1
|
Zhai M, Peng B, Zhu H, Xiao J, Xu L, Song XJ. Wnt5a/Ryk signaling contributes to bone cancer pain by sensitizing the peripheral nociceptors through JNK-mediated TRPV1 pathway in rats. Pain 2024:00006396-990000000-00731. [PMID: 39382316 DOI: 10.1097/j.pain.0000000000003426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT Treating bone cancer pain (BCP) continues to be a clinical challenge, and the underlying mechanisms of BCP remain elusive. This study reports that Wnt5a/Ryk signaling in the dorsal root ganglion neurons is critical to the development of BCP. Tibia bone cavity tumor cell implantation produces spontaneous and evoked behaviorally expressed pain as well as ectopic sprouting and activity of Wnt5a/Ryk signaling in the neural soma and peripheral terminals and the tumor-affected bone tissues. Intraplantar, intratibial, or intrathecal injection of Wnt5a/Ryk signaling blockers significantly suppresses the painful symptoms. Peripheral injection of exogenous Wnt5a in naïve rats produces pain, and the dorsal root ganglion neurons become more sensitive to Wnt5a. Wnt5a/Ryk signaling activation increases intracellular calcium response and expression of transient receptors potential vanilloid type-1 and regulates capsaicin-induced intracellular calcium response. Blocking Ryk receptor activation suppresses Wnt5a-induced mechanical allodynia and thermal hyperalgesia. Wnt5a facilitation of transient receptors potential vanilloid type-1 sensitization is blocked by inhibiting c-Jun N-terminal kinase activation. These findings indicate a critical peripheral mechanism of Wnt5a/Ryk signaling underlying the pathogenesis of BCP and suggest that targeting Wnt5a/Ryk in the primary sensory neurons and the tumor-invasive area may be an effective approach for the prevention and treatment of BCP.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
- Center for Medical Experiments, Shenzhen Guangming District People's Hospital, Shenzhen, China
| | - Bo Peng
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hanxu Zhu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Xiao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lihong Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Hösch NG, Martins BB, Alcantara QA, Bufalo MC, Neto BS, Chudzinki-Tavassi AM, Santa-Cecilia FV, Cury Y, Zambelli VO. Wnt signaling is involved in crotalphine-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2023; 959:176058. [PMID: 37739305 DOI: 10.1016/j.ejphar.2023.176058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
The aberrant activation of Wnt/β-catenin and atypical Wnt/Ryk signaling pathways in the spinal cord is critical for the development and maintenance of neuropathic pain. Crotalphine is a structural analog to a peptide first identified in Crotalus durissus terrificus snake venom, which induces antinociception by activating kappa-opioid and CB2 cannabinoid receptors. Consistent with previous data, we showed that the protein levels of the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways are increased in neuropathic rats. Importantly, the administration of crotalphine downregulates these protein levels, including its downstream cascades, such as TCF4 from the canonical pathway and NR2B glutamatergic receptor and Ca2+-dependent signals, via the Ryk receptor. The CB2 receptor antagonist, AM630, abolished the crotalphine-induced atypical Wnt/Ryk signaling pathway activation. However, the selective CB2 agonist affects both canonical and non-canonical Wnt signaling in the spinal cord. Next, we showed that crotalphine blocked hypersensitivity and significantly decreased the concentration of IL-1ɑ, IL-1β, IL-6, IL-10, IL-18, TNF-ɑ, MIP-1ɑ and MIP-2 induced by intrathecal injection of exogenous Wnt-3a agonist. Taken together, our findings show that crotalphine induces analgesia in a neuropathic pain model by down-regulating the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways and, consequently controlling neuroinflammation. This effect is, at least in part, mediated by CB2 receptor activation. These results open a perspective for new approaches that can be used to target Wnt signaling in the context of chronic pain. PERSPECTIVE: Our work identified that crotalphine-induced activation of CB2 receptors plays a critical role in the impairment of Wnt signaling during neuropathic pain. This work suggests that drugs with opioid/cannabinoid activity may be a useful strategy to target Wnt signaling in the context of chronic pain.
Collapse
Affiliation(s)
- Natália G Hösch
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900, São Paulo, Brazil
| | - Bárbara B Martins
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Queren A Alcantara
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michelle Cristiane Bufalo
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Beatriz S Neto
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinki-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Innovation and Development Laboratory, Innovation and Development Center, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Flávia V Santa-Cecilia
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
4
|
Ventura E, Belfiore A, Iozzo RV, Giordano A, Morrione A. Progranulin and EGFR modulate receptor-like tyrosine kinase sorting and stability in mesothelioma cells. Am J Physiol Cell Physiol 2023; 325:C391-C405. [PMID: 37399497 PMCID: PMC10393324 DOI: 10.1152/ajpcell.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Progranulin is a growth factor with pro-tumorigenic activity. We recently demonstrated that in mesothelioma, progranulin regulates cell migration, invasion, adhesion, and in vivo tumor formation by modulating a complex signaling network involving multiple receptor tyrosine kinase (RTK)s. Progranulin biological activity relies on epidermal growth factor receptor (EGFR) and receptor-like tyrosine kinase (RYK), a co-receptor of the Wnt signaling pathway, which are both required for progranulin-induced downstream signaling. However, the molecular mechanism regulating the functional interaction among progranulin, EGFR, and RYK are not known. In this study, we demonstrated that progranulin directly interacted with RYK by specific enzyme-linked immunosorbent assay (ELISA) (KD = 0.67). Using immunofluorescence and proximity ligation assay, we further discovered that progranulin and RYK colocalized in mesothelioma cells in distinct vesicular compartments. Notably, progranulin-dependent downstream signaling was sensitive to endocytosis inhibitors, suggesting that it could depend on RYK or EGFR internalization. We discovered that progranulin promoted RYK ubiquitination and endocytosis preferentially through caveolin-1-enriched pathways, and modulated RYK stability. Interestingly, we also showed that in mesothelioma cells, RYK complexes with the EGFR, contributing to the regulation of RYK stability. Collectively, our results suggest a complex regulation of RYK trafficking/activity in mesothelioma cells, a process that is concurrently regulated by exogenous soluble progranulin and EGFR. NEW & NOTEWORTHY The growth factor progranulin has pro-tumorigenic activity. In mesothelioma, progranulin signaling is mediated by EGFR and RYK, a co-receptor of the Wnt signaling. However, the molecular mechanisms regulating progranulin action are not well defined. Here, we demonstrated that progranulin binds RYK and regulates its ubiquitination, internalization, and trafficking. We also uncovered a role for EGFR in modulating RYK stability. Overall, these results highlight a complex modulation of RYK activity by progranulin and EGFR in mesothelioma.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
- Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Gonzalez RD, Small GW, Green AJ, Akhtari FS, Havener TM, Quintanilha JCF, Cipriani AB, Reif DM, McLeod HL, Motsinger-Reif AA, Wiltshire T. RYK Gene Expression Associated with Drug Response Variation of Temozolomide and Clinical Outcomes in Glioma Patients. Pharmaceuticals (Basel) 2023; 16:ph16050726. [PMID: 37242509 DOI: 10.3390/ph16050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Temozolomide (TMZ) chemotherapy is an important tool in the treatment of glioma brain tumors. However, variable patient response and chemo-resistance remain exceptionally challenging. Our previous genome-wide association study (GWAS) identified a suggestively significant association of SNP rs4470517 in the RYK (receptor-like kinase) gene with TMZ drug response. Functional validation of RYK using lymphocytes and glioma cell lines resulted in gene expression analysis indicating differences in expression status between genotypes of the cell lines and TMZ dose response. We conducted univariate and multivariate Cox regression analyses using publicly available TCGA and GEO datasets to investigate the impact of RYK gene expression status on glioma patient overall (OS) and progression-free survival (PFS). Our results indicated that in IDH mutant gliomas, RYK expression and tumor grade were significant predictors of survival. In IDH wildtype glioblastomas (GBM), MGMT status was the only significant predictor. Despite this result, we revealed a potential benefit of RYK expression in IDH wildtype GBM patients. We found that a combination of RYK expression and MGMT status could serve as an additional biomarker for improved survival. Overall, our findings suggest that RYK expression may serve as an important prognostic or predictor of TMZ response and survival for glioma patients.
Collapse
Affiliation(s)
- Ricardo D Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Amber B Cipriani
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT 84770, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Cecchini A, Cornelison DDW. Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes. Front Mol Biosci 2022; 8:809364. [PMID: 35096972 PMCID: PMC8793696 DOI: 10.3389/fmolb.2021.809364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - D. D. W. Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: D. D. W. Cornelison,
| |
Collapse
|
7
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
8
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
10
|
Voisin J, Farina F, Naphade S, Fontaine M, Tshilenge K, Galicia Aguirre C, Lopez‐Ramirez A, Dancourt J, Ginisty A, Sasidharan Nair S, Lakshika Madushani K, Zhang N, Lejeune F, Verny M, Campisi J, Ellerby LM, Neri C. FOXO3 targets are reprogrammed as Huntington's disease neural cells and striatal neurons face senescence with p16 INK4a increase. Aging Cell 2020; 19:e13226. [PMID: 33156570 PMCID: PMC7681055 DOI: 10.1111/acel.13226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases (ND) have been linked to the critical process in aging—cellular senescence. However, the temporal dynamics of cellular senescence in ND conditions is unresolved. Here, we show senescence features develop in human Huntington's disease (HD) neural stem cells (NSCs) and medium spiny neurons (MSNs), including the increase of p16INK4a, a key inducer of cellular senescence. We found that HD NSCs reprogram the transcriptional targets of FOXO3, a major cell survival factor able to repress cell senescence, antagonizing p16INK4a expression via the FOXO3 repression of the transcriptional modulator ETS2. Additionally, p16INK4a promotes cellular senescence features in human HD NSCs and MSNs. These findings suggest that cellular senescence may develop during neuronal differentiation in HD and that the FOXO3‐ETS2‐p16INK4a axis may be part of molecular responses aimed at mitigating this phenomenon. Our studies identify neuronal differentiation with accelerated aging of neural progenitors and neurons as an alteration that could be linked to NDs.
Collapse
Affiliation(s)
- Jessica Voisin
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Francesca Farina
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | - Morgane Fontaine
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | | | | | - Julia Dancourt
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Aurélie Ginisty
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Satish Sasidharan Nair
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | | | | | - François‐Xavier Lejeune
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Marc Verny
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| | - Judith Campisi
- Buck Institute for Research on Aging Novato CA USA
- Lawrence Berkeley National Laboratory Berkeley CA USA
| | | | - Christian Neri
- Centre National de la Recherche Scientifique UMR 8256 Institut National de la Santé et de la Recherche Médicale ERL U1164 Assistance Publique‐Hôpitaux de Paris Brain‐C Lab Sorbonne Université Paris France
| |
Collapse
|
11
|
Ryk modulates the niche activity of mesenchymal stromal cells by fine-tuning canonical Wnt signaling. Exp Mol Med 2020; 52:1140-1151. [PMID: 32724069 PMCID: PMC8080773 DOI: 10.1038/s12276-020-0477-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of modulating the intensity of Wnt signaling has been highlighted in various biological models, but their mechanisms remain unclear. In this study, we found that Ryk—an atypical Wnt receptor with a pseudokinase domain—has a Wnt-modulating effect in bone marrow stromal cells to control hematopoiesis-supporting activities. We first found that Ryk is predominantly expressed in the mesenchymal stromal cells (MSCs) of the bone marrow (BM) compared with hematopoietic cells. Downregulation of Ryk in MSCs decreased their clonogenic activity and ability to support self-renewing expansion of primitive hematopoietic progenitors (HPCs) in response to canonical Wnt ligands. In contrast, under high concentrations of Wnt, Ryk exerted suppressive effects on the transactivation of target genes and HPC-supporting effects in MSCs, thus fine-tuning the signaling intensity of Wnt in BM stromal cells. This ability of Ryk to modulate the HPC-supporting niche activity of MSCs was abrogated by induction of deletion mutants of Ryk lacking the intracellular domain or extracellular domain, indicating that the pseudokinase-containing intracellular domain mediates the Wnt-modulating effects in response to extracellular Wnt ligands. These findings indicate that the ability of the BM microenvironment to respond to extracellular signals and support hematopoiesis may be fine-tuned by Ryk via modulation of Wnt signaling intensity to coordinate hematopoietic activity. Steady production of immune and blood cells depends on a signaling protein that helps maintain stable stem cell populations within the bone marrow. Hematopoietic stem cells (HSCs), which give rise to blood cells, reside within a supportive “niche” surrounded by mesenchymal stromal cells (MSCs), with extensive communication between the two populations. Researchers led by Il-Hoan Oh at The Catholic University of Korea, Seoul, have now identified a mechanism that MSCs employ to stabilize the niche environment through fine-tuning the signaling intensity of Wnt. Oh and colleagues focused on a signaling pathway that controls the undifferentiated state of HSCs, and showed that these signals are specifically modulated by an MSC protein known as Ryk. Without Ryk, MSCs can no longer promote HSC proliferation. However, when these signals are excessively strong, Ryk helps suppress proliferation to keep HSC numbers under control.
Collapse
|
12
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Nakagawa T, Wada Y, Katada S, Kishi Y. Epigenetic regulation for acquiring glial identity by neural stem cells during cortical development. Glia 2020; 68:1554-1567. [PMID: 32163194 DOI: 10.1002/glia.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The nervous system consists of several hundred neuronal subtypes and glial cells that show specific gene expression and are generated from common ancestors, neural stem cells (NSCs). As the experimental techniques and molecular tools to analyze epigenetics and chromatin structures are rapidly advancing, the comprehensive events and genome-wide states of DNA methylation, histone modifications, and chromatin accessibility in developing NSCs are gradually being unveiled. Here, we review recent advances in elucidating the role of epigenetic and chromatin regulation in NSCs, especially focusing on the acquisition of glial identity and how epigenetic regulation enables the temporal regulation of NSCs during murine cortical development.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikuni Wada
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Sakai H, Fujii Y, Kuwayama N, Kawaji K, Gotoh Y, Kishi Y. Plag1 regulates neuronal gene expression and neuronal differentiation of neocortical neural progenitor cells. Genes Cells 2020; 24:650-666. [PMID: 31442350 DOI: 10.1111/gtc.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023]
Abstract
Neural progenitor cells (NPCs, also known as radial glial progenitors) produce neurons and then glial cells such as astrocytes during development of the mouse neocortex. Given that this sequential generation of neural cells is critical for proper brain formation, the neurogenic potential of NPCs must be precisely controlled. Here, we show that the transcription factor Plag1 plays an important role in the regulation of neurogenic potential in mouse neocortical NPCs. We found that Hmga2, a key neurogenic factor in neocortical NPCs, induces expression of the Plag1 gene. Analysis of the effects of over-expression or knockdown of Plag1 indicated that Plag1 promotes the production of neurons at the expense of astrocyte production in embryonic neocortical cultures. Furthermore, over-expression of Plag1 promoted and knockdown of Plag1 suppressed neuronal differentiation of neocortical NPCs in vivo. Transcriptomic analysis showed that Plag1 increases the expression of a set of neuronal genes in NPCs. Our results thus identify Plag1 as a regulator of neuronal gene expression and neuronal differentiation in NPCs of the developing mouse neocortex.
Collapse
Affiliation(s)
- Hiroshi Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keita Kawaji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
McKenzie MG, Cobbs LV, Dummer PD, Petros TJ, Halford MM, Stacker SA, Zou Y, Fishell GJ, Au E. Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. Neuron 2019; 103:853-864.e4. [PMID: 31257105 DOI: 10.1016/j.neuron.2019.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 01/22/2023]
Abstract
GABAergic interneurons have many important functions in cortical circuitry, a reflection of their cell diversity. The developmental origins of this diversity are poorly understood. Here, we identify rostral-caudal regionality in Wnt exposure within the interneuron progenitor zone delineating the specification of the two main interneuron subclasses. Caudally situated medial ganglionic eminence (MGE) progenitors receive high levels of Wnt signaling and give rise to somatostatin (SST)-expressing cortical interneurons. By contrast, parvalbumin (PV)-expressing basket cells originate mostly from the rostral MGE, where Wnt signaling is attenuated. Interestingly, rather than canonical signaling through β-catenin, signaling via the non-canonical Wnt receptor Ryk regulates interneuron cell-fate specification in vivo and in vitro. Indeed, gain of function of Ryk intracellular domain signaling regulates SST and PV fate in a dose-dependent manner, suggesting that Ryk signaling acts in a graded fashion. These data reveal an important role for non-canonical Wnt-Ryk signaling in establishing the correct ratios of cortical interneuron subtypes.
Collapse
Affiliation(s)
- Melissa G McKenzie
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lucy V Cobbs
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Patrick D Dummer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Timothy J Petros
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Michael M Halford
- Tumour Angiogenesis and Microenvironment Program, Department of Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Department of Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria 3000, Australia
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, CA 92093, USA
| | - Gord J Fishell
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 04115, USA; The Stanley Center at the Broad, Cambridge, MA 02142, USA
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University Medical Center, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative Scholar, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
17
|
Karvonen H, Perttilä R, Niininen W, Barker H, Ungureanu D. Targeting Wnt signaling pseudokinases in hematological cancers. Eur J Haematol 2018; 101:457-465. [DOI: 10.1111/ejh.13137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hanna Karvonen
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Robert Perttilä
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Wilhelmiina Niininen
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Harlan Barker
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Daniela Ungureanu
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| |
Collapse
|
18
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
19
|
Thiele S, Zimmer A, Göbel A, Rachner TD, Rother S, Fuessel S, Froehner M, Wirth MP, Muders MH, Baretton GB, Jakob F, Rauner M, Hofbauer LC. Role of WNT5A receptors FZD5 and RYK in prostate cancer cells. Oncotarget 2018; 9:27293-27304. [PMID: 29930766 PMCID: PMC6007469 DOI: 10.18632/oncotarget.25551] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the most common malignancy in men and has a high propensity to metastasize to bone. WNT5A has recently been implicated in the progression of prostate cancer, however, the receptors that mediate its effects remain unknown. Here, we identified Wnt receptors that are highly expressed in prostate cancer and investigated which of these receptors mediate the anti-tumor effects of WNT5A in prostate cancer in vitro. Extensive in vitro analyses revealed that the WNT5A receptors FZD5 and RYK mediate the anti-tumor effects of WNT5A on prostate cancer cells. Knock-down of FZD5 completely abrogated the anti-proliferative effect of WNT5A in PC3 cells. In contrast, knock-down of RYK and FZD8 did not rescue the inhibition of proliferation after WNT5A overexpression. In contrast, RYK knock-down inhibited the pro-apoptotic effect of WNT5A in PC3 cells by 60%, whereas the knock-down of either FZD5 or FZD8 further stimulated apoptosis after WNT5A overexpression (by 33% and 234%, respectively). Surface plasmon resonance analysis indicated that WNT5A has a 30% stronger binding response to FZD5 than to RYK. Further investigations using a tissue microarray revealed that expression of RYK is increased in advanced prostate cancer tumor stages, but is not associated with survival of prostate cancer patients. In contrast, patients with low local FZD5 expression, in particular in combination with low WNT5A expression, showed a longer disease-specific survival. In conclusion, WNT5A/FZD5 and WNT5A/RYK signaling are both involved in mediating the pro-apoptotic and anti-proliferative effects of WNT5A in prostate cancer.
Collapse
Affiliation(s)
- Stefanie Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Ariane Zimmer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Michael Froehner
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Manfred P Wirth
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Technische Universität Dresden, Dresden, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Kreitman M, Noronha A, Yarden Y. Irreversible modifications of receptor tyrosine kinases. FEBS Lett 2018; 592:2199-2212. [PMID: 29790151 DOI: 10.1002/1873-3468.13095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023]
Abstract
Each group of the 56 receptor tyrosine kinases (RTK) binds with one or more soluble growth factors and coordinates a vast array of cellular functions. These outcomes are tightly regulated by inducible post-translational events, such as tyrosine phosphorylation, ubiquitination, ectodomain shedding, and regulated intramembrane proteolysis. Because of the delicate balance required for appropriate RTK function, cells may become pathogenic upon dysregulation of RTKs themselves or their post-translational covalent modifications. For example, reduced ectodomain shedding and decreased ubiquitination of the cytoplasmic region, both of which enhance growth factor signals, characterize malignant cells. Whereas receptor phosphorylation and ubiquitination are reversible, proteolytic cleavage events are irreversible, and either modification might alter the subcellular localization of RTKs. Herein, we focus on ectodomain shedding by metalloproteinases (including ADAM family proteases), cleavage within the membrane or cytoplasmic regions of RTKs (by gamma-secretases and caspases, respectively), and complete receptor proteolysis in lysosomes and proteasomes. Roles of irreversible modifications in RTK signaling, pathogenesis, and pharmacology are highlighted.
Collapse
Affiliation(s)
- Matthew Kreitman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Yang QO, Yang WJ, Li J, Liu FT, Yuan H, Ou Yang YP. Ryk receptors on unmyelinated nerve fibers mediate excitatory synaptic transmission and CCL2 release during neuropathic pain induced by peripheral nerve injury. Mol Pain 2018; 13:1744806917709372. [PMID: 28565999 PMCID: PMC5459354 DOI: 10.1177/1744806917709372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Neuropathic pain is a major pathology of the central nervous system associated with neuroinflammation. Ryk (receptor-like tyrosine kinase) receptors act as repulsive axon-guidance molecules during development of central nervous system and neural injury. Increasing evidence suggests the potential involvement of Wnt/Ryk (wingless and Int) signaling in the pathogenesis of neuropathic pain. However, its underlying mechanism remains unknown. Results The expression and location of Ryk receptor as well as its ligand Wnt1 were detected by qPCR, Western blot, and immunohistochemistry. We found that Ryk, a specific Wnt receptor, was expressed in IB4+ (Isolectin B4) and CGRP+ (calcitonin gene-related peptide) dorsal root ganglia neurons and their ascending unmyelinated fibers in the dorsal horn of the spinal cord. Ryk was upregulated after spinal nerve ligation surgery. Wnt1 was also increased in activated astrocytes in the dorsal horn after spinal nerve ligation. The presynaptic mechanism of Ryk in regulation of neuropathic pain was determined by electrophysiology in spinal slice. Spinal nerve ligation model was established, and the therapeutic potential of inhibiting Ryk receptor was determined. Spine-specific blocking of the Wnt/Ryk receptor signaling attenuated the spinal nerve ligation-induced mechanical allodynia but not thermal hyperalgesia. Further, it also blocked Ca2+-dependent signals including CaMKII and PKCγ, subsequent release of CCL2 (CCR-like protein) in the dorsal horn. An in vitro study showed that inactivating Ryk receptors with anti-Ryk antibodies or lentiviral Ryk shRNA led to the inactivation of Wnt1 for excitatory synaptic transmission in spinal slices and subsequent decrease in CCL2 expression in the dorsal root ganglia neurons. Conclusion These studies demonstrate the existence of critical crosstalk between astrocytes and unmyelinated fibers, which indicate the presynaptic mechanism of Ryk in cytokine transmission of neuropathic pain and the therapeutic potential for Wnt/Ryk signaling pathway in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Qing Ou Yang
- 1 Department of Surgery, Guangdong Military General Hospital, Guangdong, China
| | - Wen-Jing Yang
- 2 Laboratory Animal Centre of Second Military Medical University, Shanghai, China
| | - Jian Li
- 3 Department of Anesthesiology, Neuroscience Research Centre, Changzheng Hospital, Second Military Medical University, Shanghai, China.,4 Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Fang-Ting Liu
- 5 Department of Anesthesiology, The 302th Hospital of PLA, Beijing, China
| | - Hongbin Yuan
- 3 Department of Anesthesiology, Neuroscience Research Centre, Changzheng Hospital, Second Military Medical University, Shanghai, China.,4 Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue-Ping Ou Yang
- 4 Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, China.,6 Department of Orthopedics Surgery, Neuroscience Research Centre, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Kugathasan K, Halford MM, Farlie PG, Bates D, Smith DP, Zhang YF, Roy JP, Macheda ML, Zhang D, Wilkinson JL, Kirby ML, Newgreen DF, Stacker SA. Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors 2018; 36:58-68. [PMID: 30035654 DOI: 10.1080/08977194.2018.1491848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Ryk is a member of the receptor tyrosine kinase (RTK) family of proteins that control and regulate cellular processes. It is distinguished by binding Wnt ligands and having no detectable intrinsic protein tyrosine kinase activity suggesting Ryk is a pseudokinase. Here, we show an essential role for Ryk in directing morphogenetic events required for normal cardiac development through the examination of Ryk-deficient mice. We employed vascular corrosion casting, vascular perfusion with contrast dye, and immunohistochemistry to characterize cardiovascular and pharyngeal defects in Ryk-/- embryos. Ryk-/- mice exhibit a variety of malformations of the heart and outflow tract that resemble human congenital heart defects. This included stenosis and interruption of the aortic arch, ventriculoarterial malalignment, ventricular septal defects and abnormal pharyngeal arch artery remodelling. This study therefore defines a key intersection between a subset of growth factor receptors involved in planar cell polarity signalling, the Wnt family and mammalian cardiovascular development.
Collapse
Affiliation(s)
- Kumudhini Kugathasan
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Peter G Farlie
- d Craniofacial Development Laboratory , Murdoch Children's Research Institute , Parkville , Australia
| | - Damien Bates
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Darrin P Smith
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
| | - You Fang Zhang
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - James P Roy
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| | - Maria L Macheda
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Dong Zhang
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - James L Wilkinson
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Margaret L Kirby
- g The Neonatal Perinatal Research Institute, Division of Neonatology , Duke University Medical Center , Durham , NC , USA
| | - Donald F Newgreen
- e Embryology Research Group , Murdoch Children's Research Institute , Parkville , Australia
| | - Steven A Stacker
- a Ludwig Institute for Cancer Research , Royal Melbourne Hospital , Melbourne , Australia
- b Department of Surgery, Royal Melbourne Hospital , University of Melbourne , Parkville , Australia
- c Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- f Sir Peter MacCallum Department of Oncology , University of Melbourne , Parkville , Australia
| |
Collapse
|
23
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
24
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|
25
|
Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochem Biophys Res Commun 2018; 496:1302-1307. [PMID: 29410176 DOI: 10.1016/j.bbrc.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
Abstract
After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury.
Collapse
|
26
|
Chang WH, Choi SH, Moon BS, Cai M, Lyu J, Bai J, Gao F, Hajjali I, Zhao Z, Campbell DB, Weiner LP, Lu W. Smek1/2 is a nuclear chaperone and cofactor for cleaved Wnt receptor Ryk, regulating cortical neurogenesis. Proc Natl Acad Sci U S A 2017; 114:E10717-E10725. [PMID: 29180410 PMCID: PMC5740651 DOI: 10.1073/pnas.1715772114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The receptor-like tyrosine kinase (Ryk), a Wnt receptor, is important for cell fate determination during corticogenesis. During neuronal differentiation, the Ryk intracellular domain (ICD) is cleaved. Cleavage of Ryk and nuclear translocation of Ryk-ICD are required for neuronal differentiation. However, the mechanism of translocation and how it regulates neuronal differentiation remain unclear. Here, we identified Smek1 and Smek2 as Ryk-ICD partners that regulate its nuclear localization and function together with Ryk-ICD in the nucleus through chromatin recruitment and gene transcription regulation. Smek1/2 double knockout mice displayed pronounced defects in the production of cortical neurons, especially interneurons, while the neural stem cell population increased. In addition, both Smek and Ryk-ICD bound to the Dlx1/2 intergenic regulator element and were involved in its transcriptional regulation. These findings demonstrate a mechanism of the Ryk signaling pathway in which Smek1/2 and Ryk-ICD work together to mediate neural cell fate during corticogenesis.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
- The Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089
| | - Si Ho Choi
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033;
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, South Korea
| | - Byoung-San Moon
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
| | - Mingyang Cai
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
| | - Jungmook Lyu
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
- Myung-Gok Eye Research Institute, Department of Medical Science, Konyang University, Daejeon 320-832, South Korea
| | - Jinlun Bai
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
| | - Fan Gao
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
| | - Ibrahim Hajjali
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Daniel B Campbell
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Leslie P Weiner
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Wange Lu
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
27
|
Parchure A, Munson M, Budnik V. Getting mRNA-Containing Ribonucleoprotein Granules Out of a Nuclear Back Door. Neuron 2017; 96:604-615. [PMID: 29096075 DOI: 10.1016/j.neuron.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
A pivotal feature of long-lasting synaptic plasticity is the localization of RNAs and the protein synthesis machinery at synaptic sites. How and where ribonucleoprotein (RNP) transport granules that support this synthetic activity are formed is of fundamental importance. The prevailing model poses that the nuclear pore complex (NPC) is the sole gatekeeper for transit of cellular material in and out of the nucleus. However, insights from the nuclear assembly of large viral capsids highlight a back door route for nuclear escape, a process referred to nuclear envelope (NE) budding. Recent studies indicate that NE budding might be an endogenous cellular process for the nuclear export of very large RNPs and protein aggregates. In Drosophila, this mechanism is required for synaptic plasticity, but its role may extend beyond the nervous system, in tissues where local changes in translation are required. Here we discuss these recent findings and a potential relationship between NE budding and the NPC.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Abstract
Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
29
|
Merilahti JAM, Ojala VK, Knittle AM, Pulliainen AT, Elenius K. Genome-wide screen of gamma-secretase-mediated intramembrane cleavage of receptor tyrosine kinases. Mol Biol Cell 2017; 28:3123-3131. [PMID: 28904208 PMCID: PMC5662267 DOI: 10.1091/mbc.e17-04-0261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) have been demonstrated to signal via regulated intramembrane proteolysis, in which ectodomain shedding and subsequent intramembrane cleavage by gamma-secretase leads to release of a soluble intracellular receptor fragment with functional activity. For most RTKs, however, it is unknown whether they can exploit this new signaling mechanism. Here we used a system-wide screen to address the frequency of susceptibility to gamma-secretase cleavage among human RTKs. The screen covering 45 of the 55 human RTKs identified 12 new as well as all nine previously published gamma-secretase substrates. We biochemically validated the screen by demonstrating that the release of a soluble intracellular fragment from endogenous AXL was dependent on the sheddase disintegrin and metalloprotease 10 (ADAM10) and the gamma-secretase component presenilin-1. Functional analysis of the cleavable RTKs indicated that proliferation promoted by overexpression of the TAM family members AXL or TYRO3 depends on gamma-secretase cleavage. Taken together, these data indicate that gamma-secretase-mediated cleavage provides an additional signaling mechanism for numerous human RTKs.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
| | - Veera K Ojala
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Anna M Knittle
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Arto T Pulliainen
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland .,Medicity Research Laboratory, University of Turku, 20520 Turku, Finland.,Department of Oncology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
30
|
Brafman D, Willert K. Wnt/β-catenin signaling during early vertebrate neural development. Dev Neurobiol 2017; 77:1239-1259. [PMID: 28799266 DOI: 10.1002/dneu.22517] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell-cell contact, cell-matrix interactions, and cell-growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239-1259, 2017.
Collapse
Affiliation(s)
- David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, 85287
| | - Karl Willert
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, 92093-0695
| |
Collapse
|
31
|
Adamo A, Fiore D, De Martino F, Roscigno G, Affinito A, Donnarumma E, Puoti I, Ricci Vitiani L, Pallini R, Quintavalle C, Condorelli G. RYK promotes the stemness of glioblastoma cells via the WNT/ β-catenin pathway. Oncotarget 2017; 8:13476-13487. [PMID: 28086236 PMCID: PMC5355113 DOI: 10.18632/oncotarget.14564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a strong self-renewal potential and a poor differentiation state. Since receptor-like tyrosine kinase (RYK) activates the WNT/β-catenin pathway essential for cancer stem cell maintenance, we evaluated its contribution in conferring stemness to GBM cells. Here, we report that Ryk (related-to-receptor tyrosine kinase), an atypical tyrosine kinase receptor, is upregulated in samples from GBM patients as well as in GSCs. Ryk overexpression confers stemness properties to GBM cells through the modulation of the canonical Wnt signaling and by promoting the activation of pluripotency-related transcription factor circuitry and neurosphere formation ability. In contrast, siRNA-mediated knockdown of Ryk expression suppresses this stem-like phenotype. Rescue experiments reveal that stemness-promoting activity of Ryk is attributable, at least in part, to β-catenin stabilization. Furthermore, Ryk overexpression improves cell motility and anchorage independent cell growth. Taken together, our findings demonstrate that Ryk promotes stem cell-like and tumorigenic features to glioma cells its essential for the maintenance of GSCs and could be a target of novel therapies.
Collapse
Affiliation(s)
- Assunta Adamo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Fabio De Martino
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | | | - Ilaria Puoti
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Lucia Ricci Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| |
Collapse
|
32
|
The Wnt receptor Ryk is a negative regulator of mammalian dendrite morphogenesis. Sci Rep 2017; 7:5965. [PMID: 28729735 PMCID: PMC5519545 DOI: 10.1038/s41598-017-06140-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
The unique dendritic architecture of a given neuronal subtype determines its synaptic connectivity and ability to integrate into functional neuronal networks. It is now clear that abnormal dendritic structure is associated with neuropsychiatric and neurodegenerative disorders. Currently, however, the nature of the extrinsic factors that limit dendritic growth and branching within predetermined boundaries in the mammalian brain is poorly understood. Here we identify the Wnt receptor Ryk as a novel negative regulator of dendritic arborisation. We demonstrate that loss of Ryk in mouse hippocampal and cortical neurons promotes excessive dendrite growth and branching in vitro. Conversely, overexpression of wildtype Ryk restricts these processes, confirming that Ryk acts to restrain dendrite arborisation. Furthermore, we identify a hitherto uncharacterized membrane proximal subdomain crucial for Ryk-mediated suppression of dendrite morphogenesis, suggesting that it may act through a novel signalling pathway to constrain dendrite complexity. We also demonstrate that Ryk performs a similar function in vivo as Ryk haploinsufficient postnatal animals exhibit excessive dendrite growth and branching in layer 2/3 pyramidal neurons of the somatosensory cortex. These findings reveal an essential role for Ryk in regulating dendrite complexity and raise the intriguing possibility that it may influence neural plasticity by modifying dendritic structure.
Collapse
|
33
|
Duan X, Gao Y, Liu Y. Ryk regulates Wnt5a repulsion of mouse corticospinal tract through modulating planar cell polarity signaling. Cell Discov 2017; 3:17015. [PMID: 28660073 PMCID: PMC5475318 DOI: 10.1038/celldisc.2017.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/22/2017] [Indexed: 11/21/2022] Open
Abstract
It was previously reported a role for Ryk in mediating Wnt5a repulsion of the corticospinal tract (CST) in mice. Recent evidence has shown that Ryk regulates planar cell polarity (PCP) signaling through interacting with Vangl2. Here, in vivo, in vitro and biochemical analyses were applied to investigate the molecular cross-talk between the Ryk and PCP signaling pathways, revealing that PCP pathway components play important roles in CST anterior–posterior guidance. Ryk–Vangl2 interactions are crucial for PCP signaling to mediate Wnt5a repulsion of CST axons. Cytoplasmic distribution of Ryk is increased under high concentrations of Wnt5a and facilitates the cytoplasmic distribution of Vangl2, leading to inhibition of Frizzled3 translocation to cytoplasm. Alternatively, Ryk stabilizes Vangl2 in the plasma membrane under low Wnt5a concentrations, which promotes cytoplasmic translocation of Frizzled3. We propose that Ryk regulates PCP signaling through asymmetric modulation of Vangl2 distribution in the cytoplasm and plasma membrane, which leads to repulsion of CST axons in response to the Wnt gradient.
Collapse
Affiliation(s)
- Xin Duan
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yarong Gao
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Yaobo Liu
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| |
Collapse
|
34
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
35
|
Lu Y, Wan J, Yang Z, Lei X, Niu Q, Jiang L, Passtoors WM, Zang A, Fraering PC, Wu F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. FASEB J 2016; 31:1382-1397. [PMID: 28034848 PMCID: PMC5349800 DOI: 10.1096/fj.201600702r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Deregulation of the TAM (TYRO3, AXL, and MERTK) family of receptor tyrosine kinases (RTKs) has recently been demonstrated to predominately promote survival and chemoresistance of cancer cells. Intramembrane proteolysis mediated by presenilin/γ-secretase is known to regulate the homeostasis of some RTKs. In the present study, we demonstrate that AXL, but not TYRO3 or MERTK, is efficiently and sequentially cleaved by α- and γ-secretases in various types of cancer cell lines. Proteolytic processing of AXL redirected signaling toward a secretase-mediated pathway, away from the classic, well-known, ligand-dependent canonical RTK signaling pathway. The AXL intracellular domain cleavage product, but not full-length AXL, was further shown to translocate into the nucleus via a nuclear localization sequence that harbored a basic HRRKK motif. Of interest, we found that the γ-secretase-uncleavable AXL mutant caused an elevated chemoresistance in non-small-cell lung cancer cells. Altogether, our findings suggest that AXL can undergo sequential processing mediated by various proteases kept in a homeostatic balance. This newly discovered post-translational processing of AXL may provide an explanation for the diverse functions of AXL, especially in the context of drug resistance in cancer cells.-Lu, Y., Wan, J., Yang, Z., Lei, X., Niu, Q., Jiang, L., Passtoors, W. M., Zang, A., Fraering, P. C., Wu, F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells.
Collapse
Affiliation(s)
- Yinzhong Lu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wan
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Yang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiling Lei
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Niu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lanxin Jiang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Willemijn M Passtoors
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiping Zang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick C Fraering
- Brain Mind Institute-School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Foundation Eclosion, Plan-Les-Ouates, Switzerland.,Campus Biotech Innovation Park, Geneva, Switzerland
| | - Fang Wu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China;
| |
Collapse
|
36
|
Gonzalez-Fernandez C, Arevalo-Martin A, Paniagua-Torija B, Ferrer I, Rodriguez FJ, Garcia-Ovejero D. Wnts Are Expressed in the Ependymal Region of the Adult Spinal Cord. Mol Neurobiol 2016; 54:6342-6355. [PMID: 27722925 DOI: 10.1007/s12035-016-0132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
The Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns. Using microdissection followed by TaqMan® low-density arrays, we show here that the ependymal regions of young, mature rats and adult humans express several Wnt-related genes, including ligands, conventional and non-conventional receptors, co-receptors, and soluble inhibitors. We found 13 genes shared between rats and humans, 4 exclusively expressed in rats and 9 expressed only in humans. Also, we observed a reduction with age on spontaneous proliferation of ependymal cells in rats paralleled by a decrease in the expression of Fzd1, Fzd8, and Fzd9. Our results suggest a role for Wnts in the regulation of the adult spinal cord neurogenic niche and provide new data on the specific differences in this region between humans and rodents.
Collapse
Affiliation(s)
- Carlos Gonzalez-Fernandez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Serveid'AnatomiaPatològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Francisco J Rodriguez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
37
|
Bengoa-Vergniory N, Gorroño-Etxebarria I, López-Sánchez I, Marra M, Di Chiaro P, Kypta R. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells. Mol Neurobiol 2016; 54:6213-6224. [DOI: 10.1007/s12035-016-0151-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
38
|
Xu Z, Li P, Wei D, Wang Z, Bao Y, Sun J, Qu L, Wang L. NMMHC-IIA-dependent nuclear location of CXCR4 promotes migration and invasion in renal cell carcinoma. Oncol Rep 2016; 36:2681-2688. [PMID: 27634189 DOI: 10.3892/or.2016.5082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptor cysteine (C)-X-C receptor (CXCR4) is a G-protein-coupled receptor that exerts a vital role in distant metastasis of renal cell carcinoma (RCC). Emerging evidence demonstrates that CXCR4 as the cytomembrane receptor translocated into the nucleus to facilitate cell migration and, therefore, determine the prognosis of several types of malignancies. However, the biological mechanism of nuclear location of CXCR4 remains unclear. In the present study, we confirmed the significant implications of the putative nuclear localization sequence (NLS) '146RPRK149̓ on CXCR4 subcellular localization and metastatic potential by point-mutation assay in RCC cell lines. Importantly, mass spectrum followed by immunoprecipitation identified non-muscle myosin heavy chain-IIA (NMMHC-IIA) as the CXCR4-interacting protein. Furthermore, pharmaceutical inhibition of NMMHC-IIA by blebbistatin dampened the nuclear translocation of CXCR4 as well as the metastatic capacity of RCC cells. In conclusion, the present study may drive the comprehensive progress toward elucidating the mechanism responsible for CXCR4 nuclear function and metastasis in tumors.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Peng Li
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Dan Wei
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhixiang Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Jipeng Sun
- Health Contingent, No. 71210 Unit of People's Liberation Army, Yantai, Shantong 264001, P.R. China
| | - Le Qu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| |
Collapse
|
39
|
Evidence of selection signatures that shape the Persian cat breed. Mamm Genome 2016; 27:144-55. [DOI: 10.1007/s00335-016-9623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
40
|
Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats. Pain 2015; 156:2572-2584. [DOI: 10.1097/j.pain.0000000000000366] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 2015; 72:4157-72. [PMID: 26306936 PMCID: PMC11113751 DOI: 10.1007/s00018-015-2028-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
The first mammalian Wnt to be discovered, Wnt-1, was found to be essential for the development of a large part of the mouse brain over 25 years ago. We have since learned that Wnt family secreted glycolipoproteins, of which there are nineteen, which activate a diverse network of signals that are particularly important during embryonic development and tissue regeneration. Wnt signals in the developing and adult brain can drive neural stem cell self-renewal, expansion, asymmetric cell division, maturation and differentiation. The molecular events taking place after a Wnt binds to its cell-surface receptors are complex and, at times, controversial. A deeper understanding of these events is anticipated to lead to improvements in the treatment of neurodegenerative diseases and stem cell-based replacement therapies. Here, we review the roles played by Wnts in neural stem cells in the developing mouse brain, at neurogenic sites of the adult mouse and in neural stem cell culture models.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
| | - Robert M Kypta
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
42
|
Abstract
Extensive molecular characterization of tumors has revealed that the activity of multiple signaling pathways is often simultaneously dampened or enhanced in cancer cells. Aberrant WNT signaling and tyrosine kinase signaling are two pathways that are frequently up- or downregulated in cancer. Although signaling pathways regulated by WNTs, tyrosine kinases, and other factors are often conceptualized as independent entities, the biological reality is likely much more complex. Understanding the mechanisms of crosstalk between multiple signal transduction networks is a key challenge for cancer researchers. The overall goals of this review are to describe mechanisms of crosstalk between WNT and tyrosine kinase pathways in cancer and to discuss how understanding intersections between WNT and tyrosine kinase signaling networks might be exploited to improve current therapies.
Collapse
Affiliation(s)
- Jaimie N Anastas
- Harvard Medical School Department of Cell Biology, Boston, MA; Boston Children's Hospital Division of Newborn Medicine, Boston, MA.
| |
Collapse
|
43
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
44
|
Reynaud E, Lahaye LL, Boulanger A, Petrova IM, Marquilly C, Flandre A, Martianez T, Privat M, Noordermeer JN, Fradkin LG, Dura JM. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors. Cell Rep 2015; 11:1293-304. [PMID: 25981040 DOI: 10.1016/j.celrep.2015.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/07/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022] Open
Abstract
In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB) axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed), which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL's ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.
Collapse
Affiliation(s)
- Elodie Reynaud
- Institute of Human Genetics, UPR1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | - Liza L Lahaye
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Ana Boulanger
- Institute of Human Genetics, UPR1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | - Iveta M Petrova
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Claire Marquilly
- Institute of Human Genetics, UPR1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | - Adrien Flandre
- Institute of Human Genetics, UPR1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | - Tania Martianez
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Martin Privat
- Institute of Human Genetics, UPR1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France
| | - Jasprina N Noordermeer
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lee G Fradkin
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Jean-Maurice Dura
- Institute of Human Genetics, UPR1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
45
|
Wnt5a signaling increases IL-12 secretion by human dendritic cells and enhances IFN-γ production by CD4+ T cells. Immunol Lett 2014; 162:188-99. [PMID: 25196330 DOI: 10.1016/j.imlet.2014.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/23/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022]
Abstract
Wnt5a is a secreted pleiotropic glycoprotein produced in an inflammatory state by a wide spectrum of ubiquitous cell populations. Recently, we demonstrated that Wnt5a skews the differentiation of human monocyte derived dendritic cells (moDCs) to a tolerogenic functional state. In this study we focus our interest on the role of this Wnt ligand after DC differentiation, during their maturation and function. We show that the expression of Wnt receptors is tightly regulated during the life cycle of DCs suggesting a differential responsiveness to Wnt signaling conditioned by their differentiation stage and the maturational stimuli. Furthermore, we confirm that Wnt5a is the main non-canonical Wnt protein expressed by DCs and its production increases upon specific stimuli. Exogenous Wnt5a improved the endocytic capacity of immature DCs but it is not a stimulatory signal on its own, slightly affecting the maturation and function of DCs. However, knocking down Wnt5a gene expression in maturing DCs demonstrates that DC-derived Wnt5a is necessary for normal IL-12 secretion and plays a positive role during the development of Th1 responses. Wnt5a acts both in autocrine and paracrine ways. Thus, human naive CD4(+) T cells express Wnt receptors and, the addition of Wnt5a during CD3/CD28 stimulation enhances IL-2 and IFN-γ production. Taken together these results suggest a time-dependent role for Wnt5a during inflammatory responses conditioned by the differentiation stage of cellular targets.
Collapse
|
46
|
Poh WC, Shen Y, Inoue T. Function of the Ryk intracellular domain in C. elegans vulval development. Dev Dyn 2014; 243:1074-85. [PMID: 24975394 DOI: 10.1002/dvdy.24159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/05/2014] [Accepted: 06/01/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ryk is a subfamily of receptor tyrosine kinases, which along with Frizzled and Ror, function as Wnt receptors. Vertebrate Ryk intracellular domain (ICD) is released from the cell membrane by a proteolytic cleavage in the transmembrane region and localizes to the nucleus. In C. elegans, Ryk is encoded by the lin-18 gene and regulates the polarity of the P7.p vulval cell. RESULTS Based on Western blots, we were unable to detect the presence of the cleaved LIN-18 ICD fragment. Functional assays found that LIN-18 intracellular domain is not absolutely required for LIN-18 function, consistent with previous results. However, overexpression of the LIN-18 intracellular domain fragment (LIN-18ICD) weakly enhanced the phenotype of lin-18 loss-of-function mutants. Furthermore, this activity was specific to the serine-rich juxtamembrane region. We also found that the nuclear localization of LIN-18ICD fragment can be regulated by Wnt pathway components including CAM-1/Ror, and by PAR-5/14-3-3. CONCLUSIONS Release of LIN-18ICD by cleavage at the membrane is not the main mechanism of LIN-18 signaling in vulval cells. However, our results suggest that LIN-18 intracellular domain interacts with Wnt pathway components and a 14-3-3 protein and likely plays a minor role in LIN-18 signaling.
Collapse
Affiliation(s)
- Woon Cheng Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
47
|
Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, Offner N, Parker JA, Menet S, Kim J, Lyu J, Choi SH, Cormier K, Edgerly CK, Bordiuk OL, Smith K, Louise A, Halford M, Stacker S, Vert JP, Ferrante RJ, Lu W, Neri C. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity. PLoS Biol 2014; 12:e1001895. [PMID: 24960609 PMCID: PMC4068980 DOI: 10.1371/journal.pbio.1001895] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.
Collapse
Affiliation(s)
- Cendrine Tourette
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- Assistance Publique-Hopitaux de Paris (AP-HP), Charles Foix Hospital, Functional Exploration Unit, Ivry-sur-Seine, France
| | - Francesca Farina
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Rafael P. Vazquez-Manrique
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Anne-Marie Orfila
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jessica Voisin
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sonia Hernandez
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Nicolas Offner
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - J. Alex Parker
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sophie Menet
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jinho Kim
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jungmok Lyu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Si Ho Choi
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Kerry Cormier
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina K. Edgerly
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Bordiuk
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen Smith
- VA Bedford Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
| | - Anne Louise
- Pasteur Institute, Cytometry Platform, Paris, France
| | - Michael Halford
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Steven Stacker
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Jean-Philippe Vert
- Mines ParisTech, Center for Computational Biology, Fontainebleau, France
- Curie Institute, Research Center, Paris, France
- INSERM, Unit 900, Paris, France
| | - Robert J. Ferrante
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wange Lu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Christian Neri
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- * E-mail:
| |
Collapse
|
48
|
Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y, Gotoh Y. Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development. PLoS One 2014; 9:e94408. [PMID: 24832538 PMCID: PMC4022625 DOI: 10.1371/journal.pone.0094408] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/15/2014] [Indexed: 01/02/2023] Open
Abstract
During mouse neocortical development, the Wnt–β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs). Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1) contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs) committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1) and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7) and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation.
Collapse
Affiliation(s)
- Atsushi Kuwahara
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Sakai
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuanjiang Xu
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Itoh
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Yukiko Gotoh
- Laboratory of Cell Signaling, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Clark CEJ, Liu Y, Cooper HM. The Yin and Yang of Wnt/Ryk axon guidance in development and regeneration. SCIENCE CHINA-LIFE SCIENCES 2014; 57:366-71. [DOI: 10.1007/s11427-014-4640-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|
50
|
Habu M, Koyama H, Kishida M, Kamino M, Iijima M, Fuchigami T, Tokimura H, Ueda M, Tokudome M, Koriyama C, Hirano H, Arita K, Kishida S. Ryk is essential for Wnt-5a-dependent invasiveness in human glioma. J Biochem 2014; 156:29-38. [PMID: 24621529 DOI: 10.1093/jb/mvu015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is characterized by marked invasiveness, but little is known about the mechanism of invasion in glioblastoma cells. Wnts are secreted ligands that regulate cell proliferation, differentiation, motility and fate at various developmental stages. In adults, misregulation of the Wnt pathway is associated with several diseases. Recently, we reported that Wnt-5a was overexpressed and correlated with cell motility and infiltrative activity through the regulation of matrix metalloproteinase (MMP)-2 in glioma-derived cells. Although several receptors for Wnt-5a were identified, the receptors of Wnt-5a that mediate cellular responses of glioma were not clearly identified. Knockdown of receptor-like tyrosine kinase (Ryk) but not that of Ror2 suppressed the activity of MMP-2 and Wnt-5a-dependent invasive activity in glioma cells. These results suggest that Ryk is important for the Wnt-5a-dependent induction of MMP-2 and invasive activity in glioma-derived cells and that Ryk might have a novel patho-physiological function in adult cancer invasion. Furthermore, not only the expression of Wnt-5a but also that of Frizzled (Fz)-2 and Ryk was correlated with the WHO histological grade in 38 human glioma tissues. Taking these findings together, Fz-2 and Ryk could be therapeutic or pharmacological target molecules for the control of Wnt-5a-dependent invasion of human glioma in the near future.
Collapse
Affiliation(s)
- Mika Habu
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Koyama
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masayuki Kamino
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mikio Iijima
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takao Fuchigami
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Tokimura
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ueda
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mai Tokudome
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Hirano
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazunori Arita
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shosei Kishida
- Department of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JapanDepartment of Biochemistry and Genetics; Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences; Department of Pharmacy, Kagoshima Prefectural Satunan Hospital; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences; Natural Science Centre for Research and Education, Kagoshima University; and Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|