1
|
Liang Z, Pan Q, Xue F, Zhang J, Fan Z, Wang W, Guo X, Qian Z, Shen Y, Song W, Wang L, Zhou G, He Y, Ren W. Biphasic biomimetic scaffolds based on a regionally decalcified bone framework and pre-chondrogenic microspheres for osteochondral defect repair. Mater Today Bio 2025; 31:101494. [PMID: 39896291 PMCID: PMC11783122 DOI: 10.1016/j.mtbio.2025.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Osteochondral defects are still facing a significant challenge in clinical surgery, making post-trauma repair difficult. Tissue engineering has provided a promising approach to solving these defects. However, existing scaffolds cannot replicate the complex biphasic cartilage-bone microenvironment with accuracy. We aimed to develop a biphasic biomimetic scaffold with regionally regulated vascularization that promoted chondrogenesis and osteogenesis through bidirectional regulation of endochondral ossification. This scaffold consisted of pre-chondrogenic microspheres (PCMs) and a decalcified bone frame prepared by decalcifying the cartilage layer and bone layer of the scaffold to varying degrees. Incorporation of PCMs into the cartilage layer created a microenvironment that promoted cartilage regeneration while axitinib was modified to inhibit vascularization and enhance cartilage regeneration. The bone layer provided a microenvironment that promoted endochondral ossification and facilitated bone repair. In vitro studies have shown that axitinib-modified cartilage layers significantly inhibit the VEGF expression of pre-chondrogenic cells, while decalcified bone powder from the bone layer significantly promotes the ossification of PCMs. In vivo experiments indicated that this decalcified bone frame controls the endochondral ossification of PCMs through regionalized angiogenesis, promoting the integrated regeneration and reconstruction of osteochondral defects in rabbit knee joints. These results suggest that our designed demineralized bone frame can precisely engineer the osteochondral regeneration microenvironment, providing theoretical guidance for the integrated regeneration and repair of anisotropic tissue injuries.
Collapse
Affiliation(s)
- Zhuo Liang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qingqing Pan
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fei Xue
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingdi Zhang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhenlin Fan
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weiyun Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueqiang Guo
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhuang Qian
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yaping Shen
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjuan Song
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lei Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yong He
- The Second Affiliated Hospital of Zhejiang University and Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjie Ren
- Clinical Medical Center of Tissue Engineering and Regeneration, The First Affiliated Hospital of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
2
|
Ottappilakkil H, Perumal E. Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 39865316 DOI: 10.1002/tox.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/10/2024] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity. F accumulation alters bone formation and resorption mechanisms interfering with mineral homeostasis and eventually manifests as skeletal fluorosis. Albeit the numerous studies on skeletal fluorosis, the effect of F on developmental osteogenesis is inconclusive. In light of this, we studied the effect of F on osteogenic differentiation, bone development, and mineralization in zebrafish. Zebrafish embryos were subjected to a low (25 ppm NaF), and a moderately high (50 ppm NaF) dose, along with a control (E3 medium alone) until 7 days postfertilization (dpf). The F content in the larvae was quantified to reveal a dose-dependent increase in the exposed groups. Alizarin Red and alkaline phosphatase (ALP) staining suggested enhanced mineralization in the F-treated groups. Quantitative analyses of the ALP activity and hydroxyproline (Hyp) content revealed similar results. Alcian blue staining of pharyngeal cartilages showed that F exposure alters the morphology of the major cartilages, indicating a possible craniofacial defect. Moreover, gene expression analyses of the bone markers associated with osteogenic differentiation, early mineralization, and remodeling (runx2a/b, bmp4, ocn, osx, col1a1, alp, rank, rankl, and opg) showed enhanced expression in the low F group. While the 50 ppm F group showed a decline in osteogenic activity, a considerable increase in the expression of mineralization markers was observed. The expression levels of cartilage markers sox9a and sox9b, remained insignificant, indicating the effect of F toxicity on osteogenesis and mineralization. Also, F exposure interferes with bone metabolism through altered osteogenic differentiation, development, and mineralization in zebrafish larvae.
Collapse
Affiliation(s)
- Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Taye N, Karoulias SZ, Balic Z, Wang LW, Willard BB, Martin D, Richard D, Okamoto AS, Capellini TD, Apte SS, Hubmacher D. Combined ADAMTS10 and ADAMTS17 inactivation exacerbates bone shortening and compromises extracellular matrix formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634616. [PMID: 39896540 PMCID: PMC11785165 DOI: 10.1101/2025.01.23.634616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Weill-Marchesani syndrome (WMS) is characterized by severe short stature, short hands and feet (brachydactyly), joint contractures, tight skin, and heart valve, eye, and skin anomalies. Whereas recessive WMS is caused by mutations in ADAMTS10 , ADAMTS17 , or LTBP2 , dominant WMS is caused by mutations in FBN1 (encoding fibrillin-1). Since bone growth is driven by chondrocyte proliferation and hypertrophy in the growth plates, the genetics of WMS suggests that the affected ECM proteins act within the same pathway to regulate chondrocyte and growth plate function. Here, we investigated the role of the secreted ADAMTS proteases ADAMTS10 and ADAMTS17 in growth plate function and ECM formation. We generated Adamts10 ; Adamts17 double knockout (DKO) mice, which showed significant postnatal lethality compared to single Adamts10 or Adamts17 KO mice. Importantly, we observed severe bone shortening DKO mice, which correlated with a narrower hypertrophic zone in their growth plates. ADAMTS17 substrates identified by N-terminomics and yeast two-hybrid screening identified the ECM proteins fibronectin and collagen VI (COL6). However, validation experiments did not reveal direct proteolysis of either fibronectin or COL6 by ADAMTS17. We then investigated ECM formation in primary ADAMTS10- and ADAMTS17-deficient skin fibroblasts and observed compromised fibronectin deposition concomitant with aberrant intracellular accumulation of fibrillin-1. These findings support a role for ADAMTS17 in ECM protein secretion and assembly. Collectively, our data suggest that ADAMTS10 and ADAMTS17 regulate bone growth by regulating chondrocyte hypertrophy or hypertrophic chondrocyte turnover. Mechanistically, ADAMTS17 appears to be a critical regulator of ECM protein secretion or pericellular matrix assembly, whereas ADAMTS10 likely modulates ECM formation at later stages, possibly regulating the spatio-temporal deposition of fibrillin isoforms.
Collapse
|
4
|
Ettaki I, Haseeb A, Karvande A, Amalou G, Saih A, AitRaise I, Hamdi S, Wakrim L, Barakat A, Fellah H, El Alloussi M, Lefebvre V. Missense variants weakening a SOX9 phosphodegron linked to odontogenesis defects, scoliosis, and other skeletal features. HGG ADVANCES 2025; 6:100404. [PMID: 39797402 DOI: 10.1016/j.xhgg.2025.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined. It is highly expressed in tooth progenitor cells, but its odontogenic roles remain elusive, and tooth defects are unreported in SOX9-related conditions. Here, we performed whole-exome sequencing for nine unrelated children with tooth eruption delay and no known syndromes and identified a 7-year-old girl heterozygous for a SOX9 p.Thr239Pro variant and a 10-year-old boy heterozygous for presumably adjacent p.Thr239Pro and p.Thr240Pro variants. These variants were de novo and rare in control populations. Both cases had primary tooth eruption delay. Additionally, the boy had mesiodens blocking permanent central upper incisor eruption, severe scoliosis, and mild craniofacial and appendicular skeleton abnormalities. p.Thr239 and p.Thr240 occupy variable and obligatory positions, respectively, in a cell division control protein 4 (Cdc4)/FBXW7-targeted phosphodegron motif (CPD) fully conserved in SOX9 vertebrate orthologs and SOX8 and SOX10 paralogs, but functionally uncharacterized in vivo. Structural modeling predicted p.Thr240Pro and p.Thr239Pro/p.Thr240Pro but not p.Thr239Pro to strongly reduce SOX9/FBXW7 interaction. Accordingly, p.Thr240Pro and p.Thr239Pro/p.Thr240Pro but not p.Thr239Pro blocked FBXW7-induced SOX9 degradation in cultured cells. All variants increased SOX9-mediated reporter activation independently of protein stabilization, suggesting that CPD may also modulate the transactivation function of SOX9. Altogether, these findings concur that CPD has critical functions, that SOX9 decisively controls odontogenesis, and that gain-of-function variants may markedly perturb both this process and skeletogenesis.
Collapse
Affiliation(s)
- Imane Ettaki
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco; Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Abdul Haseeb
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Asmae Saih
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco; Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Hassan Fellah
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca 20000, Morocco
| | - Mustapha El Alloussi
- International Faculty of Dental Medicine, International University of Rabat, Sala-Al Jadida 11100, Morocco
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Xu S, Xu Y, Wang Z, Wei Z, Mei Y, Cao Y, Li B, Zhang H, Zhang Z. Endoplasmic reticulum stress causes long bone shortening in P4hb C402R/+ mice: A mouse model exhibiting significant features of cole-carpenter syndrome driven by P4HB mutations. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167663. [PMID: 39778777 DOI: 10.1016/j.bbadis.2025.167663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cole-Carpenter syndrome (CCS) is a rare autosomal-dominant genetic disease characterized by craniosynostosis, ocular proptosis, hydrocephalus, distinctive facial features, and bone fragility. Previous cases of CCS are associated with genetic variations in P4HB, which encodes the protein disulfide isomerase (PDI), a key enzyme in protein folding. Patients with CCS caused by P4HB mutations often present with short stature, limb deformities, and abnormal epiphyseal plates. However, the underlying mechanisms are largely unknown. To investigate this, a mouse model expressing the P4hbC402R mutation (corresponding to P4HBC400R in humans) was generated. Although the mouse model did not exhibit craniofacial bone defects or brittle bone phenotypes, it did show significantly shortened long bones-a prominent characteristic of P4HB-induced CCS. This was due to impaired proliferation and delayed hypertrophy of growth plate chondrocytes. Mutant PDI was found to accumulate abnormally in the endoplasmic reticulum (ER), and in vitro experiments revealed defects in both the catalytic and chaperone activities of mutant PDI. In addition, we observed enhanced ER stress and activation of the PKR-like ER kinase (PERK) pathway in P4hbC402R/+ chondrocytes. Inhibition of ER stress mitigated PERK activation, alleviated defective chondrocyte proliferation and differentiation, thereby rescuing bone length. Taken together, enhanced ER stress and the activation of the PERK, potentially initiated by the malfunctioning of PDIC402R or its abnormal accumulation within the ER, or both, lead to compromised chondrocyte proliferation and differentiation in mice, and ultimately stunts mice growth. This provides new insights into the pathogenesis of P4HB-dominated CCS and offers potential therapeutic targets.
Collapse
Affiliation(s)
- Shuqin Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyuan Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanying Wei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangjia Cao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Liu S, Chen H, Yang X, Wen Y, Chen L. Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus. Sci Rep 2024; 14:31450. [PMID: 39733138 DOI: 10.1038/s41598-024-82985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to screen out hub genes between OA and T2DM, and functional enrichment was done. Single-cell sequencing analysis was further used to screen key genes on OA and T2DM datasets. Rat chondrocytes and human articular cartilage were used to validate biomarkers among OA and T2DM. Sixty-eight hub genes were obtained, which were mainly enriched in the inflammatory response. We found that the hub gene TNFAIP6 is not only closely related to OA and T2DM but also a marker of prehypertrophic chondrocytes, which are closely related to the progression of OA. TNFAIP6 was found to be significantly elevated in CD14 + monocytes in T2DM patients, and this group of cells can promote inflammation. Validation on rat chondrocytes and human cartilage showed that TNFAIP6 was highly expressed in OA and further increased in the presence of T2DM or high glucose. Our study identified several characteristic modules and hub genes in the pathogenesis of T2DM-induced OA, which may facilitate further investigation of its molecular mechanisms. Up-regulated TNFAIP6 may contribute to OA in patients with T2DM by the recruitment of pro-inflammatory CD14 + monocytes in the OA synovium, which provides a potential target for the diagnosis and treatment of T2DM-associated OA.
Collapse
Affiliation(s)
- Siyi Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Joint Disease Research Center of Wuhan University, Wuhan, 430071, China
| | - Haitao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Joint Disease Research Center of Wuhan University, Wuhan, 430071, China
| | - Xu Yang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Joint Disease Research Center of Wuhan University, Wuhan, 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Joint Disease Research Center of Wuhan University, Wuhan, 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Joint Disease Research Center of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
8
|
García-Martínez J, Salto R, Girón MD, Pérez-Castillo ÍM, Bueno Vargas P, Vílchez JD, Linares-Pérez A, Manzano M, García-Córcoles MT, Rueda R, López-Pedrosa JM. Supplementation with a Whey Protein Concentrate Enriched in Bovine Milk Exosomes Improves Longitudinal Growth and Supports Bone Health During Catch-Up Growth in Rats. Nutrients 2024; 16:3814. [PMID: 39599602 PMCID: PMC11597726 DOI: 10.3390/nu16223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Undernutrition impairs linear growth while restoration of nutritional provisions leads to accelerated growth patterns. However, the composition of the nutrition provided is key to facilitating effective catch-up growth without compromising bone quantity, quality, and long-term health. METHODS We evaluated the role of a whey protein concentrate enriched in bovine milk exosomes (BMEs) in modulating the proliferative properties of human chondrocytes in vitro and studied how these effects might impact bone quantity and quality measured as longitudinal tibia growth, bone mineral content (BMC) and density (BMD), and trabecular micro-CT parameters in stunted rats during catch-up growth. RESULTS BMEs promoted proliferation in C28/I2 human chondrocytes mediated by mTOR-Akt signaling. In a stunting rat model, two-week supplementation with BMEs during refeeding was associated with improved tibia BMD, trabecular microstructure (trabecular number (Tb. N.) and space (Tb. Sp.)), and a more active growth plate (higher volume, surface, and thickness) compared to non-supplemented stunted rats. Positive effects on physis translated to significantly longer tibias without compromising bone quality when extending the refeeding period for another two weeks. CONCLUSIONS Overall, BME supplementation positively contributed to longitudinal bone growth and improved bone quantity and quality during catch-up growth. These findings might be relevant for improving diets aimed at addressing the nutritional needs of children undergoing undernutrition during early life.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Pilar Bueno Vargas
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Azahara Linares-Pérez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Manuel Manzano
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - María T. García-Córcoles
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| |
Collapse
|
9
|
Dinesh NEH, Baratang N, Rosseau J, Mohapatra R, Li L, Mahalingam R, Tiedemann K, Campeau PM, Reinhardt DP. Fibronectin isoforms promote postnatal skeletal development. Matrix Biol 2024; 133:86-102. [PMID: 39159790 DOI: 10.1016/j.matbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive. To address these aspects, we have generated conditional knockout mouse models targeting the cellular FN isoform in cartilage (cFNKO), the plasma FN isoform in hepatocytes (pFNKO), and both isoforms together in a double knockout (FNdKO). We used these mice to determine the relevance of the two principal FN isoforms in skeletal development from postnatal day one to the adult stage at two months. We identified a distinct topological FN deposition pattern in the mouse limb during different gestational and postnatal skeletal development phases, with prominent levels at the resting and hypertrophic chondrocyte zones and in the trabecular bone. Cartilage-specific cFN emerged as the predominant isoform in the growth plate, whereas circulating pFN remained excluded from the growth plate and confined to the primary and secondary ossification centers. Deleting either isoform independently (cFNKO or pFNKO) yielded only relatively subtle changes in the analyzed skeletal parameters. However, the double knockout of cFN in the growth plate and pFN in the circulation of the FNdKO mice significantly reduced postnatal body weight, body length, and bone length. Micro-CT analysis of the adult bone microarchitecture in FNdKO mice exposed substantial reductions in trabecular bone parameters and bone mineral density. The mice also showed elevated bone marrow adiposity. Analysis of chondrogenesis in FNdKO mice demonstrated changes in the resting, proliferating and hypertrophic growth plate zones, consistent alterations in chondrogenic markers such as collagen type II and X, decreased apoptosis of hypertrophic chondrocytes, and downregulation of bone formation markers. Transforming growth factor-β1 and downstream phospho-AKT levels were significantly lower in the FNdKO than in the control mice, revealing a crucial FN-mediated regulatory pathway in chondrogenesis and bone formation. In conclusion, the data demonstrate that FN is essential for chondrogenesis and bone development. Even though cFN and pFN act in different regions of the bone, both FN isoforms are required for the regulation of chondrogenesis, cartilage maturation, trabecular bone formation, and overall skeletal growth.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | - Ronit Mohapatra
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ramshaa Mahalingam
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Wang Y, Zhou R, Dong Z, Wang W, Guo L, Sun J, Rong X, Li P. Loss of Hdac4 in osteoprogenitors impairs postnatal trabecular and cortical bone formation, resulting in a dwarfism and osteopenia phenotype in mice. J Biol Chem 2024; 300:107941. [PMID: 39481602 DOI: 10.1016/j.jbc.2024.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
HDAC4 is a class II histone deacetylation protein with a well-characterized role in chondrocyte differentiation and skeletal development, and dysregulated expression or haploinsufficiency of Hdac4 leads to skeletal formation and malformation disorders. The early lethality of Hdac4 ablation mice hindered further investigation of its role in postnatal bone growth and development. Therefore, this study aims to investigate the significant role of Hdac4 in postnatal endochondral bone development using two mouse models with conditional deletion of Hdac4 in Sp7-expressing osteoprogenitors or chondrocytes and monitored postnatal bone development. The phenotype of Acan-CreERT2; Hdac4fl/fl mice largely resembled that of conventional Hdac4-/- mice. But phenotypic characterizations of mice with Hdac4 inactivation in Sp7-expressing osteoprogenitors (Sp7-Cre; Hdac4fl/fl) showed dwarfism with body and limb shortening and remarkable skeletal defects. Microcomputed tomography analysis of tibias further demonstrated that loss of Hdac4 expression impaired bone formation and microarchitecture, mainly characterized by dysplasia of trabecular and cortical bone in young mice. Our in vivo and in vitro data support a crucial role for Hdac4 in regulating osteoblast proliferation and differentiation, bone matrix protein production, angiogenesis, and ultimately trabecular and cortical bone formation. Moreover, RNA-seq analysis implicated Hdac4 in the regulation of key genes and pathways necessary to affect the accumulation of extracellular matrix, biological processes related to signal transduction, and skeletal growth. Collectively, our data show that postnatal expression of Hdac4 in Sp7-expressing osteoprogenitors provides essential regulatory oversight of endochondral bone formation, bone morphology, and homeostasis.
Collapse
Affiliation(s)
- YunFei Wang
- Department of Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Raorao Zhou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Zhengquan Dong
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Wenting Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Li Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Jian Sun
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Xueqin Rong
- Department of Pain Spinal Minimally Invasive Centre, Sanya Central Hospital, Sanya, Hainan, China.
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China.
| |
Collapse
|
11
|
Kulthanaamondhita P, Kornsuthisopon C, Chansaenroj A, Suwittayarak R, Trachoo V, Manokawinchoke J, Lee SC, Egusa H, Kim JM, Osathanon T. Notch signaling regulates mineralization via microRNA modulation in dental pulp stem cells. Oral Dis 2024; 30:4547-4557. [PMID: 38243590 DOI: 10.1111/odi.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVES This study investigated the miRNA expression profile in Notch-activated human dental stem pulp stem cells (DPSCs) and validated the functions of miRNAs in modulating the odonto/osteogenic properties of DPSCs. METHODS DPSCs were treated with indirect immobilized Jagged1. The miRNA expression profile was examined using NanoString analysis. Bioinformatic analysis was performed, and miRNA expression was validated. Odonto/osteogenic differentiation was examined using alkaline phosphatase staining, Alizarin Red S staining, as well as odonto/osteogenic-related gene and protein expression. RESULTS Fourteen miRNAs were differentially expressed in Jagged1-treated DPSCs. Pathway analysis revealed that altered miRNAs were associated with TGF-β, Hippo, ErbB signalling pathways, FoxO and Ras signalling. Target prediction analysis demonstrated that 7604 genes were predicted to be targets for these altered miRNAs. Enrichment analysis revealed relationships to various DNA bindings. Among differentially expressed miRNA, miR-296-3p and miR-450b-5p were upregulated under Jagged1-treated conditions. Overexpression of miR-296-3p and miR-450b-5p enhanced mineralization and upregulation of odonto/osteogenic-related genes, whereas inhibition of these miRNAs revealed opposing results. The miR-296-3p and miR-450b-5p inhibitors attenuated the effects of Jagged1-induced mineralization in DPSCs. CONCLUSIONS Jagged-1 promotes mineralization in DPSCs that are partially regulated by miRNA. The novel understanding of these miRNAs could lead to innovative controlled mechanisms that can be applied to modulate biology-targeted dental materials.
Collapse
Affiliation(s)
- Promphakkon Kulthanaamondhita
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Voraphat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Seung-Cheol Lee
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Mendibil U, Lópiz-Morales Y, Arnaiz B, Ruiz-Hernández R, Martín P, Di-Silvio D, Garcia-Urquia N, Elortza F, Azkargorta M, Olalde B, Abarrategi A. Development of bioactive solid-foam scaffolds from decellularized cartilage with chondrogenic and osteogenic properties. Mater Today Bio 2024; 28:101228. [PMID: 39296356 PMCID: PMC11408866 DOI: 10.1016/j.mtbio.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Full osteochondral regeneration remains a major clinical challenge. Among other experimental cartilage regenerative approaches, decellularized cartilage (DCC) is considered a promising material for generating potentially implantable scaffolds useful as cartilage repair strategy. In this work, we focus on screening and comparing different decellularization methods, aiming to generate DCC potentially useful in biomedical context, and therefore, with biological activity and functional properties in terms of induction of differentiation and regeneration. Data indicates that enzymatic and detergents-based decellularization methods differentially affect ECM components, and that it has consequences in further biological behavior. SDS-treated DCC powder is not useful to be further processed in 2D or 3D structures, because these structures tend to rapidly solubilize, or disaggregate, in physiologic media conditions. Conversely, Trypsin-treated DCC powders can be processed to mechanically stable 2D films and 3D solid-foam scaffolds, presumably due to partial digestion of collagens during decellularization, which would ease crosslinking at DCC during solubilization and processing. In vitro cell culture studies indicate that these structures are biocompatible and induce and potentiate chondrogenic differentiation. In vivo implantation of DCC derived 3D porous scaffolds in rabbit osteochondral defects induce subchondral bone regeneration and fibrocartilage tissue formation after implantation. Therefore, this work defines an optimal cartilage tissue decellularization protocol able to generate DCC powders processable to biocompatible and bioactive 2D and 3D structures. These structures are useful for in vitro cartilage research and in vivo subchondral bone regeneration, while hyaline cartilage regeneration with DCC alone as implantable material remains elusive.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | | | - Blanca Arnaiz
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Desiré Di-Silvio
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| |
Collapse
|
13
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Marom R, Song IW, Busse EC, Washington ME, Berrier AS, Rossi VC, Ortinau L, Jeong Y, Jiang MM, Dawson BC, Adeyeye M, Leynes C, Lietman CD, Stroup BM, Batkovskyte D, Jain M, Chen Y, Cela R, Castellon A, Tran AA, Lorenzo I, Meyers DN, Huang S, Turner A, Shenava V, Wallace M, Orwoll E, Park D, Ambrose CG, Nagamani SC, Heaney JD, Lee BH. The IFITM5 mutation in osteogenesis imperfecta type V is associated with an ERK/SOX9-dependent osteoprogenitor differentiation defect. J Clin Invest 2024; 134:e170369. [PMID: 38885336 PMCID: PMC11290974 DOI: 10.1172/jci170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5). Here, we generated a conditional Rosa26-knockin mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in patients with OI type V. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with an increase in the skeletal progenitor cell population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 had decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupted early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Emily C. Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian C. Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary Adeyeye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, UT Health Houston MD Anderson Cancer Center, Houston, Texas, USA
| | - Carolina Leynes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Caressa D. Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dominyka Batkovskyte
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - D. Nicole Meyers
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, and Huffington Department of Education, Innovation, and Technology, Advanced Technology Cores, and
| | - Alicia Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Vinitha Shenava
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Maegen Wallace
- Orthopaedic Surgery, University of Nebraska Medical Center, Children’s Hospital and Medical Center, Omaha, Nebraska, USA
| | - Eric Orwoll
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, Oregon, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine G. Ambrose
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Sandesh C.S. Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
15
|
Suzuki T, Hosomichi J, Maeda H, Ishida Y, Usumi-Fujita R, Moro M, Jariyatheerawong K, Ono T. Gestational intermittent hypoxia reduces mandibular growth with decreased Sox9 expression and increased Hif1a expression in male offspring rats. Front Physiol 2024; 15:1397262. [PMID: 38919850 PMCID: PMC11196756 DOI: 10.3389/fphys.2024.1397262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Maternal obstructive sleep apnea (OSA) during pregnancy is the risk factor for impaired fetal growth with low birth weight in the offspring. However, it is unclear whether gestational intermittent hypoxia (IH, a hallmark of maternal OSA) has long-term detrimental consequences on the skeletal development of offspring. This study aimed to investigate postnatal maxillofacial bone growth and cartilage metabolism in male and female offspring that were exposed to gestational IH. Methods Mother rats underwent IH at 20 cycles/h (nadir, 4% O2; peak, 21% O2; 0% CO2) for 8 h per day during gestational days (GD) 7-20, and their male and female offspring were analyzed postnatally at 5 and 10 weeks of age. All male and female offspring were born and raised under normoxic conditions. Results There was no significant difference in whole-body weight and tibial length between the IH male/female offspring and their control counterparts. In contrast, the mandibular condylar length was significantly shorter in the IH male offspring than in the control male offspring at 5 and 10 weeks of age, while there was no significant difference in the female offspring. Real-time polymerase chain reaction (PCR) showed that gestational IH significantly downregulated the mRNA level of SOX9 (a chondrogenesis marker) and upregulated the mRNA level of HIF-1α (a hypoxia-inducible factor marker) in the mandibular condylar cartilage of male offspring, but not in female offspring. Conclusion Gestational IH induced underdeveloped mandibular ramus/condyles and reduced mRNA expression of SOX9, while enhancing mRNA expression of HIF-1α in a sex-dependent manner.
Collapse
Affiliation(s)
- Takumi Suzuki
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Manaka Moro
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Korkuan Jariyatheerawong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
17
|
Yang R, Chu H, Yue H, Mishina Y, Zhang Z, Liu H, Li B. BMP signaling maintains auricular chondrocyte identity and prevents microtia development by inhibiting protein kinase A. eLife 2024; 12:RP91883. [PMID: 38690987 PMCID: PMC11062634 DOI: 10.7554/elife.91883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.
Collapse
Affiliation(s)
- Ruichen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuji Mishina
- Department of Biologic and Materials & Prosthodontics, University of Michigan School of DentistryAnn ArborUnited States
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| |
Collapse
|
18
|
Shirian FI, Karimi M, Alipour M, Salami S, Nourbakhsh M, Nekufar S, Safari-Alighiarloo N, Tavakoli-Yaraki M. Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition. Mol Biol Rep 2024; 51:567. [PMID: 38656394 DOI: 10.1007/s11033-024-09501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.
Collapse
Affiliation(s)
- Farzad Izak Shirian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Alipour
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
19
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Guo H, Yang L, Liu J, Chen L, Huang Y, Li J. KLF5 promotes the ossification process of ligamentum flavum by transcriptionally activating CX43. J Orthop Surg Res 2024; 19:244. [PMID: 38622696 PMCID: PMC11020807 DOI: 10.1186/s13018-024-04702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.
Collapse
Affiliation(s)
- Hubing Guo
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu, 741000, China
| | - Lingxia Yang
- Department of Odermatology, The First Hospital of Tianshui, Tianshui, Gansu, 741000, China
| | - Jin Liu
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu, 741000, China
| | - Liqi Chen
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu, 741000, China
| | - Yufeng Huang
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu, 741000, China
| | - Jinsong Li
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
21
|
Ferreira SA, Tallia F, Heyraud A, Walker SA, Salzlechner C, Jones JR, Rankin SM. 3D printed hybrid scaffolds do not induce adverse inflammation in mice and direct human BM-MSC chondrogenesis in vitro. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100087. [PMID: 38312434 PMCID: PMC10835132 DOI: 10.1016/j.bbiosy.2024.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Biomaterials that can improve the healing of articular cartilage lesions are needed. To address this unmet need, we developed novel 3D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid scaffolds. Our aim was to carry out essential studies to advance this medical device towards functional validation in pre-clinical trials. First, we show that the chemical composition, microarchitecture and mechanical properties of these scaffolds were not affected by sterilisation with gamma irradiation. To evaluate the systemic and local immunogenic reactivity of the sterilised 3D printed hybrid scaffolds, they were implanted subcutaneously into Balb/c mice. The scaffolds did not trigger a systemic inflammatory response over one week of implantation. The interaction between the host immune system and the implanted scaffold elicited a local physiological reaction with infiltration of mononuclear cells without any signs of a chronic inflammatory response. Then, we investigated how these 3D printed hybrid scaffolds direct chondrogenesis in vitro. Human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs) seeded within the 3D printed hybrid scaffolds were cultured under normoxic or hypoxic conditions, with or without chondrogenic supplements. Chondrogenic differentiation assessed by both gene expression and protein production analyses showed that 3D printed hybrid scaffolds support hBM-MSC chondrogenesis. Articular cartilage-specific extracellular matrix deposition within these scaffolds was enhanced under hypoxic conditions (1.7 or 3.7 fold increase in the median of aggrecan production in basal or chondrogenic differentiation media). Our findings show that 3D printed SiO2/PTHF/PCL-diCOOH hybrid scaffolds have the potential to support the regeneration of cartilage tissue.
Collapse
Affiliation(s)
| | | | - Agathe Heyraud
- Department of Materials, Imperial College London, London, UK
| | - Simone A. Walker
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Julian R. Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M. Rankin
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
22
|
Wu C, Liu H, Zhong D, Yang X, Liao Z, Chen Y, Zhang S, Su D, Zhang B, Li C, Tian L, Xu C, Su P. Mapk7 deletion in chondrocytes causes vertebral defects by reducing MEF2C/PTEN/AKT signaling. Genes Dis 2024; 11:964-977. [PMID: 37692479 PMCID: PMC10491872 DOI: 10.1016/j.gendis.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Mutation of the MAPK7 gene was related to human scoliosis. Mapk7 regulated the development of limb bones and skulls in mice. However, the role of MAPK7 in vertebral development is still unclear. In this study, we constructed Col2a1-cre; Mapk7f/f transgenic mouse model to delete Mapk7 in cartilage, which displayed kyphosis and osteopenia. Mechanistically, Mapk7 loss decreased MEF2C expression and thus activated PTEN to oppose PI3K/AKT signaling in vertebral growth plate chondrocytes, which impaired chondrocyte hypertrophy and attenuated vertebral ossification. In vivo, systemic pharmacological activation of AKT rescued impaired chondrocyte hypertrophy and alleviated mouse vertebral defects caused by Mapk7 deficiency. Our study firstly clarified the mechanism by which MAPK7 was involved in vertebral development, which might contribute to understanding the pathology of spinal deformity and provide a basis for the treatment of developmental disorders of the spine.
Collapse
Affiliation(s)
- Chengzhi Wu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hengyu Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongmei Zhong
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiheng Liao
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyu Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shun Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Baolin Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuan Li
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liru Tian
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peiqiang Su
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
23
|
Molin AN, Contentin R, Angelozzi M, Karvande A, Kc R, Haseeb A, Voskamp C, de Charleroy C, Lefebvre V. Skeletal growth is enhanced by a shared role for SOX8 and SOX9 in promoting reserve chondrocyte commitment to columnar proliferation. Proc Natl Acad Sci U S A 2024; 121:e2316969121. [PMID: 38346197 PMCID: PMC10895259 DOI: 10.1073/pnas.2316969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.
Collapse
Affiliation(s)
- Arnaud N. Molin
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Romain Contentin
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Marco Angelozzi
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ranjan Kc
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Abdul Haseeb
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chantal Voskamp
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Charles de Charleroy
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
24
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng RR, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. eLife 2024; 12:RP89762. [PMID: 38277211 PMCID: PMC10945706 DOI: 10.7554/elife.89762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Anas M Khanshour
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of TechnologySolnaSweden
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Lilian Antunes
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Yared H Kidane
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Reuel Cornelia
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Ophthalmology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - You-qiang Song
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Paul Gerdhem
- Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
- Department of Orthopaedics and Hand Surgery, Uppsala University HospitalUppsalaSweden
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala UniversityUppsalaSweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
25
|
Zhao Y, Mäkitie O, Laakso S, Fedosova V, Sävendahl L, Zaman F. A novel link between chronic inflammation and humanin regulation in children. Front Endocrinol (Lausanne) 2024; 14:1142310. [PMID: 38322155 PMCID: PMC10844658 DOI: 10.3389/fendo.2023.1142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
Objective Children with inflammatory bowel disease (IBD) often suffer from poor bone growth and impaired bone health. Humanin is a cytoprotective factor expressed in bone and other tissues and we hypothesized that humanin levels are suppressed in conditions of chronic inflammation. To address this, humanin levels were analyzed in serum samples from IBD patients and in ex vivo cultured human growth plate tissue specimens exposed to IBD serum or TNF alone. Methods Humanin levels were measured by ELISA in serum from 40 children with IBD and 40 age-matched healthy controls. Growth plate specimens obtained from children undergoing epiphysiodesis surgery were cultured ex vivo for 48 hours while being exposed to IBD serum or TNF alone. The growth plate samples were then processed for immunohistochemistry staining for humanin, PCNA, SOX9 and TRAF2 expression. Dose-response effect of TNF was studied in the human chondrocytic cell line HCS-2/8. Ex vivo cultured fetal rat metatarsal bones were used to investigate the therapeutic effect of humanin. Results Serum humanin levels were significantly decreased in children with IBD compared to healthy controls. When human growth plate specimens were cultured with IBD serum, humanin expression was significantly suppressed in the growth plate cartilage. When cultured with TNF alone, the expression of humanin, PCNA, SOX9, and TRAF2 were all significantly decreased in the growth plate cartilage. Interestingly, treatment with the humanin analog HNG prevented TNF-induced bone growth impairment in cultured metatarsal bones. Conclusion Our data showing suppressed serum humanin levels in IBD children with poor bone health provides the first evidence for a potential link between chronic inflammation and humanin regulation. Such a link is further supported by the novel finding that serum from IBD patients suppressed humanin expression in ex vivo cultured human growth plates.
Collapse
Affiliation(s)
- Yunhan Zhao
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Outi Mäkitie
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Saila Laakso
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vera Fedosova
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Farasat Zaman
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
26
|
Singh H, Shipra, Gupta M, Gupta N, Gupta G, Pandita AK, Sharma R, Pandita S, Singh V, Garg B, Rai E, Sharma S. SOX9 gene shows association with adolescent idiopathic scoliosis predisposition in Northwest Indians. Eur J Med Res 2024; 29:66. [PMID: 38245767 PMCID: PMC10799485 DOI: 10.1186/s40001-024-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a common structural deformity of the spine affecting adolescent individuals globally. The disorder is polygenic and is accompanied by the association of various genetic loci. Genetic studies in Chinese and Japanese populations have shown the association of genetic variants of SOX9 with AIS curve severity. However, no genetic study evaluating the association of SRY-Box Transcription Factor 9 (SOX9) variants with AIS predisposition has been conducted in any Indian population. Thus, we aimed to investigate the association of the genetic variants of the SOX9 along with 0.88 Mb upstream region with AIS susceptibility in the population of Northwest India. METHODS In total, 113 AIS cases and 500 non-AIS controls were recruited from the population of Northwest India in the study and screened for 155 genetic variants across the SOX9 gene and 0.88 Mb upstream region of the gene using Global Screening Array-24 v3.0 chip (Illumina). The statistical significance of the Bonferroni threshold was set at 0.000322. RESULT The results showed the association of 11 newly identified variants; rs9302936, rs7210997, rs77736349, rs12940821, rs9302937, rs77447012, rs8071904, rs74898711, rs9900249, rs2430514, and rs1042667 with the AIS susceptibility in the studied population. Only one variant, rs2430514, was inversely associated with AIS in the population, while the ten variants were associated with the AIS risk. Moreover, 47 variants clustered in the gene desert region of the SOX9 gene were associated at a p-value ≤ 0.05. CONCLUSION The present study is the first to demonstrate the association of SOX9 enhancer locus variants with AIS in any South Asian Indian population. The results are interesting as rs1042667, a 3' untranslated region (UTR) variant in the exon 3 and upstream variants of the SOX9 gene, were associated with AIS susceptibility in the Northwest Indian population. This provides evidence that the variants in the enhancer region of SOX9 might regulate its gene expression, thus leading to AIS pathology and might act as an important gene for AIS susceptibility.
Collapse
Affiliation(s)
- Hemender Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Shipra
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Manish Gupta
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Nital Gupta
- District Hospital Poonch, Poonch, Jammu and Kashmir, India
| | - Geetanjali Gupta
- Department of Radiology, Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir, India
| | - Ajay K Pandita
- Accidental Hospital, Chowki Choura, Jammu, Jammu and Kashmir, India
| | - Rajesh Sharma
- Government Medical College, Jammu, Jammu and Kashmir, India
| | - Sarla Pandita
- Chest Disease Hospital, Bakshi Nagar, Jammu, Jammu and Kashmir, India
| | - Vinod Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Swarkar Sharma
- Human Genetics Research Lab, Centre for Molecular Biology, Central University of Jammu, Jammu, India.
| |
Collapse
|
27
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Niemann T, Joneleit J, Storm J, Nacke T, Wähnert D, Kaltschmidt C, Vordemvenne T, Kaltschmidt B. Analyzing Sex-Specific Dimorphism in Human Skeletal Stem Cells. Cells 2023; 12:2683. [PMID: 38067111 PMCID: PMC10705359 DOI: 10.3390/cells12232683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Sex-related differences are a current topic in contemporary science. In addition to hormonal regulation, cell-autonomous mechanisms are important in bone homeostasis and regeneration. In this study, human skeletal stem cells (SSCs) from female and male adults were cultured and analyzed with immunological assays and osteogenic differentiation assessments. Female SSCs exhibited a mean doubling time of 100.6 h, whereas male SSCs displayed a mean doubling time of 168.0 h. Immunophenotyping revealed the expression of the stem cell markers Nestin, CD133, and CD164, accompanied by the neural-crest marker SOX9. Furthermore, multiparameter flow cytometric analyses revealed a substantial population of multipotent SSCs, comprising up to 80% in both sexes. An analysis of the osteogenic differentiation potential demonstrated a strong mineralization in both male and female SSCs under physiological conditions. Recognizing the prevailing association of bone diseases with inflammatory processes, we also analyzed the osteogenic potential of SSCs from both sexes under pro-inflammatory conditions. Upon TNF-α and IL-1β treatment, we observed no sexual dimorphism on osteogenesis. In summary, we demonstrated the successful isolation and characterization of SSCs capable of rapid osteogenic differentiation. Taken together, in vitro cultured SSCs might be a suitable model to study sexual dimorphisms and develop drugs for degenerative bone diseases.
Collapse
Affiliation(s)
- Tarek Niemann
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
| | - Jonas Joneleit
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
| | - Jonathan Storm
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Tom Nacke
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
| | - Dirk Wähnert
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, Campus Bielefeld-Bethel, University Hospital OWL of Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Thomas Vordemvenne
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, Campus Bielefeld-Bethel, University Hospital OWL of Bielefeld University, Burgsteig 13, 33617 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (J.J.); (T.N.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., 33615 Bielefeld, Germany; (J.S.); (D.W.); (C.K.); (T.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng R, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542293. [PMID: 37292598 PMCID: PMC10245954 DOI: 10.1101/2023.05.26.542293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, CN
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE
- Department of Surgical Sciences, Uppsala University and
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Ohkura N, Nam HK, Liu F, Hatch N. Cranial Neural Crest Specific Deletion of Alpl (TNAP) via P0-Cre Causes Abnormal Chondrocyte Maturation and Deficient Cranial Base Growth. Int J Mol Sci 2023; 24:15401. [PMID: 37895082 PMCID: PMC10607232 DOI: 10.3390/ijms242015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bone growth plate abnormalities and skull shape defects are seen in hypophosphatasia, a heritable disorder in humans that occurs due to the deficiency of tissue nonspecific alkaline phosphatase (TNAP, Alpl) enzyme activity. The abnormal development of the cranial base growth plates (synchondroses) and abnormal skull shapes have also been demonstrated in global Alpl-/- mice. To distinguish local vs. systemic effects of TNAP on skull development, we utilized P0-Cre to knockout Alpl only in cranial neural crest-derived tissues using Alpl flox mice. Here, we show that Alpl deficiency using P0-Cre in cranial neural crest leads to skull shape defects and the deficient growth of the intersphenoid synchondrosis (ISS). ISS chondrocyte abnormalities included increased proliferation in resting and proliferative zones with decreased apoptosis in hypertrophic zones. ColX expression was increased, which is indicative of premature differentiation in the absence of Alpl. Sox9 expression was increased in both the resting and prehypertrophic zones of mutant mice. The expression of Parathyroid hormone related protein (PTHrP) and Indian hedgehog homolog (IHH) were also increased. Finally, cranial base organ culture revealed that inorganic phosphate (Pi) and pyrophosphate (PPi) have specific effects on cell signaling and phenotype changes in the ISS. Together, these results demonstrate that the TNAP expression downstream of Alpl in growth plate chondrocytes is essential for normal development, and that the mechanism likely involves Sox9, PTHrP, IHH and PPi.
Collapse
Affiliation(s)
- Naoto Ohkura
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| | - Fei Liu
- Department of Biomaterials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| |
Collapse
|
31
|
Di J, Chen Z, Wang Z, He T, Wu D, Weng C, Deng J, Mai L, Wang K, He L, Rong L. Cartilage tissue from sites of weight bearing in patients with osteoarthritis exhibits a differential phenotype with distinct chondrocytes subests. RMD Open 2023; 9:e003255. [PMID: 37848267 PMCID: PMC10582868 DOI: 10.1136/rmdopen-2023-003255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease associated with excessive mechanical loading. The aim here was to elucidate whether different subpopulations of chondrocytes exhibit distinct phenotypes in response to variations in loading conditions. Furthermore, we seek to investigate the transcriptional switches and cell crosstalk among these chondrocytes subsets. METHODS Proteomic analysis was performed on cartilage tissues isolated from weight-bearing and non-weight-bearing regions. Additionally, single-cell RNA sequencing was employed to identify different subsets of chondrocytes. For disease-specific cells, in vitro differentiation induction was performed, and their presence was confirmed in human cartilage tissue sections using immunofluorescence. The molecular mechanisms underlying transcriptional changes in these cells were analysed through whole-transcriptome sequencing. RESULTS In the weight-bearing regions of OA cartilage tissue, a subpopulation of chondrocytes called OA hypertrophic chondrocytes (OAHCs) expressing the marker genes SLC39A14 and COL10A1 are present. These cells exhibit unique characteristics of active cellular interactions mediated by the TGFβ signalling pathway and express OA phenotypes, distinct from hypertrophic chondrocytes in healthy cartilage. OAHCs are mainly distributed in the superficial region of damaged cartilage in human OA tissue, and on TGFβ stimulation, exhibit activation of transcriptional expression of iron metabolism-related genes, along with enrichment of associated pathways. CONCLUSION This study identified and validated the existence of a subset of OAHCs in the weight-bearing area of OA cartilage tissue. Our findings provide a theoretical basis for targeting OAHCs to slow down the progression of OA and facilitate the repair of cartilage injuries.
Collapse
Affiliation(s)
- Jiawei Di
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Zihao Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Zhe Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Department of Joint Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Chuanggui Weng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Jiajun Deng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Lang Mai
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Kun Wang
- Department of Joint Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [PMID: 37433356 DOI: 10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Nuclear factor 1 X-type (Nfix) is a transcription factor related to mental and physical development. However, very few studies have reported the effects of Nfix on cartilage. This study aims to reveal the influence of Nfix on the proliferation and differentiation of chondrocytes, and to explore its potential action mechanism. We isolated primary chondrocytes from the costal cartilage of newborn C57BL/6 mice and with Nfix overexpression or silencing treatment. We used Alcian blue staining and found that Nfix overexpression significantly promoted ECM synthesis in chondrocytes while silencing inhibited ECM synthesis. Using RNA-seq technology to study the expression pattern of Nfix in primary chondrocytes. We found that Nfix overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. Nfix silencing, however, significantly up-regulated genes associated with cartilage catabolism and significantly down-regulated genes associated with cartilage growth promotion. Furthermore, Nfix exerted a positive regulatory effect on Sox9, and we propose that Nfix may promote chondrocyte proliferation and inhibit differentiation by stimulating Sox9 and its downstream genes. Our findings suggest that Nfix may be a potential target for the regulation of chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jingcheng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Baojin Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
33
|
Wang J, Liu C, Yang L, Chen H, Zheng M, Wan Y, Hong X, Li S, Han J, Luo R, Wan X, Zhang JV, Xu R. Probing the communication patterns of different chondrocyte subtypes in osteoarthritis at the single cell level using pattern recognition and manifold learning. Sci Rep 2023; 13:14467. [PMID: 37660146 PMCID: PMC10475121 DOI: 10.1038/s41598-023-41874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023] Open
Abstract
The patterns of communication among different chondrocyte subtypes in human cartilage degeneration and regeneration help us understand the microenvironment of osteoarthritis and optimize cell-targeted therapies. Here, a single-cell transcriptome dataset of chondrocytes is used to explore the synergistic and communicative patterns of different chondrocyte subtypes. We collected 1600 chondrocytes from 10 patients with osteoarthritis and analyzed the active communication patterns for the first time based on network analysis and pattern recognition at the single-cell level. Manifold learning and quantitative contrasts were performed to analyze conserved and specific communication pathways. We found that ProCs (Proliferative chondrocytes), ECs (Effector chondrocytes), preHTCs (Prehypertrophic chondrocytes), HTCs (Hypertrophic chondrocytes), and FCs (Fibrocartilage chondrocytes) are more active in incoming and outgoing signaling patterns, which is consistent with studies on their close functional cooperation. Among them, preHTCs play multiple roles in chondrocyte communication, and ProCs and preHTCs have many overlapping pathways. These two subtypes are the most active among all chondrocyte subtypes. Interestingly, ECs and FCs are a pair of "mutually exclusive" subtypes, of which ECs are predominant in incoming patterns and FCs in outgoing patterns. The active signaling pathways of ECs and FCs largely do not overlap. COLLAGEN and LAMININ are the main pivotal pathways, which means they are very important in the repair and expansion of joint homeostasis. Notably, only preHTCs assume multiple roles (including sender, receiver, mediator, and influencer) and are involved in multiple communication pathways. We have examined their communication patterns from the perspective of cellular interactions, revealed the relationships among different chondrocyte subtypes, and, in particular, identified a number of active subtypes and pathways that are important for targeted therapy in the osteoarthritic microenvironment. Our findings provide a new research paradigm and new insights into understanding chondrocyte activity patterns in the osteoarthritic microenvironment.
Collapse
Affiliation(s)
- Jiajian Wang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, 518055, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Caihong Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Litao Yang
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Huixiong Chen
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Mingqi Zheng
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Yanbin Wan
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Xiongxin Hong
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Sidi Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Han
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Ruibin Luo
- Department of Clinical Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Xing Wan
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, 518055, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ruihuan Xu
- Clinical Laboratory Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
34
|
Thamm JR, Jounaidi Y, Mueller ML, Rosen V, Troulis MJ, Guastaldi FPS. Temporomandibular Joint Fibrocartilage Contains CD105 Positive Mouse Mesenchymal Stem/Progenitor Cells with Increased Chondrogenic Potential. J Maxillofac Oral Surg 2023; 22:559-570. [PMID: 37534349 PMCID: PMC10390456 DOI: 10.1007/s12663-022-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Objective A specific type of mesenchymal stem/progenitor cells (MSPCs), CD105+ is reported to aid in cartilage regeneration through TGF-β/Smad2-signalling. The purpose of this study was to identify and characterize CD105+ MSPCs in temporomandibular joint (TMJ) cartilage. Materials and Methods MSPCs were isolated from mouse TMJ condyle explants and evaluated for their clonogenicity and pluripotential abilities. MSPC were examined for CD105 antigen using immunohistochemistry and flow cytometry. Results Immunohistochemistry revealed presence of CD105+ MSPCs in the proliferative zone of condyle's cartilage. Only 0.2% of isolated MSPCs exhibited CD105, along with the stem cell surface markers CD44 and Sca-1. In CD105+ MSPCs, intracellular immunostaining revealed significantly higher (p < 0.05) protein levels of collagen type 1, 2, proteoglycan 4. Ability for chondrogenic differentiation was found to be significantly higher (p < 0.05) after 4 weeks compared to CD105- cells, using alcian blue staining. CD105+ cells were found to resemble an early MSPC subgroup with significantly higher gene expression of biglycan, proteoglycan 4, collagen type 2, Gli2, Sox5 (p < 0.001) and Sox9 (p < 0.05). In contrast, significantly lower levels of Runx2 (p < 0.05), Osterix, Trps1, Col10a1 (p < 0.01), Ihh (p < 0.001) related to chondrocyte senescence and commitment to osteogenic lineage, were observed compared to CD105- cells. Conclusion The study showed the existence of a CD105+ MSPC subgroup within TMJ fibrocartilage that may be activated to aid in fibrocartilage repair.
Collapse
Affiliation(s)
- Janis R. Thamm
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Max-Laurin Mueller
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA USA
| | - Maria J. Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
- Walter C. Guralnick Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Fernando Pozzi Semeghini Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, 50 Blossom St, Thier 513A, Boston, MA 02114 USA
| |
Collapse
|
35
|
Hassan SA, Shabaan AAA, Ahmed AR, Issa YA, Fadel SH, El-Sabaa BM. Clinicopathological significance of SOX9 and β-catenin expression in pre-neoadjuvant chemotherapy cases of osteosarcoma: molecular and immunohistochemical study. J Histotechnol 2023; 46:127-138. [PMID: 37013797 DOI: 10.1080/01478885.2023.2193526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
The molecular pathogenesis of osteosarcoma (OS), the most frequent primary malignant bone tumor of all age groups, is still obscure. Since multidrug chemotherapeutic regimens were introduced in the 1970s, survival rates have been stationary. The Wnt-β-catenin signaling cascade and SOX9 have a significant contribution to skeletal growth, development, and tumorigenesis. In the present work, an attempt was made to examine the role and clinicopathological significance of β-catenin and SOX9 in 46 cases of pre-neoadjuvant chemotherapy OS tissues compared to 10 cases of non-neoplastic bone. The mRNA levels of both markers were assessed by qRT-PCR, and protein levels of β-catenin were analyzed by immunohistochemistry. The results were correlated with different clinicopathological parameters. SOX9 mRNA levels were significantly elevated in OS compared to non-neoplastic bone, and higher levels were significantly associated with the occurrence of fluid-fluid levels (indicating blood-containing cystic spaces) and osteolytic radiological pattern. Although β-catenin mRNA and protein levels were higher in OS compared to non-neoplastic bone, only the protein levels reached statistical significance. Higher β-catenin mRNA levels were significantly associated with tumor size, while higher protein levels were significantly associated with the histologic subtype, mitotic count, and radiological pattern. No significant association was noted with any of the other evaluated parameters. OS showing higher SOX9 mRNA expression and lower β-catenin mRNA and protein expression exhibited longer estimated overall survival times approaching statistical significance. To conclude, while high expression of β-catenin and SOX9 suggests their possible involvement in OS development, their prognostic role may need further research.
Collapse
Affiliation(s)
- Sarah Ahmed Hassan
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Adel Refaat Ahmed
- Department of Orthopedic Surgery and Traumatology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shady Hassan Fadel
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Faculty of Medicine, Alexandria, Egypt
| | | |
Collapse
|
36
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [DOI: org/10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
37
|
Veithen M, Huyghe A, Van Den Ackerveken P, Fukada SI, Kokubo H, Breuskin I, Nguyen L, Delacroix L, Malgrange B. Sox9 Inhibits Cochlear Hair Cell Fate by Upregulating Hey1 and HeyL Antagonists of Atoh1. Cells 2023; 12:2148. [PMID: 37681879 PMCID: PMC10486728 DOI: 10.3390/cells12172148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
It is widely accepted that cell fate determination in the cochlea is tightly controlled by different transcription factors (TFs) that remain to be fully defined. Here, we show that Sox9, initially expressed in the entire sensory epithelium of the cochlea, progressively disappears from differentiating hair cells (HCs) and is finally restricted to supporting cells (SCs). By performing ex vivo electroporation of E13.5-E14.5 cochleae, we demonstrate that maintenance of Sox9 expression in the progenitors committed to HC fate blocks their differentiation, even if co-expressed with Atoh1, a transcription factor necessary and sufficient to form HC. Sox9 inhibits Atoh1 transcriptional activity by upregulating Hey1 and HeyL antagonists, and genetic ablation of these genes induces extra HCs along the cochlea. Although Sox9 suppression from sensory progenitors ex vivo leads to a modest increase in the number of HCs, it is not sufficient in vivo to induce supernumerary HC production in an inducible Sox9 knockout model. Taken together, these data show that Sox9 is downregulated from nascent HCs to allow the unfolding of their differentiation program. This may be critical for future strategies to promote fully mature HC formation in regeneration approaches.
Collapse
Affiliation(s)
- Mona Veithen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium; (M.V.); (A.H.); (P.V.D.A.); (I.B.); (L.D.)
| | - Aurélia Huyghe
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium; (M.V.); (A.H.); (P.V.D.A.); (I.B.); (L.D.)
| | - Priscilla Van Den Ackerveken
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium; (M.V.); (A.H.); (P.V.D.A.); (I.B.); (L.D.)
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan;
| | - Hiroki Kokubo
- Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan;
| | - Ingrid Breuskin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium; (M.V.); (A.H.); (P.V.D.A.); (I.B.); (L.D.)
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium;
| | - Laurence Delacroix
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium; (M.V.); (A.H.); (P.V.D.A.); (I.B.); (L.D.)
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, 4000 Liege, Belgium; (M.V.); (A.H.); (P.V.D.A.); (I.B.); (L.D.)
| |
Collapse
|
38
|
Wang J, Wan X, Le Q. Cross-regulation between SOX9 and the canonical Wnt signalling pathway in stem cells. Front Mol Biosci 2023; 10:1250530. [PMID: 37664185 PMCID: PMC10469848 DOI: 10.3389/fmolb.2023.1250530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
SOX9, a member of the SRY-related HMG-box transcription factors, has been reported to critically regulate fetal development and stem cell homeostasis. Wnt signalling is a highly conserved signalling pathway that controls stem cell fate decision and stemness maintenance throughout embryonic development and adult life. Many studies have shown that the interactions between SOX9 and the canonical Wnt signalling pathway are involved in many of the physiological and pathological processes of stem cells, including organ development, the proliferation, differentiation and stemness maintenance of stem cells, and tumorigenesis. In this review, we summarize the already-known molecular mechanism of cross-interactions between SOX9 and the canonical Wnt signalling pathway, outline its regulatory effects on the maintenance of homeostasis in different types of stem cells, and explore its potential in translational stem cell therapy.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Center, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Myopia Key Laboratory of Ministry of Health, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
39
|
Michelacci YM, Baccarin RYA, Rodrigues NNP. Chondrocyte Homeostasis and Differentiation: Transcriptional Control and Signaling in Healthy and Osteoarthritic Conditions. Life (Basel) 2023; 13:1460. [PMID: 37511835 PMCID: PMC10381434 DOI: 10.3390/life13071460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrocytes are the main cell type in articular cartilage. They are embedded in an avascular, abundant, and specialized extracellular matrix (ECM). Chondrocytes are responsible for the synthesis and turnover of the ECM, in which the major macromolecular components are collagen, proteoglycans, and non-collagen proteins. The crosstalk between chondrocytes and the ECM plays several relevant roles in the regulation of cell phenotype. Chondrocytes live in an avascular environment in healthy cartilage with a low oxygen supply. Although chondrocytes are adapted to anaerobic conditions, many of their metabolic functions are oxygen-dependent, and most cartilage oxygen is supplied by the synovial fluid. This review focuses on the transcription control and signaling responsible for chondrocyte differentiation, homeostasis, senescence, and cell death and the changes that occur in osteoarthritis. The effects of chondroitin sulfate and other molecules as anti-inflammatory agents are also approached and analyzed.
Collapse
Affiliation(s)
- Yara M Michelacci
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - Raquel Y A Baccarin
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| | - Nubia N P Rodrigues
- Faculdade de Medicina Veterinária e Zootecnia, Universidade São Paulo, São Paulo 05508-270, SP, Brazil
| |
Collapse
|
40
|
Thomas J, Chopra V, Rajput S, Guha R, Chattopadhyay N, Ghosh D. Post-Implantation Stiffening by a Bioinspired, Double-Network, Self-Healing Hydrogel Facilitates Minimally Invasive Cell Delivery for Cartilage Regeneration. Biomacromolecules 2023. [PMID: 37376790 DOI: 10.1021/acs.biomac.3c00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Injectable hydrogels have demonstrated advantages in cartilage repair by enabling the delivery of cells through a minimally invasive approach. However, several injectable hydrogels suffer from rapid degradation and low mechanical strength. Moreover, higher mechanical stiffness in hydrogels can have a detrimental effect on post-implantation cell viability. To address these challenges, we developed an in situ forming bioinspired double network hydrogel (BDNH) that exhibits temperature-dependent stiffening after implantation. The BDNH mimics the microarchitecture of aggrecan, with hyaluronic acid-conjugated poly(N-isopropylacrylamide) providing rigidity and Schiff base crosslinked polymers serving as the ductile counterpart. BDNHs exhibited self-healing property and enhanced stiffness at physiological temperature. Excellent cell viability, long time cell proliferation, and cartilage specific matrix production were observed in the chondrocytes cultured in the BDNH hydrogel. Evidence of cartilage regeneration in a rabbit cartilage defect model using chondrocyte-laden BDNH has suggested it to be a potential candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226031, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
41
|
Zhang X, Pu X, Pi C, Xie J. The role of fibroblast growth factor 7 in cartilage development and diseases. Life Sci 2023:121804. [PMID: 37245839 DOI: 10.1016/j.lfs.2023.121804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), shows a crucial biological significance in tissue development, wound repair, tumorigenesis, and immune reconstruction. In the skeletal system, FGF7 directs the cellular synaptic extension of individual cells and facilities functional gap junction intercellular communication of a collective of cells. Moreover, it promotes the osteogenic differentiation of stem cells via a cytoplasmic signaling network. For cartilage, reports have indicated the potential role of FGF7 on the regulation of key molecules Cx43 in cartilage and Runx2 in hypertrophic cartilage. However, the molecular mechanism of FGF7 in chondrocyte behaviors and cartilage pathological process remains largely unknown. In this review, we systematically summarize the recent biological function of FGF7 and its regulatory role on chondrocytes and cartilage diseases, especially through the hot focus of two key molecules, Runx2 and Cx43. The current knowledge of FGF7 on the physiological and pathological processes of chondrocytes and cartilage provides us new cues for wound repair of cartilage defect and therapy of cartilage diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Tanaka M, Homme M, Teramura Y, Kumegawa K, Yamazaki Y, Yamashita K, Osato M, Maruyama R, Nakamura T. HEY1-NCOA2 expression modulates chondrogenic differentiation and induces mesenchymal chondrosarcoma in mice. JCI Insight 2023; 8:160279. [PMID: 37212282 DOI: 10.1172/jci.insight.160279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Mesenchymal chondrosarcoma affects adolescents and young adults, and most cases usually have the HEY1::NCOA2 fusion gene. However, the functional role of HEY1-NCOA2 in the development and progression of mesenchymal chondrosarcoma remains largely unknown. This study aimed to clarify the functional role of HEY1-NCOA2 in transformation of the cell of origin and induction of typical biphasic morphology of mesenchymal chondrosarcoma. We generated a mouse model for mesenchymal chondrosarcoma by introducing HEY1-NCOA2 into mouse embryonic superficial zone (eSZ) followed by subcutaneous transplantation into nude mice. HEY1-NCOA2 expression in eSZ cells successfully induced subcutaneous tumors in 68.9% of recipients, showing biphasic morphologies and expression of Sox9, a master regulator of chondrogenic differentiation. ChIP sequencing analyses indicated frequent interaction between HEY1-NCOA2 binding peaks and active enhancers. Runx2, which is important for differentiation and proliferation of the chondrocytic lineage, is invariably expressed in mouse mesenchymal chondrosarcoma, and interaction between HEY1-NCOA2 and Runx2 is observed using NCOA2 C-terminal domains. Although Runx2 knockout resulted in significant delay in tumor onset, it also induced aggressive growth of immature small round cells. Runx3, which is also expressed in mesenchymal chondrosarcoma and interacts with HEY1-NCOA2, replaced the DNA-binding property of Runx2 only in part. Treatment with the HDAC inhibitor panobinostat suppressed tumor growth both in vitro and in vivo, abrogating expression of genes downstream of HEY1-NCOA2 and Runx2. In conclusion, HEY1::NCOA2 expression modulates the transcriptional program in chondrogenic differentiation, affecting cartilage-specific transcription factor functions.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuyo Teramura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kyoko Yamashita
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
43
|
Linkova N, Khavinson V, Diatlova A, Myakisheva S, Ryzhak G. Peptide Regulation of Chondrogenic Stem Cell Differentiation. Int J Mol Sci 2023; 24:ijms24098415. [PMID: 37176122 PMCID: PMC10179481 DOI: 10.3390/ijms24098415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The search for innovative ways to treat osteoarthritis (OA) is an urgent task for molecular medicine and biogerontology. OA leads to disability in persons of middle and older age, while safe and effective methods of treating OA have not yet been discovered. The directed differentiation of mesenchymal stem cells (MSCs) into chondrocytes is considered one of the possible methods to treat OA. This review describes the main molecules involved in the chondrogenic differentiation of MSCs. The peptides synthesized on the basis of growth factors' structures (SK2.1, BMP, B2A, and SSPEPS) and components of the extracellular matrix of cartilage tissue (LPP, CFOGER, CMP, RDG, and N-cadherin mimetic peptide) offer the greatest promise for the regulation of the chondrogenic differentiation of MSCs. These peptides regulate the WNT, ERK-p38, and Smad 1/5/8 signaling pathways, gene expression, and the synthesis of chondrogenic differentiation proteins such as COL2, SOX9, ACAN, etc.
Collapse
Affiliation(s)
- Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
- Pavlov Institute of Physiology of Russia Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia
| | - Anastasiia Diatlova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Svetlana Myakisheva
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Galina Ryzhak
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| |
Collapse
|
44
|
Zhou Z, Lv C, Wang Y, Zhang B, Liu L, Yang J, Leng X, Zhao D, Yao B, Wang J, Dong H. BuShen JianGu Fang alleviates cartilage degeneration via regulating multiple genes and signaling pathways to activate NF-κB/Sox9 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154742. [PMID: 36893673 DOI: 10.1016/j.phymed.2023.154742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is an inflammatory response in chondrocytes, causing extracellular matrix (ECM) degradation and cartilage destruction, affecting millions of people worldwide. Chinese herbal formulae BuShen JianGu Fang (BSJGF) has been clinically applied for treating OA-related syndromes, but the underlying mechanism still unclear. METHODS The components of BSJGF were analyzed by liquid chromatography-mass spectrometry (LC-MS). To make a traumatic OA model, the anterior cruciate ligament of 6-8-week-old male SD rats were cut and then the 0.4 mm metal was used to destroy the knee joint cartilage. OA severity was assessed by histological and Micro-CT. Mouse primary chondrocytes were utilized to investigate the mechanism of BSJGF alleviate osteoarthritis, which was examined by RNA-seq technology combined with a series of functional experiments. RESULTS A total 619 components were identified by LC-MS. In vivo, BSJGF treatment result in a higher articular cartilage tissue area compared to IL-1β group. Treatment also significantly increased Tb.Th, BV/TV and BMD of subchondral bone (SCB), which implied a protective effect on maintaining the stabilization of SCB microstructure. In vitro results indicated BSJGF promoted chondrocyte proliferation, increased the expression level of cartilage-specific genes (Sox9, Col2a1, Acan) and synthesized acidic polysaccharide, while inhibiting the release of catabolic enzymes and production of reactive oxygen species (ROS) induced by IL-1β. Transcriptome analysis showed that there were 1471 and 4904 differential genes between IL-1β group and blank group, BSJGF group and IL-1β group, respectively, including matrix synthesis related genes (Col2a1, H19, Acan etc.), inflammation related genes (Comp, Pcsk6, Fgfr3 etc.) and oxidative stress related genes (Gm26917, Bcat1, Sod1 etc.). Furthermore, KEGG analysis and validation results showed that BSJGF reduces OA-mediated inflammation and cartilage damaged due to modulation of NF-κB/Sox9 signaling axis. CONCLUSION The innovation of the present study was the elucidation of the alleviating cartilage degradation effect of BSJGF in vivo and in vitro and discovery of its mechanism through RNA-seq combined with function experiments, which provides a biological rationale for the clinical application of BSJGF for OA treatment.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Cheng Lv
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yuting Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Binghua Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Lang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Baojin Yao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Jianyu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China.
| |
Collapse
|
45
|
Menahem C, Foist M, Mansour Y, Shtaif B, Bar-Maisels M, Phillip M, Gat-Yablonski G. A Whey-Based Diet Can Ameliorate the Effects of LPS-Induced Growth Attenuation in Young Rats. Nutrients 2023; 15:1823. [PMID: 37111042 PMCID: PMC10146220 DOI: 10.3390/nu15081823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic inflammation in childhood is associated with impaired growth. In the current study, a lipopolysaccharide (LPS) model of inflammation in young rats was used to study the efficacy of whey-based as compared to soy-based diets to ameliorate growth attenuation. Young rats were injected with LPS and fed normal chow or diets containing whey or soy as the sole protein source during treatment, or during the recovery period in a separate set of experiments. The body and spleen weight, food consumption, humerus length, and EGP height and structure were evaluated. Inflammatory markers in the spleen and markers of differentiation in the EGP were assessed using qPCR. The LPS led to a significant increase in the spleen weight and a decrease in the EGP height. Whey, but not soy, protected the animals from both effects. In the recovery model, whey led to increased EGP height at both 3 and 16 d post treatment. The most affected region in the EGP was the hypertrophic zone (HZ), which was significantly shortened by the LPS treatment but enlarged by whey. In conclusion, LPS affected the spleen weight and EGP height and had a specific effect on the HZ. Nutrition with whey protein appeared to protect the rats from the LPS-induced growth attenuation.
Collapse
Affiliation(s)
- Chen Menahem
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal Foist
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yasmin Mansour
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel
| | - Biana Shtaif
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva 4920235, Israel
| | - Meytal Bar-Maisels
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel
- Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva 4920235, Israel
| | - Moshe Phillip
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel
- Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva 4920235, Israel
| | - Galia Gat-Yablonski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel
- Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva 4920235, Israel
| |
Collapse
|
46
|
Mendoza SV, Genetos DC, Yellowley CE. Hypoxia-Inducible Factor-2α Signaling in the Skeletal System. JBMR Plus 2023; 7:e10733. [PMID: 37065626 PMCID: PMC10097641 DOI: 10.1002/jbm4.10733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes. Transcriptional responses to hypoxia include altered energy metabolism, angiogenesis, erythropoiesis, and cell fate. Three isoforms of HIF-α-HIF-1α, HIF-2α, and HIF-3α-are found in diverse cell types. HIF-1α and HIF-2α serve as transcriptional activators, whereas HIF-3α restricts HIF-1α and HIF-2α. The structure and isoform-specific functions of HIF-1α in mediating molecular responses to hypoxia are well established across a wide range of cell and tissue types. The contributions of HIF-2α to hypoxic adaptation are often unconsidered if not outrightly attributed to HIF-1α. This review establishes what is currently known about the diverse roles of HIF-2α in mediating the hypoxic response in skeletal tissues, with specific focus on development and maintenance of skeletal fitness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| |
Collapse
|
47
|
Mendoza SV, Murugesh DK, Christiansen BA, Genetos ZO, Loots GG, Genetos DC, Yellowley CE. Degradation-Resistant Hypoxia Inducible Factor-2α in Murine Osteocytes Promotes a High Bone Mass Phenotype. JBMR Plus 2023; 7:e10724. [PMID: 37065633 PMCID: PMC10097640 DOI: 10.1002/jbm4.10724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Molecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are composed of an oxygen-dependent α subunit (HIF-α), of which there are two transcriptionally active isoforms (HIF-1α and HIF-2α), and a constitutively expressed β subunit (HIFβ). Under normoxic conditions, HIF-α is hydroxylated via prolyl hydroxylase domain (PHD) proteins and targeted for degradation via Von Hippel-Lindau (VHL). Under hypoxic conditions, hydroxylation via PHD is inhibited, allowing for HIF-α stabilization and induction of target transcriptional changes. Our previous studies showed that Vhl deletion in osteocytes (Dmp1-cre; Vhl f/f ) resulted in HIF-α stabilization and generation of a high bone mass (HBM) phenotype. The skeletal impact of HIF-1α accumulation has been well characterized; however, the unique skeletal impacts of HIF-2α remain understudied. Because osteocytes orchestrate skeletal development and homeostasis, we investigated the role of osteocytic HIF-α isoforms in driving HBM phenotypes via osteocyte-specific loss-of-function and gain-of-function HIF-1α and HIF-2α mutations in C57BL/6 female mice. Deletion of Hif1a or Hif2a in osteocytes showed no effect on skeletal microarchitecture. Constitutively stable, degradation-resistant HIF-2α (HIF-2α cDR), but not HIF-1α cDR, generated dramatic increases in bone mass, enhanced osteoclast activity, and expansion of metaphyseal marrow stromal tissue at the expense of hematopoietic tissue. Our studies reveal a novel influence of osteocytic HIF-2α in driving HBM phenotypes that can potentially be harnessed pharmacologically to improve bone mass and reduce fracture risk. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V. Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California DavisDavisCAUSA
| | - Deepa K. Murugesh
- Lawrence Livermore National LaboratoriesPhysical and Life Sciences DirectorateLivermoreCAUSA
| | | | - Zoe O. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California DavisDavisCAUSA
| | - Gabriela G. Loots
- Lawrence Livermore National LaboratoriesPhysical and Life Sciences DirectorateLivermoreCAUSA
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California DavisDavisCAUSA
| | - Clare E. Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California DavisDavisCAUSA
| |
Collapse
|
48
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
49
|
Li H, He Z, Li W, Yao J, Lyu C, Du Y, Xing D, Lin J. Exploring the Mechanism of Microfracture in the Treatment of Porcine Full-Thickness Cartilage Defect. Am J Sports Med 2023; 51:1033-1046. [PMID: 36802853 DOI: 10.1177/03635465231153630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Microfracture has the most extensive clinical application because of its advantages of a single operation, unified process, and low operation cost. Because research on the repair mechanism of microfractures in the treatment of cartilage defects is not in-depth, this study aimed to elucidate the mechanism. PURPOSE To identify the characteristic cell subsets at different repair stages after microfracture, systematically analyze the repair process of the defect area after microfracture, and investigate the mechanism of fibrocartilage repair. STUDY DESIGN Descriptive laboratory study. METHODS Full-thickness articular cartilage defects and microfractures was established in the right knee of Bama miniature pigs. Single-cell transcriptional assays were used to identify the characteristics of cells isolated from healthy articular cartilage and regenerated tissues. RESULTS Microfractures induced mature fibrous repair in the full-thickness cartilage defect six months after surgery, while early stages of repair occurred within six weeks. Based on single-cell sequencing results, eight subsets and specific marker genes were identified. Two processes may occur after microfracture: normal hyaline cartilage regeneration and abnormal fibrocartilage repair. Regulatory chondrocytes, proliferative chondrocytes and cartilage progenitor cells (CPCs) may play important roles in the normal regeneration process. During abnormal repair, CPCs and skeletal stem cells may have different functions, and macrophages and endothelial cells may play important regulatory roles in the formation of fibrochondrocytes. CONCLUSIONS Using single-cell transcriptome sequencing, this study investigated the tissue regeneration process and identified key cell subsets after microfracture. CLINICAL RELEVANCE These results provide future targets for optimizing the repair effect of microfracture.
Collapse
Affiliation(s)
- Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Jiaying Yao
- Annoroad Gene Technology (Beijing) Co Ltd, Beijing, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
50
|
Semenistaja S, Skuja S, Kadisa A, Groma V. Healthy and Osteoarthritis-Affected Joints Facing the Cellular Crosstalk. Int J Mol Sci 2023; 24:4120. [PMID: 36835530 PMCID: PMC9964755 DOI: 10.3390/ijms24044120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint disease that is recognized as the most common type of arthritis. During the last decade, it shows an incremental global rise in prevalence and incidence. The interaction between etiologic factors that mediate joint degradation has been explored in numerous studies. However, the underlying processes that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. During synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and necrotic cells. These "foreign bodies" serve as danger-associated molecular patterns (DAMPs) that trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this review, we explore the cellular and molecular communication networks established between the major joint compartments-the synovial membrane, cartilage, and subchondral bone of normal and OA-affected joints.
Collapse
Affiliation(s)
- Sofija Semenistaja
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Kadisa
- Department of Internal Diseases, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|