1
|
Zhang L, Tian R, Xiao J, Wang Y, Feng K, Chen G. Preliminary Study on Polymerization between Hemoglobin and Enzymes during the Preparation of PolyHb-SOD-CAT-CA. DOKL BIOCHEM BIOPHYS 2024; 518:463-474. [PMID: 39196524 DOI: 10.1134/s1607672924600477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.
Collapse
Affiliation(s)
- Lili Zhang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Renci Tian
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Jiawei Xiao
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China
| | - Yaoxi Wang
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China
| | - Kun Feng
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
| | - Gang Chen
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, 519041, Zhuhai City, Guangdong Province, China.
- Beijing Pro-heme Biotech Co.Ltd, 10010, Beijing, Changping District, China.
| |
Collapse
|
2
|
Enrich-Essvein T, González-López S, Rodríguez-Navarro AB, Cifuentes-Jiménez C, Maravic T, Mazzitelli C, Checchi V, Josic U, Mazzoni A, Breschi L. Effects of proanthocyanidin-functionalized hydroxyapatite nanoparticles on dentin bonding. Clin Oral Investig 2024; 28:444. [PMID: 39046575 PMCID: PMC11269515 DOI: 10.1007/s00784-024-05836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To evaluate the effect of proanthocyanidin-functionalized hydroxyapatite nanoparticles (nHAp_PA) used as pretreatment at different concentrations on the microtensile bond strength (µTBS) and endogenous enzymatic activity (MMPs) on pH-cycled dentin after 24 h and 6 months of artificial aging. MATERIALS AND METHODS Fifty human sound dentin blocks were randomly assigned to 5 groups (n = 10): (i) negative control (no treatment); (ii) positive control (pH-cycling); (iii) pH-cycling + 2% nHAp_PA for 60s; (iv) pH-cycling + 6.5% nHAp_PA for 60s; (v) pH-cycling + 15% nHAp_PA for 60s. A self-etch adhesive was used for bonding procedures before resin composite build-ups. Specimens were tested with the µTBS test after 24 h and 6 months of laboratory storage. The proteolytic activity in each group was evaluated with gelatin zymography and in situ zymography. Data were statistically analyzed (p < 0.05). RESULTS At 24 h, the µTBS of the experimental groups were significantly higher than the controls (p ≤ 0.001), and no differences were observed between different concentrations (p > 0.05). Artificial aging significantly decreased bond strength in all groups (p ≤ 0.008); however, nHAp_PA 2% still yielded higher bonding values than controls (p ≤ 0.007). The groups pretreated with nHAp_PA exhibited lower MMP-9 and MMP-2 activities compared to the positive control group and almost the same enzymatic activity as the negative control group. In situ zymography showed that after 6 months of aging, nHAp_PA 2% and nHAp_PA 6,5% decreased enzymatic activity as well as the negative control. CONCLUSIONS Dentin pretreatment with nHAp_PA increased the bonding performance of a self-etch adhesive and decreased MMP-2 and MMP-9 activities after 6 months.
Collapse
Affiliation(s)
- Tattiana Enrich-Essvein
- Department of Operative Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, Granada, E-18071, Spain.
- Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Santiago González-López
- Department of Operative Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, Granada, E-18071, Spain
| | | | - Carolina Cifuentes-Jiménez
- Department of Operative Dentistry, School of Dentistry, University of Granada, Campus de Cartuja, Colegio Maximo s/n, Granada, E-18071, Spain
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Vittorio Checchi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Li M, Qiu Y, Wang Y, Zhang S, Duan L, Zhao W, Shi Y, Zhang Z, Tay FR, Fu B. A glycol chitosan derivative with extrafibrillar demineralization potential for self-etch dentin bonding. Dent Mater 2024; 40:327-339. [PMID: 38065798 DOI: 10.1016/j.dental.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Extrafibrillar demineralization is an etching technique that removes only minerals from around the collagen fibrils for resin infiltration. The intrafibrillar minerals are left intact to avoid their replacement by water that is hard for adhesive resin monomers to displace. The present work reported the synthesis of a water-soluble methacryloyloxy glycol chitosan-EDTA conjugate (GCE-MA) and evaluated its potential as an extrafibrillar demineralization agent for self-etch dentin bonding. METHODS Glycol chitosan-EDTA was functionalized with a methacryloyloxy functionality. Conjugation was confirmed using Fourier transform-infrared spectroscopy. The GCE-MA was used to prepare experimental self-etch primers. Extrafibrillar demineralization of the primers was evaluated with scaning electron microscopy and transmission electron microscopy. The feasibility of this new self-etch bonding approach was evaluated using microtensile bond strength testing and inhibition of dentin gelatinolytic activity. The antibacterial activity and cytotoxicity of GCE-MA were also analyzed. RESULTS Conjugation of EDTA and the methacryloyloxy functionality to glycol chitosan was successful. The functionalized conjugate was capable of extrafibrillar demineralization of mineralized collagen fibrils. Tensile bond strength of the experimental self-etch primer to dentin was comparable to that of phosphoric acid-etched dentin and the commercial self-etch primer Clearfil SE Bond 2. The GCE-MA also inhibited soluble rhMMP-9. In-situ zymography detected minimal fluorescence in hybrid layers conditioned with the experimental primer. The GCE-MA was noncytotoxic and possessed antibacterial activities against planktonic bacteria. SIGNIFICANCE Synthesis of GCE-MA brought into fruition a self-etch conditioner that selectively demineralizes the extrafibrillar mineral component of dentin. A self-etch primer prepared with GCE-MA achieved bond strengths comparable to commercial reference adhesive systems.
Collapse
Affiliation(s)
- Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuan Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yinlin Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Sisi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lian Duan
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Assis HCD, Bertolini GR, Sousa-Neto MD, Lopes-Olhê FC. Analysis of the adhesive interface of dentine treated with carbodiimide and chitosan before cementation of fiberglass posts with different resin cements. J Biomed Mater Res B Appl Biomater 2023; 111:1840-1852. [PMID: 37287402 DOI: 10.1002/jbm.b.35289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/27/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
The objective of this study is to evaluate the effect of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and chitosan (CHI) on the adhesive interface of resin cements to root dentine. Forty-five upper canines were sectioned, endodontically treated, prepared and divided into three groups according to dentine treatment (distilled water-DW, CHI 0.2% and EDC 0.5) and in three subgroups according to resin cement: RelyX ARC, Panavia F 2.0 or RelyX U200. Slices were obtained, with five slices of each third submitted to the analysis of the adaptation of the adhesive interface through scores and the perimeter with gaps in confocal laser scanning microscopy and one slice of each third later evaluated qualitatively in scanning electron microscopy. The results were analyzed using with Kruskal-Wallis and Spearman correlation tests. There was no difference in adaptation for the different resin cements (p = .438). EDC presented better adaptation when compared to the groups treated with DW and CHI (p < .001), while the CHI and DW presented similar adaptation values (p = .365). No difference was observed in the perimeter referring to the gap areas for the different resin cements (p = .510). EDC showed a lower percentage of perimeters with gaps when compared to CHI (p < .001), with the percentage of perimeter with gaps of teeth treated with CHI being lower than DW (p < .001). A positive correlation coefficient equal to 0.763 was obtained between the perimeter with gaps and the adaptation data of the adhesive interface (p < .001). EDC resulted in better adaptation of the adhesive interface and a lower percentage of perimeters with gaps compared to chitosan.
Collapse
Affiliation(s)
- Helena Cristina de Assis
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Gunther Ricardo Bertolini
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fabiane Carneiro Lopes-Olhê
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Sozer O, Ozalp O, Atalay E, Demir SS, Alatas İO, Yildirim N. Comparison of blood levels of vitamin B12, folic acid, riboflavin, and homocysteine in keratoconus and healthy subjects. J Cataract Refract Surg 2023; 49:589-594. [PMID: 36745841 DOI: 10.1097/j.jcrs.0000000000001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate blood levels of vitamin B12, folic acid, riboflavin, and homocysteine in keratoconus (KC) and healthy subjects. SETTING Eskişehir Osmangazi University, Eskişehir, Turkey. DESIGN Cross-sectional study. METHODS 100 KC patients (patient group) between the ages of 18 to 35 years and 200 healthy individuals (control group) in the same age range were included in the Eskişehir Osmangazi University Hospital Eye Clinic between October 2019 and March 2020. In all cases, a complete ophthalmologic examination and corneal tomography evaluation with a Pentacam Scheimpflug camera were performed. In blood samples, vitamin B12 and folic acid levels were measured using an electrochemiluminescence immunoassay analyzer, and homocysteine and riboflavin levels were measured using high-performance liquid chromatography. Chi-square tests were used in the analysis of categorical variables, and Mann-Whitney U and Kruskal-Wallis tests were used in the analysis of numerical variables. RESULTS Homocysteine (13.0 ± 6.6 vs 12.1 ± 5.4 μmol/L, P = .190), vitamin B12 (313.5 ± 119.4 vs 322.9 ± 128.3 pg/mL, P = .619), and folic acid (7.0 ± 2.7 vs 7.4 ± 2.9 ng/mL, P = .230) levels were not different between KC (100 eyes of 100 subjects) and control (200 eyes of 200 subjects) groups. The mean riboflavin level was 84.0 ± 21.8 μg/L in the patient group and 183.6 ± 74.3 μg/L in the control group, with a significant difference between the 2 groups ( P < .001). Riboflavin levels were below 180 μg/L in 99% (n = 99) of the cases in the KC group and 53.5% (n = 107) in the control group ( P < .001). CONCLUSIONS Low blood riboflavin levels in KC patients may be a possible risk factor in the pathogenesis of KC.
Collapse
Affiliation(s)
- Omer Sozer
- From the Ophthalmology Clinic, Emirdag State Hospital, Afyonkarahisar, Turkey (Sozer); Ophthalmology Clinic, Private Gürlife Hospital, Eskişehir, Turkey (Ozalp); Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey (Atalay, Yildirim); Medical Biochemistry Clinic, Sandikli State Hospital, Afyonkarahisar, Turkey (Demir); Department of Medical Biochemistry, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey (Alatas)
| | | | | | | | | | | |
Collapse
|
6
|
Li Z, Zeng Y, Ren Q, Ding L, Han S, Hu D, Lu Z, Wang L, Zhang Y, Zhang L. Mineralization promotion and protection effect of carboxymethyl chitosan biomodification in biomimetic mineralization. Int J Biol Macromol 2023; 234:123720. [PMID: 36805508 DOI: 10.1016/j.ijbiomac.2023.123720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Biomimetic mineralization emphasizes reversing the process of dental caries through bio-inspired strategies, in which mineralization promotion and collagen protection are equally important. In this study, carboxymethyl chitosan (CMC) was deemed as an analog of glycosaminoglycan for biomimetic modification of collagen, both of the mineralization facilitation and collagen protection effect were evaluated. Experiments were carried out simultaneously on two-dimensional monolayer reconstituted collagen model, three-dimensional reconstituted collagen model and demineralized dentin model. In three models, CMC was successfully cross-linked onto collagen utilizing biocompatible 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy sulfosuccinimide sodium salt to achieve biomodification. Results showed that CMC biomodification increased collagen's hydrophilicity, calcium absorption capacity and thermal degradation resistance. In demineralized dentin model, the activity of endogenous matrix metalloproteinases was significantly inhibited by CMC biomodification. Furthermore, CMC biomodification significantly improved cross-linking and intrafibrillar mineralization of collagen, especially in the two-dimensional monolayer reconstituted collagen model. This study provided a biomimetic mineralization strategy with comprehensive consideration of collagen protection, and enriched the application of chitosan-based materials in dentistry.
Collapse
Affiliation(s)
- Zhongcheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhao Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Die Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ziqian Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoyao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Eusufzai SZ, Barman A, Jamayet NB, Ahmad WMAW, Mahdi SS, Sheikh Z, Daood U. Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1701. [PMID: 36837334 PMCID: PMC9963098 DOI: 10.3390/ma16041701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to evaluate published data regarding riboflavin (RF) as a cross-linker for improved adhesive bond strength to dentin and to analyze previous studies for optimal concentration of riboflavin range suitable for dentin bond. Saliva and distilled water were used as storage media and aging time was 24 h and 6 months. Results of meta-analysis were synthesized using a statistical method of inverse variance in random effects with a 95% Confidence Interval (CI). Cochrane review manager 5.4.1 was used to determine results of the meta-analysis. In total, 3172 articles were found from search databases "PubMed", "Scopus", and "Google Scholar". Six of the fifteen studies were eligible for meta-analysis. Micro tensile strength shows significant improvement with the addition of riboflavin (p < 0.05) compared to without the addition of riboflavin from with 95% CI. A significant difference has been found in micro tensile bond strength between use of the riboflavin cross-linker and without use of the riboflavin crosslinker in the dentin adhesive system. With a 95% confidence interval (CI), the I2 for micro tensile strength was 89% with strong heterogeneity, Chi2 = 44.76, df = 5 (p < 0.00001), and overall effect size is Z = 2.22 (p = 0.03) after immediate aging. Chiang et al. 2013 shows maximum mean differences which is 38.50 [17.93-59.07]. After 6 months of aging in distilled water or artificial saliva micro tensile bond strength has been increased with the addition of riboflavin (p < 0.05). It can be clearly seen that pooled effect and 95% CI did not cross the line of no effect. With a 95% confidence interval (CI), the I2 for micro tensile strength was 96% with strong heterogeneity, Chi2 = 117.56, df = 5 (p < 0.00001), and overall effect size is Z = 2.30 (p = 0.02). Subgroup analysis proved a similar effect of distilled water and artificial saliva as storage media on micro tensile bond strength after incorporating riboflavin as a collagen crosslinker. An artificial saliva aged forest plot also showed considerable heterogeneity with I2 = 96%; Tau2 = 257.32; Chi2 = 94.37; df = 2 (p < 0.00001); test for overall effect, Z = 1.06 (p = 0.29). Riboflavin prior to or with bonding is recommended to improve the bonding of different adhesive systems.
Collapse
Affiliation(s)
- Sumaiya Zabin Eusufzai
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Aparna Barman
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Nafij Bin Jamayet
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Wilayah Persekutuan Kuala Lumpur, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Wan Muhamad Amir W Ahmad
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Syed Sarosh Mahdi
- Division of Clinical Oral Health Sciences, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
- Faculty of Dentistry, Dalhousie University, 5981 University Ave, Halifax, NS B3H 1W2, Canada
| | - Zeeshan Sheikh
- Faculty of Dentistry, Dalhousie University, 5981 University Ave, Halifax, NS B3H 1W2, Canada
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Wilayah Persekutuan Kuala Lumpur, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
8
|
Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness. J Mech Behav Biomed Mater 2023; 138:105551. [PMID: 36459707 DOI: 10.1016/j.jmbbm.2022.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix. METHODS Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity. RESULTS After 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups. CLINICAL RELEVANCE The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.
Collapse
|
9
|
Effects of riboflavin/ultraviolet-A scleral collagen cross-linking on regional scleral thickness and expression of MMP-2 and MT1-MMP in myopic guinea pigs. PLoS One 2023; 18:e0279111. [PMID: 36652495 PMCID: PMC9847964 DOI: 10.1371/journal.pone.0279111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To investigate the effects of scleral collagen cross-linking (SXL) using riboflavin and ultraviolet A (UVA) light on the scleral thickness of different regions and expression of matrix metalloproteinase 2 (MMP-2) and membrane-type MMP-1 (MT1-MMP) in guinea pigs with lens-induced myopia. METHODS Forty-eight 4-week-old guinea pigs were assigned to three groups (n = 16 per group): SXL group, lens-induced myopia (LIM) group, and control group. The sclera of the right eye of the guinea pig in the SXL group was surgically exposed, riboflavin was dropped on the treatment area for 10 minutes before the 30-minute UVA irradiation. The same surgical procedure was performed in the LIM group without UVA irradiation. The -10.00 D lenses were then placed on the right eyes of guinea pigs in the SXL and LIM groups for six weeks. The control group received no treatment. The left eyes were untreated in all groups. The ocular axial length (AXL) and refraction were measured at 4 weeks and 10 weeks of age. 10-week-old guinea pigs were sacrificed, and the right eyes were enucleated and evenly divided for preparation of hematoxylin and eosin (HE) stained sections, quantitative real-time polymerase chain reaction (qPCR) and western blotting. The scleral thickness of different regions was measured on HE stained sections. The temporal half of the sclera was harvested to measure the expression of MMP-2 and MT1-MMP by qPCR and western blotting. RESULTS The AXL was significantly shorter, and the degree of myopic refraction was significantly lower in the SXL group than those in the LIM group at 10 weeks of age. The scleral thickness of the cross-linked area was significantly greater in the SXL group than that of the corresponding area in the LIM group, while the scleral thickness of the untreated nasal side was not significantly different between the SXL group and the LIM group. The expression of MMP-2 and MT1-MMP of the cross-linked sclera was significantly downregulated compared with that of the corresponding area in the LIM group. CONCLUSION Riboflavin/UVA SXL could slow myopia progression and thicken the cross-linked sclera in guinea pigs, which might be related to the downregulation of MMP-2 and MT1-MMP expression during the scleral remodeling process.
Collapse
|
10
|
Niemeyer SH, Jovanovic N, Sezer S, Wittwer LS, Baumann T, Saads Carvalho T. Dual protective effect of the association of plant extracts and fluoride against dentine erosion: In the presence and absence of salivary pellicle. PLoS One 2023; 18:e0285931. [PMID: 37200261 DOI: 10.1371/journal.pone.0285931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES To verify the protective effect of plant extracts associated with fluoride against dental erosion of dentine, in the presence and absence of a salivary pellicle. METHODS Dentine specimens (n = 270) were randomly distributed into 9 experimental groups (n = 30/group): GT (green tea extract); BE (blueberry extract); GSE (grape seed extract); NaF (sodium fluoride); GT+NaF (green tea extract and NaF); BE+NaF (blueberry extract and NaF); GSE+NaF (grape seed extract and NaF); negative control (deionized water); and a positive control (commercialized mouthrinse containing stannous and fluoride). Each group was further divided into two subgroups (n = 15), according to the presence (P) or absence (NP) of salivary pellicle. The specimens were submitted to 10 cycles: 30 min incubation in human saliva (P) or only in humid chamber (NP), 2 min immersion in experimental solutions, 60 min of incubation in saliva (P) or not (NP), and 1 min erosive challenge. Dentine surface loss (dSL-10 and dSL-total), amount of degraded collagen (dColl) and total calcium release (CaR) were evaluated. Data were analyzed with Kruskal-Wallis, Dunn's and Mann-Whitney U tests (p>0.05). RESULTS Overall, the negative control presented the highest values of dSL, dColl and CaR, and the plant extracts showed different degrees of dentine protection. For the subgroup NP, GSE showed the best protection of the extracts, and the presence of fluoride generally further improved the protection for all extracts. For the subgroup P, only BE provided protection, while the presence of fluoride had no impact on dSL and dColl, but lowered CaR. The protection of the positive control was more evident on CaR than on dColl. CONCLUSION We can conclude that the plant extracts showed a protective effect against dentine erosion, regardless of the presence of salivary pellicle, and that the fluoride seems to improve their protection.
Collapse
Affiliation(s)
- Samira Helena Niemeyer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Nikola Jovanovic
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Sindy Sezer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Lucas Sébastien Wittwer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Tommy Baumann
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Thiago Saads Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Fronza BM, Braga RR, Cadenaro M. Dental Adhesives-Surface Modifications of Dentin Structure for Stable Bonding. Dent Clin North Am 2022; 66:503-515. [PMID: 36216443 DOI: 10.1016/j.cden.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The latest advancements in dentin bonding have focused on strategies to impair degradation mechanisms in order to extend the longevity of bonded interfaces. Protease inhibitors can reduce collagen degradation within the hybrid layer (HL). Collagen cross-linkers allow better adhesive infiltration and also inhibit proteases activity. Particles added to adhesive can promote mineral precipitation within the HL, reducing nanoleakage and micropermeability, besides possible antimicrobial and enzymatic inhibition effects. Most of these approaches are still experimental, and aspects of the adhesive under the clinician's control are still determinant for the long-term stability of adhesive restorations.
Collapse
Affiliation(s)
- Bruna Marin Fronza
- Department of Biomaterials and Oral Biology, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, São Paulo 05508-000, Brazil
| | - Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, São Paulo 05508-000, Brazil.
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| |
Collapse
|
12
|
Hong DW, Chen LB, Lin XJ, Attin T, Yu H. Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study. Dent Mater 2022; 38:e297-e307. [PMID: 36192276 DOI: 10.1016/j.dental.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the in situ/in vivo effect of quercetin on dentin erosion and abrasion. METHODS Human dentin blocks (2 × 2 × 2 mm) were embedded and assigned to 6 groups: 75 μg/mL, 150 μg/mL and 300 μg/mL quercetin (Q75, Q150, Q300); 120 μg/mL chlorhexidine (CHX, positive control); and deionized water and ethanol (the negative controls). The specimens were treated with the respective solutions for 2 min and then subjected to in situ/in vivo erosive/abrasive challenge for 7 d as follows: in vivo erosion 4 times a day and then in vivo toothbrush abrasion after the first and last erosive challenges of each day. Dentin loss was assessed by profilometry. An additional dentin specimen was used to evaluate the penetration depth of quercetin into dentin by tracking the spatial distribution of its characteristic Raman peak. Moreover, dentin blocks (7 × 1.7 × 0.7 mm) were used to detect the impact of quercetin on dentin-derived matrix metalloproteinase (MMP) inhibition by in situ zymography, and the inhibition percentage (%) was calculated. Additionally, the potential collagen crosslinking interactions with quercetin were detected by Raman spectroscopy, and the crosslinking degree was determined with a ninhydrin assay. Fully demineralized dentin beams (0.5 × 0.5 × 10 mm) were used to evaluate the impact of quercetin on the mechanical properties of dentin collagen fibre by the ultimate micro-tensile strength test (μUTS). The data were analysed by one-way analysis of variance and Tukey's test (α = 0.05). RESULTS Compared to the negative controls, all treatment solutions significantly reduced dentin loss. The dentin loss of Q150 and Q300 was significantly less than that of CHX (all P < 0.05). The amount of quercetin decreased with increasing dentin depth, and the maximum penetration depth was approximately 25-30 µm. In situ zymography showed that quercetin significantly inhibited the activities of dentin-derived MMPs. The inhibitory percentages of Q75 and Q150 were significantly lower than that of CHX (all P < 0.05), but no significant difference was found between Q300 and CHX (P = 0.58). The collagen crosslinking interactions with quercetin primarily involved hydrogen bonding and the degree of crosslinking increased in a concentration-dependent manner. Statistically significant increases in μUTS values were observed for demineralized dentin beams after quercetin treatment compared with those of the control treatments (all P < 0.05). SIGNIFICANCE This study provides the first direct evidence that quercetin could penetrate approximately 25-30 µm into dentin and further prevent dentin erosion and abrasion by inhibiting dentin-derived MMP activity as well as crosslinking collagen of the demineralized organic matrix.
Collapse
Affiliation(s)
- Deng-Wei Hong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Li-Bing Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University Zurich, Switzerland
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
13
|
Biodegradation of Dental Resin-Based Composite—A Potential Factor Affecting the Bonding Effect: A Narrative Review. Biomedicines 2022; 10:biomedicines10092313. [PMID: 36140414 PMCID: PMC9496159 DOI: 10.3390/biomedicines10092313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, although resin composite has played an important role in the restoration of tooth defects, it still has several disadvantages, including being biodegraded by saliva, bacteria and other enzymes in the oral cavity, which may result in repair failure. This factor is not conducive to the long-term survival of the prosthesis in the mouth. In this article, we review the causes, influencing factors and prevention methods of resin biodegradation. Biodegradation is mainly caused by esterase in saliva and bacteria, which breaks the ester bond in resin and causes the release of monomers. The mechanical properties of the prosthesis can then be affected. Meanwhile, cathepsin and MMPs are activated on the bonding surface, which may decompose the dentin collagen. In addition, neutrophils and residual water on the bonding surface can also aggravate biodegradation. Currently, the primary methods to prevent biodegradation involve adding antibacterial agents to resin, inhibiting the activity of MMPs and enhancing the crosslinking of collagen fibers. All of the above indicates that in the preparation and adhesion of resin materials, attention should be paid to the influence of biodegradation to improve the prosthesis’s service life in the complex environment of the oral cavity.
Collapse
|
14
|
Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. COATINGS 2022. [DOI: 10.3390/coatings12081094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified.
Collapse
|
15
|
Mussel-inspired monomer - A new selective protease inhibitor against dentine collagen degradation. Dent Mater 2022; 38:1149-1161. [PMID: 35680429 DOI: 10.1016/j.dental.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/03/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases. METHODS The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software. All data obtained were analyzed by one-way ANOVA followed by Tukey test (α = 0.05). RESULTS The anti-proteolytic ability of DMA increased in a dose-dependent manner except that of rhMMP-9. Inhibitory effect of 1 mM DMA against rhMMP-2, - 8, - 9, as well as cathepsin B and K was all significantly lower than 1 mM CHX (p < 0.05). The molecular docking analysis was in good agreement with the experimental results, that the binding energy of DMA was lower than CHX for all proteases. In situ zymography revealed that all DMA- and CHX-treated groups significantly inactivated the matrix-bound proteases, with a dramatic reduction of the fluorescence intensity and relative area compared with the control group (p < 0.05). SIGNIFICANCE Under the prerequisite condition that the overall inhibitory performance on matrix-bound proteases was comparable by DMA and CHX, the more selective property of DMA could avoid inducing potential negative effects by suppressing MMP-9 when applied in dental treatment compared with CHX.
Collapse
|
16
|
Wang R, Stanley T, Yao X, Liu H, Wang Y. Collagen stabilization by natural cross-linkers: A qualitative and quantitative FTIR study on ultra-thin dentin collagen model. Dent Mater J 2022; 41:440-450. [PMID: 35249902 DOI: 10.4012/dmj.2021-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to its low tolerance to external factors such as enzymes, dentin collagen often requires stabilization, which can be achieved through cross-linking. In this study, qualitative and quantitative Fourier transform infrared (FTIR) analyses were used to assess dentin collagen stabilization effects of three structurally-different flavonoids -A-type linkage proanthocyanidins (A-PA), B-type linkage proanthocyanidins (B-PA), and epigallocatechin gallate (EGCG), all from natural extracts. Particularly, transmission FTIR spectroscopy was used for the first time to quantitatively assess the biodegradation of fresh ultra-thin (10 µm) dentin collagen films caused by collagenase digestion. Two traditional analytical methods, namely the hydroxyproline assay and weight loss analysis, were also used for comparison purposes. The results from all three methods showed consistently that A-PA and B-PA provide better collagen stabilization than EGCG at concentrations of 0.65% and 1.3% (p<0.01). FTIR is demonstrated to be a valuable and reliable analytical tool for qualitative and quantitative evaluation of ultra-thin collagen films.
Collapse
Affiliation(s)
- Rong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City
| | - Tyler Stanley
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City
| | - Hang Liu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City
| |
Collapse
|
17
|
Neshatian M, Holcroft J, Kishen A, De Souza G, Ganss B. Promoting mineralization at biological interfaces Ex vivo with novel amelotin-based bio-nano complexes. Mater Today Bio 2022; 14:100255. [PMID: 35464740 PMCID: PMC9020105 DOI: 10.1016/j.mtbio.2022.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Conclusion AMTN/AMTN-Col functionalized HANP are potent mineral-promoting bio-nano complexes. AMTN/AMTN-Col coated HANP promote collagen mineralization. AMTN/AMTN-Col coated HANP enhance resin-dentin bond strength. AMTN/AMTN-Col coated HANP are potential candidates for clinical application.
Collapse
|
18
|
Beck F, Ilie N. Riboflavin and Its Effect on Dentin Bond Strength: Considerations for Clinical Applicability-An In Vitro Study. Bioengineering (Basel) 2022; 9:34. [PMID: 35049743 PMCID: PMC8772893 DOI: 10.3390/bioengineering9010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive collagen crosslinkers propose to render the dentin hybrid layer less perceptive to hydrolytic challenge. This study aims to evaluate whether bond strength of dental resin composite to dentin benefits from riboflavin (RB)-sensitized crosslinking when used in a clinically applicable protocol. A total of 300 human dentin specimens were prepared consistent with the requirements for a macro-shear bond test. RB was applied on dentin, either incorporated in the primer (RBp) of a two-step self-etch adhesive or as an aqueous solution (RBs) before applying the adhesive, and blue light from a commercial polymerization device was used for RB photoactivation. Bonding protocol executed according to the manufacturer's information served as control. Groups (n = 20) were tested after 1 week, 1 month, 3 months, 6 months or 1 year immersion times (37 °C, distilled water). The different application methods of RB significantly influenced bond strength (p < 0.001) with a medium impact (η2p = 0.119). After 1 year immersion, post hoc analysis identified a significant advantage for RB groups compared to RBp (p = 0.018), which is attributed to a pH-/solvent-dependent efficiency of RB-sensitized crosslinking, stressing the importance of formulation adjustments. We developed an application protocol for RB-sensitized crosslinking with emphasis on clinical applicability to test its performance against a gold-standard adhesive, and are confident that, with a few adjustments to the application solution, RB-sensitized crosslinking can improve the longevity of adhesive restorations in clinics.
Collapse
Affiliation(s)
- Franziska Beck
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig Maximilian University (LMU), D-80336 Munich, Germany;
| | | |
Collapse
|
19
|
Shu C, Zheng X, Wang Y, Xu Y, Zhang D, Deng S. Captopril inhibits matrix metalloproteinase activity and improves dentin bonding durability. Clin Oral Investig 2022; 26:3213-3225. [PMID: 34999991 DOI: 10.1007/s00784-021-04303-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We investigated the inhibitory effects of captopril on matrix metalloproteinases (MMPs) and its effect as a primer on dentin bonding durability. MATERIALS AND METHODS One hundred fifty human third molars were selected. Flat surfaces of the middle dentin were exposed, etched 15 s, and followed by pretreatment with a primer for 60 s, including distilled water (control, the negative control primer), 2% chlorhexidine digluconate (CHD, the positive control primer), and captopril solution. Inhibitory effects of primers on MMPs were evaluated by hydroxyproline and gelatinase activity tests. All primers were applied on dentin followed by bonding. Some of the samples were sliced into slabs, placed in a fluorescent solution containing gelatin, and incubated for in situ zymography. Some were cut into sticks, and after aging for 1 day, 12 months, or 24 months, microtensile bonding strength was tested. Some were cut into slabs, aged for 1 day, 12 months, or 24 months, and taken out for nanoleakage tests to reveal interface defects. RESULTS Hydroxyproline and gelatinase activity analyses showed that captopril exerted better inhibitory effects on MMPs, relative to 2% CHD (p < 0.05). A 0.2% captopril aqueous solution (0.2% CapW) was chosen to apply to the dentin. In situ zymography showed that inhibitory effects of captopril on gelatinase were significantly higher compared to 2% CHD (p < 0.01). Microtensile strength revealed that the bonding effects of the 0.2% CapW group lasted longer, compared to the control and 2% CHD groups (p < 0.05). Interface defects, detected by nanoleakage, were significantly reduced in the 0.2% CapW group, compared to the control and 2% CHD groups (p < 0.05). CONCLUSIONS Captopril inhibits dentin MMP activities and effectively improves dentin bonding durability. CLINICAL RELEVANCE Captopril is a promising dentin bonding primer for improving bonding durability.
Collapse
Affiliation(s)
- Chang Shu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Xinyu Zheng
- Department of Stomatology, Zhejiang University Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Denghui Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
20
|
Kotsanos N, Wong F. Restoration of Carious Hard Dental Tissues. Pediatr Dent 2022. [DOI: 10.1007/978-3-030-78003-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Citta M, Anovazzi G, Basso FG, Scheffel D, Zhou J, Pashley DH, Souza Costa CA, Hebling J. Mechanical Stability and Proteolytic Activity of Resin-dentin Bonds Using the Cross-linked Dry Bonding Technique. Oper Dent 2021; 46:E251-E263. [PMID: 34919726 DOI: 10.2341/20-016-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To evaluate the mechanical stability and the proteolytic activity of bonds created by a two-step, etch-and-rinse adhesive applied to cross-linked and air-dried etched dentin. METHODS Flat dentin surfaces were produced in 64 extracted sound human molars. The dentin was etched with 35% phosphoric acid for 15 seconds, and then the teeth were divided into groups according to the cross-linking solution applied on the etched dentin. Group 1: 5% grape seed extract (GSE), Group 2: 5% glutaraldehyde, Group 3: Gluma Desensitizer, or Group 4: deionized water (control). Solutions were applied for 60 seconds, followed by rinse and blot drying. Then, the teeth were separated into two subgroups where the etched dentin was kept moist or air-dried. The adhesive was applied followed by a composite resin buildup. After 24 hours, the teeth were cut into beams (0.81 mm2) that were tested for microtensile strength immediately or after 12 months of aging in a 37°C saliva-like buffer. Additional teeth (n=32) were bonded as described and cut into 0.5-mm-thick slabs. The slabs were prepared for nanoleakage (scanning electron microscopy) and in situ zymography (EnzChek Protease Assay Kit). Bond strength data were submitted to ANOVA and Tukey tests (α=0.05). RESULTS Significant reduction in immediate bond strength (ca 65%) and increase in proteolytic activity was seen when the etched dentin was air dried without previous cross-linking biomodification. Conversely, bond strengths did not differ from those produced on wet dentin when collagen was cross-linked before air drying, irrespective of the solution applied. For both moist and air-dried etched dentin, collagen cross-linking resulted in mechanically stable bonds and reduced proteolytic activity after 12 months of storage. CONCLUSION Bonds produced by the application of a two-step, etch-and-rinse adhesive to cross-linked, air-dried, etched dentin were mechanically stable and revealed reduced proteolytic activity after 1 year of aging.
Collapse
Affiliation(s)
- M Citta
- Mariana Citta, DDS, MSc, Department of Oral Rehabilitation, Sao Paulo State University (UNESP), School of Dentistry, SP, Brazil
| | - G Anovazzi
- Giovana Anovazzi, DDS, MSc, PhD, Department of Orthodontics and Pediatric Dentistry, Sao Paulo State University (UNESP), School of Dentistry, SP, Brazil
| | - F G Basso
- Fernanda Gonçalves Basso, DDS, MSc, PhD, Department of Oral Rehabilitation, Sao Paulo State University (UNESP), School of Dentistry, SP, Brazil
| | - Dls Scheffel
- Débora Lopes Salles Scheffel, DDS, MSc, PhD, Department of Dentistry, State University of Maringá, School of Dentistry, PR, Brazil
| | - J Zhou
- Jianfeng Zhou, DMD, PhD, Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - D H Pashley
- David Henry Pashley, DMD, PhD, Department of Oral Biology, The Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - C A Souza Costa
- Carlos Alberto de Souza Costa, DDS, MSc, PhD, Department of Physiology and Pathology, Sao Paulo State University (UNESP), School of Dentistry, SP, Brazil
| | - J Hebling
- *Josimeri Hebling, DDS, MSc, PhD, Department of Orthodontics and Pediatric Dentistry, Sao Paulo State University (UNESP), School of Dentistry, SP, Brazil
| |
Collapse
|
22
|
Tekbas Atay M, Seseogullari-Dirihan R, Mutluay MM, Tezvergil-Mutluay A. Long-term effect of curcuminoid treatment on resin-to-dentin bond strength. Eur J Oral Sci 2021; 130:e12837. [PMID: 34865272 DOI: 10.1111/eos.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
Endogenous dentin proteases contribute to the degradation of collagen fibrils in the hybrid layer. Recently, inhibition of host-derived proteases by curcuminoids has shown promising results. The aim of this study was to evaluate the effect of curcuminoid treatment on the microtensile bond strength (μTBS) after 24 h or 12 months of storage. Fifty-four extracted sound human molars were flattened to mid-coronal dentin and divided into nine groups. After phosphoric acid-etching for 15 s, the dentin was experimentally treated for 60 s using 100 μM or 200 μM of curcumin, diflourobenzocurcumin, or demethoxycurcumin dissolved in 1% and 2% dimethyl sulfoxide (DMSO)/water solutions. Untreated and DMSO-treated groups served as controls. After bonding agent application, each tooth was restored with dental composite. The molars were sectioned into 0.9 × 0.9 × 6 mm beams. The μTBS testing was performed after 24 h and 12 months of storage in artificial saliva. Data were analyzed using regression analyses. Failure patterns were evaluated using scanning electron microscopy. Dentin treatment with curcuminoids did not adversely affect 24-h μTBS compared to controls. After 12 months, the μTBS of curcuminoid groups was statistically significantly higher than the controls. This study indicates the feasibility of using curcuminoids as protease inhibitors.
Collapse
Affiliation(s)
- Meltem Tekbas Atay
- Department of Restorative Dentistry, Faculty of Dentistry, University of Trakya, Edirne, Turkey
| | - Roda Seseogullari-Dirihan
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland
| | - Mustafa Murat Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Prosthetic Dentistry, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland.,Turku University Hospital, TYKS, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Abuelenain DA, Abou Neel EA, Abuhaimed TS, Alamri AM, Ammar HS, Bukhary SMN. Effect of Curcumin Suspension and Vitamin C on Dentin Shear Bond Strength and Durability. A Pilot Study. Open Dent J 2021. [DOI: 10.2174/1874210602115010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Preserving the strength and durability of dentin bonds is a concern of dental researchers and practitioners.
Objective:
The aim of this study was to investigate the effect of treating etched dentin with vitamin C and curcumin suspension as cross-linking agents on the shear bond strength and durability of a universal dental adhesive.
Methods:
Extracted human third molar teeth were collected. Fifty-six flat coronal dentin surfaces were divided equally into four groups: (1) treated with adhesives; (2) etched with 37% H3PO4 for 10s before application of adhesives; (3) same as group (2), but with dentin treated with 2.5% curcumin suspension for 60s before the application of adhesive; and (4) same as group (3), but with the use of a 20% vitamin C suspension instead of a curcumin suspension. Filtek Z350XT composite was built for all samples. Half of the samples in each group were subjected to thermocycling. Shear bond strength was measured using a universal testing machine. Scanning electron microscopy was used to investigate the dentinal surfaces after treatment.
Results:
Treatment with curcumin suspension preserved immediate and long-term bond strength. Conversely, treatment of etched dentin with vitamin C solution significantly reduced the immediate bond strength, but a significant improvement was observed after aging. SEM showed that both cross-linking agents resulted in narrowing or closing of the dentinal tubules, with an adhesive mode of failure.
Conclusion:
The application of curcumin or vitamin C suspension to acid-etched dentin resulted in different effects on immediate and long-term shear bond strength when using universal adhesives.
Collapse
|
24
|
Maravić T, Baena E, Mazzitelli C, Josić U, Mancuso E, Checchi V, Generali L, Ceballos L, Breschi L, Mazzoni A. Endogenous Enzymatic Activity in Dentin Treated with a Chitosan Primer. Int J Mol Sci 2021; 22:ijms22168852. [PMID: 34445554 PMCID: PMC8396363 DOI: 10.3390/ijms22168852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to evaluate the effect of different concentrations of chitosan polymer on dentinal enzymatic activity by means of gelatin and in situ zymography. Human dentin was frozen and ground in a miller. Dentin powder aliquots were demineralized with phosphoric acid and treated with three different concentrations of lyophilized chitosan polymer (1, 0.5 and 0.1 wt%) dissolved in distilled water. Dentin proteins were extracted from each experimental group and electrophoresed under non-reducing conditions in 10% SDS-PAGE containing fluorescein-labeled gelatin. After 48 h in the incubation buffer at 37 °C, proteolytic activity was registered under long-wave UV light scanner and quantified by using Image J software. Furthermore, additional teeth (n = 4) were prepared for the in situ zymographic analysis in unrestored as well as restored dentin pretreated with the same chitosan primers. The registered enzymatic activity was directly proportional to the chitosan concentration and higher in the restored dentin groups (p < 0.05), except for the 0.1% chitosan primer. Chitosan 0.1% only showed faint expression of enzymatic activity compared to 1% and 0.5% concentrations. Chitosan 0.1% dissolved in water can produce significant reduction in MMPs activity and could possibly contribute to bond strength preservation over time.
Collapse
Affiliation(s)
- Tatjana Maravić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Eugenia Baena
- Area of Stomatology, Health Sciences Faculty, King Juan Carlos University, Avda. de Atenas, 28922 Alcorcón, Spain; (E.B.); (L.C.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Uroš Josić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Vittorio Checchi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena & Reggio Emilia, 41124 Modena, Italy; (V.C.); (L.G.)
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena & Reggio Emilia, 41124 Modena, Italy; (V.C.); (L.G.)
| | - Laura Ceballos
- Area of Stomatology, Health Sciences Faculty, King Juan Carlos University, Avda. de Atenas, 28922 Alcorcón, Spain; (E.B.); (L.C.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy; (T.M.); (C.M.); (U.J.); (E.M.); (L.B.)
- Correspondence: ; Tel.: +39-051-208-8139; Fax: +39-051-22-5208
| |
Collapse
|
25
|
ToF-SIMS Analysis of Demineralized Dentin Biomodified with Calcium Phosphate and Collagen Crosslinking: Effect on Marginal Adaptation of Class V Adhesive Restorations. MATERIALS 2021; 14:ma14164535. [PMID: 34443059 PMCID: PMC8398264 DOI: 10.3390/ma14164535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/05/2022]
Abstract
This study aimed to assess the effect of biomodification before adhesive procedures on the tooth-restoration interface of class V restorations located in caries-simulated vs. sound dentin, and the quality of dentin surface by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Class V cavities located on cervical dentin were prepared on the buccal surfaces of extracted human molars under the simulation of intratubular fluid flow. Two dentin types, i.e., sound and demineralized by formic-acid, were biomodified with 1% riboflavin and calcium phosphate (CaP) prior to the application of a universal adhesive (Clearfil Universal Bond) in etch and rinse or self-etch mode, and a conventional micro hybrid composite (Clearfil APX). Restorations were subjected to thermo mechanical fatigue test and percentages of continuous margins (% CM) before/after fatigue were compared. Bio modification of dentin surfaces at the molecular level was analyzed by Time-of-Flight Secondary Mass Spectometry (ToF-SIMS). % CM were still significantly higher in tooth-restoration interfaces on sound dentin. Meanwhile, biomodification with riboflavin and CaP had no detrimental effect on adhesion and in carious dentin, it improved the % CM both before and after loading. Etching carious dentin with phosphoric acid provided with the lowest results, leading even to restoration loss. The presence of molecule fragments of riboflavin and CaP were detected by ToF-SIMS, evidencing dentin biomodification. The adhesive interface involving carious dentin could be improved by the use of a collagen crosslinker and CaP prior to adhesive procedures.
Collapse
|
26
|
Effect of chlorhexidine-loaded poly(amido amine) dendrimer on matrix metalloproteinase activities and remineralization in etched human dentin in vitro. J Mech Behav Biomed Mater 2021; 121:104625. [PMID: 34130080 DOI: 10.1016/j.jmbbm.2021.104625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
To investigate the effect of chlorhexidine (CHX)-loaded carboxyl-terminated poly (amido amine) dendrimer (CHX-PAMAM-COOH) on matrix metalloproteinase (MMP) activities and remineralization in human dentin, CHX-PAMAM-COOH was prepared and characterized by Fourier-transform infrared spectroscopy. The inhibitory effects of CHX, PAMAM-COOH, and CHX-PAMAM-COOH on soluble recombinant human matrix metalloproteinase (rhMMP-2) and dentin-bound endogenous MMP activity were measured using an MMP Activity Assay Kit. In situ zymography was performed to evaluate the gelatinase activity in dentin pretreated with CHX, PAMAM-COOH, and CHX-PAMAM-COOH. The remineralization of etched dentin pretreated with CHX, PAMAM-COOH, and CHX-PAMAM-COOH was evaluated by field emission-scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) after incubation in artificial saliva for 14 days. The results of the rhMMP-2 activity assay showed that the MMP-2 activity in the CHX-PAMAM-COOH group and the CHX group decreased significantly to 5.58 ± 0.85% (P < 0.05) and 4.86 ± 1.12% (P < 0.05), respectively, but that in the PAMAM-COOH group increased significantly to 213.38 ± 0.11% (P < 0.05). The results of total MMP activity and in situ zymography showed a significant reduction in endogenous gelatinase activity in dentin in the CHX-PAMAM-COOH group and the CHX group. The SEM and EDS results showed that rod-like crystals were formed on the etched dentin surface in the PAMAM-COOH group and the CHX-PAMAM-COOH group, and their Ca/P ratios were 1.73 and 1.71, respectively. In conclusion, CHX-PAMAM-COOH can inhibit dentin-bound endogenous MMPs and induce remineralization in etched dentin simultaneously. However, it is important to note that the catalytic role of PAMAM dendrimers may have an undesired excitatory effect on MMP activity, which cannot be ignored if PAMAM dendrimers were used alone in the oral environment.
Collapse
|
27
|
Fugolin AP, Logan MG, Kendall AJ, Ferracane JL, Pfeifer CS. Effect of side-group methylation on the performance of methacrylamides and methacrylates for dentin hybridization. Dent Mater 2021; 37:805-815. [PMID: 33663882 PMCID: PMC8058282 DOI: 10.1016/j.dental.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/30/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The stability of the bond between polymeric adhesives to mineralized substrates is crucial in many biomedical applications. The objective of this study was to determine the effect of methyl substitution at the α- and β-carbons on the kinetics of polymerization, monomer hydrolytic stability, and long-term bond strength to dentin for methacrylamide- and methacrylate-based crosslinked networks for dental adhesive applications. METHODS Secondary methacrylamides (α-CH3 substituted=1-methyl HEMAM, β-CH3 substituted=2-methyl HEMAM, and unsubstituted=HEMAM) and OH-terminated methacrylates (α- and β-CH3 mixture=1-methyl HEMA and 2-methyl HEMA, and unsubstituted=HEMA) were copolymerized with urethane dimethacrylate. The kinetics of photopolymerization were followed in real-time using near-IR spectroscopy. Monomer hydrolysis kinetics were followed by NMR spectroscopy in water at pH 1 over 30 days. Solvated adhesives (40 vol% ethanol) were used to bond composite to dentin and microtensile bond strength (μTBS) measured after 24h and 6 months storage in water at 37°C. RESULTS The rate of polymerization increased in the following order: OH-terminated methacrylates≥methacrylamides>NH2-terminated methacrylates, with minimal effect of the substitution. Final conversion ranged between 79% for 1-methyl AEMA and 94% for HEMA. 1-methyl-HEMAM showed the highest and most stable μTBS, while HEMA showed a 37% reduction after six months All groups showed measurable degradation after up to 4 days in pH 1, with the methacrylamides showing less degradation than the methacrylates. Additionally, transesterification products were observed in the methacrylamide groups. SIGNIFICANCE Amide monomers were significantly more stable to hydrolysis than the analogous methacrylates. The addition of a α- or β-CH3 groups increased the rate of hydrolysis, with the magnitude of the effect tracking with the expected base-catalyzed hydrolysis of esters or amides, but opposite in influence. The α-CH3 substituted secondary methacrylamide, 1-methyl HEMAM, showed the most stable adhesive interface. A side reaction was observed with transesterification of the monomers studied under ambient conditions, which was not expected under the relatively mild conditions used here, which warrants further investigation.
Collapse
Affiliation(s)
- Ana P Fugolin
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Matthew G Logan
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alexander J Kendall
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jack L Ferracane
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carmem S Pfeifer
- Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Effect of a Copaiba Oil-Based Dental Biomodifier on the Inhibition of Metalloproteinase in Adhesive Restoration. Adv Pharmacol Pharm Sci 2021; 2021:8840570. [PMID: 33681808 PMCID: PMC7904348 DOI: 10.1155/2021/8840570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 02/07/2021] [Indexed: 11/29/2022] Open
Abstract
Aim This study sets out to evaluate the antiproteolytic activity of copaiba oil-based emulsion at the resin/dentin adhesive interface union formed with conventional and self-etching adhesives systems. Methods At in situ zymography, 30 teeth were sectioned 2 mm below the enamel-dentin junction; a smear layer was standardized and subdivided into four groups. Gelatin conjugated with fluorescein was used and taken to the fluorescence microscope for evaluation. In cytotoxicity, the Trypan Blue method was used at four different time points. The tested groups were (G1) control with distilled water; (G2) 2% chlorhexidine (CLX); (G3) emulsion based on copaiba oil (EC) 10% + X; (G4) 10% EC + Y; and (G5) EC 10% alkaline. The zymographic assay used the same groups described, but in 30 seconds and 10 and 20 minutes. HT1080 cells were incubated and submitted to electrophoresis. The gel was analyzed using ImageJ software. Mann–Whitney and Kruskal–Wallis tests were used in the statistical analysis (p < 0.05). Results ECs showed higher cell viability in the cytotoxicity test and showed a significant difference in 10 and 20 minutes. In the zymographic assay, alkaline EC reduced 67% of MMP-2 activity and 44% of MMP-9 compared to 2% chlorhexidine. At in situ zymography in qualitative evaluation, all groups tested showed inhibition of activity in metalloproteinases. Conclusion EC showed activity in the inhibition of metalloproteinases in vitro and in situ, especially the alkaline one. The survey shows the possibility of using ECs, a product from Amazonian biodiversity, as a biomodifier in dentistry.
Collapse
|
29
|
Degirmenci BU, Degirmenci A, Kara E. Effects of Various Antioxidant Pretreatment Modalities on Adhesion to Sound and Caries-Affected Dentin: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2021. [DOI: 10.1177/2320206821997985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: Natural antioxidants were offered as the answer of dentin adhesion issue. The aim of this study is to investigate the effects of proanthocyanidin and lycopene as pretreatment agents on the sound and caries-affected dentin surface on microtensile bond strength and microleakage. Materials and Methods: This study was designed as in vitro because of that 84 mandibular molar teeth were collected. Forty-two of the included teeth were carious teeth, while the other 42 were without caries. Sixty of them were used for microleakage and 24 for microtensile bond strength testing and scanning electron microscopy analysis. The samples were divided into six subgroups randomly according to dentin pretreatments: 5% proanthocyanidin, 5% lycopene, and no antioxidant application. After the restorative procedures, samples were attached to the microtensile tester. Samples were subjected to tensile stress in the load cell until they broke at a speed of 0.5 mm per min. Microtensile bond strength (µTBS) and microleakage test data were analyzed with two-way analysis of variance, Bonferroni correction, and Tamhane’s T2 tests. Results: Two-way variance analysis showed that dentin pretreatment applications, dentin substrate, and the interaction between these two parameters had statistically significant effects on µTBS values ( P < .001). There was no difference between dentin pretreatment applications in terms of microleakage scores ( P > .05). Conclusion: The application of dentin pretreatment with proanthocyanidin is a successful procedure that increases the bond strength in both dentin substrate, while pretreatment with lycopene in caries-affected dentin reduces it.
Collapse
Affiliation(s)
| | - Alperen Degirmenci
- Department of Restorative Dentistry, Van Yuzuncu Yil University, Van, Turkey
| | - Emine Kara
- Department of Restorative Dentistry, Bursa Oral and Dental Health Care Center, Turkish Health Ministry, Bursa, Turkey
| |
Collapse
|
30
|
Baldion PA, Cortes CC, Castellanos JE, Betancourt DE. Effect of myricetin on odontoblast-like cells and its potential to preserve resin-dentin Bonds. J Mech Behav Biomed Mater 2021; 117:104392. [PMID: 33601300 DOI: 10.1016/j.jmbbm.2021.104392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Stabilization of the resin-dentin interface to increase the durability of adhesive dental restorations is a challenging task. The use of naturally occurring collagen crosslinking agents has been proposed to prevent degradation of the hybrid layer. Myricetin (MYR) is a flavonoid with a wide variety of beneficial effects and it has been used for the treatment of different systemic pathologies. The chemical structure of MYR makes it a powerful antioxidant, an inhibitor of matrix metalloproteinase (MMP) activity, and a collagen cross-linker. This study presents MYR as a novel treatment in operative dentistry to stabilize the resin-dentin interface by inhibiting MMPs and crosslinking the collagen. Viability tests carried out using a resazurin assay showed that MYR had no cytotoxic effects on human odontoblast-like cells and the phenotype was preserved. Fluorometric MMP activity assay and fluorescence microscopy revealed that the MMPs in the demineralized dentin were effectively inhibited by the application of MYR (600 μM for 120 s). A microtensile bond strength test was performed immediately and after six months of storage. The bond strength to dentin was not affected by MYR and was preserved over time. Demineralized dentin beams were evaluated to determine the dentin biomodification using microtensile strength and elastic modulus assays. MYR improved the biomechanical behavior of the demineralized dentin similarly to glutaraldehyde, a recognized crosslinking agent. These findings indicated that MYR acts as an MMP inhibitor, collagen cross-linker, and preserver of the bond strength. Furthermore, MYR is an ethanol-soluble molecule with a lower molecular weight than the other polyphenols; hence, it can be applied for a short time and diffuses deeply through the dentin without any associated cytotoxicity. This molecule has beneficial effects on the biological and mechanical behavior of the resin-dentin interface and may be used to effectively stabilize the hybrid layer in a clinical setting.
Collapse
Affiliation(s)
- Paula A Baldion
- Departamento de Salud Oral, Facultad de Odontologia, Universidad Nacional de Colombia, Colombia.
| | - Cristhian C Cortes
- Departamento de Salud Oral, Facultad de Odontologia, Universidad Nacional de Colombia, Colombia.
| | - Jaime E Castellanos
- Departamento de Medicina Oral y Ciencias Basicas, Facultad de Odontologia, Universidad Nacional de Colombia, Av. Cra 30 No. 45-03, Edificio 210, Bogotá, Colombia.
| | - Diego E Betancourt
- Departamento de Salud Oral, Facultad de Odontologia, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
31
|
Geng Vivanco R, Tonani-Torrieri R, Souza ABS, Marquele-Oliveira F, Pires-de-Souza FDCP. Effect of natural primer associated to bioactive glass-ceramic on adhesive/dentin interface. J Dent 2021; 106:103585. [PMID: 33465450 DOI: 10.1016/j.jdent.2021.103585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES This study evaluated the effect of propolis associated with Biosilicate on the bond strength (BS) and gelatinolytic activity at the adhesive/dentin interface. METHODS Occlusal cavities were prepared in 320 human molars. Half of them were submitted to cariogenic challenge. All the teeth were separated into eight groups (n = 20): Control - Adhesive System (Single Bond Universal, 3 MESPE); CHX - 0.12 % Chlorhexidine; Bio - 10 % Biosilicate; P16 - Propolis with low levels of polyphenols; P45 - Propolis with high levels of polyphenols; CHX Bio - CHX + Bio; P16 Bio - P16+Bio; P45 Bio - P45+Bio. The adhesive was applied (self-etch mode) after treatments. Restorations (Filtek Z350, 3 MESPE) were performed and samples sectioned into sticks, separated and stored in distilled water at 37 °C for 24 h, 6 months and 1 year. Microtensile BS (0.5 mm/min) was tested and analyzed (2-way ANOVA, Bonferroni's Test, p < .05 and Weibull analysis). Fracture patterns (VH-M100, Keyence) and adhesive interfaces (SEM, EVO-MA10, ZEISS and TEM, JEM-1010, JEOL) were observed; and biodegradation and in situ zymography performed. RESULTS P16 presented the highest BS values on sound dentin after 6 months. In caries-affected dentin (CAD), the association of treatments promoted the highest BS after 24 h. Sound dentin obtained significantly higher Weibull modulus than CAD. SEM displayed resin tags in P16, P45 and association of treatments. TEM showed good interaction between adhesive and dentin. According to the in situ zymography and biodegradation assay all natural primers reduced the gelatinolytic activity. P45 presented the lowest biodegradation and enzymatic activity. CONCLUSIONS Propolis and the association of treatments promoted the highest bond strength results and preserved the dentin. All the experimental groups exhibited low gelatinolytic activity. CLINICAL SIGNIFICANCE Propolis and the association of treatments with Biosilicate could preserve the dentin substrate and improve the longevity of composite restorations.
Collapse
Affiliation(s)
- Rocio Geng Vivanco
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Cafe, s/nº, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| | - Rafaella Tonani-Torrieri
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Cafe, s/nº, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| | - Ana Beatriz Silva Souza
- University of Ribeirao Preto, Av. Costábile Romano, 2201 - Nova Ribeirânia, Ribeirão Preto, Sao Paulo, 14096-900, Brazil.
| | - Franciane Marquele-Oliveira
- Eleve Science Research and Development, Av. Dra. Nadir Águiar, 1805 - Jd. Dr. Paulo Gomes Romeo, Ribeirão Preto, SP, 14056-680, Brazil.
| | - Fernanda de Carvalho Panzeri Pires-de-Souza
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Cafe, s/nº, Ribeirão Preto, Sao Paulo, 14040-904, Brazil.
| |
Collapse
|
32
|
Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel) 2021; 10:antiox10010073. [PMID: 33430013 PMCID: PMC7828031 DOI: 10.3390/antiox10010073] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.
Collapse
|
33
|
Bhandari S, Kondody R, Nair A, Mathew R, Divakar KP, Nambiar M. Evaluation of Aloe vera as matrix metalloproteinase inhibitor in human dentin with and without dentin-bonding agent: An in vitro study. J Conserv Dent 2021; 24:491-495. [PMID: 35399770 PMCID: PMC8989161 DOI: 10.4103/jcd.jcd_474_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Proper hybrid layer formation lays the foundation of resin–dentin bonding. The resin infiltration in demineralized dentin collagen couples with the adhesive/resin composites in the mineralized dentin surface. However, the activation of enzymatic activity in the collagen matrix can degrade the hybrid layer. Over the time, it leads to reduced bond strength. Mainly, the enzymes involved are matrix metalloproteinases (MMPs) which are involved in degrading most of the extracellular matrix components. Aloe vera is an herb with an anti-inflammatory effect, but its role in human dentin as an enzyme inhibitor has not been verified yet. Aims: The purpose of the study was designed for evaluating the inhibitory action of Aloe vera on MMP in human dentin with and without dentin bonding agents. Materials and Methods: A total of 15 freshly extracted healthy human teeth were collected and stored at 4°C until use. The roots were separated. The enamel and remnant pulp tissue were removed, and collected teeth were pulverized with liquid nitrogen in the minimum volume of 50-mM phosphate buffer to obtain dentin powder extract. The dentin powder extract is the source of MMPs, and therefore, the extract was treated with A. vera solution and incubated to assess the enzyme inhibition by the plate assay method and zymographic analysis. Results: A. vera treated sample with and without dentin bonding agent showed inhibition of dentin MMP's activity by plate assay method and confirmed by zymogram analysis. Conclusions: A. vera has the potential for inhibiting the MMPs enzyme activity of human dentin collagen with and without dentin bonding agents.
Collapse
|
34
|
Shen J, Xie H, Wang Q, Wu X, Yang J, Chen C. Evaluation of the interaction of chlorhexidine and MDP and its effects on the durability of dentin bonding. Dent Mater 2020; 36:1624-1634. [DOI: 10.1016/j.dental.2020.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
|
35
|
Antimicrobial antidegradative dental adhesive preserves restoration-tooth bond. Dent Mater 2020; 36:1666-1679. [PMID: 33183773 DOI: 10.1016/j.dental.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Assess the ability of an antimicrobial drug-releasing resin adhesive, containing octenidine dihydrochloride (OCT)-silica co-assembled particles (DSPs), to enhance the biostability and preserve the interfacial fracture toughness (FT) of composite restorations bonded to dentin. Enzyme-catalyzed degradation compromises the dental restoration-tooth interface, increasing cariogenic bacterial infiltration. In addition to bacterial ingress inhibition, antimicrobial-releasing adhesives may exhibit direct interfacial biodegradation inhibition as an additional benefit. METHODS Mini short-rod restoration bonding specimens with total-etch adhesive with/without 10% wt. DSPs were made. Interfacial fracture toughness (FT) was measured as-manufactured or post-incubation in simulated human salivary esterase (SHSE) for up to 6-months. Effect of OCT on SHSE and whole saliva/bacterial enzyme activity was assessed. Release of OCT outside the restoration interface was assessed. RESULTS No deleterious effect of DSPs on initial bonding capacity was observed. Aging specimens in SHSE reduced FT of control but not DSP-adhesive-bonded specimens. OCT inhibited SHSE degradation of adhesive monomer and may inhibit endogenous proteases. OCT inhibited bacterial esterase and collagenase. No endogenous collagen breakdown was detected in the present study. OCT increased human saliva degradative esterase activity below its minimum inhibitory concentration towards S. mutans (MIC), but inhibited degradation above MIC. OCT release outside restoration margins was below detection. SIGNIFICANCE DSP-adhesive preserves the restoration bond through a secondary enzyme-inhibitory effect of released OCT, which is virtually confined to the restoration interface microgap. Enzyme activity modulation may produce a positive-to-negative feedback switch, by increasing OCT concentration via biodegradation-triggered release to an effective dose, then subsequently slowing degradation and degradation-triggered release.
Collapse
|
36
|
Cardoso F, Boteon AP, Silva TAPD, Prakki A, Wang L, HonÓrio HM. In situ effect of a proanthocyanidin mouthrinse on dentin subjected to erosion. J Appl Oral Sci 2020; 28:e20200051. [PMID: 33111880 PMCID: PMC9648961 DOI: 10.1590/1678-7757-2020-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
Proanthocyanidin has been shown to be efficient in inhibiting matrix metalloproteinases.
Collapse
Affiliation(s)
- Fabrícia Cardoso
- Universidade de São Paulo , Faculdade de Odontologia de Bauru , Departamento de Dentística, Endodontia e Materiais Odontológicos , Bauru , Brasil
| | - Ana Paula Boteon
- Universidade de São Paulo , Faculdade de Odontologia de Bauru , Departamento de Dentística, Endodontia e Materiais Odontológicos , Bauru , Brasil
| | - Tamires Alves Pereira da Silva
- Universidade de São Paulo , Faculdade de Odontologia de Bauru , Departamento de Odontopediatria, Ortodontia e Saúde Coletiva , Bauru , Brasil
| | - Anuradha Prakki
- University of Toronto , Faculty of Dentistry , Department of Clinical Sciences (Restorative) , Toronto , Canada
| | - Linda Wang
- Universidade de São Paulo , Faculdade de Odontologia de Bauru , Departamento de Dentística, Endodontia e Materiais Odontológicos , Bauru , Brasil
| | - Heitor Marques HonÓrio
- Universidade de São Paulo , Faculdade de Odontologia de Bauru , Departamento de Odontopediatria, Ortodontia e Saúde Coletiva , Bauru , Brasil
| |
Collapse
|
37
|
Gomes BS, Rossi AL, da Silva EM, Moreira KTT, Dos Santos JC, Ferreira-Pereira A, Portela MB. Effects of a biomimetic analog-based experimental bonding system on caries-affected and sound dentin. Microsc Res Tech 2020; 83:1610-1622. [PMID: 32920955 DOI: 10.1002/jemt.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
This study compared the ultrastructure, chemical composition, and proteases activity (PA) of sound (SD) and caries-affected dentin (CAD) in the dentin hybrid layer after using an experimental bonding system containing pyromellitic dianhydride glycerol methacrylate and biomimetic analogs. The bonding system used a three step and a total-etch procedure. Polyacrylic acid (5%) and sodium trimetaphosphate (5%) were added to the primer and monocalcium phosphate monohydrate (9%), beta-tricalcium phosphate (10.5%), and calcium hydroxide (0.5%) were added to the adhesive. Transmission electron microscopy (TEM) was used to evaluate the resultant structure, particularly the adhesive-dentin and the demineralized-SD interfaces. The chemical composition was evaluated through energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED). The PA was measured with the Coomassie Blue-G250 coloring test, and the PA data were analyzed by ANOVA. EDS identified the presence of isolated calcium phosphate nanoparticles in the demineralized region; however, the SAED analysis did not show any evidences of hydroxyapatite (HA) neoformation in SD and CAD. The biomimetic analog-based adhesive system inhibited the activities of dentin proteases immediately after treatment. Additionally, the proteolytic activity on the affected dentin resembled that of the SD. In conclusion, no HA formed in the demineralized SD and CAD although there were calcium and phosphate deposits. The experimental adhesive system inhibited dentin proteases. The present study uses a new approach to investigate the hybrid layer behavior in dentin. The experimental adhesive system was synthesized and used on sound and affected-caries dentin as the substrate to reproduce real clinical conditions.
Collapse
Affiliation(s)
- Bianca Silva Gomes
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Karla Tatiana Toro Moreira
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Juliane Cucinello Dos Santos
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Antônio Ferreira-Pereira
- General Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maristela Barbosa Portela
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
- Laboratory of Oral Microbiology, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
38
|
Shen L, Xiong J, Jiang Q. Influence of proanthocyanidins combined with ethanol-wet bonding on the bonding quality of fibre posts to root dentine. Eur J Oral Sci 2020; 128:325-335. [PMID: 32737932 DOI: 10.1111/eos.12719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 11/29/2022]
Abstract
This study evaluated the influence of a bonding approach using proanthocyanidins (PAs) combined with ethanol-wet bonding (EWB) and a hydrophobic adhesive on the bonding quality of fibre posts. After endodontic treatment and post-space preparation, 72 single-rooted extracted human teeth were etched, thoroughly rinsed, and then treated using the following procedures (n = 24 teeth per group): group 1, no pretreatment; group 2, pretreatment with absolute ethanol three times, for 30 s each time; or group 3, pretreatment with absolute ethanol solution containing 5% PAs three times, for 30 s each time. Six teeth per group were dried according to a dry and a wet drying protocol and then observed using field emission-scanning electron microscopy. The remaining 18 teeth in each group were cemented with fibre posts: All-Bond 3 and Duo-Link cement were used for group 1; and hydrophobic adhesive and Duo-Link cement were used for groups 2 and 3. Push-out bond strength, failure mode, and nanoleakage were evaluated immediately and after collagenase treatment. Higher push-out bond strength and less nanoleakage were observed in the two ethanol-pretreatment groups, regardless of storage conditions. Teeth pretreated with PAs + ethanol exhibited significantly higher push-out bond strength after collagenase treatment than did teeth pretreated with ethanol alone. Within the limits of this study, the bonding approach of PAs combined with EWB and a hydrophobic adhesive synergistically improved the durability of fibre post bonds.
Collapse
Affiliation(s)
- Lipei Shen
- School of Stomatology, Capital Medical University, Beijing, China
| | - Jie Xiong
- School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Yao C, Ahmed MH, Li X, Nedeljkovic I, Vandooren J, Mercelis B, Zhang F, Van Landuyt KL, Huang C, Van Meerbeek B. Zinc-Calcium-Fluoride Bioglass-Based Innovative Multifunctional Dental Adhesive with Thick Adhesive Resin Film Thickness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30120-30135. [PMID: 32530270 DOI: 10.1021/acsami.0c06865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apart from producing high bond strength to tooth enamel and dentin, a dental adhesive with biotherapeutic potential is clinically desirable, aiming to further improve tooth restoration longevity. In this laboratory study, an experimental two-step universal adhesive, referred to as Exp_2UA, applicable in both the etch-and-rinse (E&R) and self-etch (SE) modes and combining a primer, containing 10-methacryloyloxydecyldihydrogen phosphate as a functional monomer with chemical binding potential to hydroxyapatite, with a bioglass-containing hydrophobic adhesive resin, was multifactorially investigated. In addition to primary property assessment, including measurement of bond strength, water sorption, solubility, and polymerization efficiency, the resultant adhesive-dentin interface was characterized by transmission electron microscopy (TEM), the filler composition was analyzed by energy-dispersive X-ray spectroscopy, and the bioactive potential of the adhesive was estimated by measuring the long-term ion release and assessing its antienzymatic and antibacterial potential. Four representative commercial adhesives were used as reference/controls. Application in both the E&R and SE modes resulted in a durable bonding performance to dentin, as evidenced by favorable 1 year aged bond strength data and a tight interfacial ultrastructure that, as examined by TEM, remained ultramorphologically unaltered upon 1 year of water storage aging. TEM revealed a 20 μm thick hydrophobic adhesive layer with a homogeneous bioglass filler distribution. Adequate polymerization conversion resulted in extremely low water sorption and solubility. In situ zymography revealed reduced endogenous proteolytic activity, while Streptococcus mutans biofilm formation was inhibited. In conclusion, the three-/two-step E&R/SE Exp_2UA combines the high bonding potential and bond degradation resistance with long-term ion release, rendering the adhesive antienzymatic and antibacterial potential.
Collapse
Affiliation(s)
- Chenmin Yao
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Mohammed H Ahmed
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Faculty of Dentistry, Department of Dental Biomaterials, Tanta University, 31511 Tanta, Egypt
| | - Xin Li
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Ivana Nedeljkovic
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Department of Dental Material Sciences, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Ben Mercelis
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Fei Zhang
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
- Department of Materials Engineering, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | - Kirsten L Van Landuyt
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), , 3000 Leuven, Belgium
| |
Collapse
|
40
|
Effect of Chitosan as a Cross-Linker on Matrix Metalloproteinase Activity and Bond Stability with Different Adhesive Systems. Mar Drugs 2020; 18:md18050263. [PMID: 32443628 PMCID: PMC7280998 DOI: 10.3390/md18050263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to evaluate the effect of 0.1% chitosan (Ch) solution as an additional primer on the mechanical durability and enzymatic activity on dentine using an etch-and-rinse (E&R) adhesive and a universal self-etch (SE) adhesive. Microtensile bond strength and interfacial nanoleakage expression of the bonded interfaces for all adhesives (with or without pretreatment with 0.1% Ch solution for 1 min and air-dried for 5 s) were analyzed immediately and after 10,000 thermocycles. Zymograms of protein extracts from human dentine powder incubated with Optibond FL and Scotchbond Universal on untreated or Ch-treated dentine were obtained to examine dentine matrix metalloproteinase (MMP) activities. The use of 0.1% Ch solution as an additional primer in conjunction with the E&R or SE adhesive did not appear to have influenced the immediate bond strength (T0) or bond strength after thermocycling (T1). Zymography showed a reduction in MMP activities only for mineralized and demineralized dentine powder after the application of Ch. Application of 0.1% Ch solution does not increase the longevity of resin–dentine bonds. Nonetheless, the procedure appears to be proficient in reducing dentine MMP activities within groups without adhesive treatments. Further studies are required to comprehend the cross-linking of Ch with dentine collagen.
Collapse
|
41
|
Breschi L, Maravic T, Comba A, Cunha SR, Loguercio AD, Reis A, Hass V, Cadenaro M, Mancuso E, Mayer-Santos E, Niu L, Pashley DH, Tay FR, Mazzoni A. Chlorhexidine preserves the hybrid layer in vitro after 10-years aging. Dent Mater 2020; 36:672-680. [DOI: 10.1016/j.dental.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
42
|
Venkatesh S, Asha S, Krishnaveni M. Purification of Matrixins from Marine Cephalopod. Protein J 2020; 39:284-290. [PMID: 32185695 DOI: 10.1007/s10930-020-09893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Matrixins play a major role in tissue regeneration and also in various patho-physiological processes. Discovery of matrix metallo proteins (MMPs) and their detailed structural and functional analysis would lead to the development of numerous potent synthetic inhibitors of matrixins to treat certain diseases. In the present investigation, a marine cephalopod- Octopus sp. collected from Cochin, in the south western Indian Ocean was used as animal model for purification of matrixins. The measurements, count, indices and other morphometric characters were noted down before assessing the presence of matrixins in the crude extract of Octopus samples. Purification of matrixins was carried out employing gel filtration chromatography and the purified matrixins was confirmed by gelatin zymogram. The purity of the protein was checked by both native and SDS-PAGE. The studies have provided clear indications of production of MMPs or matrixins with gelatinolytic activity in Octopus sp.
Collapse
Affiliation(s)
- S Venkatesh
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - S Asha
- Immuno-Pharmacology Laboratory, Center for Marine Science and Technology, Manonmaniam Sundaranar University, Marina campus, Rajakkamangalam, Kanyakumari, Tamilnadu, 629502, India
| | - M Krishnaveni
- Immuno-Pharmacology Laboratory, Center for Marine Science and Technology, Manonmaniam Sundaranar University, Marina campus, Rajakkamangalam, Kanyakumari, Tamilnadu, 629502, India.
| |
Collapse
|
43
|
Wu Q, Shan T, Zhao M, Mai S, Gu L. The inhibitory effect of carboxyl-terminated polyamidoamine dendrimers on dentine host-derived matrix metalloproteinases in vitro in an etch-and-rinse adhesive system. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182104. [PMID: 31824679 PMCID: PMC6837191 DOI: 10.1098/rsos.182104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The biomimetic remineralization of collagen fibrils has increased interest in restoring the demineralized dentine generated by dental caries. Carboxyl-terminated polyamidoamine dendrimers (PAMAM-COOH), hyperbranched polymeric macromolecules, can act as non-collagenous proteins to induce biomimetic remineralization on a dentine organic matrix. However, in vivo remineralization is an extremely time-consuming process; before complete remineralization, demineralized dentine collagen fibrils are susceptible to degradation by host-derived matrix metalloproteinases (MMPs). Therefore, we examined the effect of fourth-generation PAMAM-COOH (G4-PAMAM-COOH) on the collagenolytic activities of endogenous MMPs, the interaction between G4-PAMAM-COOH and demineralized dentine collagen and the influence of G4-PAMAM-COOH pre-treatment on resin-dentine bonding. G4-PAMAN-COOH not only inhibited exogenous soluble rhMMP9 but also hampered the proteolytic activities of dentine collagen-bound MMPs. Cooperated with the results of G4-PAMAM-COOH absorption and desorption, FTIR spectroscopy provided evidence for the exclusive electrostatic interaction rather than hydrogen or covalent bonding between G4-PAMAM-COOH and dentine collagen. Furthermore, G4-PAMAM-COOH pre-treatment showed no damage to resin-dentine bonding because it did not significantly decrease the elastic modulus of the demineralized dentine, degree of conversion, penetration of the adhesive into the dentinal tubules or ultimate tensile strength. Thus, G4-PAMAM-COOH can effectively inactivate MMPs, retard the enzymolysis of collagen by MMPs and scarcely influence the application of resin-dentine bonding.
Collapse
Affiliation(s)
| | | | | | | | - Lisha Gu
- Author for correspondence: Lisha Gu e-mail:
| |
Collapse
|
44
|
Daood U, Akram Z, Matinlinna J, Fawzy A. Dentine collagen cross-linking using tiopronin-protected Au/EDC nanoparticles formulations. Dent Mater 2019; 35:1017-1030. [DOI: 10.1016/j.dental.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
45
|
Resin-Dentin Bonding Interface: Mechanisms of Degradation and Strategies for Stabilization of the Hybrid Layer. Int J Biomater 2019; 2019:5268342. [PMID: 30853990 PMCID: PMC6378048 DOI: 10.1155/2019/5268342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown that the dentin-resin interface is unstable due to poor infiltration of resin monomers into the demineralized dentin matrix. This phenomenon is related to the incomplete infiltration of the adhesive system into the network of exposed collagen fibrils, mainly due to the difficulty of displacement and subsequent replacement of trapped water between interfibrillar spaces, avoiding adequate hybridization within the network of collagen fibrils. Thus, unprotected fibrils are exposed to undergo denaturation and are susceptible to cyclic fatigue rupture after being subjected to repetitive loads during function. The aqueous inclusions within the hybrid layer serve as a functional medium for the hydrolysis of the resin matrix, giving rise to the activity of esterases and collagenolytic enzymes, such as matrix metalloproteinases, which play a fundamental role in the degradation process of the hybrid layer. Achieving better interdiffusion of the adhesive system in the network of collagen fibrils and the substrate stability in the hybrid layer through different strategies are key events for the interfacial microstructure to adequately function. Hence, it is important to review the factors related to the mechanisms of degradation and stabilization of the hybrid layer to support the implementation of new materials and techniques in the future. The enzymatic degradation of collagen matrix, together with resin leaching, has led to seeking strategies that inhibit the endogenous proteases, cross-linking the denudated collagen fibrils and improving the adhesive penetration removing water from the interface. Some of dentin treatments have yielded promising results and require more research to be validated. A longer durability of adhesive restorations could resolve a variety of clinical problems, such as microleakage, recurrent caries, postoperative sensitivity, and restoration integrity.
Collapse
|
46
|
Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, Ferracane J, Breschi L. The role of polymerization in adhesive dentistry. Dent Mater 2019; 35:e1-e22. [DOI: 10.1016/j.dental.2018.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
47
|
Parise Gré C, Pedrollo Lise D, Ayres A, De Munck J, Tezvergil-Mutluay A, Seseogullari-Dirihan R, Lopes G, Van Landuyt K, Van Meerbeek B. Do collagen cross-linkers improve dentin’s bonding receptiveness? Dent Mater 2018; 34:1679-1689. [DOI: 10.1016/j.dental.2018.08.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/14/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
|
48
|
Pedrosa VO, França FMG, Turssi CP, Amaral FLBD, Teixeira LN, Martinez EF, Basting RT. Effects of caffeic acid phenethyl ester application on dentin MMP-2, stability of bond strength and failure mode of total-etch and self-etch adhesive systems. Arch Oral Biol 2018; 94:16-26. [PMID: 29929070 DOI: 10.1016/j.archoralbio.2018.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Investigate the long-term effect of dentin pretreatment with 0.05 or 0.1% caffeic acid phenethyl ester (CAPE) on (1) bond strength of resin composite to dentin by a three-step etch-and-rinse (Adper Scotchbond Multipurpose/ ASB) or a two-step self-etch adhesive system (Clearfil SE Bond/ CSE), (2) their fracture mode, (3) the micromorphological features of the hybrid layer formed; and (4) the level of MMP-2 in dentin (after application, using a correlative immunoexpression/quantification approach). DESIGN Composite resin blocks were fabricated on 48 third molars (n = 6), according to the type of adhesive and treatment (control, CAPE 0.05% and CAPE 0.1%). Slices were obtained for scanning electron microscopy (SEM) evaluation, and sticks were fabricated for microtensile tests (24 h and 1 year). Aliquots of dentin powder were distributed (n = 12) according to the treatment and the MMP-2 concentration was determined by ELISA. RESULTS Tukey test showed that ASB groups presented higher BS in 24 h than CSE groups. ASB presented a reduction in BS values after 1-year. ASB and CSE presented no significant differences in BS after 1-year. CAPE had no effect on BS for both adhesive systems. The predominant failure mode for the ASB groups were adhesive; when 0.1% CAPE was applied there was a predominance of mixed fractures. Regarding the CSE group, 0.05% CAPE led to more adhesive failures, and the 0.1% concentration resulted in a higher number of cohesive failures in dentin. Higher MMP-2 concentrations were detected for the groups that did not undergo demineralization treatment, and the lowest values for the ASB groups treated with CAPE. SEM analysis showed no influence of pretreatment with CAPE. CONCLUSIONS CAPE did not influence the BS of the adhesives tested, or the micromorphology of the hybrid layer, irrespective of concentration or storage time. CAPE affected the fracture pattern at 24 h, depending on the concentration and the adhesive system used. Immunoassay analysis showed that CAPE 0.1% reduced the MMP-2 concentration in the ASB adhesive without affecting bond strength to dentin.
Collapse
Affiliation(s)
- Vivianne Oliveira Pedrosa
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Fabiana Mantovani Gomes França
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Cecilia Pedroso Turssi
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Flávia Lucisano Botelho do Amaral
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Lucas Novaes Teixeira
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Elizabeth Ferreira Martinez
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | - Roberta Tarkany Basting
- São Leopoldo Mandic Institute and Dental Research Center, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| |
Collapse
|
49
|
Seseogullari-Dirihan R, Tekbas Atay M, Pashley DH, Tezvergil-Mutluay A. Inhibitory effect of curcuminoid pretreatments on endogenous dentin proteases. Dent Mater J 2018; 37:445-452. [PMID: 29491199 DOI: 10.4012/dmj.2017-116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the effect of curcuminoids on the dentin endogenous protease activity. Demineralized dentin were pretreated with 50 or 100 µM of three different curcuminoids for 60 s and incubated up to 3 months. Untreated beams served as controls. Dry dentin mass was measured after incubation. Aliquots were analyzed for the quantity of ICTP and CTX releases for MMP and cathepsin-K mediated degradation, respectively. The effect of curcuminoids on matrix-bound MMP and soluble rhMMP-9 were measured using an activity assay. Data were subjected to repeated-measures-ANOVA (α=0.05). Gelatinolytic activity was analyzed using zymography. ICTP and CTX release and dry mass loss of curcuminoid-treated groups were significantly lower than the control. Inhibition of rhMMP-9 varied from 29-49% among curcumonoid-treated groups, whereas no inhibition was observed at untreated control (p>0.05). Results were confirmed by zymography. The study showed that the pretreatment of dentin matrices by curcuminoids decreases endogenous protease activity-mediated degradation in dentin.
Collapse
Affiliation(s)
| | - Meltem Tekbas Atay
- Department of Restorative Dentistry, Faculty of Dentistry, Trakya University
| | | | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Institute of Dentistry, University of Turku.,Turku University Hospital, TYKS, University of Turku
| |
Collapse
|
50
|
Ou Q, Hu Y, Yao S, Wang Y, Lin X. Effect of matrix metalloproteinase 8 inhibitor on resin–dentin bonds. Dent Mater 2018; 34:756-763. [DOI: 10.1016/j.dental.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 02/08/2023]
|