1
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
2
|
Abdelhamid MS, El Bohi KM, Sherif MH, Abdelhamid MS, Abdel-Daim MM, Elewa YHA, Metwally MMM, Albadrani GM, Najda A, El Abdel-Hamid S, Abu-Zeid EH. Apitoxin alleviates methyl mercury-induced peripheral neurotoxicity in male rats by regulating dorsal root ganglia neuronal degeneration and oxidative stress. Biomed Pharmacother 2023; 161:114521. [PMID: 36921536 DOI: 10.1016/j.biopha.2023.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Methylmercury (MeHg) toxicity is associated with extensive neuronal degeneration of dorsal root ganglia (DRG). This study aimed to assess the ameliorative effect of bee venom (BV) on methyl mercury chloride (MeHgCl)-induced peripheral neurotoxicity using DRGs in rats. Forty-eight adult male Sprague Dawley rats were allocated into four equal groups: G I: control (gavaged MilliQ water 1 ml/rat), G II: subcutaneously injected with BV (0.5 mg/kg b.wt), G III: gavaged MeHgCl (6.7 mg/kg b.wt), and G IV: received MeHgCl+BV. Dosing was done five times/week for 2 weeks. Ataxic behavior and visual impairments were significantly increased, whereas the movement behavior and motility gait were suppressed in the MeHgCl group. MeHgCl significantly decreased total antioxidant capacity (TAC) in DRG and significantly decreased the serum levels of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) levels were significantly elevated, whereas interleukin 10 (IL-10) levels were significantly decreased in the MeHgCl group compared with the control group. DRGs of the MeHgCl-exposed rats showed pyknotic shrunken neurons with perineural vacuolations, demyelination of nerve axons, and proliferation of the satellite cells. MeHgCl significantly induced a higher positive index ratio of Iba-1, SOX10, neurofilament, pan-neuron, and vimentin immunostaining in the DRG. BV administration significantly mitigated the MeHgCl-induced alterations in oxidative stress-related indices. BV modified the immunostaining of Iba-1, SOX10, neurofilament, pan-neuron, and vimentin-positive index ratio in the DRG of the MeHgCl group. Our findings acknowledged that BV could enhance in vivo neuroprotective effects against MeHgCl-induced DRGs damage in male rats.
Collapse
Affiliation(s)
- Moustafa S Abdelhamid
- Biochemistry division, Chemistry Department, Faculty of Science, Zagazig University, 44511, Egypt
| | - Khlood M El Bohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Mohamed H Sherif
- Biochemistry division, Chemistry Department, Faculty of Science, Zagazig University, 44511, Egypt
| | - Manar S Abdelhamid
- Biochemistry division, Chemistry Department, Faculty of Science, Zagazig University, 44511, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt; Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, B.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, 50 A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Shereen El Abdel-Hamid
- Department of Behavior and Management of Animal, Poultry and Aquatics, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| |
Collapse
|
3
|
Kendricks DR, Bhattacharya S, Reed MN, Newland MC. Impacts of Neonatal Methylmercury on Behavioral Flexibility and Learning in Spatial Discrimination Reversal and Visual Signal Detection Tasks. Neurotoxicology 2022; 93:9-21. [PMID: 36055519 DOI: 10.1016/j.neuro.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Early postnatal development in rodents is sensitive to neurotoxic effects of the environmental contaminant, methylmercury. While juvenile and adolescent exposure also produce long-term impairments in behavior, the outcome of neonatal exposure is less understood. Neural development during the neonatal period in rodents is akin to that seen in humans during the third trimester of pregnancy but methylmercury exposure occurring during the neonatal period has not been modeled, partly because breast milk is a poor source of bioavailable methylmercury. To examine this developmental period, male Long-Evans rats were exposed to 0, 80, or 350µg/kg/day methylmercuric chloride from postnatal days 1 to 10, the rodent neonatal period. As adults, behavioral flexibility, attention, memory, and expression of the dopamine transporter in these rats was assessed. Rats exhibited changes in behavioral flexibility assessed in a spatial discrimination reversal procedure. Those rats exposed to the highest dose of methylmercury displayed subtly altered patterns of perseveration compared to control animals. During acquisition of the attention/memory procedure, rats exposed to this dose also had slower acquisition, and achieved lower overall accuracy during training, compared to controls despite neither attention nor memory being affected once the task was acquired. Finally, dopamine transporter expression in the striatum, prefrontal cortex, and hippocampus was unchanged in these adult rats. The results of this study replicate the trend of findings seen with exposure during gestation or during adolescence.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Subhrajit Bhattacharya
- Keck Graduate Institute, School of Pharmacy and Health Sciences, Claremont Colleges, Claremont, CA, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
4
|
Kendricks DR, Boomhower SR, Newland MC. Adolescence as a sensitive period for neurotoxicity: Lifespan developmental effects of methylmercury. Pharmacol Biochem Behav 2022; 217:173389. [PMID: 35452710 DOI: 10.1016/j.pbb.2022.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity resulting from the environmental contaminant, methylmercury (MeHg), is a source of concern for many human populations that rely heavily on the consumption of fish and rice as stable ingredients in the diet. The developmental period of exposure is important both to the qualitative effects of MeHg and to the dose required to produce those effects. MeHg exposure during the sensitive prenatal period causes deleterious and long-lasting changes in neurodevelopment at particularly low doses. The effects include a wide host of cognitive and behavioral outcomes expressed in adulthood and sometimes not until aging. However, neurotoxic outcomes of methylmercury when exposure occurs during adolescence are only recently revealing impacts on human populations and animal models. This review examines the current body of work and showcases the sensitivity of adolescence, a period that straddles early development and adulthood, to methylmercury neurotoxicity and the implications such toxicity has in our understanding of methylmercury's effects in human populations and animal models.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychology, Auburn University, Auburn, AL, United States of America.
| | - Steven R Boomhower
- Gradient, Boston, MA, United States of America; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|
5
|
Sakamoto M, Kakita A, Sakai K, Kameo S, Yamamoto M, Nakamura M. Methylmercury exposure during the vulnerable window of the cerebrum in postnatal developing rats. ENVIRONMENTAL RESEARCH 2020; 188:109776. [PMID: 32592939 DOI: 10.1016/j.envres.2020.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The developing brain is known to be sensitive to the toxic effects of methylmercury (MeHg). The effects of toxic levels of MeHg exposure during the most seemingly vulnerable window of the cerebrum are not well studied. In this study, we aimed to examine the specific effects of toxic levels of MeHg on neurobehavior, neurodegeneration, and selenoenzyme activity in the cerebrum of infant rats. Male Wistar rats (n = 8/group) were orally treated with MeHg at an acute toxic dose (8 mg Hg/kg/day) for 10 consecutive days starting on postnatal day 14 (P14). The MeHg-exposed rats showed a significant reduction in body weight after day 8 and severe neurological symptoms similar to dystonia on day 12 (P25). Motor coordination deficits determined using the rotarod performance test and short-term memory impairment determined using the Y-maze task were observed in the MeHg-exposed rats on day 11 (P24). The MeHg-exposed rats sacrificed on day 12 showed severe cerebral neuronal degeneration, reactive astrocytosis, and TUNEL-positive apoptotic nuclei, with the cerebral Hg concentration of 15.0 ± 1.6 μg/g. Furthermore, the activities of glutathione peroxidase and thioredoxin reductase in the cerebrum in MeHg-exposed rats were lower than those in control. These results indicate that MeHg exposure to infant rats will be useful to predict the effects of MeHg at the cerebral growth spurt in humans.
Collapse
Affiliation(s)
| | - Akiyoshi Kakita
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuo Sakai
- Japan Institute for the Control of Aging, Nikken SEIL Co., Ltd., Japan
| | - Satomi Kameo
- Department of Public Health, Graduate School of Medicine, Gunma University, Japan; Department of Nutrition, Koshien University, Hyogo, Japan
| | | | | |
Collapse
|
6
|
Kendricks DR, Boomhower SR, Newland MC. Methylmercury, attention, and memory: baseline-dependent effects of adult d-amphetamine and marginal effects of adolescent methylmercury. Neurotoxicology 2020; 80:130-139. [PMID: 32726658 DOI: 10.1016/j.neuro.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant known to disrupt behavior related to dopamine neurotransmission in experimental models. Such disruptions are sensitive to dopamine agonists when administered acutely after exposure to MeHg has ended or when administered concurrently with MeHg exposure. Sustained attention and short-term remembering, components of attention-deficit/hyperactivity disorder (ADHD), are partially mediated by dopamine neurotransmission. In order to observe MeHg-related alterations in sustained attention and short-term memory, as well as determine sensitivity of MeHg exposed animals to dopamine agonists commonly used in the treatment of ADHD symptoms, rats were exposed to 0, 0.5, or 5 ppm MeHg throughout adolescence and trained in a hybrid sustained attention/short term memory visual signal detection task in adulthood. Behavior was then probed with acute i.p. injections of the dopamine agonist, d-amphetamine, which improves impaired attention and inhibits short-term memory in clinical syndromes like ADHD. Acute d-amphetamine dose-dependently decreased short-term memory as well as sustained attention. While MeHg alone did not impair accuracy or memory, it did interact with d-amphetamine to produce baseline-dependent inhibition of behavior. These findings further show that changes in behavior following low-level exposure to MeHg during adolescence are augmented by dopamine agonists. Observed impairments in memory following acute d-amphetamine are consistent with previous findings.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States.
| | | | | |
Collapse
|
7
|
MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J Toxicol 2018; 2018:8460490. [PMID: 30228816 PMCID: PMC6136469 DOI: 10.1155/2018/8460490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Methylmercury (MeHg) is a known neurodevelopmental toxicant, which causes changes in various structures of the central nervous system (CNS). However, ultrastructural studies of its effects on the developing CNS are still scarce. Here, we investigated the effect of MeHg on the ultrastructure of the cells in spinal cord layers. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Then, we used transmission electron microscopy (TEM) to identify possible damage caused by MeHg to the structures and organelles of the spinal cord cells. After MeHg treatment, we observed, in the spinal cord mantle layer, a significant number of altered mitochondria with external membrane disruptions, crest disorganization, swelling in the mitochondrial matrix, and vacuole formation between the internal and external mitochondrial membranes. We also observed dilations in the Golgi complex and endoplasmic reticulum cisterns and the appearance of myelin-like cytoplasmic inclusions. We observed no difference in the total mitochondria number between the control and MeHg-treated groups. However, the MeHg-treated embryos showed an increased number of altered mitochondria and a decreased number of mitochondrial fusion profiles. Additionally, unusual mitochondrial shapes were found in MeHg-treated embryos as well as autophagic vacuoles similar to mitophagic profiles. In addition, we observed autophagic vacuoles with amorphous, homogeneous, and electron-dense contents, similar to the autophagy. Our results showed, for the first time, the neurotoxic effect of MeHg on the ultrastructure of the developing spinal cord. Using TEM we demonstrate that changes in the endomembrane system, mitochondrial damage, disturbance in mitochondrial dynamics, and increase in mitophagy were caused by MeHg exposure.
Collapse
|
8
|
Morran SAM, Elliott JE, Young JML, Eng ML, Basu N, Williams TD. Ecologically-relevant exposure to methylmercury during early development does not affect adult phenotype in zebra finches (Taeniopygia guttata). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:259-266. [PMID: 29313303 DOI: 10.1007/s10646-017-1890-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Methylmercury causes behavioural and reproductive effects in adult mammals via early developmental exposure. Similar studies in birds are limited and mostly focussed on aquatic systems, but recent work has reported high blood mercury concentrations in terrestrial, passerine songbirds. We used the zebra finch (Taeniopygia guttata) as a model to explore the long-term effects of early developmental exposure to methylmercury exposure. Chicks were dosed orally with either the vehicle control, 0.0315 µg Hg/g bw/day, or 0.075 µg Hg/g bw/day throughout the nestling period (days 1-21 post-hatching). We then measured (a) short-term effects on growth, development, and behaviour (time to self-feeding, neophobia) until 30 days of age (independence), and (b) long-term effects on courtship behaviour and song (males) and reproduction (females) once methylmercury-exposed birds reached sexual maturity (90 days post-hatching). High methylmercury treated birds had mean blood mercury of 0.734 ± 0.163 µg/g at 30 days post-hatching, within the range of values reported for field-sampled songbirds at mercury contaminated sites. However, there were no short-term effects of treatment on growth, development, and behaviour of chicks, and no long-term effects on courtship behaviour and song in males or reproductive performance in females. These results suggest that the nestling period is not a critical window for sensitivity to mercury exposure in zebra finches. Growing nestlings can reduce blood mercury levels through somatic growth and depuration into newly growing feathers, and as a result they might actually be less susceptible compared to adult birds receiving the same level of exposure.
Collapse
Affiliation(s)
- Spencer A M Morran
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Environment and Climate Change Canada, Science & Technology Branch, Pacific Wildlife Research Centre, Delta, BC, Canada
| | - Jessica M L Young
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- University of Saskatchewan, Saskatoon, SK, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
9
|
Yoshida M, Lee JY, Satoh M, Watanabe C. Neurobehavioral effects of postnatal exposure to low-level mercury vapor and/or methylmercury in mice. J Toxicol Sci 2018; 43:11-17. [PMID: 29415947 DOI: 10.2131/jts.43.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This study examined the effects on neurobehavioral function of exposure to low-level mercury vapor (Hg0), methylmercury (MeHg) in female mice and the combination of Hg0 and MeHg during postnatal development. Postnatal mice were exposed to Hg0 at a mean concentration of 0.188 mg/m3 Hg0 and supplied with food containing 3.85 μg/g of MeHg from day 2 to day 28 after delivery. The combined exposure group was exposed to both Hg0 and MeHg, using the same procedure. When their offspring reached the age of 11 weeks, behavioral analyses were performed. The behavioral effects in mice were evaluated based on locomotive activity and rate of center entries in the open field (OPF), learning activity in the passive avoidance response (PA) and spatial learning ability in the radial maze (RM). Total locomotive activity in the OPF significantly decreased in the Hg0, MeHg and combined exposure groups compared with the control group. The proportion of entries to central area in the OPF was significantly higher in the combined exposure group than in the control group, while those in the Hg0 or MeHg exposure group did not differ from the control group. Other behavioral tests did not reveal significant differences among the groups. Behavioral anomalies were more distinctive after combined exposure compared to Hg0 or MeHg exposure alone. The brain Hg concentration of offspring, immediately after exposure, was highest in the combined exposure group, exceeding 2 μg/g, followed by the MeHg and Hg0 exposure groups. Thus, the enhancement of neurobehavioral effects in the combined exposure group was associated with higher brain mercury concentration.
Collapse
Affiliation(s)
- Minoru Yoshida
- Faculty of Health and Medical Care, Hachinohe Gakuin University
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Chiho Watanabe
- Department of Human Ecology, Graduate School of Medicine, University of Tokyo
| |
Collapse
|
10
|
Prince LM, Rand MD. Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation. Toxicology 2018; 393:113-122. [PMID: 29104120 PMCID: PMC5757876 DOI: 10.1016/j.tox.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant, best known for its selective targeting of the developing nervous system. MeHg exposure has been shown to cause motor deficits such as impaired gait and coordination, muscle weakness, and muscle atrophy, which have been associated with disruption of motor neurons. However, recent studies have suggested that muscle may also be a target of MeHg toxicity, both in the context of developmental myogenic events and of low-level chronic exposures affecting muscle wasting in aging. We therefore investigated the effects of MeHg on myotube formation, using the C2C12 mouse myoblast model. We found that MeHg inhibits both differentiation and fusion, in a concentration-dependent manner. Furthermore, MeHg specifically and persistently inhibits myogenin (MyoG), a transcription factor involved in myocyte differentiation, within the first six hours of exposure. MeHg-induced reduction in MyoG expression is contemporaneous with a reduction of a number of factors involved in mitochondrial biogenesis and mtDNA transcription and translation, which may implicate a role for mitochondria in mediating MeHg-induced change in the differentiation program. Unexpectedly, inhibition of myoblast differentiation with MeHg parallels inhibition of Notch receptor signaling. Our research establishes muscle cell differentiation as a target for MeHg toxicity, which may contribute to the underlying etiology of motor deficits with MeHg toxicity.
Collapse
Affiliation(s)
- Lisa M Prince
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Department of Environmental Medicine, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Department of Environmental Medicine, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
Sakamoto M, Itai T, Murata K. [Effects of Prenatal Methylmercury Exposure: From Minamata Disease to Environmental Health Studies]. Nihon Eiseigaku Zasshi 2017; 72:140-148. [PMID: 28931792 DOI: 10.1265/jjh.72.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methylmercury, the causative agent of Minamata disease, can easily penetrate the brain, and adult-type Minamata disease patients showed neurological symptoms according to the brain regions where the neurons, mainly in the cerebrum and cerebellum, were damaged. In addition, fetuses are exposed to methylmercury via the placenta from maternal fish consumption, and high-level exposure to methylmercury causes damage to the brains of infants. Typical patients with fetal-type Minamata disease (i.e., serious poisoning caused by in utero exposure to methylmercury) were born during the period of severe methylmercury pollution in 1955-1959, although they showed no abnormality during gestation nor at delivery. However, they showed difficulties in head control, sitting, and walking, and showed disturbances in mental development, these symptoms that are similar to those of cerebral palsy, during the growth periods after birth. The impaired development of fetal-type Minamata disease patients was one of the most tragic and characteristic feature of Minamata disease. In this review, we first summarize 1) the effects of prenatal methylmercury exposure in Minamata disease. Then, we introduce the studies that were conducted mainly by Sakamoto et al. as follows: 2) a retrospective study on temporal and regional variations of methylmercury pollution in Minamata area using preserved umbilical cord methylmercury, 3) decline in male sex ratio observed in Minamata area, 4) characteristics of hand tremor and postural sway in fetal-type Minamata disease patients, 5) methylmercury transfer from mothers to infants during gestation and lactation (the role of placenta), 6) extrapolation studies using rat models on the effects of prenatal methylmercury exposure on the human brain, and 7) risks and benefits of fish consumption.
Collapse
Affiliation(s)
- Mineshi Sakamoto
- Department of International Affairs and Environmental Research, National Institute for Minamata Disease
| | - Takaaki Itai
- Department of International Affairs and Environmental Research, National Institute for Minamata Disease
| | - Katsuyuki Murata
- Department of Environmental Health Sciences, Akita University Graduate School of Medicine
| |
Collapse
|
12
|
Koning IV, Tielemans MJ, Hoebeek FE, Ecury-Goossen GM, Reiss IKM, Steegers-Theunissen RPM, Dudink J. Impacts on prenatal development of the human cerebellum: a systematic review. J Matern Fetal Neonatal Med 2016; 30:2461-2468. [PMID: 27806674 DOI: 10.1080/14767058.2016.1253060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The cerebellum is essential for normal neurodevelopment and is particularly susceptible for intra-uterine disruptions. Although some causal prenatal exposures have been identified, the origin of neurodevelopmental disorders remains mostly unclear. Therefore, a systematic literature search was conducted to provide an overview of parental environmental exposures and intrinsic factors influencing prenatal cerebellar growth and development in humans. MATERIALS AND METHODS The literature search was limited to human studies in the English language and was conducted in Embase, Medline, Cochrane, Web of Science, Pubmed and GoogleScholar. Eligible studies were selected by three independent reviewers and study quality was scored by two independent reviewers. RESULTS The search yielded 3872 articles. We found 15 eligible studies reporting associations between cerebellar development and maternal smoking (4), use of alcohol (3), in vitro fertilization mediums (1), mercury (1), mifepristone (2), aminopropionitriles (1), ethnicity (2) and cortisol levels (1). No studies reported on paternal factors. CONCLUSIONS Current literature on associations between parental environmental exposures, intrinsic factors and human cerebellar development is scarce. Yet, this systematic review provided an essential overview of human studies demonstrating the vulnerability of the cerebellum to the intra-uterine environment.
Collapse
Affiliation(s)
- Irene V Koning
- a Department of Obstetrics and Gynecology , Erasmus MC University Medical Center , Rotterdam , The Netherlands.,b Department of Pediatrics , Subdivision of Neonatology, Sophia Children's Hospital , Rotterdam , The Netherlands
| | | | - Freek E Hoebeek
- d Department of Neuroscience , Erasmus MC University Medical Center , Rotterdam , The Netherlands , and
| | - Ginette M Ecury-Goossen
- b Department of Pediatrics , Subdivision of Neonatology, Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Irwin K M Reiss
- b Department of Pediatrics , Subdivision of Neonatology, Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Regine P M Steegers-Theunissen
- a Department of Obstetrics and Gynecology , Erasmus MC University Medical Center , Rotterdam , The Netherlands.,b Department of Pediatrics , Subdivision of Neonatology, Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Jeroen Dudink
- b Department of Pediatrics , Subdivision of Neonatology, Sophia Children's Hospital , Rotterdam , The Netherlands.,e Department of Neonatology , Wilhelmina Children's Hospital, University Medical Center Utrecht , Utrecht , The Netherlands
| |
Collapse
|
13
|
Leão LKR, Herculano AM, Maximino C, Brasil Costa A, Gouveia A, Batista EO, Rocha FF, Crespo-Lopez ME, Borges R, Oliveira K. Mauritia flexuosa L. protects against deficits in memory acquisition and oxidative stress in rat hippocampus induced by methylmercury exposure. Nutr Neurosci 2016; 20:297-304. [PMID: 26869022 DOI: 10.1080/1028415x.2015.1133030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Methylmercury (MeHg) is the most toxic form of mercury that can affect humans through the food chain by bioaccumulation. Human organism is capable of triggering visual and cognitive disorders, neurodegeneration, as well as increased production of reactive species of O2 and depletion of natural anti-oxidant agents. In this context, Mauritia flexuosa L., a fruit rich in compounds with anti-oxidant properties, emerged as an important strategy to prevent the MeHg damages. So, this work has aimed to elucidate the protective effect of Mauritia flexuosa L. on the damage caused by the exposure of rats to MeHg. METHODS In order to evaluate the effect of MeHg on rat aversive memory acquisition and panic-like behavior, we have used elevated T-maze apparatus and after behavioral test, the hippocampus was removed to perfom lipid peroxidation. RESULTS Our results demonstrated that the exposure to MeHg caused deficits in inhibitory avoidance acquisition (aversive conditioning) and in the learning process, and increased levels of lipid peroxidation in hippocampus tissue. However, the pretreatment with feed enriched with Mauritia flexuosa L. showed a protective effect against cognitive deficits caused by MeHg and also prevented the occurrence of cytoplasmic membrane damage induced by lipid peroxidation in the hippocampal region. DISCUSSION Therefore, this study suggests that Mauritia flexuosa L. represents an important strategy to prevent neurocytotoxics and behavioral effects of MeHg.
Collapse
Affiliation(s)
- Luana K R Leão
- a Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| | - Anderson M Herculano
- a Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| | - Caio Maximino
- a Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| | - Alódia Brasil Costa
- a Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| | - Amauri Gouveia
- b Laboratório de Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento , Universidade Federal do Pará , Brazil
| | - Evander O Batista
- c Laboratório de Protozoologia, Núcleo de Medicina Tropical , Universidade Federal do Pará , Brazil
| | - Fernando F Rocha
- d Laboratório de Neurofisiologia Eduardo Oswaldo Cruz, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| | - Maria Elena Crespo-Lopez
- e Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| | - Rosivaldo Borges
- f Laboratório de Química Farmacêutica, Faculdade de Farmácia, Instituto de Ciências da Saúde , Universidade Federal do Pará , Brazil
| | - Karen Oliveira
- a Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas , Universidade Federal do Pará , Brazil
| |
Collapse
|
14
|
Ingber SZ, Pohl HR. Windows of sensitivity to toxic chemicals in the motor effects development. Regul Toxicol Pharmacol 2016; 74:93-104. [PMID: 26686904 PMCID: PMC5599107 DOI: 10.1016/j.yrtph.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review.
Collapse
Affiliation(s)
- Susan Z Ingber
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Hana R Pohl
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA.
| |
Collapse
|
15
|
Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6532108. [PMID: 26885512 PMCID: PMC4738696 DOI: 10.1155/2016/6532108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 02/01/2023]
Abstract
Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined.
Collapse
|
16
|
MeHg Developing Exposure Causes DNA Double-Strand Breaks and Elicits Cell Cycle Arrest in Spinal Cord Cells. J Toxicol 2015; 2015:532691. [PMID: 26793240 PMCID: PMC4697092 DOI: 10.1155/2015/532691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
The neurotoxicity caused by methylmercury (MeHg) is well documented; however, the developmental neurotoxicity in spinal cord is still not fully understood. Here we investigated whether MeHg affects the spinal cord layers development. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Thus, we performed immunostaining using anti-γ-H2A.X to recognize DNA double-strand breaks and antiphosphohistone H3, anti-p21, and anti-cyclin E to identify cells in proliferation and cell cycle proteins. Also, to identify neuronal cells, we used anti-NeuN and anti-βIII-tubulin antibodies. After the MeHg treatment, we observed the increase on γ-H2A.X in response to DNA damage. MeHg caused a decrease in the proliferating cells and in the thickness of spinal cord layers. Moreover, we verified that MeHg induced an increase in the number of p21-positive cells but did not change the cyclin E-positive cells. A significantly high number of TUNEL-positive cells indicating DNA fragmentation were observed in MeHg-treated embryos. Regarding the neuronal differentiation, MeHg induced a decrease in NeuN expression and did not change the expression of βIII-tubulin. These results showed that in ovo MeHg exposure alters spinal cord development by disturbing the cell proliferation and death, also interfering in early neuronal differentiation.
Collapse
|
17
|
Bradford AB, Mancini JD, Atchison WD. Methylmercury-Dependent Increases in Fluo4 Fluorescence in Neonatal Rat Cerebellar Slices Depend on Granule Cell Migrational Stage and GABAA Receptor Modulation. J Pharmacol Exp Ther 2015; 356:2-12. [PMID: 26514794 DOI: 10.1124/jpet.115.226761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023] Open
Abstract
Methylmercury (MeHg) disrupts cerebellar function, especially during development. Cerebellar granule cells (CGC), which are particularly susceptible to MeHg by unknown mechanisms, migrate during this process. Transient changes in intracellular Ca(2+) (Ca(2+) i) are crucial to proper migration, and MeHg is well known to disrupt CGC Ca(2+) i regulation. Acutely prepared slices of neonatal rat cerebellum in conjunction with confocal microscopy and fluo4 epifluorescence were used to track changes induced by MeHg in CGC Ca(2+) i regulation in the external (EGL) and internal granule cell layers (IGL) as well as the molecular layer (ML). MeHg caused no cytotoxicity but did cause a time-dependent increase in fluo4 fluorescence that depended on the stage of CGC development. CGCs in the EGL were most susceptible to MeHg-induced increases in fluo4 fluorescence. MeHg increased fluorescence in CGC processes but only diffusely; Purkinje cells rarely fluoresced in these slices. Neither muscimol nor bicuculline alone altered baseline fluo4 fluorescence in any CGC layer, but each delayed the onset and reduced the magnitude of effect of MeHg on fluo4 fluorescence in the EGL and ML. In the IGL, both muscimol and bicuculline delayed the onset of MeHg-induced increases in fluo4 fluorescence but did not affect fluorescence magnitude. Thus, acute exposure to MeHg causes developmental stage-dependent increases in Ca(2+) i in CGCs. Effects are most prominent in CGCs during development or early stages of migration. GABAA receptors participate in an as yet unclear manner to MeHg-induced Ca(2+) i dysregulation of CGCs.
Collapse
Affiliation(s)
- Aaron B Bradford
- Department of Pharmacology and Toxicology (W.D.A.), Department of Biochemistry and Molecular Biology (A.A.B.), Institute for Integrative Toxicology (A.A.B., W.D.A.), and Neuroscience Program (J.D.M.), Michigan State University, East Lansing, Michigan
| | - Jayme D Mancini
- Department of Pharmacology and Toxicology (W.D.A.), Department of Biochemistry and Molecular Biology (A.A.B.), Institute for Integrative Toxicology (A.A.B., W.D.A.), and Neuroscience Program (J.D.M.), Michigan State University, East Lansing, Michigan
| | - William D Atchison
- Department of Pharmacology and Toxicology (W.D.A.), Department of Biochemistry and Molecular Biology (A.A.B.), Institute for Integrative Toxicology (A.A.B., W.D.A.), and Neuroscience Program (J.D.M.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. Neurotoxicol Teratol 2014; 47:102-13. [PMID: 25496965 DOI: 10.1016/j.ntt.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022]
Abstract
Methylmercury (MeHg) is a widespread environmental toxin that preferentially and adversely affects developing organisms. To investigate the impact of MeHg toxicity on the formation of the vertebrate nervous system at physiologically relevant concentrations, we designed a graded phenotype scale for evaluating Xenopus laevis embryos exposed to MeHg in solution. Embryos displayed a range of abnormalities in response to MeHg, particularly in brain development, which is influenced by both MeHg concentration and the number of embryos per ml of exposure solution. A TC50 of ~50μg/l and LC50 of ~100μg/l were found when maintaining embryos at a density of one per ml, and both increased with increasing embryo density. In situ hybridization and microarray analysis showed no significant change in expression of early neural patterning genes including sox2, en2, or delta; however a noticeable decrease was observed in the terminal neural differentiation genes GAD and xGAT, but not xVGlut. PCNA, a marker for proliferating cells, was negatively correlated with MeHg dose, with a significant reduction in cell number in the forebrain and spinal cord of exposed embryos by tadpole stages. Conversely, the number of apoptotic cells in neural regions detected by a TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay was significantly increased. These results provide evidence that disruption of embryonic neural development by MeHg may not be directly due to a loss of neural progenitor specification and gene transcription, but to a more general decrease in cell proliferation and increase in cell death throughout the developing nervous system.
Collapse
|
19
|
Biamonte F, Latini L, Giorgi FS, Zingariello M, Marino R, De Luca R, D'Ilio S, Majorani C, Petrucci F, Violante N, Senofonte O, Molinari M, Keller F. Associations among exposure to methylmercury, reduced Reelin expression, and gender in the cerebellum of developing mice. Neurotoxicology 2014; 45:67-80. [PMID: 25305366 DOI: 10.1016/j.neuro.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/30/2022]
Abstract
Genetic risk factors acting during pregnancy or early after birth have been proposed to account for the exponential increase of autism diagnoses in the past 20 years. In particular, a potential link with exposure to environmental mercury has been suggested. Male sex constitutes a second risk factor for autism. A third potential genetic risk factor is decreased Reelin expression. Male heterozygous reeler (rl(+/-)) mice show an autism-like phenotype, including Purkinje cells (PCs) loss and behavioral rigidity. We evaluated the complex interactions between 3 risk factors, i.e. genetic status, sex, and exposure to methylmercury (MeHg), in rl(+/-) mice. Mice were exposed to MeHg during the prenatal and early postnatal period, either at a subtoxic dose (2 ppm in Dams' drinking water), or at a toxic dose (6 ppm Dams' drinking water), based on observations in other rodent species and mice strains. We show that: (a) 2 ppm MeHg does not cause PCs loss in the different animal groups, and does not enhance PCs loss in rl(+/-) males; consistent with a lack of overt neurotoxicity, 2 ppm MeHg per se does not cause behavioral alterations (separation-induced ultrasonic calls in newborns, or sociability and social preference in adults); (b) in stark contrast, 6 ppm MeHg causes a dramatic reduction of PCs number in all groups, irrespective of genotype and sex. Cytochrome C release from mitochondria of PCs is enhanced in 6 ppm MeHg-exposed groups, with a concomitant increase of μ-calpain active subunit. At the behavioral level, 6 ppm MeHg exposure strongly increases ultrasonic vocalizations in all animal groups. Notably, 6 ppm MeHg significantly decreases sociability in rl(+/-) male mice, while the 2 ppm group does not show such as decrease. At a subtoxic dose, MeHg does not enhance the autism-like phenotype of male rl(+/-) mice. At the higher MeHg dose, the scenario is more complex, with some "autism-like" features (loss of sociability, preference for sameness) being evidently affected only in rl(+/-) males, while other neuropathological and behavioral parameters being altered in all groups, independently from genotype and sex. Mitochondrial abnormalities appear to play a crucial role in the observed effects.
Collapse
Affiliation(s)
- Filippo Biamonte
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy
| | - Laura Latini
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Filippo Sean Giorgi
- Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | - Ramona Marino
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy
| | - Roberto De Luca
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy
| | - Sonia D'Ilio
- Istituto Superiore di Sanità, Centro Nazionale Sostanze Chimiche, Viale Regina Elena 299, Rome, Italy
| | - Costanza Majorani
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Francesco Petrucci
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Nicola Violante
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Oreste Senofonte
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Marco Molinari
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Flavio Keller
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy.
| |
Collapse
|
20
|
Yamamoto M, Yanagisawa R, Motomura E, Nakamura M, Sakamoto M, Takeya M, Eto K. Increased methylmercury toxicity related to obesity in diabetic KK-Ay mice. J Appl Toxicol 2013; 34:914-23. [PMID: 24243536 DOI: 10.1002/jat.2954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 11/07/2022]
Abstract
We examined the toxic effects of methylmercury (MeHg) in KK-Ay type 2 diabetic mice to clarify how metabolic changes associated with type 2 diabetes mellitus affect MeHg toxicity. MeHg (5 mg Hg kg (-1) day(-1) p.o.) was given to 4-week-old male KK-Ay and C57BL/6J (BL/6) mice three times per week for 6 weeks. Average body weights (BW) of vehicle-treated BL/6 and KK-Ay mice were 16.3 and 16.4 g respectively on the first day, and 24.8 and 42.3 g respectively on the last day of the experiment. MeHg-treated KK-Ay mice began to lose weight about 5 weeks after MeHg administration. Six of seven MeHg-treated KK-Ay mice showed hind-limb clasping in the final stage of the experiment. The mean blood mercury level of MeHg-treated KK-Ay mice reached a maximum of 9.8 µg ml(-1) , whereas that of the MeHg-treated BL/6 mice was 2.8 µg ml(-1) after 10 days of treatment. The average total mercury concentrations in the cerebrum and epididymal fat pad were 7.4 and 0.57 µg g(-1) , respectively, for BL/6 mice and 27 and 1.6 µg g(-1) , respectively, for KK-Ay mice. In MeHg-treated KK-Ay mice with neurological symptoms, CD204-positive macrophages were observed in the brain, kidney and spleen, indicating CD204 could be a marker for injured tissues. BW loss and significant pathological changes were not observed in other groups of mice. These results indicate that body fat gain in type 2 diabetes mellitus and low mercury accumulation in adipose tissue increased MeHg concentrations in organs and enhanced toxicity in KK-Ay mice at the same dose of MeHg per BW.
Collapse
Affiliation(s)
- Megumi Yamamoto
- Integrated Physiology Section, Department of Basic Medical Science, National Institute for Minamata Disease, Minamata, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Sakamoto M, Yasutake A, Domingo JL, Chan HM, Kubota M, Murata K. Relationships between trace element concentrations in chorionic tissue of placenta and umbilical cord tissue: potential use as indicators for prenatal exposure. ENVIRONMENT INTERNATIONAL 2013; 60:106-11. [PMID: 24028800 DOI: 10.1016/j.envint.2013.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 05/17/2023]
Abstract
The role of the placenta was assessed by comparing the profiles of methylmercury (MeHg), inorganic mercury (I-Hg), lead (Pb), cadmium (Cd), selenium (Se), zinc (Zn), and copper (Cu) in freeze-dried chorionic tissue of the placenta and umbilical cord tissue. The significance of the placenta and cord tissue as predictors of prenatal exposure to these trace elements in pregnant women and newborns was also examined by comparing the element profiles among placenta and cord tissue, and maternal and cord blood red blood cells (RBCs). The samples were collected from 48 mother-child pairs at birth in the general population of Japanese. The concentrations of all elements, except for MeHg, were significantly higher in placenta than in cord tissue. In particular, the Cd showed the highest placenta vs. cord tissue ratio (59:1), followed by I-Hg (2.4:1), indicating that the placental barrier works most strongly against Cd among the examined toxic elements. Contrary to the other elements, the MeHg concentration in cord tissue was significantly higher (1.6 times) than that in placenta, indicating its exceptionally high placental transfer. The MeHg in placenta showed significant correlations with total mercury (T-Hg) in maternal and cord RBCs (rs=0.80 and 0.91, respectively). The MeHg in cord tissue also showed significant correlations with T-Hg in maternal and cord RBCs (rs=0.75 and 0.85, respectively). Therefore, both placenta and cord tissue are useful for predicting maternal and fetal exposure to MeHg. The Se concentration in placenta showed significant but moderate correlations with that in maternal and cord RBCs (rs=0.38 and 0.57, respectively). The Pb, Zn, and Cu concentrations in placenta and cord tissue showed no significant correlations with those in maternal and cord RBCs. As an exception, the Cd concentration in placenta showed a moderate but significant correlation (rs=0.41) with that in maternal RBCs, suggesting that the placenta is useful for predicting maternal exposure to Cd during gestation.
Collapse
Affiliation(s)
- Mineshi Sakamoto
- Department of Environmental Science and Epidemiology, National Institute for Minamata Disease, Minamata, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Low level prenatal exposure to methylmercury disrupts neuronal migration in the developing rat cerebral cortex. Toxicology 2012; 304:57-68. [PMID: 23220560 DOI: 10.1016/j.tox.2012.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/11/2012] [Accepted: 11/15/2012] [Indexed: 11/22/2022]
Abstract
We determined the effects of low-level prenatal MeHg exposure on neuronal migration in the developing rat cerebral cortex using in utero electroporation. We used offspring rats born to dams that had been exposed to saline or various doses of MeHg (0.01 mg/kg/day, 0.1 mg/kg/day, and 1 mg/kg/day) from gestational day (GD) 11-21. Immunohistochemical examination of the brains of the offspring was conducted on postnatal day (PND) 0, PND3, and PND7. Our results showed that prenatal exposure to low levels of MeHg (0.1 mg/kg/day or 1 mg/kg/day) during the critical stage in neuronal migration resulted in migration defects of the cerebrocortical neurons in offspring rats. Importantly, our data revealed that the abnormal neuronal distribution induced by MeHg was not caused by altered proliferation of neural progenitor cells (NPCs), induction of apoptosis of NPCs and/or newborn neurons, abnormal differentiation of NPCs, and the morphological changes of radial glial scaffold, indicating that the defective neuronal positioning triggered by exposure to low-dose of MeHg is due to the impacts of MeHg on the process of neuronal migration itself. Moreover, we demonstrated that in utero exposure to low-level MeHg suppresses the expression of Rac1, Cdc42, and RhoA, which play key roles in the migration of cerebrocortical neurons during the early stage of brain development, suggesting that the MeHg-induced migratory disturbance of cerebrocortical neurons is likely associated with the Rho GTPases signal pathway. In conclusion, our results provide a novel perspective on clarifying the mechanisms underlying the impairment of neuronal migration induced by MeHg.
Collapse
|
23
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
24
|
Prophylactic effect of α-linolenic acid and α-eleostearic acid against MeHg induced oxidative stress, DNA damage and structural changes in RBC membrane. Food Chem Toxicol 2012; 50:2811-8. [DOI: 10.1016/j.fct.2012.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/31/2022]
|
25
|
Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats. Brain Res 2012; 1464:1-7. [DOI: 10.1016/j.brainres.2012.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/18/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023]
|
26
|
Pal M, Ghosh M. Studies on comparative efficacy of α-linolenic acid and α-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. Food Chem Toxicol 2012; 50:1066-72. [PMID: 22269903 DOI: 10.1016/j.fct.2011.12.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
The present study was undertaken to evaluate the effect of α-linolenic acid and α-eleostearic acid, two isomers of linolenic acid, against oxidative stress induced by organic mercury in kidney and liver cells of rat. Male albino rats were divided into six groups. Groups 1, 2 were normal control and methyl mercury chloride (MeHgCl) treated (5 mg/kg BW/day) control, respectively. Groups 3, 4, 5 and 6 were orally treated with different doses of two fatty acids (0.5% and 1.0% of total lipid given for each isomer) along with MeHgCl (5 mg/kg BW). Results showed that activity of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) in liver and kidney decreased significantly due to oxidative stress generated by MeHg. Administration of the linolenic acid isomers almost restored all the altered parameters and also reduced lipid peroxidation and leakage of trans-aminase enzymes from liver to blood due to liver injury when administrated in higher doses. Histopathology of liver and kidney cells showed that administration of α-linolenic acid significantly reduced the damage generated by MeHg. Thus, α-linolenic acid and α-eleostearic acid could serve as cost-effective and natural phytochemical preparation to protect against the adverse effects caused by organic mercury in human.
Collapse
Affiliation(s)
- Moumita Pal
- Oil Technology Section, Department of Chemical Technology, University College of Science & Technology, University of Calcutta, India
| | | |
Collapse
|
27
|
Maternal Thimerosal Exposure Results in Aberrant Cerebellar Oxidative Stress, Thyroid Hormone Metabolism, and Motor Behavior in Rat Pups; Sex- and Strain-Dependent Effects. THE CEREBELLUM 2011; 11:575-86. [DOI: 10.1007/s12311-011-0319-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Protective effects of Syzygium cumini seed extract against methylmercury-induced sistemic toxicity in neonatal rats. Biometals 2011; 24:349-56. [PMID: 21207116 DOI: 10.1007/s10534-010-9402-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/22/2010] [Indexed: 12/22/2022]
Abstract
Syzygium cumini (L.) Skeels (Sc) belongs to the medicinal plants with an important source of phenolic compounds. Sc has been shown to possess antioxidant and anti-inflammatory properties. Methylmercury (MeHg), a highly toxic environmental pollutant, induces oxidative stress and dysfunction in many cell types. This study was aimed to evaluate the effect of aqueous seed extract of Sc (ASc) on MeHg-induced toxicity in rats. Two-day-old rats (P2) received a single dose of MeHg (10 mg/kg) and two doses of ASc (0.9 mg/kg) per os. After two days, the effects of the treatment were investigated in the cerebral cortex, hippocampus, kidney, liver and urine samples. Our results demonstrated that N-acetyl-β-D: -glucosaminidase (NAG) activity in the kidney and urine, the lipid peroxidation levels in the liver and kidney samples, as well as the adenosine deaminase (ADA) activity in the hippocampus, kidney and liver were higher in MeHg-group when compared to the control group. The administration of ASc reverted the toxic effects of MeHg. It is noteworthy to observe that the main compounds present in the ASc, as gallic acid (the major component), chlorogenic acid and rutin, might be the responsible for such benefit, since they were found to display antioxidant properties.
Collapse
|
29
|
Moussa H, Hachfi L, Trimèche M, Najjar MF, Sakly R. Accumulation of mercury and its effects on testicular functions in rats intoxicated orally by methylmercury. Andrologia 2010; 43:23-7. [PMID: 21219378 DOI: 10.1111/j.1439-0272.2009.01003.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All forms of mercury are considered poisonous. Methylmercury, one organic form, is highly toxic to many organs. The aim of the present study was to assess the effects of this form on the reproductive system in the rat. For this, 20 male rats were divided into two groups. One, which is considered as reference, received tap water. The second group received tap water containing methylmercury at the rate of 20 mg l⁻¹ for 8 weeks. At the end of the experiment, blood samples were collected for the determination of total mercury and plasma testosterone. The left testes were used for the determination of total mercury and histological examination. Appropriate centrifugation was applied on right testes to extract interstitial and seminiferous tubular fluids. The epididymides were homogenised for the sperm count. Our results showed a dramatic fall in the plasma testosterone in the contaminated animals. The fall in plasmatic testosterone seems to be in relation with the decrease in the secretion of testosterone. In association with this, the concentration of testosterone in seminiferous tubules fluid dropped about 55% in the poisoned animals in comparison with the controls. Despite this, no decrease in the epididymal sperm count in contaminated rats was observed.
Collapse
Affiliation(s)
- H Moussa
- Laboratoire de Physiologie, E.S.S.T.S, Monastir, Tunisia
| | | | | | | | | |
Collapse
|
30
|
Dasari S, Yuan Y. In vivo methylmercury exposure induced long-lasting epileptiform activity in layer II/III neurons in cortical slices from the rat. Toxicol Lett 2010; 193:138-43. [PMID: 20051253 DOI: 10.1016/j.toxlet.2009.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Prenatal and postnatal methylmercury (MeHg) exposure has been shown to increase neuronal excitability and seizure susceptibility. To determine if early postnatal MeHg exposure causes a similar effect, we examined changes in field potentials in layer II/III neurons in cortical slices of rat following in vivo MeHg treatment. Rats received 0 (0.9% NaCl), 0.75 mg/kg/day or 1.5mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which cortical slices were prepared for field potential recordings. In slices from rats treated with vehicle, single pulse stimulation of layer IV of cortical slices induced a typical field excitatory postsynaptic potential (fEPSP) with a single spike. This type of fEPSPs was also seen in slices from rats with 15 day treatment with 0.75 mg/kg/day or 1.5mg/kg/day MeHg. However, 30-day treatment with either MeHg dose resulted in fEPSPs with multiple spikes (epileptiform activity) in 40% of animals examined. This epileptiform activity remained observable in 50-60% animals in which MeHg exposure had been terminated for 30 days. However, slices from control animals still showed fEPSPs with single spike. Thus, these data suggest that postnatal MeHg exposure in vivo altered neuronal excitability and induced a long-lasting hyperexcitability in cortical neurons.
Collapse
Affiliation(s)
- Sameera Dasari
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|
31
|
Sakamoto M, Murata K, Kubota M, Nakai K, Satoh H. Mercury and heavy metal profiles of maternal and umbilical cord RBCs in Japanese population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1-6. [PMID: 19819550 DOI: 10.1016/j.ecoenv.2009.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 05/28/2023]
Abstract
Mercury (Hg) and other heavy metal profiles, namely, lead (Pb), arsenic (As), cadmium (Cd), and selenium (Se) were investigated in maternal and umbilical cord (cord) red blood cells (RBCs) at parturition in Japanese population. Correlation coefficients of Hg, Pb, As, Cd, and Se between maternal and cord RBCs were 0.91, 0.79, 0.89, 0.31, and 0.76, respectively, and the respective means of cord/maternal RBCs ratios were 1.63, 0.52, 0.62, 0.12, and 1.18. These results indicate that fetal exposure to these metals (excluding Cd) strongly reflected each maternal exposure level. Among these metals, the placental transfer of methylmercury (MeHg) seemed to be extremely high but that of Cd to be limited. Hg showed positive correlations with Se in maternal RBCs but not in cord RBCs, and the Se/Hg molar ratio was lower in the latter, suggesting that the protective effects of Se against MeHg are less expected in fetuses than in mothers.
Collapse
Affiliation(s)
- Mineshi Sakamoto
- Department of Epidemiology, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan.
| | | | | | | | | |
Collapse
|
32
|
Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. THE CEREBELLUM 2009; 8:137-54. [PMID: 19669387 DOI: 10.1007/s12311-009-0127-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebellar ataxias represent a group of disabling neurological disorders. Our understanding of the pathogenesis of cerebellar ataxias is continuously expanding. A considerable number of laboratory animals with neurological mutations have been reported and numerous relevant animal models mimicking the phenotype of cerebellar ataxias are becoming available. These models greatly help dissecting the numerous mechanisms of cerebellar dysfunction, a major step for the assessment of therapeutics targeting a given deleterious pathway and for the screening of old or newly synthesized chemical compounds. Nevertheless, differences between animal models and human disorders should not be overlooked and difficulties in terms of characterization should not be occulted. The identification of the mutations of many hereditary ataxias, the development of valuable animal models, and the recent identifications of the molecular mechanisms underlying cerebellar disorders represent a combination of key factors for the development of anti-ataxic innovative therapies. It is anticipated that the twenty-first century will be the century of effective therapies in the field of cerebellar ataxias. The animal models are a cornerstone to reach this goal.
Collapse
|
33
|
Dasari S, Yuan Y. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat. Toxicol Appl Pharmacol 2009; 240:412-22. [PMID: 19664649 DOI: 10.1016/j.taap.2009.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca2+](e) or application of the GABA(A) receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.
Collapse
Affiliation(s)
- Sameera Dasari
- Department of Pharmacology and Toxicology, B307A Life Science Building, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|
34
|
Effects of postnatal exposure to methylmercury on spatial learning and memory and brain NMDA receptor mRNA expression in rats. Toxicol Lett 2009; 188:230-5. [PMID: 19409459 DOI: 10.1016/j.toxlet.2009.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 12/21/2022]
Abstract
The extreme vulnerability of developing nervous system to methylmercury (MeHg) is well documented. Still unclear is the consequence of different postnatal period exposure to MeHg. We investigated the critical postnatal phase when MeHg induced neurotoxicity in rats and the underlying mechanism. Rats were given 5mg/(kg day) methylmercury chloride (MMC) orally on postnatal day (PND) 7, PND14, PND28, and PND60 for consecutive 7 days. A control group was treated with 0.9% sodium chloride solution 5 ml/(kg day) instead. On PND69, spatial learning and memory was evaluated by Morris water maze test. Behavior deficits were found in MMC-treated rats of PND7 and PND14 groups (p<0.01). N-methyl-D-aspartate (NMDA) receptor 2 subunits mRNA expressions were evaluated 3 days after the last administration. In hippocampus, the mRNA expression of NR2A and NR2B decreased, but the NR2C expression increased in PND14 group following MMC-treatment (p<0.01). In cerebral cortex, mRNA expression of NR2A decreased, with NR2C expression elevating in PND14 group following MMC-treatment (p<0.05). These observations suggest that the postnatal exposure to MeHg during PND7-20 could cause neurobehavioral deficits which extend to adulthood. Furthermore, the abnormal expression of NMDAR 2 subunits might associate with the impairment.
Collapse
|
35
|
Castoldi AF, Onishchenko N, Johansson C, Coccini T, Roda E, Vahter M, Ceccatelli S, Manzo L. Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regul Toxicol Pharmacol 2008; 51:215-29. [PMID: 18482784 DOI: 10.1016/j.yrtph.2008.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 01/28/2008] [Accepted: 03/18/2008] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is one of the most significant public health hazards. The clinical findings in the victims of the Japanese and Iraqi outbreaks have disclosed the pronounced susceptibility of the developing brain to MeHg poisoning. This notion has triggered worldwide scientific attention toward the long-term consequences of prenatal exposure on child development in communities with chronic low level dietary exposure. MeHg neurodevelopmental effects have been extensively investigated in laboratory animals under well-controlled exposure conditions. This article provides an updated overview of the main neuromorphological and neurobehavioral changes reported in non-human primates and rodents following developmental exposure to MeHg. Different aspects of MeHg's effects on the immature organism are reported, with particular reference to the delayed onset of symptoms and the persistency of central nervous system (CNS) injury/dysfunction. Particular attention is paid to the comparative toxicity assessment across species, and to the degree of concordance/discordance between human and animal data. The contribution of animal studies to define the role of potential effect modifiers and variables on MeHg dose-response relationships is also addressed. The ultimate goal is to discuss the relevance of laboratory animal results, as a complementary tool to human data, with regard to the human risk assessment process.
Collapse
Affiliation(s)
- Anna F Castoldi
- Toxicology Division, University of Pavia, Via Palestro 26, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Roda E, Coccini T, Acerbi D, Castoldi A, Bernocchi G, Manzo L. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat. J Chem Neuroanat 2008; 35:285-94. [PMID: 18358697 DOI: 10.1016/j.jchemneu.2008.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 11/27/2022]
Abstract
The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.
Collapse
Affiliation(s)
- Elisa Roda
- University of Pavia, Department of Internal Medicine and Therapeutics, Toxicology Division, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Neonatal co-exposure to low doses of an ortho-PCB (PCB 153) and methyl mercury exacerbate defective developmental neurobehavior in mice. Toxicology 2008; 244:157-65. [DOI: 10.1016/j.tox.2007.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 11/23/2022]
|
38
|
McVey MJ, Cooke GM, Curran IHA, Chan HM, Kubow S, Lok E, Mehta R. An investigation of the effects of methylmercury in rats fed different dietary fats and proteins: Testicular steroidogenic enzymes and serum testosterone levels. Food Chem Toxicol 2008; 46:270-9. [PMID: 17869401 DOI: 10.1016/j.fct.2007.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/27/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022]
Abstract
Methylmercury (MeHg) is a testicular toxicant causing reduced steroidogenic enzyme activity, reduced serum testosterone (T) and abnormal spermatogenesis in mammals and fowl. It is also known that certain diets can alter androgen metabolism in rats. Previously we have shown that diets used in the current study impact circulating androgen levels and testicular steroidogenic enzyme activities in Sprague Dawley rats in the absence of MeHg. In the present study, we have investigated the impact of imposing an environmental contaminant (MeHg) commonly found in marine mammals and fish onto the rats' dietary intake of different proteins and lipids in order to determine if the different diets could modify MeHg toxicity in rats. Therefore, we examined the effects of MeHg on testicular steroidogenic enzymes and serum testosterone in rats fed diets containing either different protein sources (casein, fishmeal, whey) or different lipid sources (soybean oil, docosahexaenoic acid (DHA), seal oil, fish oil, lard). Male rats 42-45 days of age (18 per group) were assigned to different experimental diets for 28 days after which 6 rats in each group were gavaged daily with 0, 1 or 3 mg/kg body weight (BW)/day MeHg chloride in 5 mM Na(2)CO(3) solution for 14 days while being maintained on their diets. On the 43rd day of dosing, rats were sacrificed and blood plasma and testes frozen (-80 degrees C) until analysis. Microsomal steroidogenic enzyme activities (3beta-HSD, 17-OHase, C-17, 20-lyase, 17beta-HSD) were measured radiometrically. Serum testosterone was determined using ELISA kits. Testis weights were not affected by MeHg. MeHg at 3 mg/kg BW/day caused a reduction (>50%) in the activity of C-17, 20-lyase in all three protein diets and similar reductions in 17-OHase activity were seen in the casein and whey protein fed rats. At 3 mg/kg BW/day, MeHg reduced 17-OHase activity in the DHA diet but had no effect on 3beta-HSD activity and no inhibitory effects on 17beta-HSD activity. MeHg (3 mg/kg BW/day) caused significant reductions in serum T in the whey, soybean oil and fish oil groups. Interestingly, fishmeal protein but not fish oil offered some protection with respect to maintaining steroidogenic enzyme activities and serum T levels in rats dosed with MeHg. In conclusion, these studies show that different lipid diets can alter the toxic effects of MeHg on male rat steroidogenesis in terms of serum testosterone and steroidogenic enzyme activities.
Collapse
Affiliation(s)
- Mark J McVey
- Toxicology Research Division, Health Products and Foods Branch, Food Directorate, Health Canada, Sir Fredrick G. Banting Research Centre, 2202D1 Tunney's Pasture, Ottawa, ON, Canada K1A 0L2
| | | | | | | | | | | | | |
Collapse
|
39
|
Effects of dietary fats and proteins on rat testicular steroidogenic enzymes and serum testosterone levels. Food Chem Toxicol 2008; 46:259-69. [DOI: 10.1016/j.fct.2007.08.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/22/2007] [Accepted: 08/31/2007] [Indexed: 11/22/2022]
|
40
|
Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S. Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 2007; 11:241-60. [PMID: 17449462 DOI: 10.1007/bf03033570] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an increasing body of evidence on the possible environmental influence on neurodevelopmental and neurodegenerative disorders. Both experimental and epidemiological studies have demonstrated the distinctive susceptibility of the developing brain to environmental factors such as lead, mercury and polychlorinated biphenyls at levels of exposure that have no detectable effects in adults. Methylmercury (MeHg) has long been known to affect neurodevelopment in both humans and experimental animals. Neurobehavioural effects reported include altered motoric function and memory and learning disabilities. In addition, there is evidence from recent experimental neurodevelopmental studies that MeHg can induce depression-like behaviour. Several mechanisms have been suggested from in vivo- and in vitro-studies, such as effects on neurotransmitter systems, induction of oxidative stress and disruption of microtubules and intracellular calcium homeostasis. Recent in vitro data show that very low levels of MeHg can inhibit neuronal differentiation of neural stem cells. This review summarises what is currently known about the neurodevelopmental effects of MeHg and consider the strength of different experimental approaches to study the effects of environmentally relevant exposure in vivo and in vitro.
Collapse
Affiliation(s)
- Carolina Johansson
- Division of Toxicology and Neurotoxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Falluel-Morel A, Sokolowski K, Sisti HM, Zhou X, Shors TJ, DiCicco-Bloom E. Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty. J Neurochem 2007; 103:1968-81. [PMID: 17760861 PMCID: PMC3363963 DOI: 10.1111/j.1471-4159.2007.04882.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Normal brain development requires coordinated regulation of several processes including proliferation, differentiation, and cell death. Multiple factors from endogenous and exogenous sources interact to elicit positive as well as negative regulation of these processes. In particular, the perinatal rat brain is highly vulnerable to specific developmental insults that produce later cognitive abnormalities. We used this model to examine the developmental effects of an exogenous factor of great concern, methylmercury (MeHg). Seven-day-old rats received a single injection of MeHg (5 microg/gbw). MeHg inhibited DNA synthesis by 44% and reduced levels of cyclins D1, D3, and E at 24 h in the hippocampus, but not the cerebellum. Toxicity was associated acutely with caspase-dependent programmed cell death. MeHg exposure led to reductions in hippocampal size (21%) and cell numbers 2 weeks later, especially in the granule cell layer (16%) and hilus (50%) of the dentate gyrus defined stereologically, suggesting that neurons might be particularly vulnerable. Consistent with this, perinatal exposure led to profound deficits in juvenile hippocampal-dependent learning during training on a spatial navigation task. In aggregate, these studies indicate that exposure to one dose of MeHg during the perinatal period acutely induces apoptotic cell death, which results in later deficits in hippocampal structure and function.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Katie Sokolowski
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Helene M. Sisti
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tracey J. Shors
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Department of Pediatrics; Member of the Cancer Institute of New Jersey, New Jersey, USA
| |
Collapse
|
42
|
Li Z, Dong T, Pröschel C, Noble M. Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol 2007; 5:e35. [PMID: 17298174 PMCID: PMC1790953 DOI: 10.1371/journal.pbio.0050035] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 12/04/2006] [Indexed: 12/29/2022] Open
Abstract
Identification of common mechanistic principles that shed light on the action of the many chemically diverse toxicants to which we are exposed is of central importance in understanding how toxicants disrupt normal cellular function and in developing more effective means of protecting against such effects. Of particular importance is identifying mechanisms operative at environmentally relevant toxicant exposure levels. Chemically diverse toxicants exhibit striking convergence, at environmentally relevant exposure levels, on pathway-specific disruption of receptor tyrosine kinase (RTK) signaling required for cell division in central nervous system (CNS) progenitor cells. Relatively small toxicant-induced increases in oxidative status are associated with Fyn kinase activation, leading to secondary activation of the c-Cbl ubiquitin ligase. Fyn/c-Cbl pathway activation by these pro-oxidative changes causes specific reductions, in vitro and in vivo, in levels of the c-Cbl target platelet-derived growth factor receptor-α and other c-Cbl targets, but not of the TrkC RTK (which is not a c-Cbl target). Sequential Fyn and c-Cbl activation, with consequent pathway-specific suppression of RTK signaling, is induced by levels of methylmercury and lead that affect large segments of the population, as well as by paraquat, an organic herbicide. Our results identify a novel regulatory pathway of oxidant-mediated Fyn/c-Cbl activation as a shared mechanism of action of chemically diverse toxicants at environmentally relevant levels, and as a means by which increased oxidative status may disrupt mitogenic signaling. These results provide one of a small number of general mechanistic principles in toxicology, and the only such principle integrating toxicology, precursor cell biology, redox biology, and signaling pathway analysis in a predictive framework of broad potential relevance to the understanding of pro-oxidant–mediated disruption of normal development. Chemically different toxins (lead, methylmercury, and paraquat) each cause the intracellular environment to become more oxidized, and thereby activate a common pathway that suppresses signaling from growth factor receptors that may be associated with developmental impairments. Discovering general principles underlying the effects of toxicant exposure on biological systems is one of the central challenges of toxicological research. We have discovered a previously unrecognized regulatory pathway on which chemically diverse toxicants converge, at environmentally relevant exposure levels, to disrupt the function of progenitor cells of the developing central nervous system. We found that the ability of low levels of methylmercury, lead, and paraquat to make progenitor cells more oxidized causes activation of an enzyme called Fyn kinase. Activated Fyn then activates another enzyme (c-Cbl) that modifies specific proteins—receptors that are required for cell division and survival—to initiate the proteins' degradation. By enhancing degradation of these receptors, their downstream signaling functions are repressed. Analysis of developmental exposure to methylmercury provided evidence that this same pathway is activated in vivo by environmentally relevant toxicant levels. The remarkable sensitivity of progenitor cells to low levels of toxicant exposure, and the discovery of the redox/Fyn/c-Cbl pathway as a mechanism by which small increases in oxidative status can markedly alter cell function, provide a novel and specific means by which exposure to chemically diverse toxicants might perturb normal development. In addition, the principles revealed in our studies appear likely to have broad applicability in understanding the regulation of cell function by alterations in redox balance, regardless of how they might be generated.
Collapse
Affiliation(s)
- Zaibo Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tiefei Dong
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chris Pröschel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Coluccia A, Borracci P, Giustino A, Sakamoto M, Carratù MR. Effects of low dose methylmercury administration during the postnatal brain growth spurt in rats. Neurotoxicol Teratol 2007; 29:282-7. [PMID: 17141469 DOI: 10.1016/j.ntt.2006.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/17/2006] [Accepted: 10/17/2006] [Indexed: 11/16/2022]
Abstract
Male Sprague-Dawley rats from eight litters were orally administered 0.75 mg/kg/day methylmercury (MeHg) chloride from postnatal day (PD) 14 to PD 23. One male pup per litter from eight different litters per treatment group was used. Each pup was used only for a single behavioral test and tested once. The MeHg dose level resulted in Hg brain concentrations of 0.82+/-0.05 microg/g tissue (n=4). Locomotor behavior was studied in the Opto-Varimex apparatus by testing rats (n=8) weekly from PD 24 to PD 45. Performance of rats (n=8) on learning paradigm was analysed on PD 90. MeHg treatment induced a significant reduction in the number of rearings without altering the distance travelled, the resting time and the time spent in the central part of the arena. Results of conditioned avoidance task showed that, unlike control rats, MeHg-treated animals did not show improvement over blocks and never reached a level of performance that would indicate significant learning had taken place. The present results show that low level exposure to MeHg during late brain growth spurt induces subtle and persistent motor and learning deficits, further underlining the serious potential hazard for the exposed children.
Collapse
Affiliation(s)
- Addolorata Coluccia
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | | | | | | | | |
Collapse
|
44
|
Burke K, Cheng Y, Li B, Petrov A, Joshi P, Berman R, Reuhl KR, DiCicco-Bloom E. Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. Neurotoxicology 2006; 27:970-81. [PMID: 17056119 PMCID: PMC2013736 DOI: 10.1016/j.neuro.2006.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 08/21/2006] [Accepted: 09/08/2006] [Indexed: 01/12/2023]
Abstract
The developing brain is highly sensitive to methylmercury (MeHg). Still, the initial changes in cell proliferation that may contribute to long-term MeHg effects are largely undefined. Our previous studies with growth factors indicate that acute alterations of the G1/S-phase transition can permanently affect cell numbers and organ size. Therefore, we determined whether an environmental toxicant could also impact brain development with rapid (6-7h) effects on DNA synthesis and cell cycle machinery in neuronal precursors. In vivo studies in newborn rat hippocampus and cerebellum, two regions of postnatal neurogenesis, were followed by in vitro analysis of two precursor models, cortical and cerebellar cells, focusing on the proteins that regulate the G1/S transition. In postnatal day 7 (P7) pups, a single subcutaneous injection of MeHg (3microg/g) acutely (7h) decreased DNA synthesis in the hippocampus by 40% and produced long-term (2 weeks) reductions in total cell number, estimated by DNA quantification. Surprisingly, cerebellar granule cells were resistant to MeHg effects in vivo at comparable tissue concentrations, suggesting region-specific differences in precursor populations. In vitro, MeHg altered proliferation and cell viability, with DNA synthesis selectively inhibited at an early timepoint (6h) corresponding to our in vivo observations. Considering that G1/S regulators are targets of exogenous signals, we used a well-defined cortical cell model to examine MeHg effects on relevant cyclin-dependent kinases (CDK) and CDK inhibitors. At 6h, MeHg decreased by 75% levels of cyclin E, a cell cycle regulator with roles in proliferation and apoptosis, without altering p57, p27, or CDK2 nor levels of activated caspase 3. In aggregate, our observations identify the G1/S transition as an early target of MeHg toxicity and raise the possibility that cyclin E degradation contributes to both decreased proliferation and eventual cell death.
Collapse
Affiliation(s)
- Kelly Burke
- Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Yinghong Cheng
- Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Baogang Li
- Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Alex Petrov
- Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Pushkar Joshi
- Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Robert Berman
- Department of Neurological Surgery, University of California at Davis
| | | | - Emanuel DiCicco-Bloom
- Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey
- Department of Pediatrics; Member of the Cancer Institute of New Jersey
| |
Collapse
|
45
|
Zorrilla Zubilete MA, Ríos H, Silberman DM, Guelman LR, Ricatti MJ, Genaro AM, Zieher LM. Altered nitric oxide synthase and PKC activities in cerebellum of gamma-irradiated neonatal rats. Brain Res 2005; 1051:8-16. [PMID: 15993387 DOI: 10.1016/j.brainres.2005.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 05/12/2005] [Accepted: 05/14/2005] [Indexed: 11/24/2022]
Abstract
In this study, we show that one single dose of gamma-irradiation at birth induces an inhibition of the cerebellar calcium dependent nitric oxide synthase (NOS) activity, probably correlated to the motor abnormalities and the disarrangement in the cerebellar cytoarchitecture observed in adult rats. This decrease in calcium dependent NOS activity could be associated with an increased protein kinase C (PKC) activity. PKC inhibition partially restores calcium dependent NOS activity, indicating that PKC activity could be negatively modulating the catalytic activity of calcium dependent NOS. These findings suggest that a decrease in nitric oxide (NO) production and the related increase in PKC activity could be intracellular events that participate in the onset of motor and cerebellar abnormalities induced by postnatal gamma-irradiation at early stages of life.
Collapse
Affiliation(s)
- María A Zorrilla Zubilete
- 1a Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), 2155 Paraguay St. Piso 15, (1121) Ciudad de Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|