1
|
Arends T, Bennett SR, Tapscott SJ. DUX4-induced HSATII RNA accumulation drives protein aggregation impacting RNA processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628988. [PMID: 39764024 PMCID: PMC11702838 DOI: 10.1101/2024.12.17.628988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
RNA-driven protein aggregation leads to cellular dysregulation, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar RNA and human satellite II (HSATII) RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells. Specifically, HSATII RNA sequesters RNA methylation factors. HSATII-YBX1 ribonucleoprotein (RNP) complex formation is mediated by HSATII double-stranded RNA and NSUN2 activity. Aberrant HSATII-RNP complexes affect RNA processing pathways, including RNA splicing. Differential splicing of genes mediated by HSATII-RNP complexes are associated with pathways known to be dysregulated by DUX4 expression. These findings highlight the broader influence of DUX4 on nuclear RNA dynamics and suggest that HSATII RNA could be a critical mediator of RNA processing regulation. Understanding the impact of HSATII-RNP formation on RNA processing provides insight into the molecular mechanisms underlying FSHD.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Neurology, University of Washington, Seattle, WA 98105
| |
Collapse
|
2
|
Matsuwaka M, Kumon M, Inoue A. H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos. Nat Cell Biol 2025; 27:28-38. [PMID: 39482357 DOI: 10.1038/s41556-024-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Facultative heterochromatin is formed by Polycomb repressive complex 2 (PRC2)-deposited H3K27 trimethylation (H3K27me3) and PRC1-deposited H2AK119 mono-ubiquitylation (H2AK119ub1). How it is newly established after fertilization remains unclear. To delineate the establishment kinetics, here we profiled the temporal dynamics of H3K27 dimethylation (H3K27me2), which represents the de novo PRC2 catalysis, in mouse preimplantation embryos. H3K27me2 is newly deposited at CpG islands (CGIs), the paternal X chromosome (Xp) and putative enhancers during the eight-cell-to-morula transition, all of which follow H2AK119ub1 deposition. We found that JARID2, a PRC2.2-specific accessory protein possessing an H2AK119ub1-binding ability, colocalizes with SUZ12 at CGIs and Xp in morula embryos. Upon JARID2 depletion, SUZ12 chromatin binding and H3K27me2 deposition were attenuated and H3K27 acetylation at putative enhancers was increased in morulae and subsequently H3K27me3 failed to be deposited in blastocysts. These data reveal that facultative heterochromatin is established by PRC2.2-driven stepwise H3K27 methylation along pre-deposited H2AK119ub1 during early embryogenesis.
Collapse
Affiliation(s)
- Masahiro Matsuwaka
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Tokyo Metropolitan University, Hachioji, Japan
| | - Mami Kumon
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Tokyo Metropolitan University, Hachioji, Japan.
| |
Collapse
|
3
|
Liu J, Li Q, Hu Y, Yu Y, Zheng K, Li D, Qin L, Yu X. The complete telomere-to-telomere sequence of a mouse genome. Science 2024; 386:1141-1146. [PMID: 39636971 DOI: 10.1126/science.adq8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
The current reference genome of Mus musculus, GRCm39, has major gaps in both euchromatic and heterochromatic regions associated with repetitive sequences. In this work, we have sequenced and assembled the telomere-to-telomere genome of mouse haploid embryonic stem cells. The results reveal more than 7.7% of previously uncovered sequences of the mouse genome, including ribosomal DNA arrays and pericentromeric and subtelomeric regions, as well as an additional 140 genes predicted to be protein-coding. This study helps to address knowledge gaps in the mouse genome.
Collapse
Affiliation(s)
- Junli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qilin Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yixuan Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yi Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kai Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Dengfeng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lexin Qin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
5
|
Goto N, Suke K, Yonezawa N, Nishihara H, Handa T, Sato Y, Kujirai T, Kurumizaka H, Yamagata K, Kimura H. ISWI chromatin remodeling complexes recruit NSD2 and H3K36me2 in pericentromeric heterochromatin. J Cell Biol 2024; 223:e202310084. [PMID: 38709169 PMCID: PMC11076809 DOI: 10.1083/jcb.202310084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.
Collapse
Affiliation(s)
- Naoki Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuma Suke
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Pericentromeric satellite RNAs as flexible protein partners in the regulation of nuclear structure. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1868. [PMID: 38973000 DOI: 10.1002/wrna.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mariana Lopes
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- RISE-Health: Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal
- CACTMAD: Trás-os-Montes and Alto Douro Academic Clinic Center,University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
7
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
8
|
Sandoval R, Dilsavor CN, Grishanina NR, Patel V, Zamudio JR. Mammalian RNAi represses pericentromeric lncRNAs to maintain genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593425. [PMID: 38765997 PMCID: PMC11100815 DOI: 10.1101/2024.05.09.593425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mammalian pericentromeric tandem repeats produce long noncoding RNAs (lncRNAs) that are dysregulated in cancer and linked to genomic instability. Identifying the basic molecular characteristics of these lncRNAs and their regulation is important to understanding their biological function. Here, we determine that the Argonaute (Ago) proteins of the RNA interference (RNAi) pathway directly and uniformly repress bidirectional pericentromeric lncRNAs in a Dicer-dependent manner in mouse embryonic and adult stem cells. Ago-dependent and Dicer-dependent autoregulatory small RNAs were identified within pericentromeric lncRNA degradation intermediates. We develop an RNase H cleavage assay to determine the relative proportions and lengths of the pericentromeric lncRNA targets. We find that 5'-phosphate and non-polyadenylated bidirectional pericentromeric lncRNAs are expressed at similar proportions. These lncRNAs can span up to 9 repeats, with transcription from the reverse strand template yielding the longer products. Using pericentromeric repeat RNA reporters, we determine that Ago represses pericentromeric lncRNAs after S phase transcription. Upon loss of Ago, pericentromeric lncRNA dysregulation results in delayed cell cycle progression, a defective mitotic spindle assembly checkpoint (SAC) and genomic instability. These results show that an evolutionarily conserved Ago activity at pericentromeres contributes to mammalian genome stability.
Collapse
|
9
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Zocher S, McCloskey A, Karasinsky A, Schulte R, Friedrich U, Lesche M, Rund N, Gage FH, Hetzer MW, Toda T. Lifelong persistence of nuclear RNAs in the mouse brain. Science 2024; 384:53-59. [PMID: 38574132 PMCID: PMC7615865 DOI: 10.1126/science.adf3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Genomic DNA that resides in the nuclei of mammalian neurons can be as old as the organism itself. The life span of nuclear RNAs, which are critical for proper chromatin architecture and transcription regulation, has not been determined in adult tissues. In this work, we identified and characterized nuclear RNAs that do not turn over for at least 2 years in a subset of postnatally born cells in the mouse brain. These long-lived RNAs were stably retained in nuclei in a neural cell type-specific manner and were required for the maintenance of heterochromatin. Thus, the life span of neural cells may depend on both the molecular longevity of DNA for the storage of genetic information and also the extreme stability of RNA for the functional organization of chromatin.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Kura Oncology, Inc., 5510 Morehouse Dr., San Diego, CA 92121, USA
| | - Anne Karasinsky
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Roberta Schulte
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ulrike Friedrich
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin W. Hetzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
- Laboratory of Neural Epigenomics, Institute of Medical Physics and Micro-tissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
11
|
Ye Y, Homer HA. A surge in cytoplasmic viscosity triggers nuclear remodeling required for Dux silencing and pre-implantation embryo development. Cell Rep 2024; 43:113917. [PMID: 38446665 DOI: 10.1016/j.celrep.2024.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Embryonic genome activation (EGA) marks the transition from dependence on maternal transcripts to an embryonic transcriptional program. The precise temporal regulation of gene expression, specifically the silencing of the Dux/murine endogenous retrovirus type L (MERVL) program during late 2-cell interphase, is crucial for developmental progression in mouse embryos. How this finely tuned regulation is achieved within this specific window is poorly understood. Here, using particle-tracking microrheology throughout the mouse oocyte-to-embryo transition, we identify a surge in cytoplasmic viscosity specific to late 2-cell interphase brought about by high microtubule and endomembrane density. Importantly, preventing the rise in 2-cell viscosity severely impairs nuclear reorganization, resulting in a persistently open chromatin configuration and failure to silence Dux/MERVL. This, in turn, derails embryo development beyond the 2- and 4-cell stages. Our findings reveal a mechanical role of the cytoplasm in regulating Dux/MERVL repression via nuclear remodeling during a temporally confined period in late 2-cell interphase.
Collapse
Affiliation(s)
- Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
| | - Hayden Anthony Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia.
| |
Collapse
|
12
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
13
|
Bogolyubova IO, Sailau ZK, Bogolyubov DS. Nuclear Distribution of the Chromatin-Remodeling Protein ATRX in Mouse Early Embryos during Normal Development and Developmental Arrest In Vitro. Life (Basel) 2023; 14:5. [PMID: 38276254 PMCID: PMC10817635 DOI: 10.3390/life14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The chromatin-remodeling protein ATRX, which is currently recognized as one of the key genome caretakers, plays an important role in oogenesis and early embryogenesis in mammals. ATRX distribution in the nuclei of mouse embryos developing in vivo and in vitro, including when the embryos are arrested at the two-cell stage-the so-called two-cell block in vitro-was studied using immunofluorescent labeling and FISH. In normally developing two- and four-cell embryos, ATRX was found to be closely colocalized with pericentromeric DNA sequences detected with a probe to the mouse major satellite DNA. The association of ATRX with pericentromeric heterochromatin is mediated by nuclear actin and reduced after the treatment of embryos with latrunculin B. When culturing embryos in vitro, the distribution pattern of ATRX changes, leading to a decrease in the association of this protein with major satellite DNA especially under the two-cell block in vitro. Taken together, our data suggest that the intranuclear distribution of ATRX reflects the viability of mouse embryos and their probability of successful preimplantation development.
Collapse
Affiliation(s)
- Irina O. Bogolyubova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia;
| | - Zhuldyz K. Sailau
- PERSONA International Clinical Center for Reproductology, Almaty 050060, Kazakhstan;
| | - Dmitry S. Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia;
| |
Collapse
|
14
|
Baumann C, Zhang X, Viveiros MM, De La Fuente R. Pericentric major satellite transcription is essential for meiotic chromosome stability and spindle pole organization. Open Biol 2023; 13:230133. [PMID: 37935356 PMCID: PMC10645078 DOI: 10.1098/rsob.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
In somatic cells, mitotic transcription of major satellite non-coding RNAs is tightly regulated and essential for heterochromatin formation and the maintenance of genome integrity. We recently demonstrated that major satellite transcripts are expressed, and chromatin-bound during mouse oocyte meiosis. Pericentric satellite RNAs are also expressed in human oocytes. However, the specific biological function(s) during oocyte meiosis remain to be established. Here, we use validated locked nucleic acid gapmers for major satellite RNA depletion followed by live cell imaging, and superresolution analysis to determine the role of pericentric non-coding RNAs during female meiosis. Depletion of satellite RNA induces mesoscale changes in pericentric heterochromatin structure leading to chromosome instability, kinetochore attachment errors and abnormal chromosome alignment. Chromosome misalignment is associated with spindle defects, microtubule instability and, unexpectedly, loss of acentriolar microtubule organizing centre (aMTOC) tethering to spindle poles. Pericentrin fragmentation and failure to assemble ring-like aMTOCs with loss of associated polo-like kinase 1 provide critical insight into the mechanisms leading to impaired spindle pole integrity. Inhibition of transcription or RNA splicing phenocopies the chromosome alignment errors and spindle defects, suggesting that pericentric transcription during oocyte meiosis is required to regulate heterochromatin structure, chromosome segregation and maintenance of spindle organization.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| |
Collapse
|
15
|
El Yakoubi W, Akera T. Condensin dysfunction is a reproductive isolating barrier in mice. Nature 2023; 623:347-355. [PMID: 37914934 PMCID: PMC11379054 DOI: 10.1038/s41586-023-06700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Canat A, Veillet A, Batrin R, Dubourg C, Lhoumaud P, Arnau-Romero P, Greenberg MVC, Bonhomme F, Arimondo PB, Illingworth R, Fabre E, Therizols P. DAXX safeguards heterochromatin formation in embryonic stem cells. J Cell Sci 2023; 136:jcs261092. [PMID: 37655670 DOI: 10.1242/jcs.261092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.
Collapse
Affiliation(s)
- Antoine Canat
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Adeline Veillet
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Renaud Batrin
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Clara Dubourg
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | | | - Pol Arnau-Romero
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Robert Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Emmanuelle Fabre
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| | - Pierre Therizols
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Institut de Recherche St Louis, F-75010 Paris, France
| |
Collapse
|
17
|
Ninomiya K, Yamazaki T, Hirose T. Satellite RNAs: emerging players in subnuclear architecture and gene regulation. EMBO J 2023; 42:e114331. [PMID: 37526230 PMCID: PMC10505914 DOI: 10.15252/embj.2023114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | | | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| |
Collapse
|
18
|
Recoules L, Tanguy Le Gac N, Moutahir F, Bystricky K, Lavigne AC. Recruitment of the Histone Variant MacroH2A1 to the Pericentric Region Occurs upon Chromatin Relaxation and Is Responsible for Major Satellite Transcriptional Regulation. Cells 2023; 12:2175. [PMID: 37681907 PMCID: PMC10486525 DOI: 10.3390/cells12172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Heterochromatin formation plays a pivotal role in regulating chromatin organization and influences nuclear architecture and genome stability and expression. Amongst the locations where heterochromatin is found, the pericentric regions have the capability to attract the histone variant macroH2A1. However, the factors and mechanisms behind macroH2A1 incorporation into these regions have not been explored. In this study, we probe different conditions that lead to the recruitment of macroH2A1 to pericentromeric regions and elucidate its underlying functions. Through experiments conducted on murine fibroblastic cells, we determine that partial chromatin relaxation resulting from DNA damage, senescence, or histone hyper-acetylation is necessary for the recruitment of macroH2A1 to pericentric regions. Furthermore, macroH2A1 is required for upregulation of noncoding pericentric RNA expression but not for pericentric chromatin organization. Our findings shed light on the functional rather than structural significance of macroH2A1 incorporation into pericentric chromatin.
Collapse
Affiliation(s)
- Ludmila Recoules
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Nicolas Tanguy Le Gac
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Fatima Moutahir
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Kerstin Bystricky
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Anne-Claire Lavigne
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| |
Collapse
|
19
|
Joron K, Viegas JO, Haas-Neill L, Bier S, Drori P, Dvir S, Lim PSL, Rauscher S, Meshorer E, Lerner E. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nat Commun 2023; 14:4885. [PMID: 37573411 PMCID: PMC10423231 DOI: 10.1038/s41467-023-40647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Juliane Oliveira Viegas
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Liam Haas-Neill
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Sariel Bier
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shani Dvir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
- Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
20
|
Malla AB, Yu H, Farris D, Kadimi S, Lam TT, Cox AL, Smith ZD, Lesch BJ. DOT1L bridges transcription and heterochromatin formation at mammalian pericentromeres. EMBO Rep 2023; 24:e56492. [PMID: 37317657 PMCID: PMC10398668 DOI: 10.15252/embr.202256492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Repetitive DNA elements are packaged in heterochromatin, but many require bursts of transcription to initiate and maintain long-term silencing. The mechanisms by which these heterochromatic genome features are transcribed remain largely unknown. Here, we show that DOT1L, a conserved histone methyltransferase that modifies lysine 79 of histone H3 (H3K79), has a specialized role in transcription of major satellite repeats to maintain pericentromeric heterochromatin and genome stability. We find that H3K79me3 is selectively enriched relative to H3K79me2 at repetitive elements in mouse embryonic stem cells (mESCs), that DOT1L loss compromises pericentromeric satellite transcription, and that this activity involves possible coordination between DOT1L and the chromatin remodeler SMARCA5. Stimulation of transcript production from pericentromeric repeats by DOT1L participates in stabilization of heterochromatin structures in mESCs and cleavage-stage embryos and is required for preimplantation viability. Our findings uncover an important role for DOT1L as a bridge between transcriptional activation of repeat elements and heterochromatin stability, advancing our understanding of how genome integrity is maintained and how chromatin state is set up during early development.
Collapse
Affiliation(s)
- Aushaq B Malla
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Haoming Yu
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Delaney Farris
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | | | - TuKiet T Lam
- Keck MS & Proteomics ResourceYale School of MedicineNew HavenCTUSA
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Andy L Cox
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Zachary D Smith
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Stem Cell CenterYale School of MedicineNew HavenCTUSA
| | - Bluma J Lesch
- Department of GeneticsYale School of MedicineNew HavenCTUSA
- Yale Cancer CenterYale School of MedicineNew HavenCTUSA
| |
Collapse
|
21
|
Li XH, Sun MH, Jiang WJ, Zhou D, Lee SH, Heo G, Chen Z, Cui XS. ZSCAN4 Regulates Zygotic Genome Activation and Telomere Elongation in Porcine Parthenogenetic Embryos. Int J Mol Sci 2023; 24:12121. [PMID: 37569497 PMCID: PMC10418334 DOI: 10.3390/ijms241512121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
22
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Li S, Shen X. Long interspersed nuclear element 1 and B1/Alu repeats blueprint genome compartmentalization. Curr Opin Genet Dev 2023; 80:102049. [PMID: 37229928 DOI: 10.1016/j.gde.2023.102049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
The organization of the genome into euchromatin and heterochromatin has been known for almost 100 years [1]. More than 50% of mammalian genomes contain repetitive sequences [2,3]. Recently, a functional link between the genome and its folding has been identified [4,5]. Homotypic clustering of long interspersed nuclear element 1 (LINE1 or L1) and B1/Alu retrotransposons forms grossly exclusive nuclear domains that characterize and predict heterochromatin and euchromatin, respectively. The spatial segregation of L1 and B1/Alu-rich compartments is conserved in mammalian cells and can be rebuilt during the cell cycle and established de novo in early embryogenesis. Inhibition of L1 RNA drastically weakened homotypic repeat contacts and compartmental segregation, indicating that L1 plays a more significant role than just being a compartmental marker. This simple and inclusive genetic coding model of L1 and B1/Alu in shaping the macroscopic structure of the genome provides a plausible explanation for the remarkable conservation and robustness of its folding in mammalian cells. It also proposes a conserved core structure on which subsequent dynamic regulation takes place.
Collapse
Affiliation(s)
- Siyang Li
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Malla AB, Rainsford SR, Smith ZD, Lesch BJ. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023; 150:dev201497. [PMID: 37082969 PMCID: PMC10259660 DOI: 10.1242/dev.201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.
Collapse
Affiliation(s)
- Aushaq B. Malla
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Zachary D. Smith
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
25
|
Ponomartsev N, Zilov D, Gushcha E, Travina A, Sergeev A, Enukashvily N. Overexpression of Pericentromeric HSAT2 DNA Increases Expression of EMT Markers in Human Epithelial Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24086918. [PMID: 37108080 PMCID: PMC10138405 DOI: 10.3390/ijms24086918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Pericentromeric tandemly repeated DNA of human satellites 1, 2, and 3 (HS1, HS2, and HS3) is actively transcribed in some cells. However, the functionality of the transcription remains obscure. Studies in this area have been hampered by the absence of a gapless genome assembly. The aim of our study was to map a transcript that we have previously described as HS2/HS3 on chromosomes using a newly published gapless genome assembly T2T-CHM13, and create a plasmid overexpressing the transcript to assess the influence of HS2/HS3 transcription on cancer cells. We report here that the sequence of the transcript is tandemly repeated on nine chromosomes (1, 2, 7, 9, 10, 16, 17, 22, and Y). A detailed analysis of its genomic localization and annotation in the T2T-CHM13 assembly revealed that the sequence belonged to HSAT2 (HS2) but not to the HS3 family of tandemly repeated DNA. The transcript was found on both strands of HSAT2 arrays. The overexpression of the HSAT2 transcript increased the transcription of the genes encoding the proteins involved in the epithelial-to-mesenchymal transition, EMT (SNAI1, ZEB1, and SNAI2), and the genes that mark cancer-associated fibroblasts (VIM, COL1A1, COL11A1, and ACTA2) in cancer cell lines A549 and HeLa. Co-transfection of the overexpression plasmid and antisense nucleotides eliminated the transcription of EMT genes observed after HSAT2 overexpression. Antisense oligonucleotides also decreased transcription of the EMT genes induced by tumor growth factor beta 1 (TGFβ1). Thus, our study suggests HSAT2 lncRNA transcribed from the pericentromeric tandemly repeated DNA is involved in EMT regulation in cancer cells.
Collapse
Affiliation(s)
- Nikita Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Danil Zilov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg 191002, Russia
| | - Ekaterina Gushcha
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexandra Travina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexander Sergeev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natella Enukashvily
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
26
|
Guthmann M, Qian C, Gialdini I, Nakatani T, Ettinger A, Schauer T, Kukhtevich I, Schneider R, Lamb DC, Burton A, Torres-Padilla ME. A change in biophysical properties accompanies heterochromatin formation in mouse embryos. Genes Dev 2023; 37:336-350. [PMID: 37072228 PMCID: PMC10153458 DOI: 10.1101/gad.350353.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.
Collapse
Affiliation(s)
- Manuel Guthmann
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Chen Qian
- Department of Chemistry, Center for NanoScience (CeNS), Ludwig Maximilians-Universität München, 81377 München, Germany
| | - Irene Gialdini
- Department of Chemistry, Center for NanoScience (CeNS), Ludwig Maximilians-Universität München, 81377 München, Germany
| | - Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Igor Kukhtevich
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience (CeNS), Ludwig Maximilians-Universität München, 81377 München, Germany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany;
- Faculty of Biology, Ludwig-Maximilians Universität, München, 82152 Planegg, Germany
| |
Collapse
|
27
|
Zhu J, Chen K, Sun YH, Ye W, Liu J, Zhang D, Su N, Wu L, Kou X, Zhao Y, Wang H, Gao S, Kang L. LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei. Nat Commun 2023; 14:957. [PMID: 36810573 PMCID: PMC9944933 DOI: 10.1038/s41467-023-36584-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.
Collapse
Affiliation(s)
- Jiang Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Kang Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu H Sun
- Departments of Biology, University of Rochester, 14642, Rochester, NY, USA
| | - Wen Ye
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Juntao Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Dandan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Nan Su
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Li Wu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China. .,Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Lan Kang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
28
|
Prakash Yadav R, Leskinen S, Ma L, Mäkelä JA, Kotaja N. Chromatin remodelers HELLS, WDHD1 and BAZ1A are dynamically expressed during mouse spermatogenesis. Reproduction 2023; 165:49-63. [PMID: 36194437 PMCID: PMC9782464 DOI: 10.1530/rep-22-0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
In brief Proper regulation of heterochromatin is critical for spermatogenesis. This study reveals the dynamic localization patterns of distinct chromatin regulators during spermatogenesis and disrupted sex chromatin status in spermatocytes in the absence of DICER. Abstract Heterochromatin is dynamically formed and organized in differentiating male germ cells, and its proper regulation is a prerequisite for normal spermatogenesis. While heterochromatin is generally transcriptionally silent, we have previously shown that major satellite repeat (MSR) DNA in the pericentric heterochromatin (PCH) is transcribed during spermatogenesis. We have also shown that DICER associates with PCH and is involved in the regulation of MSR-derived transcripts. To shed light on the heterochromatin regulation in the male germline, we studied the expression, localization and heterochromatin association of selected testis-enriched chromatin regulators in the mouse testis. Our results show that HELLS, WDHD1 and BAZ1A are dynamically expressed during spermatogenesis. They display limited overlap in expression, suggesting involvement in distinct heterochromatin-associated processes at different steps of differentiation. We also show that HELLS and BAZ1A interact with DICER and MSR chromatin. Interestingly, deletion of Dicer1 affects the sex chromosome heterochromatin status in late pachytene spermatocytes, as demonstrated by mislocalization of Polycomb protein family member SCML1 to the sex body. These data substantiate the importance of dynamic heterochromatin regulation during spermatogenesis and emphasize the key role of DICER in the maintenance of chromatin status in meiotic male germ cells.
Collapse
Affiliation(s)
- Ram Prakash Yadav
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Sini Leskinen
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Lin Ma
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| | - Noora Kotaja
- 1Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, Turku, Finland
| |
Collapse
|
29
|
Dumetier B, Sauter C, Hajmirza A, Pernon B, Aucagne R, Fournier C, Row C, Guidez F, Rossi C, Lepage C, Delva L, Callanan MB. Repeat Element Activation-Driven Inflammation: Role of NFκB and Implications in Normal Development and Cancer? Biomedicines 2022; 10:biomedicines10123101. [PMID: 36551854 PMCID: PMC9775655 DOI: 10.3390/biomedicines10123101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The human genome is composed of unique DNA sequences that encode proteins and unique sequence noncoding RNAs that are essential for normal development and cellular differentiation. The human genome also contains over 50% of genome sequences that are repeat in nature (tandem and interspersed repeats) that are now known to contribute dynamically to genetic diversity in populations, to be transcriptionally active under certain physiological conditions, and to be aberrantly active in disease states including cancer, where consequences are pleiotropic with impact on cancer cell phenotypes and on the tumor immune microenvironment. Repeat element-derived RNAs play unique roles in exogenous and endogenous cell signaling under normal and disease conditions. A key component of repeat element-derived transcript-dependent signaling occurs via triggering of innate immune receptor signaling that then feeds forward to inflammatory responses through interferon and NFκB signaling. It has recently been shown that cancer cells display abnormal transcriptional activity of repeat elements and that this is linked to either aggressive disease and treatment failure or to improved prognosis/treatment response, depending on cell context and the amplitude of the so-called 'viral mimicry' response that is engaged. 'Viral mimicry' refers to a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons and other repeat elements. In this paper, the literature regarding transcriptional activation of repeat elements and engagement of inflammatory signaling in normal (focusing on hematopoiesis) and cancer is reviewed with an emphasis on the role of innate immune receptor signaling, in particular by dsRNA receptors of the RIG-1 like receptor family and interferons/NFκB. How repeat element-derived RNA reprograms cell identity through RNA-guided chromatin state modulation is also discussed.
Collapse
Affiliation(s)
- Baptiste Dumetier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| | - Camille Sauter
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Azadeh Hajmirza
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada
| | - Baptiste Pernon
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Romain Aucagne
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
| | - Cyril Fournier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Céline Row
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Fabien Guidez
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Cédric Rossi
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Côme Lepage
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Laurent Delva
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Mary B. Callanan
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| |
Collapse
|
30
|
Panatta E, Butera A, Mammarella E, Pitolli C, Mauriello A, Leist M, Knight RA, Melino G, Amelio I. Metabolic regulation by p53 prevents R-loop-associated genomic instability. Cell Rep 2022; 41:111568. [DOI: 10.1016/j.celrep.2022.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
|
31
|
H3K27me3 at pericentromeric heterochromatin is a defining feature of the early mouse blastocyst. Sci Rep 2022; 12:13908. [PMID: 35974030 PMCID: PMC9381757 DOI: 10.1038/s41598-022-17730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/29/2022] [Indexed: 11/09/2022] Open
Abstract
Early mouse development is characterized by structural and epigenetic changes while cells progress towards differentiation. At blastocyst stage, the segregation of the three primordial lineages is accompanied by establishment of differential patterns of DNA methylation and post-translational modifications of histones, such as H3K27me3. Here, we analysed the dynamics of H3K27me3 at pericentromeric heterochromatin (PCH) during early development. We also followed the localization of EZH2 and BEND3, previously shown in ESCs to drive PRC2 to hypomethylated PCH. We show that the location of H3K27me3 at PCH, in addition to H3K9me3, is a defining feature of embryonic cells in vivo. Moreover, it may play an important role in structuring PCH and preserving genomic integrity at a time of globally relaxed chromatin. At peri-implantation stages, while DNA methylation is still low, EZH2 and then H3K27me3, leave PCH in epiblast progenitors at the time of their spatial segregation from primitive endoderm cells, while BEND3 remains there up to implantation. The comparison with stem cells (ESCs and TSCs) reveals that the epigenetic marks (i.e. H3K9me3 and H3K27me3) of PCH are reset during in vitro derivation and only partially restored thereafter. This highlights possible divergences between in vitro and "in embryo" epigenetic regulation regarding constitutive heterochromatin.
Collapse
|
32
|
Podgornaya OI. Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions. Semin Cell Dev Biol 2022; 128:61-68. [PMID: 35484025 DOI: 10.1016/j.semcdb.2022.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
The need of large-scale chromatin organization in the nucleus has become more and more appreciated. The higher order nuclear organization ultimately regulate a plethora of biological processes including transcription, DNA replication, and DNA repair. In this context, it is of critical importance to understand the mechanisms that allow higher order nuclear organization. Scaffold Attachment Factor A (SAF-A/hnRNPU), which was originally identified as the component of nuclear matrix, has emerged as an important regulator of higher order nuclear organization. It is shown that SAF-A/hnRNPU binds to tandem repeats (TRs) and scaffold/matrix attachment regions (S/MAR) in a sequence-non-specific, but structure-specific manner (e.g. DNA curvature). Recent studies showed that SAF-A interacts with chromatin-associated RNAs (caRNAs) to regulate interphase chromatin structures in a transcription-dependent manner. It is proposed that SAF-A/hnRNPU and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes chromatin in a large scale. The common structural features of S/MAR and pericentromeric (periCEN) TR promotes SAF-A-mediated association with each other. Collectively a model is presented wherein SAF-A/hnRNPU and periCEN TR are the key players in large-scale nuclear organization that supports general transcription.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology RAS, St. Petersburg State University, Russia.
| |
Collapse
|
33
|
Fingerhut JM, Yamashita YM. The regulation and potential functions of intronic satellite DNA. Semin Cell Dev Biol 2022; 128:69-77. [PMID: 35469677 DOI: 10.1016/j.semcdb.2022.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
34
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|
35
|
Novo CL, Wong EV, Hockings C, Poudel C, Sheekey E, Wiese M, Okkenhaug H, Boulton SJ, Basu S, Walker S, Kaminski Schierle GS, Narlikar GJ, Rugg-Gunn PJ. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat Commun 2022; 13:3525. [PMID: 35725842 PMCID: PMC9209518 DOI: 10.1038/s41467-022-31198-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1ɑ droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin's biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates.
Collapse
Affiliation(s)
- Clara Lopes Novo
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
- Tommy's National Miscarriage Research Centre at Imperial College London, London, W12 0NN, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Emily V Wong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Colin Hockings
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Chetan Poudel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Eleanor Sheekey
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Meike Wiese
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Artios Pharma Ltd., B940, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Srinjan Basu
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Simon Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
36
|
Rajurkar M, Parikh AR, Solovyov A, You E, Kulkarni AS, Chu C, Xu KH, Jaicks C, Taylor MS, Wu C, Alexander KA, Good CR, Szabolcs A, Gerstberger S, Tran AV, Xu N, Ebright RY, Van Seventer EE, Vo KD, Tai EC, Lu C, Joseph-Chazan J, Raabe MJ, Nieman LT, Desai N, Arora KS, Ligorio M, Thapar V, Cohen L, Garden PM, Senussi Y, Zheng H, Allen JN, Blaszkowsky LS, Clark JW, Goyal L, Wo JY, Ryan DP, Corcoran RB, Deshpande V, Rivera MN, Aryee MJ, Hong TS, Berger SL, Walt DR, Burns KH, Park PJ, Greenbaum BD, Ting DT. Reverse Transcriptase Inhibition Disrupts Repeat Element Life Cycle in Colorectal Cancer. Cancer Discov 2022; 12:1462-1481. [PMID: 35320348 PMCID: PMC9167735 DOI: 10.1158/2159-8290.cd-21-1117] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Aparna R. Parikh
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunae You
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Christopher Jaicks
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Martin S. Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Katherine A. Alexander
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Charly R. Good
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Annamaria Szabolcs
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Stefanie Gerstberger
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Antuan V. Tran
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Nova Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Richard Y. Ebright
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Kevin D. Vo
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Eric C. Tai
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Chenyue Lu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Niyati Desai
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Kshitij S. Arora
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Matteo Ligorio
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Vishal Thapar
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Padric M. Garden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jill N. Allen
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Lawrence S. Blaszkowsky
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Jeffrey W. Clark
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Lipika Goyal
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Jennifer Y. Wo
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - David P. Ryan
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Ryan B. Corcoran
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Vikram Deshpande
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Miguel N. Rivera
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Martin J. Aryee
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Theodore S. Hong
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Shelley L. Berger
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Kathleen H. Burns
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics; Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
37
|
Müller M, Fäh T, Schaefer M, Hermes V, Luitz J, Stalder P, Arora R, Ngondo RP, Ciaudo C. AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Sci Alliance 2022; 5:e202101277. [PMID: 35236760 PMCID: PMC8897595 DOI: 10.26508/lsa.202101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Argonaute proteins (AGOs), which play an essential role in cytosolic post-transcriptional gene silencing, have been also reported to function in nuclear processes like transcriptional activation or repression, alternative splicing and, chromatin organization. As most of these studies have been conducted in human cancer cell lines, the relevance of AGOs nuclear functions in the context of mouse early embryonic development remains uninvestigated. Here, we examined a possible role of the AGO1 protein on the distribution of constitutive heterochromatin in mouse embryonic stem cells (mESCs). We observed a specific redistribution of the repressive histone mark H3K9me3 and the heterochromatin protein HP1α, away from pericentromeric regions upon Ago1 depletion. Furthermore, we demonstrated that major satellite transcripts are strongly up-regulated in Ago1_KO mESCs and that their levels are partially restored upon AGO1 rescue. We also observed a similar redistribution of H3K9me3 and HP1α in Drosha_KO mESCs, suggesting a role for microRNAs (miRNAs) in the regulation of heterochromatin distribution in mESCs. Finally, we showed that specific miRNAs with complementarity to major satellites can partially regulate the expression of these transcripts.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Tara Fäh
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Moritz Schaefer
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zürich, Zürich, Switzerland
| | - Rajika Arora
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Institute of Molecular Health Sciences (IMHS), Chair of RNAi and Genome Integrity, Zurich, Switzerland
| |
Collapse
|
38
|
Abstract
It has long been proposed that nuclear RNAs might play an important role in organizing the structure of the nucleus. Initial experiments performed more than 30 years ago found that global disruption of RNA led to visible rearrangements of nuclear organization. Yet, this idea remained controversial for many years, in large part because it was unclear what specific RNAs might be involved, and which specific nuclear structures might be dependent on RNA. Over the past few years, the contributions of RNA to organizing nuclear structures have become clearer with the discovery that many nuclear bodies are enriched for specific noncoding RNAs (ncRNAs); in specific cases, ncRNAs have been shown to be essential for establishment and maintenance of these nuclear structures. More recently, many different ncRNAs have been shown to play critical roles in initiating the three-dimensional (3D) spatial organization of DNA, RNA, and protein molecules in the nucleus. These examples, combined with global imaging and genomic experiments, have begun to paint a picture of a broader role for RNA in nuclear organization and to uncover a unifying mechanism that may explain why RNA is a uniquely suited molecule for this role. In this review, we provide an overview of the history of RNA and nuclear structure and discuss key examples of RNA-mediated bodies, the global roles of ncRNAs in shaping nuclear structure, and emerging insights into mechanisms of RNA-mediated nuclear organization.
Collapse
Affiliation(s)
- Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
39
|
Yandım C, Karakülah G. Repeat expression is linked to patient survival and exhibits single nucleotide variation in pancreatic cancer revealing LTR70:r.879A>G. Gene X 2022; 822:146344. [PMID: 35183687 DOI: 10.1016/j.gene.2022.146344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/04/2022] Open
Abstract
Despite an overwhelming number of cancer literature reporting the links between patient survival and the expression levels of genes or mutations/single nucleotide variations (SNVs) on them, there is only limited information on repeat elements, which make at least half the human genome. Here, we analysed RNA-seq data obtained from primary pancreatic cancer tissues of 51 patients and revealed that two transposons, HERVI-int and X6A_LINE, showed an upregulation trend in the patients who lived shorter, along with 56 other potential repeats which were linked to survival. We also detected expressed single nucleotide variations (SNVs) on repeats, among which LTR70:r.879A>G stands out with the effect of its presence on this particular repeat's expression levels and a significant link to overall patient survival. Interestingly, the expression of LTR70:r.879A>G correlated with different cancer genes in comparison to its reference version highlighting the involvement of BRAF and Fumerate Hydratase with this expressed SNV. This is one of the first studies revealing possible links between repeat expression and survival in cancer and it warrants further research in this avenue.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330 Balçova, İzmir, Turkey; İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340 İnciraltı, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340 İnciraltı, İzmir, Turkey; İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İnciraltı, İzmir, Turkey.
| |
Collapse
|
40
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
41
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
42
|
Vourc’h C, Dufour S, Timcheva K, Seigneurin-Berny D, Verdel A. HSF1-Activated Non-Coding Stress Response: Satellite lncRNAs and Beyond, an Emerging Story with a Complex Scenario. Genes (Basel) 2022; 13:genes13040597. [PMID: 35456403 PMCID: PMC9032817 DOI: 10.3390/genes13040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.
Collapse
Affiliation(s)
- Claire Vourc’h
- Université de Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (C.V.); (A.V.)
| | - Solenne Dufour
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Kalina Timcheva
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Daphné Seigneurin-Berny
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - André Verdel
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
- Correspondence: (C.V.); (A.V.)
| |
Collapse
|
43
|
Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nat Commun 2022; 13:1001. [PMID: 35194019 PMCID: PMC8863982 DOI: 10.1038/s41467-022-28554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
RNA interference is required for post-transcriptional silencing, but also has additional roles in transcriptional silencing of centromeres and genome stability. However, these roles have been controversial in mammals. Strikingly, we found that Dicer-deficient embryonic stem cells have strong proliferation and chromosome segregation defects as well as increased transcription of centromeric satellite repeats, which triggers the interferon response. We conducted a CRISPR-Cas9 genetic screen to restore viability and identified transcriptional activators, histone H3K9 methyltransferases, and chromosome segregation factors as suppressors, resembling Dicer suppressors identified in independent screens in fission yeast. The strongest suppressors were mutations in the transcriptional co-activator Brd4, which reversed the strand-specific transcription of major satellite repeats suppressing the interferon response, and in the histone acetyltransferase Elp3. We show that identical mutations in the second bromodomain of Brd4 rescue Dicer-dependent silencing and chromosome segregation defects in both mammalian cells and fission yeast. This remarkable conservation demonstrates that RNA interference has an ancient role in transcriptional silencing and in particular of satellite repeats, which is essential for cell cycle progression and proper chromosome segregation. Our results have pharmacological implications for cancer and autoimmune diseases characterized by unregulated transcription of satellite repeats. While RNA interference is conserved across species, small RNA pathways are very diverse. In this study, Gutbrod et al. find that non-canonical roles of Dicer in genome stability are in fact deeply conserved from yeast to humans.
Collapse
|
44
|
Brändle F, Frühbauer B, Jagannathan M. Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Semin Cell Dev Biol 2022; 128:26-39. [PMID: 35144860 DOI: 10.1016/j.semcdb.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromosomes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely related species. Together, we underline the importance of this so-called 'junk DNA' in fundamental biological processes.
Collapse
Affiliation(s)
- Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Benjamin Frühbauer
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland.
| |
Collapse
|
45
|
Chebrout M, Koné MC, Jan HU, Cournut M, Letheule M, Fleurot R, Aguirre-Lavin T, Peynot N, Jouneau A, Beaujean N, Bonnet-Garnier A. Transcription of rRNA in early mouse embryos promotes chromatin reorganization and expression of major satellite repeats. J Cell Sci 2022; 135:274059. [DOI: 10.1242/jcs.258798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
During the first cell cycles of the early development, the chromatin of the embryo is highly reprogrammed alongside that embryonic genome starts its own transcription. The spatial organization of the genome is a major process that contributes to regulating gene transcription in time and space, however, it is poorly studied in the context of early embryos. To study the cause and effect link between transcription and spatial organization in embryos, we focused on the ribosomal genes, that are first silent and begin to transcribe during the 2-cell stage in the mouse. We demonstrated that ribosomal sequences and early unprocessed rRNAs are spatially organized in a very peculiar manner from the 2-cell to the 16-cell. Using drugs interfering with ribosomal DNA transcription, we show that this organization, totally different from somatic cells, depends on an active transcription of ribosomal genes and induces a unique chromatin environment that favors transcription of major satellite sequences after the 4-cell stage.
Collapse
Affiliation(s)
- Martine Chebrout
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Maïmouna Coura Koné
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Habib U. Jan
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Marie Cournut
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Martine Letheule
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Renaud Fleurot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Tiphaine Aguirre-Lavin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Beaujean
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Amélie Bonnet-Garnier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| |
Collapse
|
46
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
47
|
Puri D, Koschorz B, Engist B, Onishi-Seebacher M, Ryan D, Soujanya M, Montavon T. Foxd3 controls heterochromatin-mediated repression of repeat elements and 2-cell state transcription. EMBO Rep 2021; 22:e53180. [PMID: 34605600 PMCID: PMC8647145 DOI: 10.15252/embr.202153180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Repeat element transcription plays a vital role in early embryonic development. The expression of repeats such as MERVL characterises mouse embryos at the 2‐cell stage and defines a 2‐cell‐like cell (2CLC) population in a mouse embryonic stem cell culture. Repeat element sequences contain binding sites for numerous transcription factors. We identify the forkhead domain transcription factor FOXD3 as a regulator of major satellite repeats and MERVL transcription in mouse embryonic stem cells. FOXD3 binds to and recruits the histone methyltransferase SUV39H1 to MERVL and major satellite repeats, consequentially repressing the transcription of these repeats by the establishment of the H3K9me3 heterochromatin modification. Notably, depletion of FOXD3 leads to the de‐repression of MERVL and major satellite repeats as well as a subset of genes expressed in the 2‐cell state, shifting the balance between the stem cell and 2‐cell‐like population in culture. Thus, FOXD3 acts as a negative regulator of repeat transcription, ascribing a novel function to this transcription factor.
Collapse
Affiliation(s)
- Deepika Puri
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Birgit Koschorz
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Bettina Engist
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Megumi Onishi-Seebacher
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Devon Ryan
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Thomas Montavon
- Department of Epigenetics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
48
|
Karakülah G, Yandim C. Identification of differentially expressed genomic repeats in primary hepatocellular carcinoma and their potential links to biological processes and survival. Turk J Biol 2021; 45:599-612. [PMID: 34803457 PMCID: PMC8574195 DOI: 10.3906/biy-2104-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. Research on HCC so far primarily focused on genes and provided limited information on genomic repeats, which constitute more than half of the human genome and contribute to genomic stability. In line with this, repeat dysregulation was significantly shown to be pathological in various cancers and other diseases. In this study, we aimed to determine the full repeat expression profile of HCC for the first time. We utilised two independent RNA-seq datasets obtained from primary HCC tumours with matched normal tissues of 20 and 17 HCC patients, respectively. We quantified repeat expressions and analysed their differential expression. We also identified repeats that are cooperatively expressed with genes by constructing a gene coexpression network. Our results indicated that HCC tumours in both datasets harbour 24 differentially expressed repeats and even more elements were coexpressed with genes involved in various metabolic pathways. We discovered that two L1 elements (L1M3b, L1M3de) were downregulated and a handful of HERV subfamily repeats (HERV-Fc1-int, HERV3-int, HERVE_a-int, HERVK11D-int, HERVK14C-int, HERVL18-int) were upregulated with the exception of HERV1_LTRc, which was downregulated. Various LTR elements (LTR32, LTR9, LTR4, LTR52-int, LTR70) and MER elements (MER11C, MER11D, MER57C1, MER9a1, MER74C) were implicated along with few other subtypes including Charlie12, MLT2A2, Tigger15a, Tigger 17b. The only satellite repeat differentially expressed in both datasets was GSATII, whose expression was upregulated in 33 (>90%) out of 37 patients. Notably, GSATII expression correlated with HCC survival genes. Elements discovered here promise future studies to be considered for biomarker and HCC therapy research. The coexpression pattern of the GSATII satellite with HCC survival genes and the fact that it has been upregulated in the vast majority of patients make this repeat particularly stand out for HCC.
Collapse
Affiliation(s)
- Gökhan Karakülah
- İzmir Biomedicine and Genome Center (İBG), İzmir Turkey.,İzmir International Biomedicine and Genome Institute (İBG-İzmir), Dokuz Eylül University, İzmir Turkey
| | - Cihangir Yandim
- İzmir Biomedicine and Genome Center (İBG), İzmir Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir Turkey
| |
Collapse
|
49
|
Vojvoda Zeljko T, Ugarković Đ, Pezer Ž. Differential enrichment of H3K9me3 at annotated satellite DNA repeats in human cell lines and during fetal development in mouse. Epigenetics Chromatin 2021; 14:47. [PMID: 34663449 PMCID: PMC8524813 DOI: 10.1186/s13072-021-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Željka Pezer
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
50
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|