw (ISOMET Buehler, Lake Bluff, IL, USA) at 5 × 5 × 4 mm size. After the preparation of samples, an extraction solution was mixed with %75/%25 ethanol/water. The samples were stored in the amber-colored bottles during three different immersed periods as 1 h, 24 h, and 90 days (n = 5). After immersion, 0.5 ml solutions were taken from each bottle and analyzed using HPLC. RESULTS A total of 16.7 μg/ml of monomers from SB, 13.4 μg/ml of monomers from GR, 13.2 μg/ml of monomers from CS, and 6.7 μg/ml of monomers from LU were found after 3-m immersion. TEGDMA after 3-m of immersion was only released from the SB group, and also BisEMA was released from the CS group. Among the specimens immersed for 1 h, UDMA was released the least from the LU group and the most from the GR group (p < 0.05). Correspondingly, 24 h and 3 m after immersion, the highest release of monomers was found in the GR (p < 0.05). CONCLUSIONS When the monomer release from RCBs was evaluated, it was shown that these materials released methacrylate-based monomers except VE, especially if they were kept in a solvent solution for a long time such as 3 m. CLINICAL SIGNIFICANCE The novel resin-based CAD/CAM blocks might monomer release, which may cause cytotoxic effects. But, the detected amount of monomer release is below the estimated daily limit.
Collapse
Affiliation(s)
- Kubilay Barutcigil
- Department of Prosthetic Dentistry, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey
| | - Ayşe Dündar
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey
| | - Sevde Gül Batmaz
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey
| | - Kardelen Yıldırım
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey
| | - Çağatay Barutçugil
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
14
|
Durner J, Schrickel K, Watts DC, Becker M, Hickel R, Draenert ME. An alternate methodology for studying diffusion and elution kinetics of dimethacrylate monomers through dentinal tubules. Dent Mater 2020; 36:479-490. [PMID: 32093972 DOI: 10.1016/j.dental.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Ethoxylated bisphenol A dimethacrylate (bisEMA) is a base monomer in several dental resin composites. It was the main aim of the present study to determine if bisEMA can reach the dental pulp by generally passive diffusion through the coronal dentinal tubules stimulated via eluent liquids surrounding the root structures only. METHODS In 20 human third molar teeth, standard Class-I occlusal cavities were prepared and provided either with an adhesive system alone or additionally with a composite restoration, according to the instructions of the manufacturer. The teeth were placed in an elution chamber such that the elution media only came into contact with the tooth root/tooth base where they were incubated at 37 °C for up to 7 d. Samples were taken after 1, 2, 4 and 7 d. Gas chromatography/mass spectrometry was used to identify bisEMA and other monomers in ethanol/water (3:1) and aqueous eluates. RESULTS bisEMA was only found in ethanol/water eluates, where the teeth had received a composite restoration. Traces of bisEMA with up to three ethylene oxide units could be detected in these eluates. Depending on the dentin thickness, different elution kinetics of bisEMA were determined. Regardless of the treatment of teeth, triethylene glycol dimethacrylate (TEGDMA) and tetraethylene glycol dimethacrylate (TEEGDMA) were found in ethanolic/aqueous eluates in equal amounts. Most TEGDMA and TEEGDMA diffused through the dentin within the first 24 h. SIGNIFICANCE Depending on the dentin layer thickness, bisEMA was released for varied time periods, resulting in varied concentrations and exposure times for the different cells of the dental pulp. The concentrations of TEGDMA and TEEGDMA were greatest for cells of the dental pulp within the first 24 h.
Collapse
Affiliation(s)
- Jürgen Durner
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany.
| | - Klaus Schrickel
- Thermo Fisher Scientific, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Marc Becker
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| | - Miriam E Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
15
|
Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:126-138. [PMID: 31687052 PMCID: PMC6819877 DOI: 10.1016/j.jdsr.2019.09.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
Abstract
This review article compiles the characteristics of resin based dental composites and an effort is made to point out their future perspectives. Recent research studies along with few earlier articles were studied to compile the synthesis schemes of commonly used monomers, their characteristics in terms of their physical, mechanical and polymerization process with selectivity towards the input parameters of polymerization process. This review covers surface modification processes of various filler particles using silanes, wear behaviour, antimicrobial behaviour along with its testing procedures to develop the fundamental knowledge of various characteristics of resin based composites. In the end of this review, possible areas of further interests are pointed out on the basis of literature review on resin based dental materials.
Collapse
Key Words
- 4-EDMAB, Ethyl-4-dimethyl amino benzoate
- Antimicrobial properties
- BPA, Bisphenol-A
- BPO, Benzoyl peroxide
- Bis-EMA, Ethoxylatedbisphenol-A-dimethacrylate
- Bis-GMA, Bisphenol A-glycidyl methacrylate
- CQ, Camphorquinone
- DC, Degree of conversion
- DHEPT, Dihydroxy ethyl-para-toluidine
- DMAEMA, Dimethyl amino ethyl methacrylate
- DMAP, Dimethyl amino pyridine
- Dental composites
- EGDMA, Ethylene glycol dimethacrylate
- HEMA, 2-Hydroxyethyl methacrylate
- LED, Light emitting diode
- PPD, 1-phenyl-1,2 propanedione
- PS, Polymerization Shrinkage
- RBCs, Resin based composites
- Self-healing
- Surface modification of filler particles
- TEG, Triethylene glycol
- TEGDMA, Triethylene glycol dimethacrylate
- TPO, Diphenyl phosphine oxide
- UDMA, Urethane dimethacrylate
- Wear
- γ-MPS, 3-(Trimethoxysilyl) Propyl Methacrylate
Collapse
Affiliation(s)
- Bhanu Pratap
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | - Ravi Kant Gupta
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Meetu Nag
- Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
16
|
Koulaouzidou EA, Roussou K, Sidiropoulos K, Nikolaidis A, Kolokuris I, Tsakalof A, Tsitsimpikou C, Kouretas D. Investigation of the chemical profile and cytotoxicity evaluation of organic components eluted from pit and fissure sealants. Food Chem Toxicol 2018; 120:536-543. [PMID: 30076914 DOI: 10.1016/j.fct.2018.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to identify organic components eluted from five resin dental sealants using gas chromatography and mass spectrometry (GC/MS) after 1-day and 40-days storage and the effect of sealants on cell survival of cultured fibroblasts. Five resin materials were studied: BeautiSealant (SHOFU), Clinpro (3M/ESPE), Conseal F (SDI), Grandio Seal (VOCO) and Helioseal Clear (Ivoclar/Vivadent). The organic monomers detected were butylated hydroxytoluene (BHT), bis-phenol-A (BPA), camphoroquinone (CQ), diethylenglycoldimethacrylate (DEGDMA), 4N, N-dimethylaminobenzoic acid butylethoxyester (DMABEE), hydroxyethylmethcrylate (HEMA), hydroquinone monomethylether (MEHQ), triethylene glycol dimethacrylate (TEGDMA), tetrabutylammonium tetrafluoroborate (TBATFB), triphenylstibane (TPSb). The main monomer detected was TEGDMA, whereas BHT and DEGDMA were detected at lower concentrations. Higher monomer concentrations were detected after 40 days storage. The eluting chemical profiles of the tested materials differ qualitative and quantitative. For cytotoxicity evaluation, NIH/3T3 cells were exposed to eluates of sealants and cell viability was assessed by a quantitative technique at two observation periods. Decreased cell viability was observed. The cytotoxicity and the release of monomers from dental materials examined depends on the type of material and the observation time point. Resin-based dental materials have raised public concerns regarding possible adverse biological effects, thus it is essential to evaluate possible side effects for human health.
Collapse
Affiliation(s)
- Elisabeth A Koulaouzidou
- Division of Dental Tissues Pathology and Therapeutics (Basic Dental Sciences- Endodontology-Operative Dentistry), Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Konstantina Roussou
- Division of Dental Tissues Pathology and Therapeutics (Basic Dental Sciences- Endodontology-Operative Dentistry), Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Sidiropoulos
- Division of Dental Tissues Pathology and Therapeutics (Basic Dental Sciences- Endodontology-Operative Dentistry), Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexander Nikolaidis
- Division of Dental Tissues Pathology and Therapeutics (Basic Dental Sciences- Endodontology-Operative Dentistry), Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kolokuris
- Division of Dental Tissues Pathology and Therapeutics (Basic Dental Sciences- Endodontology-Operative Dentistry), Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Tsakalof
- Laboratory of Chemistry, School of Medicine, University of Thessaly, Larissa, Greece
| | - Christina Tsitsimpikou
- General Chemical State Laboratory of Greece, 16, A. Tsocha Street, Athens, 11521, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Viopolis, Larissa, 41500, Greece
| |
Collapse
|
17
|
Cytotoxic and biological effects of bulk fill composites on rat cortical neuron cells. Odontology 2018; 106:377-388. [PMID: 29594827 PMCID: PMC6153994 DOI: 10.1007/s10266-018-0354-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/11/2018] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate potential cellular responses and biological effects of new generation dental composites on cortical neuron cells in two different exposure times. The study group included five different bulk-fill flow able composites; Surefil SDR Flow, X-tra Base Flow, Venus Bulk Flow, Filtek Bulk Flow and Tetric-Evo Flow. They were filled in Teflon molds (Height: 4 mm, Width: 6 mm) and irradiated for 20 s. Cortical neuron cells were inoculated into 24-well plates. After 80% of the wells were coated, the 3 µm membrane was inserted and dental filling materials were added. The experiment was continued for 24 and 72 h. Cell viability measured by MTT assay test, total antioxidant and total oxidant status were examined using real assay diagnostic kits. The patterns of cell death (apoptosis) were analyzed using annexin V-FITC staining with flow cytometry. Β-defensins were quantitatively assessed by RT-PCR. IL-6, IL-8 and IL-10 cytokines were measured from the supernatants. All composites significantly affected analyses parameters during the exposure durations. Our data provide evidence that all dental materials tested are cytotoxic in acute phase and these effects are induced cellular death after different exposure periods. Significant cytotoxicity was detected in TE, XB, SS, FBF and VBF groups at 24 and 72 h, respectively.
Collapse
|
18
|
Cokic SM, Duca RC, De Munck J, Hoet P, Van Meerbeek B, Smet M, Godderis L, Van Landuyt KL. Saturation reduces in-vitro leakage of monomers from composites. Dent Mater 2018; 34:579-586. [PMID: 29429603 DOI: 10.1016/j.dental.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Accurate knowledge of the quantity of released monomers from composites is important. To evaluate the elution of monomers, polymerized composites are typically immersed in an extraction solvent. The objective was to determine whether the volume of extraction solvent and the immersion time influences monomer leachability from dental composite materials. METHODS Composite disks of two commercial composites, (Filtek Supreme XTE, 3M ESPE and G-aenial Universal Flo, GC) were prepared. The disks (n=10) were placed in a glass vial with 1ml, 2ml or 3ml of extraction solvent (100% ethanol with deuterated diethylphalate as internal standard). After either 7 or 30 days at 37°C, the supernatant was collected and the amount of released monomers (BisEMA, BisGMA, UDMA, TEGDMA) and bisphenol A was measured with liquid chromatography mass spectroscopy. RESULTS For both tested composites, the highest amount of released monomers was measured after sample incubation in 3ml, while the lowest amount was measured in 1ml of extraction solvent. Furthermore, 30 days did not result in much more monomer release compared to 7 days, and for most monomers, there was no statistically significant difference in release between 7 and 30 days. SIGNIFICANCE Release kinetics in in-vitro experiments are also influenced by saturation of the extraction solvent with the leached monomers. This is important as it is unlikely that saturation can be reached in an in-vivo situation, where saliva (or pulpal fluid) is continuously refreshed. Saturation of the extraction solvent can be avoided in-vitro by refreshing the extraction medium after equal time intervals.
Collapse
Affiliation(s)
- Stevan M Cokic
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Radu C Duca
- Centre for Environmental and Health, Department of Public Health and Primary Care, University of Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Jan De Munck
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Peter Hoet
- Centre for Environmental and Health, Department of Public Health and Primary Care, University of Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Mario Smet
- Polymer Chemistry and Materials, Department of Chemistry, KU Leuven (University of Leuven), Celestijnenlaan 200f - Box 2404, 3000 Leuven, Belgium
| | - Lode Godderis
- Centre for Environmental and Health, Department of Public Health and Primary Care, University of Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Interleuvenlaan 58, B-3001 Heverlee, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Pelourde C, Bationo R, Boileau MJ, Colat-Parros J, Jordana F. Monomer release from orthodontic retentions: An in vitro study. Am J Orthod Dentofacial Orthop 2018; 153:248-254. [PMID: 29407502 DOI: 10.1016/j.ajodo.2017.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The adhesives used to bond orthodontic retentions are low-loaded composite resins with a resinous matrix containing bisphenol A diglycidyl ether dimethacrylate synthesized from bisphenol A (BPA), fluidizers such as triethylene glycol dimethacrylate (TEGDMA) and hydrophilic polymers such as hydroxyethylmethacrylate. BPA disrupts the endocrine balance, and TEGDMA has high risks for human health: eg, allergies and cytotoxicity. The aim of this study was to evaluate in vitro the release of monomers from orthodontic bonded retentions. METHODS A reproducible model of bonded retentions was carried out using calibrated molds. We analyzed the release of monomers by gas phase chromatography coupled with mass spectrometry. RESULTS This model allowed us to qualitatively and quantitatively evaluate the in-vitro release of monomers from orthodontic adhesives. The quantitative and qualitative analyses showed no BPA release above the 0.02 ppm detection limit. A greater release of TEGDMA was observed with Transbond LR (31.7 μg/mL) than with Transbond XT (13.12 μg/mL) (both, 3M Unitek, Monrovia, Calif). Other toxic components (iodobenzene, iodobiphenyl, triphenyl stibine, and so on) were also identified. CONCLUSIONS Toxic and carcinogenic molecules not mentioned in the material safety data sheets were identified.
Collapse
Affiliation(s)
- Chloé Pelourde
- Pôle d'Odontologie et de Santé buccale, Hôpital Pellegrin, Bordeaux, France; UFR d'Odontologie, Université de Bordeaux, Bordeaux, France
| | - Raoul Bationo
- Clinique Bucco-dentaire, Centre Médical des Armées, Ouagadougou, Burkina Faso
| | - Marie-José Boileau
- Pôle d'Odontologie et de Santé buccale, Hôpital Pellegrin, Bordeaux, France; UFR d'Odontologie, Université de Bordeaux, Bordeaux, France
| | - Jacques Colat-Parros
- Pôle d'Odontologie et de Santé buccale, Hôpital Pellegrin, Bordeaux, France; UFR d'Odontologie, Université de Bordeaux, Bordeaux, France
| | - Fabienne Jordana
- Faculty of Dentistry Nantes, France; Service d'Odontologie, Nantes, France.
| |
Collapse
|
20
|
Bationo R, Jordana F, Boileau MJ, Colat-Parros J. Release of monomers from orthodontic adhesives. Am J Orthod Dentofacial Orthop 2017; 150:491-8. [PMID: 27585778 DOI: 10.1016/j.ajodo.2016.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Most composite resins release both bisphenol A (BPA), which disrupts the endocrine balance, and triethylene glycol dimethacrylate (TEGDMA), which has high risks for human health: eg, allergies and cytotoxicity. The aim of this study was to characterize monomers released from orthodontic adhesives. METHODS We studied samples of orthodontic adhesives by associating 2 techniques: gas phase chromatography and mass spectrometry. RESULTS The in-vitro analysis detected significant quantities of BPA, TEGDMA, and other monomers in orthodontic adhesives used in daily practice: Transbond XT, Transbond Supreme LV (both, 3M Unitek, Monrovia, Calif), Blugloo (Ormco, Orange, Calif), and MonoLok 2 (Rocky Mountain Orthodontics, Denver, Colo). CONCLUSIONS Clinicians should consider that orthodontic adhesives contain BPA, an endocrine disruptor; TEGDMA, an allergic and a cytotoxic compound; and carcinogenic genotoxic compounds. These molecules are not mentioned in the material safety data sheets. Manufacturers should declare all components of dental composites to identify these substances that may result in allergic or undesirable side effects for patients and dental staff.
Collapse
Affiliation(s)
- Raoul Bationo
- Postgraduate student, Oral and Dental Health Polyclinic, Faculty of Dentistry, Army Medical Center, Ouagadougou, Burkina Faso
| | - Fabienne Jordana
- Associate professor, Department of Odontology, Faculty of Dental Surgery, University of Nantes, Nantes, France.
| | - Marie-José Boileau
- Professor, Dentistry and Oral Health Center, Pellegrin Hospital, Faculty of Dentistry, University of Bordeaux, Bordeaux, France
| | - Jacques Colat-Parros
- Associate professor, Dentistry and Oral Health Center, Pellegrin Hospital, Faculty of Dentistry, University of Bordeaux, Bordeaux, France
| |
Collapse
|
21
|
Effect of layer thickness on the elution of bulk-fill composite components. Dent Mater 2017; 33:54-62. [DOI: 10.1016/j.dental.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 09/30/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
|
22
|
Hope E, Reed DR, Moilanen LH. Potential confounders of bisphenol-a analysis in dental materials. Dent Mater 2016; 32:961-7. [DOI: 10.1016/j.dental.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 05/08/2016] [Indexed: 11/16/2022]
|
23
|
Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites. Int J Mol Sci 2016; 17:ijms17050732. [PMID: 27213361 PMCID: PMC4881554 DOI: 10.3390/ijms17050732] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/11/2023] Open
Abstract
The degree of conversion (DC) and the released bisphenol A diglycidyl ether dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers of bulk-fill composites compared to that of conventional flowable ones were assessed using micro-Raman spectroscopy and high performance liquid chromatography (HPLC). Four millimeter-thick samples were prepared from SureFil SDR Flow (SDR), X-tra Base (XB), Filtek Bulk Fill (FBF) and two and four millimeter samples from Filtek Ultimate Flow (FUF). They were measured with micro-Raman spectroscopy to determine the DC% of the top and the bottom surfaces. The amount of released monomers in 75% ethanol extraction media was measured with HPLC. The differences between the top and bottom DC% were significant for each material. The mean DC values were in the following order for the bottom surfaces: SDR_4mm_20s > FUF_2mm_20s > XB_4mm_20s > FBF_4mm_20s > XB_4mm_10s > FBF_4mm_10s > FUF_4mm_20s. The highest rate in the amount of released BisGMA and TEGDMA was found from the 4 mm-thick conventional flowable FUF. Among bulk-fills, FBF showed a twenty times higher amount of eluted UDMA and twice more BisGMA; meanwhile, SDR released a significantly higher amount of TEGDMA. SDR bulk-fill showed significantly higher DC%; meanwhile XB, FBF did not reach the same level DC, as that of the 2 mm-thick conventional composite at the bottom surface. Conventional flowable composites showed a higher rate of monomer elution compared to the bulk-fills, except FBF, which showed a high amount of UDMA release.
Collapse
|
24
|
Alshali RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent Mater 2015; 31:1587-98. [DOI: 10.1016/j.dental.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 10/16/2015] [Indexed: 01/16/2023]
|
25
|
Alshali RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N. Qualitative and quantitative characterization of monomers of uncured bulk-fill and conventional resin-composites using liquid chromatography/mass spectrometry. Dent Mater 2015; 31:711-20. [DOI: 10.1016/j.dental.2015.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022]
|
26
|
Kloukos D, Sifakakis I, Voutsa D, Doulis I, Eliades G, Katsaros C, Eliades T. BPA qualtitative and quantitative assessment associated with orthodontic bonding in vivo. Dent Mater 2015; 31:887-94. [PMID: 26001991 DOI: 10.1016/j.dental.2015.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To assess the in vivo amount of BPA released from a visible light-cured orthodontic adhesive, immediately after bracket bonding. METHODS 20 orthodontic patients were recruited after obtaining informed consent. All patients received 24 orthodontic brackets in both dental arches. In Group A (11 patients), 25 ml of tap water were used for mouth rinsing, whereas in Group B (9 patients) a simulated mouth rinse formulation was used: a mixture of 20 ml de-ionized water plus 5 ml absolute ethanol. Rinsing solutions were collected before, immediately after placing the orthodontic appliances and after washing out the oral cavity and were then stored in glass tubes. Rinsing was performed in a single phase for 60s with the entire volume of each liquid. The BPA analysis was performed by gas chromatography-mass spectrometry. RESULTS An increase in BPA concentration immediately after the 1st post-bonding rinse was observed, for both rinsing media, which was reduced after the 2nd post-bonding rinse. Water exhibited higher levels of BPA concentration than water/ethanol after 1st and 2nd post-bonding rinses. Two-way mixed Repeated Measures ANOVA showed that the primary null hypothesis declaring mean BPA concentration to be equal across rinsing medium and rinsing status was rejected (p-value <0.001). The main effects of the rinsing medium and status, as well as their interaction were found to be statistically significant (p-values 0.048, <0.001 and 0.011 respectively). SIGNIFICANCE A significant pattern of increase of BPA concentration, followed by a decrease that reached the initial values was observed. The amount of BPA was relatively low and far below the reference limits of tolerable daily intake.
Collapse
Affiliation(s)
- Dimitrios Kloukos
- Department of Orthodontics and Dentofacial Orthopedics, Faculty of Medicine, University of Bern, Switzerland; 251 Air Force General Hospital, Athens, Greece
| | - Iosif Sifakakis
- Department of Orthodontics, School of Dentistry, University of Athens, Athens, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Doulis
- Department of Orthodontics, 251 Hellenic Air Force General Hospital, Athens, Greece
| | - George Eliades
- Department of Biomaterials, School of Dentistry, University of Athens, Greece
| | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, Faculty of Medicine, University of Bern, Switzerland
| | - Theodore Eliades
- Clinic of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, Faculty of Medicine, University of Zurich, Plattenstrasse 11, Zurich 8032, Switzerland.
| |
Collapse
|