1
|
Binelli A, Nigro L, Sbarberi R, Della Torre C, Magni S. To be or not to be plastics? Protein modulation and biochemical effects in zebrafish embryos exposed to three water-soluble polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167699. [PMID: 37832656 DOI: 10.1016/j.scitotenv.2023.167699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Water-soluble polymers (WSPs) are a particular category of polymers that, due to their capability to be soluble in water, come out of the classic definition of plastic and therefore also from its regulation and control, representing a possible new environmental problem considering the number of consumer products in which they are contained. For this reason, the aim of this study was to evaluate the possible adverse effects of three of the most used WSPs (polyacrylic acid - PAA, polyethylene glycol - PEG, polyvinylpyrrolidone - PVP), administered at relevant environmental concentrations (0.001, 0.5 and 1 mg/L) to Danio rerio (zebrafish) embryos up to 120 h post fertilization. To assess the WSP toxicity at the molecular, cellular and organism level we used an integrated ecotoxicological approach of both biomarkers and high-throughput technology based on gel-free proteomics. The main results showed how all the three WSPs up-regulated many proteins (up to 74 in specimens exposed to 1 mg/L PVP) with a wide range of molecular functions and involved in numerous cellular pathways of exposed specimens. On the other hand, the measurement of biomarkers showed how PAA and PVP were able to activate the antioxidant machinery following an over-production of reactive oxygen species, while PEG produced no significant changes in the biomarkers measured. Based on the obtained results, the use and application of WSPs should be revised and regulated.
Collapse
Affiliation(s)
- Andrea Binelli
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
2
|
Rice KL, Chan CM, Kelu JJ, Miller AL, Webb SE. A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211409. [PMID: 38028019 PMCID: PMC10658360 DOI: 10.1177/25152564231211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+ release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ signaling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2 was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ binding, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2 activity plays a key role in notochord biogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Keira L. Rice
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Ching Man Chan
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Jeffrey J. Kelu
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Andrew L. Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Sarah E. Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| |
Collapse
|
3
|
Fasano G, Muto V, Radio FC, Venditti M, Mosaddeghzadeh N, Coppola S, Paradisi G, Zara E, Bazgir F, Ziegler A, Chillemi G, Bertuccini L, Tinari A, Vetro A, Pantaleoni F, Pizzi S, Conti LA, Petrini S, Bruselles A, Prandi IG, Mancini C, Chandramouli B, Barth M, Bris C, Milani D, Selicorni A, Macchiaiolo M, Gonfiantini MV, Bartuli A, Mariani R, Curry CJ, Guerrini R, Slavotinek A, Iascone M, Dallapiccola B, Ahmadian MR, Lauri A, Tartaglia M. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish. Nat Commun 2022; 13:6841. [PMID: 36369169 PMCID: PMC9652361 DOI: 10.1038/s41467-022-34354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.
Collapse
Affiliation(s)
- Giulia Fasano
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Niloufar Mosaddeghzadeh
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simona Coppola
- grid.416651.10000 0000 9120 6856National Center for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Graziamaria Paradisi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Erika Zara
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Università “Sapienza”, Rome, 00185 Italy
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alban Ziegler
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Giovanni Chillemi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Lucia Bertuccini
- grid.416651.10000 0000 9120 6856Servizio grandi strumentazioni e core facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Tinari
- grid.416651.10000 0000 9120 6856Centro di riferimento per la medicina di genere, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Annalisa Vetro
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Francesca Pantaleoni
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Libenzio Adrian Conti
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessandro Bruselles
- grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ingrid Guarnetti Prandi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cecilia Mancini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Balasubramanian Chandramouli
- grid.431603.30000 0004 1757 1950Super Computing Applications and Innovation, CINECA, 40033 Casalecchio di Reno, Italy
| | - Magalie Barth
- grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Céline Bris
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Donatella Milani
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelo Selicorni
- grid.512106.1Mariani Center for Fragile Children Pediatric Unit, Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy
| | - Marina Macchiaiolo
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Michaela V. Gonfiantini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Bartuli
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Riccardo Mariani
- grid.414603.4Department of Laboratories Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cynthia J. Curry
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Renzo Guerrini
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Anne Slavotinek
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Maria Iascone
- grid.460094.f0000 0004 1757 8431Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Bruno Dallapiccola
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Mohammad Reza Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonella Lauri
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| |
Collapse
|
4
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
5
|
Manakhov AD, Mintseva MY, Uralsky LI, Andreeva TV, Trapezov OV, Rogaev EI. Identification of mutant gene for Black crystal coat and non-allelic gene interactions in Neogale vison. Sci Rep 2022; 12:10483. [PMID: 35729186 PMCID: PMC9213499 DOI: 10.1038/s41598-022-14079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
Sable (Martes zibellina) and American mink (Neogale vison) are valuable species characterized by a variety of coat colour produced on fur farms. Black crystal fur phenotype is Mendelian codominant trait: heterozygous animals (Cr/ +) have white guard hairs scattered predominantly on the spine and the head, while homozygous (Cr/Cr) minks have coats resembling the Himalayan (ch/ch) or white Hedlund (h/h) types. It is one of the most recent of more than 35 currently known phenotypic traits of fur colour in American mink. Black crystal fur phenotype was first described in 1984 in the Russian population of mink, which had undergone selection for domestic defensive response to humans. Here, we performed whole-genome sequencing of American mink with Cr/Cr phenotype. We identified a missense mutation in the gene encoding the α-COP subunit of the COPI complex (COPA). The COPI complex mediates retrograde trafficking from the Golgi system to the endoplasmic reticulum and sorting of transmembrane proteins. We observed an interaction between a newly identified mutation in the COPA gene and a mutation in the microphthalmia-associated transcription factor (MITF), the latter mutation led to the formation of the white Hedlund (h/h) phenotype. Double heterozygotes for these mutations have an entirely white coat and a black-eyed phenotype similar to the phenotype of Cr/Cr or h/h minks. Our data could be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.
Collapse
Affiliation(s)
- Andrey D. Manakhov
- grid.510477.0Department of Genetics, Centre for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia ,grid.4886.20000 0001 2192 9124Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia ,grid.14476.300000 0001 2342 9668Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Maria Yu. Mintseva
- grid.4886.20000 0001 2192 9124Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Lev I. Uralsky
- grid.510477.0Department of Genetics, Centre for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia ,grid.4886.20000 0001 2192 9124Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Tatiana V. Andreeva
- grid.4886.20000 0001 2192 9124Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia ,grid.14476.300000 0001 2342 9668Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Oleg V. Trapezov
- grid.415877.80000 0001 2254 1834Department of Animals and Human Genetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeny I. Rogaev
- grid.510477.0Department of Genetics, Centre for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia ,grid.4886.20000 0001 2192 9124Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia ,grid.14476.300000 0001 2342 9668Centre for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia ,Department of Psychiatry, UMass Chan Medical School, Worcester, MA 01604 USA
| |
Collapse
|
6
|
Sorrentino A, Menevse AN, Michels T, Volpin V, Durst FC, Sax J, Xydia M, Hussein A, Stamova S, Spoerl S, Heuschneider N, Muehlbauer J, Jeltsch KM, Rathinasamy A, Werner-Klein M, Breinig M, Mikietyn D, Kohler C, Poschke I, Purr S, Reidell O, Martins Freire C, Offringa R, Gebhard C, Spang R, Rehli M, Boutros M, Schmidl C, Khandelwal N, Beckhove P. Salt-inducible kinase 3 protects tumor cells from cytotoxic T-cell attack by promoting TNF-induced NF-κB activation. J Immunother Cancer 2022; 10:jitc-2021-004258. [PMID: 35606086 PMCID: PMC9174898 DOI: 10.1136/jitc-2021-004258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.
Collapse
Affiliation(s)
- Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tillmann Michels
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Steffen Spoerl
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jasmin Muehlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Anchana Rathinasamy
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Melanie Werner-Klein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Marco Breinig
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-University Group 'Cell Plasticity and Epigenetic Remodeling', German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Damian Mikietyn
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Isabel Poschke
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabrina Purr
- Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivia Reidell
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | | | - Rienk Offringa
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Gebhard
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michael Rehli
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Boutros
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schmidl
- Junior Group 'Epigenetic Immunooncology', Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nisit Khandelwal
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Marom R, Burrage LC, Venditti R, Clément A, Blanco-Sánchez B, Jain M, Scott DA, Rosenfeld JA, Sutton VR, Shinawi M, Mirzaa G, DeVile C, Roberts R, Calder AD, Allgrove J, Grafe I, Lanza DG, Li X, Joeng KS, Lee YC, Song IW, Sliepka JM, Batkovskyte D, Washington M, Dawson BC, Jin Z, Jiang MM, Chen S, Chen Y, Tran AA, Emrick LT, Murdock DR, Hanchard NA, Zapata GE, Mehta NR, Weis MA, Scott AA, Tremp BA, Phillips JB, Wegner J, Taylor-Miller T, Gibbs RA, Muzny DM, Jhangiani SN, Hicks J, Stottmann RW, Dickinson ME, Seavitt JR, Heaney JD, Eyre DR, Westerfield M, De Matteis MA, Lee B. COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. Am J Hum Genet 2021; 108:1710-1724. [PMID: 34450031 PMCID: PMC8456174 DOI: 10.1016/j.ajhg.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Aurélie Clément
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington, and Brotman Baty Institute for Precision Medicine, Seattle, WA 98105, USA
| | - Catherine DeVile
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Rowenna Roberts
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Alistair D Calder
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Jeremy Allgrove
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Chien Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph M Sliepka
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominyka Batkovskyte
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian C Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyssa A Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisa T Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Laboratory for Translational Genomics, ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gladys E Zapata
- Laboratory for Translational Genomics, ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nitesh R Mehta
- Laboratory for Translational Genomics, ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary Ann Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Brenna A Tremp
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Hicks
- Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Texas Children's Hospital, and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rolf W Stottmann
- Division of Human Genetics, and Division of Developmental Biology, and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Naples 80078, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples 80078, Italy
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Abstract
The vertebrate body plan is characterized by the presence of a segmented spine along its main axis. Here, we examine the current understanding of how the axial tissues that are formed during embryonic development give rise to the adult spine and summarize recent advances in the field, largely focused on recent studies in zebrafish, with comparisons to amniotes where appropriate. We discuss recent work illuminating the genetics and biological mechanisms mediating extension and straightening of the body axis during development, and highlight open questions. We specifically focus on the processes of notochord development and cerebrospinal fluid physiology, and how defects in those processes may lead to scoliosis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, Dell Pediatrics Research Institute, Austin, TX, 78723, USA
| |
Collapse
|
10
|
Yasuoka Y. Morphogenetic mechanisms forming the notochord rod: The turgor pressure-sheath strength model. Dev Growth Differ 2020; 62:379-390. [PMID: 32275068 DOI: 10.1111/dgd.12665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The notochord is a defining feature of chordates. During notochord formation in vertebrates and tunicates, notochord cells display dynamic morphogenetic movement, called convergent extension, in which cells intercalate and align at the dorsal midline. However, in cephalochordates, the most basal group of chordates, the notochord is formed without convergent extension. It is simply developed from mesodermal cells at the dorsal midline. This suggests that convergent extension movement of notochord cells is a secondarily acquired developmental attribute in the common ancestor of olfactores (vertebrates + tunicates), and that the chordate ancestor innovated the notochord upon a foundation of morphogenetic mechanisms independent of cell movement. Therefore, this review focuses on biological features specific to notochord cells, which have been well studied using clawed frogs, zebrafish, and tunicates. Attributes of notochord cells, such as vacuolation, membrane trafficking, extracellular matrix formation, and apoptosis, can be understood in terms of two properties: turgor pressure of vacuoles and strength of the notochord sheath. To maintain the straight rod-like structure of the notochord, these parameters must be counterbalanced. In the future, the turgor pressure-sheath strength model, proposed in this review, will be examined in light of quantitative molecular data and mathematical simulations, illuminating the evolutionary origin of the notochord.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
11
|
Dstyk mutation leads to congenital scoliosis-like vertebral malformations in zebrafish via dysregulated mTORC1/TFEB pathway. Nat Commun 2020; 11:479. [PMID: 31980602 PMCID: PMC6981171 DOI: 10.1038/s41467-019-14169-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Congenital scoliosis (CS) is a complex genetic disorder characterized by vertebral malformations. The precise etiology of CS is not fully defined. Here, we identify that mutation in dual serine/threonine and tyrosine protein kinase (dstyk) lead to CS-like vertebral malformations in zebrafish. We demonstrate that the scoliosis in dstyk mutants is related to the wavy and malformed notochord sheath formation and abnormal axial skeleton segmentation due to dysregulated biogenesis of notochord vacuoles and notochord function. Further studies show that DSTYK is located in late endosomal/lysosomal compartments and is involved in the lysosome biogenesis in mammalian cells. Dstyk knockdown inhibits notochord vacuole and lysosome biogenesis through mTORC1-dependent repression of TFEB nuclear translocation. Inhibition of mTORC1 activity can rescue the defect in notochord vacuole biogenesis and scoliosis in dstyk mutants. Together, our findings reveal a key role of DSTYK in notochord vacuole biogenesis, notochord morphogenesis and spine development through mTORC1/TFEB pathway. Congenital scoliosis is a complex genetic disorder characterized by vertebral malformation. Here, the authors demonstrate that loss of dstyk leads to scoliosis in zebrafish due to dysregulated biogenesis of notochord vacuoles and that DSTYK is required for lysosome biogenesis through mTORC1 regulation.
Collapse
|
12
|
Neumann A, Schindler M, Olofsson D, Wilhelmi I, Schürmann A, Heyd F. Genome-wide identification of alternative splicing events that regulate protein transport across the secretory pathway. J Cell Sci 2019; 132:jcs.230201. [DOI: 10.1242/jcs.230201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/09/2019] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing (AS) strongly increases proteome diversity and functionality in eukaryotic cells. Protein secretion is a tightly-controlled process, especially in a tissue-specific and differentiation-dependent manner. While previous work has focussed on transcriptional and post-translational regulatory mechanisms, the impact of AS on the secretory pathway remains largely unexplored. Here we integrate a published screen for modulators of protein transport and RNA-Seq analyses to identify over 200 AS events as secretion regulators. We confirm that splicing events along all stages of the secretory pathway regulate the efficiency of membrane trafficking using Morpholinos and CRISPR/Cas9. We furthermore show that these events are highly tissue-specific and adapt the secretory pathway during T-cell activation and adipocyte differentiation. Our data substantially advance the understanding of AS functionality, add a new regulatory layer to a fundamental cell biological process and provide a resource of alternative isoforms that control the secretory pathway.
Collapse
Affiliation(s)
- Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Magdalena Schindler
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Didrik Olofsson
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
13
|
Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability. J Neurosci 2018; 38:2615-2630. [PMID: 29437892 DOI: 10.1523/jneurosci.2282-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/23/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Members of the SCY1-like (SCYL) family of protein kinases are evolutionarily conserved and ubiquitously expressed proteins characterized by an N-terminal pseudokinase domain, centrally located Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats, and an overall disorganized C-terminal segment. In mammals, three family members encoded by genes Scyl1, Scyl2, and Scyl3 have been described. Studies have pointed to a role for SCYL1 and SCYL2 in regulating neuronal function and viability in mice and humans, but little is known about the biological function of SCYL3. Here, we show that the biochemical and cell biological properties of SCYL3 are similar to those of SCYL1 and both proteins work in conjunction to maintain motor neuron viability. Specifically, although lack of Scyl3 in mice has no apparent effect on embryogenesis and postnatal life, it accelerates the onset of the motor neuron disorder caused by Scyl1 deficiency. Growth abnormalities, motor dysfunction, hindlimb paralysis, muscle wasting, neurogenic atrophy, motor neuron degeneration, and loss of large-caliber axons in peripheral nerves occurred at an earlier age in Scyl1/Scyl3 double-deficient mice than in Scyl1-deficient mice. Disease onset also correlated with the mislocalization of TDP-43 in spinal motor neurons, suggesting that SCYL1 and SCYL3 regulate TDP-43 proteostasis. Together, our results demonstrate an overlapping role for SCYL1 and SCYL3 in vivo and highlight the importance the SCYL family of proteins in regulating neuronal function and survival. Only male mice were used in this study.SIGNIFICANCE STATEMENT SCYL1 and SCYL2, members of the SCY1-like family of pseudokinases, have well established roles in neuronal function. Herein, we uncover the role of SCYL3 in maintaining motor neuron viability. Although targeted disruption of Scyl3 in mice had little or no effect on embryonic development and postnatal life, it accelerated disease onset associated with the loss of Scyl1, a novel motor neuron disease gene in humans. Scyl1 and Scyl3 double-deficient mice had neuronal defects characteristic of amyotrophic lateral sclerosis, including TDP-43 pathology, at an earlier age than did Scyl1-deficient mice. Thus, we show that SCYL1 and SCYL3 play overlapping roles in maintaining motor neuronal viability in vivo and confirm that SCYL family members are critical regulators of neuronal function and survival.
Collapse
|
14
|
Cutrona MB, Morgan NE, Simpson JC. Heritable Skeletal Disorders Arising from Defects in Processing and Transport of Type I Procollagen from the ER: Perspectives on Possible Therapeutic Approaches. Handb Exp Pharmacol 2018; 245:191-225. [PMID: 29071510 DOI: 10.1007/164_2017_67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rare bone disorders are a heterogeneous group of diseases, initially associated with mutations in type I procollagen (PC) genes. Recent developments from dissection at the molecular and cellular level have expanded the list of disease-causing proteins, revealing that disruption of the machinery that handles protein secretion can lead to failure in PC secretion and in several cases result in skeletal dysplasia. In parallel, cell-based in vitro studies of PC trafficking pathways offer clues to the identification of new disease candidate genes. Together, this raises the prospect of heritable bone disorders as a paradigm for biosynthetic protein traffic-related diseases, and an avenue through which therapeutic strategies can be explored.Here, we focus on human syndromes linked to defects in type I PC secretion with respect to the landscape of biosynthetic and protein transport steps within the early secretory pathway. We provide a perspective on possible therapeutic interventions for associated heritable craniofacial and skeletal disorders, considering different orders of complexity, from the cellular level by manipulation of proteostasis pathways to higher levels involving cell-based therapies for bone repair and regeneration.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Niamh E Morgan
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
15
|
DiStasio A, Driver A, Sund K, Donlin M, Muraleedharan RM, Pooya S, Kline-Fath B, Kaufman KM, Prows CA, Schorry E, Dasgupta B, Stottmann RW. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum Mol Genet 2017; 26:4836-4848. [PMID: 29036432 PMCID: PMC5886270 DOI: 10.1093/hmg/ddx362] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
Primary microcephaly is a congenital brain malformation characterized by a head circumference less than three standard deviations below the mean for age and sex and results in moderate to severe mental deficiencies and decreased lifespan. We recently studied two children with primary microcephaly in an otherwise unaffected family. Exome sequencing identified an autosomal recessive mutation leading to an amino acid substitution in a WD40 domain of the highly conserved Coatomer Protein Complex, Subunit Beta 2 (COPB2). To study the role of Copb2 in neural development, we utilized genome-editing technology to generate an allelic series in the mouse. Two independent null alleles revealed that Copb2 is essential for early stages of embryogenesis. Mice homozygous for the patient variant (Copb2R254C/R254C) appear to have a grossly normal phenotype, likely due to differences in corticogenesis between the two species. Strikingly, mice heterozygous for the patient mutation and a null allele (Copb2R254C/Zfn) show a severe perinatal phenotype including low neonatal weight, significantly increased apoptosis in the brain, and death within the first week of life. Immunostaining of the Copb2R254C/Zfnbrain revealed a reduction in layer V (CTIP2+) neurons, while the overall cell density of the cortex is unchanged. Moreover, neurospheres derived from animals with Copb2 variants grew less than control. These results identify a general requirement for COPB2 in embryogenesis and a specific role in corticogenesis. We further demonstrate the utility of CRISPR-Cas9 generated mouse models in the study of potential pathogenicity of variants of potential clinical interest.
Collapse
Affiliation(s)
- Andrew DiStasio
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Driver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristen Sund
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Milene Donlin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ranjith M Muraleedharan
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shabnam Pooya
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Beth Kline-Fath
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth M Kaufman
- Division of Rheumatology and Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cynthia A Prows
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth Schorry
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Biplab Dasgupta
- Division of Hematology and Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Rapid Discovery of De Novo Deleterious Mutations in Cattle Enhances the Value of Livestock as Model Species. Sci Rep 2017; 7:11466. [PMID: 28904385 PMCID: PMC5597596 DOI: 10.1038/s41598-017-11523-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/23/2017] [Indexed: 01/17/2023] Open
Abstract
In humans, the clinical and molecular characterization of sporadic syndromes is often hindered by the small number of patients and the difficulty in developing animal models for severe dominant conditions. Here we show that the availability of large data sets of whole-genome sequences, high-density SNP chip genotypes and extensive recording of phenotype offers an unprecedented opportunity to quickly dissect the genetic architecture of severe dominant conditions in livestock. We report on the identification of seven dominant de novo mutations in CHD7, COL1A1, COL2A1, COPA, and MITF and exploit the structure of cattle populations to describe their clinical consequences and map modifier loci. Moreover, we demonstrate that the emergence of recessive genetic defects can be monitored by detecting de novo deleterious mutations in the genome of bulls used for artificial insemination. These results demonstrate the attractiveness of cattle as a model species in the post genomic era, particularly to confirm the genetic aetiology of isolated clinical case reports in humans.
Collapse
|
17
|
Wang F, Gao ZX, Cai F, Sinkemani A, Xie ZY, Shi R, Wei JN, Wu XT. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation. Oncotarget 2017; 8:57800-57812. [PMID: 28915712 PMCID: PMC5593684 DOI: 10.18632/oncotarget.18101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Zeng-Xin Gao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Feng Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, China
| | - Arjun Sinkemani
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Zhi-Yang Xie
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Rui Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Ji-Nan Wei
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
18
|
Rodrigues FF, Harris TJC. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 2017; 10:403-410. [PMID: 28410007 DOI: 10.1080/21541248.2017.1304854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although biosynthetic trafficking can function constitutively, it also functions specifically for certain developmental processes. These processes require either a large increase to biosynthesis or the biosynthesis and targeted trafficking of specific players. We review the conserved molecular mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular matrix secretion for bone development, lumen development in epithelial tubes, notochord and neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of secretory machinery during several of these developmental processes. Moreover, dysfunctional trafficking leads to a range of developmental syndromes.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
19
|
Ahn HK, Kang YW, Lim HM, Hwang I, Pai HS. Physiological Functions of the COPI Complex in Higher Plants. Mol Cells 2015; 38:866-75. [PMID: 26434491 PMCID: PMC4625068 DOI: 10.14348/molcells.2015.0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022] Open
Abstract
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The β'-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of β'-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of β'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| | - Yong Won Kang
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Biospectrum Life Science Institute, Seongnam 462-120,
Korea
| | - Hye Min Lim
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
20
|
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci 2015; 72:2989-3008. [PMID: 25833128 PMCID: PMC11114051 DOI: 10.1007/s00018-015-1897-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| |
Collapse
|
21
|
Brunet S, Sacher M. In Sickness and in Health: The Role of TRAPP and Associated Proteins in Disease. Traffic 2014; 15:803-18. [PMID: 24917561 DOI: 10.1111/tra.12183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stephanie Brunet
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
| | - Michael Sacher
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
- Department of Anatomy and Cell Biology; McGill University; 845 Sherbrooke Street West Montreal QC H3A 0G4 Canada
| |
Collapse
|
22
|
Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J Cell Sci 2014; 127:485-95. [PMID: 24481493 PMCID: PMC4007761 DOI: 10.1242/jcs.140194] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Collapse
Affiliation(s)
- Ana M. Vacaru
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marie Spitzner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ela W. Knapik
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten C. Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
23
|
Unlu G, Levic DS, Melville DB, Knapik EW. Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. Int J Biochem Cell Biol 2013; 47:57-67. [PMID: 24333299 DOI: 10.1016/j.biocel.2013.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/19/2022]
Abstract
Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled. Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates.
Collapse
Affiliation(s)
- Gokhan Unlu
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel S Levic
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David B Melville
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ela W Knapik
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Van Veldhoven PP, Baes M. Peroxisome deficient invertebrate and vertebrate animal models. Front Physiol 2013; 4:335. [PMID: 24319432 PMCID: PMC3837297 DOI: 10.3389/fphys.2013.00335] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/01/2013] [Indexed: 11/29/2022] Open
Abstract
Although peroxisomes are ubiquitous organelles in all animal species, their importance for the functioning of tissues and organs remains largely unresolved. Because peroxins are essential for the biogenesis of peroxisomes, an obvious approach to investigate their physiological role is to inactivate a Pex gene or to suppress its translation. This has been performed in mice but also in more primitive organisms including D. melanogaster, C. elegans, and D. rerio, and the major findings and abnormalities in these models will be highlighted. Although peroxisomes are generally not essential for embryonic development and organogenesis, a generalized inactivity of peroxisomes affects lifespan and posthatching/postnatal growth, proving that peroxisomal metabolism is necessary for the normal maturation of these organisms. Strikingly, despite the wide variety of model organisms, corresponding tissues are affected including the central nervous system and the testis. By inactivating peroxisomes in a cell type selective way in the brain of mice, it was also demonstrated that peroxisomes are necessary to prevent neurodegeneration. As these peroxisome deficient model organisms recapitulate pathologies of patients affected with peroxisomal diseases, their further analysis will contribute to the elucidation of still elusive pathogenic mechanisms.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cellular Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU LeuvenLeuven, Belgium
| |
Collapse
|
25
|
Wang S, Kryvi H, Grotmol S, Wargelius A, Krossøy C, Epple M, Neues F, Furmanek T, Totland GK. Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath. J Anat 2013; 223:159-70. [PMID: 23711083 DOI: 10.1111/joa.12067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord.
Collapse
Affiliation(s)
- Shou Wang
- Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ellis K, Bagwell J, Bagnat M. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. ACTA ACUST UNITED AC 2013; 200:667-79. [PMID: 23460678 PMCID: PMC3587825 DOI: 10.1083/jcb.201212095] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zebrafish notochord vacuole, which has long been known to be important for vertebrate development but poorly classified at a cell biological level, is identified as a specialized lysosome-related organelle that is necessary both early, for embryonic axis elongation, and late, for spine morphogenesis. The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H+-ATPase–dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.
Collapse
Affiliation(s)
- Kathryn Ellis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
27
|
An early onset progressive motor neuron disorder in Scyl1-deficient mice is associated with mislocalization of TDP-43. J Neurosci 2013; 32:16560-73. [PMID: 23175812 DOI: 10.1523/jneurosci.1787-12.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular and cellular bases of motor neuron diseases (MNDs) are still poorly understood. The diseases are mostly sporadic, with ~10% of cases being familial. In most cases of familial motor neuronopathy, the disease is caused by either gain-of-adverse-effect mutations or partial loss-of-function mutations in ubiquitously expressed genes that serve essential cellular functions. Here we show that deletion of Scyl1, an evolutionarily conserved and ubiquitously expressed gene encoding the COPI-associated protein pseudokinase SCYL1, causes an early onset progressive MND with characteristic features of amyotrophic lateral sclerosis (ALS). Skeletal muscles of Scyl1(-/-) mice displayed neurogenic atrophy, fiber type switching, and disuse atrophy. Peripheral nerves showed axonal degeneration. Loss of lower motor neurons (LMNs) and large-caliber axons was conspicuous in Scyl1(-/-) animals. Signs of neuroinflammation were seen throughout the CNS, most notably in the ventral horn of the spinal cord. Neural-specific, but not skeletal muscle-specific, deletion of Scyl1 was sufficient to cause motor dysfunction, indicating that SCYL1 acts in a neural cell-autonomous manner to prevent LMN degeneration and motor functions. Remarkably, deletion of Scyl1 resulted in the mislocalization and accumulation of TDP-43 (TAR DNA-binding protein of 43 kDa) and ubiquilin 2 into cytoplasmic inclusions within LMNs, features characteristic of most familial and sporadic forms of ALS. Together, our results identify SCYL1 as a key regulator of motor neuron survival, and Scyl1(-/-) mice share pathological features with many human neurodegenerative conditions.
Collapse
|
28
|
Deciphering Emerging Toxicological Effects of Pharmaceuticals on Aquatic Organisms by Using Daphnia magna and Danio rerio as Model Organisms. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-62657-8.00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
29
|
Tong X, Xia Z, Zu Y, Telfer H, Hu J, Yu J, Liu H, Zhang Q, Sodmergen, Lin S, Zhang B. ngs (notochord granular surface) gene encodes a novel type of intermediate filament family protein essential for notochord maintenance in zebrafish. J Biol Chem 2012; 288:2711-20. [PMID: 23132861 DOI: 10.1074/jbc.m112.379172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The notochord is an important organ involved in embryonic patterning and locomotion. In zebrafish, the mature notochord consists of a single stack of fully differentiated, large vacuolated cells called chordocytes, surrounded by a single layer of less differentiated notochordal epithelial cells called chordoblasts. Through genetic analysis of zebrafish lines carrying pseudo-typed retroviral insertions, a mutant exhibiting a defective notochord with a granular appearance was isolated, and the corresponding gene was identified as ngs (notochord granular surface), which was specifically expressed in the notochord. In the mutants, the notochord started to degenerate from 32 hours post-fertilization, and the chordocytes were then gradually replaced by smaller cells derived from chordoblasts. The granular notochord phenotype was alleviated by anesthetizing the mutant embryos with tricaine to prevent muscle contraction and locomotion. Phylogenetic analysis showed that ngs encodes a new type of intermediate filament (IF) family protein, which we named chordostatin based on its function. Under the transmission electron microcopy, bundles of 10-nm-thick IF-like filaments were enriched in the chordocytes of wild-type zebrafish embryos, whereas the chordocytes in ngs mutants lacked IF-like structures. Furthermore, chordostatin-enhanced GFP (EGFP) fusion protein assembled into a filamentous network specifically in chordocytes. Taken together, our work demonstrates that ngs encodes a novel type of IF protein and functions to maintain notochord integrity for larval development and locomotion. Our work sheds light on the mechanisms of notochord structural maintenance, as well as the evolution and biological function of IF family proteins.
Collapse
Affiliation(s)
- Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hajduk P, May A, Puri P, Murphy P. The Effect of Adriamycin Exposure on the Notochord of Mouse Embryos. ACTA ACUST UNITED AC 2012; 95:175-83. [DOI: 10.1002/bdrb.21002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Prem Puri
- National Children's Research Centre; Our Lady's Children's Hospital; Crumlin; Dublin; Ireland
| | - Paula Murphy
- School of Natural Sciences; Trinity College Dublin; Dublin; Ireland
| |
Collapse
|
31
|
An M, Henion PD. The zebrafish sf3b1b460 mutant reveals differential requirements for the sf3b1 pre-mRNA processing gene during neural crest development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:223-37. [PMID: 22562198 PMCID: PMC3750977 DOI: 10.1387/ijdb.113383ma] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The functions of gene regulatory networks that control embryonic cell diversification occur on a background of constitutively active molecular machinery necessary for the elaboration of genetic interactions. The essential roles of subsets of such "housekeeping" genes in the regulation of specific aspects of development have become increasingly clear. Pre-mRNA processing is essential for production of functional transcripts by, for example, excision of introns. We have cloned the zebrafish toast(b460) locus and found that it encodes splicing factor 3b, subunit 1 (sf3b1). The sf3b1(b460) mutation causes aberrant splicing of sf3b1 resulting in functional and predicted non-functional transcripts and a 90% reduction in full-length Sf3b1 protein. The sf3b1(b460) mutation was isolated in a mutagenesis screen based on the absence of neural crest-derived melanophores. Further analysis revealed specific earlier defects in neural crest development, whereas the early development of other ectodermal populations appears unaffected. The expression of essential transcriptional regulators of neural crest development are severely disrupted in sf3b1(b460) mutants, due in part to defects in pre-mRNA processing of a subset of these factors, leading to defects in neural crest sublineage specification, survival and migration. Misexpression of a subset of these factors rescues aspects of neural crest development in mutant embryos. Our results indicate that although sf3b1 is a ubiquitously essential gene, the degree to which it is required exhibits tissue-type specificity during early embryogenesis. Further, the developmental defects caused by the sf3b1(b460) mutation provide insights into genetic interactions among members of the gene regulatory network controlling neural crest development.
Collapse
Affiliation(s)
- Min An
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Paul D. Henion
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Chandrasekar G, Arner A, Kitambi SS, Dahlman-Wright K, Lendahl MA. Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicol Teratol 2011; 33:752-64. [PMID: 22002180 DOI: 10.1016/j.ntt.2011.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
Abstract
4-Nonylphenol (4-NP), an estrogen mimicking compound is produced by biodegradation of alkylethoxylates. It is well established that 4-NP can affect the development of aquatic animals by disrupting the endocrine signals. Here we show for the first time in zebrafish that 4-NP does not only target the neuroendocrine system but also the notochord and the muscle. The notochord malformation was first evident as distortions at 24hourspostfertilization (hpf) which within 24h appeared as kinks and herniations. The notochord phenotype was accompanied by reduced motility and impaired swimming behavior. Whole-mount in situ hybridization using chordamesoderm markers and electron microscopic analysis showed failure in the notochord differentiation and disruption of the perinotochordal basement membrane. Late larval stages of 4-NP treated embryos displayed abnormal mineralization, vertebral curvature, fusion of vertebral bodies and abnormal extension of haemal arches. The muscle structure and the maximal active force in isolated muscle preparations were similar between 4-NP exposed and of control embryos, suggesting that 4-NP did not induce major changes in striated muscle function. However, repeated electrical stimulation (>40Hz) of the 4-NP exposed larvae revealed an impaired relaxation between stimuli, possibly reflecting an alteration in the relaxant mechanisms (e.g. in cellular Ca(2+) removal) which could explain the abnormal swimming pattern exhibited by 4-NP exposed larvae. Additionally, we demonstrate that the expression levels of the stress hormone, corticotropin releasing hormonewere elevated in the brain following 4-NP treatment. We also observed a significant decrease in the transcript levels of luteinizing hormone b at early larval stages. Collectively, our results show that 4-NP is able to disrupt the notochord morphogenesis, muscle function and the neuroendocrine system. These data suggest that 4-NP enduringly affects the embryonic development in zebrafish and that this compound might exert these deleterious effects through diverse signaling pathways.
Collapse
Affiliation(s)
- Gayathri Chandrasekar
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
33
|
Abstract
For growth, survival, communication and homeostasis, cells transport a large number of proteins to the plasma membrane and the extracellular medium by using the secretory pathway. Consequently, to adapt to the surrounding environment and the different intracellular contexts, the secretory pathway needs to accommodate and respond to a plethora of endogenous and exogenous stimuli. It is now well established that several kinases, known to be activated by environmental stimuli, signal from the plasma membrane to the secretory pathway in order to remodel its architecture and modulate the cellular secretion capacity. By contrast, membranes of the early secretory pathway, similar to the endosomal system, can also initiate and modulate signalling cascades, thereby spatially organising cellular signalling and eliciting a different cellular outcome than when signalling is localised to the plasma membrane. This Commentary highlights recent contributions to our understanding of the mutual regulation of the secretory pathway and cellular signalling.
Collapse
Affiliation(s)
- Hesso Farhan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, Switzerland.
| | | |
Collapse
|
34
|
Barresi MJF, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 2011; 239:2603-18. [PMID: 20806318 DOI: 10.1002/dvdy.22393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a "shelf-screen" to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.
Collapse
|
35
|
Casadei R, Pelleri MC, Vitale L, Facchin F, Lenzi L, Canaider S, Strippoli P, Frabetti F. Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Expr Patterns 2011; 11:271-6. [DOI: 10.1016/j.gep.2011.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 11/28/2022]
|
36
|
Lin YY, White RJ, Torelli S, Cirak S, Muntoni F, Stemple DL. Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies. Hum Mol Genet 2011; 20:1763-75. [PMID: 21317159 PMCID: PMC3071672 DOI: 10.1093/hmg/ddr059] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allelic mutations in putative glycosyltransferase genes, fukutin and fukutin-related protein (fkrp), lead to a wide range of muscular dystrophies associated with hypoglycosylation of α-dystroglycan, commonly referred to as dystroglycanopathies. Defective glycosylation affecting dystroglycan–ligand interactions is considered to underlie the disease pathogenesis. We have modelled dystroglycanopathies in zebrafish using a novel loss-of-function dystroglycan allele and by inhibition of Fukutin family protein activities. We show that muscle pathology in embryos lacking Fukutin or FKRP is different from loss of dystroglycan. In addition to hypoglycosylated α-dystroglycan, knockdown of Fukutin or FKRP leads to a notochord defect and a perturbation of laminin expression before muscle degeneration. These are a consequence of endoplasmic reticulum stress and activation of the unfolded protein response (UPR), preceding loss of dystroglycan–ligand interactions. Together, our results suggest that Fukutin family proteins may play important roles in protein secretion and that the UPR may contribute to the phenotypic spectrum of some dystroglycanopathies in humans.
Collapse
Affiliation(s)
- Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | |
Collapse
|
37
|
Fujimoto M, Hayashi T. New Insights into the Role of Mitochondria-Associated Endoplasmic Reticulum Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:73-117. [DOI: 10.1016/b978-0-12-386033-0.00002-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Yamamoto M, Morita R, Mizoguchi T, Matsuo H, Isoda M, Ishitani T, Chitnis AB, Matsumoto K, Crump JG, Hozumi K, Yonemura S, Kawakami K, Itoh M. Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development 2010; 137:2527-37. [PMID: 20573700 DOI: 10.1242/dev.051011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing embryo, cell-cell signalling is necessary for tissue patterning and structural organization. During midline development, the notochord plays roles in the patterning of its surrounding tissues while forming the axial structure; however, how these patterning and structural roles are coordinated remains elusive. Here, we identify a mechanism by which Notch signalling regulates the patterning activities and structural integrity of the notochord. We found that Mind bomb (Mib) ubiquitylates Jagged 1 (Jag1) and is essential in the signal-emitting cells for Jag1 to activate Notch signalling. In zebrafish, loss- and gain-of-function analyses showed that Mib-Jag1-Notch signalling favours the development of non-vacuolated cells at the expense of vacuolated cells in the notochord. This leads to changes in the peri-notochordal basement membrane formation and patterning surrounding the muscle pioneer cells. These data reveal a previously unrecognized mechanism regulating the patterning and structural roles of the notochord by Mib-Jag1-Notch signalling-mediated cell-fate determination.
Collapse
Affiliation(s)
- Mai Yamamoto
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev Biol 2010; 342:85-95. [DOI: 10.1016/j.ydbio.2010.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/18/2022]
|
40
|
Xu X, Kedlaya R, Higuchi H, Ikeda S, Justice MJ, Setaluri V, Ikeda A. Mutation in archain 1, a subunit of COPI coatomer complex, causes diluted coat color and Purkinje cell degeneration. PLoS Genet 2010; 6:e1000956. [PMID: 20502676 PMCID: PMC2873907 DOI: 10.1371/journal.pgen.1000956] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)-induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the delta subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration.
Collapse
Affiliation(s)
- Xinjie Xu
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Rajendra Kedlaya
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Hitoshi Higuchi
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
41
|
Edeling MA, Sanker S, Shima T, Umasankar PK, Höning S, Kim HY, Davidson LA, Watkins SC, Tsang M, Owen DJ, Traub LM. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development. PLoS One 2009; 4:e8150. [PMID: 19997509 PMCID: PMC2780292 DOI: 10.1371/journal.pone.0008150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022] Open
Abstract
PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.
Collapse
Affiliation(s)
- Melissa A. Edeling
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Subramaniam Sanker
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaki Shima
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - P. K. Umasankar
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Hye Y. Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David J. Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gilsdorf M, Horn T, Arziman Z, Pelz O, Kiner E, Boutros M. GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Res 2009; 38:D448-52. [PMID: 19910367 PMCID: PMC2808900 DOI: 10.1093/nar/gkp1038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The GenomeRNAi database (http://www.genomernai.org/) contains phenotypes from published cell-based RNA interference (RNAi) screens in Drosophila and Homo sapiens. The database connects observed phenotypes with annotations of targeted genes and information about the RNAi reagent used for the perturbation experiment. The availability of phenotypes from Drosophila and human screens also allows for phenotype searches across species. Besides reporting quantitative data from genome-scale screens, the new release of GenomeRNAi also enables reporting of data from microscopy experiments and curated phenotypes from published screens. In addition, the database provides an updated resource of RNAi reagents and their predicted quality that are available for the Drosophila and the human genome. The new version also facilitates the integration with other genomic data sets and contains expression profiling (RNA-Seq) data for several cell lines commonly used in RNAi experiments.
Collapse
Affiliation(s)
- Moritz Gilsdorf
- Division Signaling and Functional Genomics, German Cancer Research Center and University of Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Rebl A, Anders E, Wimmers K, Goldammer T. Cloning and tissue-specific expression of a delta-COP homologue in a freshwater and a brackish water-adapted strain of rainbow trout (Oncorhynchus mykiss). Genes Genet Syst 2009; 84:239-43. [PMID: 19745573 DOI: 10.1266/ggs.84.239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In eukaryotic cells, intracellular transport is mediated by coated vesicular carriers. Coat proteins I (COPI) vesicles are involved in the retrograde transport from Golgi apparatus to the endoplasmic reticulum. The COPI complex is composed of ADP-ribosylation factor 1 and coatomer comprising seven subunits, termed alpha-zeta. We isolated and characterised a cDNA sequence from rainbow trout homolog to delta-subunit of COPI complex (delta-COP). Trout delta-COP gene encodes a protein of 509 aa including a characteristic Mu homology domain. Searches at the Ensemble Genome browser identified three additional teleostean delta-COP-like sequences from pufferfish, rice fish, and stickleback. Sequence identity of piscine delta-COP protein sequences is greater than 84%. Moreover, a phylogenetic analysis indicates that delta-COP protein sequences are strongly conserved among vertebrate species. delta-COP homologue is ubiquitously expressed in trout tissues. Quantitative Real-Time RT-PCR revealed that delta-COP is differentially expressed in liver and gill tissue of two rainbow trout strains, the freshwater strain STEELHEAD and the brackish water-adapted strain BORN.
Collapse
Affiliation(s)
- Alexander Rebl
- Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere (FBN), Molecular Biology Research Unit, Dummerstorf, Germany.
| | | | | | | |
Collapse
|
44
|
Tanegashima K, Zhao H, Rebbert ML, Dawid IB. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo. Development 2009; 136:3543-8. [PMID: 19793890 DOI: 10.1242/dev.036715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.
Collapse
Affiliation(s)
- Kosuke Tanegashima
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
45
|
Kondylis V, Pizette S, Rabouille C. The early secretory pathway in development: A tale of proteins and mRNAs. Semin Cell Dev Biol 2009; 20:817-27. [DOI: 10.1016/j.semcdb.2009.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
|
46
|
Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation. Mol Biol Rep 2009; 37:2341-6. [PMID: 19688271 DOI: 10.1007/s11033-009-9739-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).
Collapse
|
47
|
Navarro RE, Ramos-Balderas JL, Guerrero I, Pelcastre V, Maldonado E. Pigment dilution mutants from fish models with connection to lysosome-related organelles and vesicular traffic genes. Zebrafish 2009; 5:309-18. [PMID: 19133829 DOI: 10.1089/zeb.2008.0549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An interesting question in developmental biology is why mutations in genes with functions essential for the majority of cells produce diseases affecting only specific tissues. For example, pigment dilution disorders are often the consequence of mutations in conserved vesicular traffic genes. In Hermansky-Pudlak, Griscelli, and Chediak-Higashi pigment dilution syndromes, vesicular traffic mutations affect several organs with one characteristic in common: to carry out their functions they depend to a great extent on lysosome-related organelles (LROs), such as the melanosomes in melanocytes. Conserved multimeric complexes, present in most cell types, target proteins to lysosomes or selected LROs using transport vesicles. By studying these diseases or the model organisms that are defective in these processes, we have learned that every cell type possesses a unique way to regulate its vesicular traffic machinery and to assemble its multimeric complexes. This is accomplished by subunits from these multimeric complexes acting in a cell-specific manner. Here, we review several fish pigment dilution mutants that represent models for human vesicular traffic diseases.
Collapse
Affiliation(s)
- Rosa E Navarro
- Departamento de Biología Celular, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, UNAM, México City, México
| | | | | | | | | |
Collapse
|
48
|
Gansner JM, Gitlin JD. Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation. Dev Dyn 2009; 237:3715-26. [PMID: 19035365 DOI: 10.1002/dvdy.21779] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several zebrafish mutants identified in large-scale forward genetic screens exhibit notochord distortion. We now report the cloning and further characterization of one such mutant, gulliver(m208) (gul(m208)). The notochord defect in gul(m208) mutants is exacerbated under conditions of copper depletion or lysyl oxidase cuproenzyme inhibition that are without a notochord effect on wild-type embryos. The gul(m208) phenotype results from a missense mutation in the gene encoding Col8a1, a lysyl oxidase substrate, and morpholino knockdown of col8a1 recapitulates the notochord distortion observed in gul(m208) mutants. Of interest, the amino acid mutated in gul(m208) Col8a1 is highly conserved, and the equivalent substitution in a closely related human protein, COL10A1, causes Schmid metaphyseal chondrodysplasia. Taken together, the data identify a new protein essential for notochord morphogenesis, extend our understanding of gene-nutrient interactions in early development, and suggest that human mutations in COL8A1 may cause structural birth defects.
Collapse
Affiliation(s)
- John M Gansner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
49
|
Kugler JE, Passamaneck YJ, Feldman TG, Beh J, Regnier TW, Di Gregorio A. Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis. Genesis 2009; 46:697-710. [PMID: 18802963 DOI: 10.1002/dvg.20403] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reconstruct a minimum complement of notochord genes evolutionarily conserved across chordates, we scanned the Ciona intestinalis genome using the sequences of 182 genes reported to be expressed in the notochord of different vertebrates and identified 139 candidate notochord genes. For 66 of these Ciona genes expression data were already available, hence we analyzed the expression of the remaining 73 genes and found notochord expression for 20. The predicted products of the newly identified notochord genes range from the transcription factors Ci-XBPa and Ci-miER1 to extracellular matrix proteins. We examined the expression of the newly identified notochord genes in embryos ectopically expressing Ciona Brachyury (Ci-Bra) and in embryos expressing a repressor form of this transcription factor in the notochord, and we found that while a subset of the genes examined are clearly responsive to Ci-Bra, other genes are not affected by alterations in its levels. We provide a first description of notochord genes that are not evidently influenced by the ectopic expression of Ci-Bra and we propose alternative regulatory mechanisms that might control their transcription.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
50
|
Gansner JM, Madsen EC, Mecham RP, Gitlin JD. Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn 2008; 237:2844-61. [PMID: 18816837 DOI: 10.1002/dvdy.21705] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies demonstrate that lysyl oxidase cuproenzymes are critical for zebrafish notochord formation, but the molecular mechanisms of copper-dependent notochord morphogenesis are incompletely understood. We, therefore, conducted a forward genetic screen for zebrafish mutants that exhibit notochord sensitivity to lysyl oxidase inhibition, yielding a mutant with defects in notochord and vascular morphogenesis, puff daddygw1 (pfdgw1). Meiotic mapping and cloning reveal that the pfdgw1 phenotype results from disruption of the gene encoding the extracellular matrix protein fibrillin-2, and the spatiotemporal expression of fibrillin-2 is consistent with the pfdgw1 phenotype. Furthermore, each aspect of the pfdgw1 phenotype is recapitulated by morpholino knockdown of fibrillin-2. Taken together, the data reveal a genetic interaction between fibrillin-2 and the lysyl oxidases in notochord formation and demonstrate the importance of fibrillin-2 in specific early developmental processes in zebrafish.
Collapse
Affiliation(s)
- John M Gansner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|