1
|
Romani P, Benedetti G, Cusan M, Arboit M, Cirillo C, Wu X, Rouni G, Kostourou V, Aragona M, Giampietro C, Grumati P, Martello G, Dupont S. Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces. Nat Cell Biol 2024:10.1038/s41556-024-01527-3. [PMID: 39433949 DOI: 10.1038/s41556-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giada Benedetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Cusan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mattia Arboit
- Department of Biology, University of Padova, Padova, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Xi Wu
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Georgia Rouni
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Medicine (ReNEW), University of Copenhagen, Copenhagen, Denmark
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2024:S1534-5807(24)00545-8. [PMID: 39413783 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
3
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Wang K, Lu J, Song C, Qiao M, Li Y, Chang M, Bao H, Qiu Y, Qian B. Extracellular Vesicles Derived from Ligament Tissue Transport Interleukin‐17A to Mediate Ligament‐To‐Bone Crosstalk in Ankylosing Spondylitis. ADVANCED SCIENCE 2024. [DOI: 10.1002/advs.202406876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 10/12/2024]
Abstract
AbstractPathological new bone formation is a critical feature of the progression of ankylosing spondylitis (AS), and spine ankylosis is a distinctive feature of this condition. Ligaments are the primary regions of pathological new bone formation in AS. Here, it is demonstrated that ligament tissue‐derived extracellular vesicles (EVs) and their interleukin‐17A (IL‐17A) cargo mediate the communication between the tissue and other cells. The investigation revealed that IL‐17A in EVs can activate the JAK‐STAT3 pathway, thereby stimulating the expression of MMP14 in AS ligament. Overexpression of MMP14 can lead to changes in the cytoskeleton and mechanical signaling of mesenchymal stem cells and other cells. These alterations in cellular cytoskeleton and mechanical signaling at ligament sites in patients with AS or in stem cells treated with EVs can result in pathological new bone formation. Finally, inhibiting IL‐17A activity and EV endocytosis effectively controlled inflammation and pathological new bone formation. Overall, these data suggest that ligament‐derived EVs and the enclosed IL‐17A have a potential role in driving pathological new bone formation in AS, and targeting EVs may therefore emerge as a novel approach to delaying ectopic ossification in AS.
Collapse
Affiliation(s)
- Kaiyang Wang
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Jingshun Lu
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Chenyu Song
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Mu Qiao
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Yao Li
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Menghan Chang
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Hongda Bao
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Yong Qiu
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| | - Bang‐Ping Qian
- Division of Spine Surgery Department of Orthopedic Surgery Nanjing Drum Tower Hospital Affiliated Hospital of Medical School Nanjing University Zhongshan Road 321 Nanjing 210008 China
| |
Collapse
|
5
|
Sabeh F, Li XY, Olson AW, Botvinick E, Kurup A, Gimenez LE, Cho JS, Weiss SJ. Mmp14-dependent remodeling of the pericellular-dermal collagen interface governs fibroblast survival. J Cell Biol 2024; 223:e202312091. [PMID: 38990714 PMCID: PMC11244150 DOI: 10.1083/jcb.202312091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger β1 integrin activation and instead actuate a TGF-β1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Adam W. Olson
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elliot Botvinick
- The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Abhishek Kurup
- The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Luis E. Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
7
|
Dong G, Wang J, Chen Z, Wang F, Xia B, Chen G. Regulatory effects of stress release from decellularized periosteum on proliferation, migration, and osteogenic differentiation of periosteum-derived cells. Biomater Sci 2024; 12:3360-3373. [PMID: 38771565 DOI: 10.1039/d4bm00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bone injury is often associated with tears in the periosteum and changes in the internal stress microenvironment of the periosteum. In this study, we investigated the biological effects of periosteal prestress release on periosteum-derived cells (PDCs) and the potential mechanisms of endogenous stem cell recruitment. Decellularized periosteum with natural extracellular matrix (ECM) components was obtained by a combination of physical, chemical, and enzymatic decellularization. The decellularized periosteum removed immunogenicity while retaining the natural network structure and composition of the ECM. The Young's modulus has no significant difference between the periosteum before and after decellularization. The extracted PDCs were further composited with the decellularized periosteum and subjected to 20% stress release. It was found that the proliferative capacity of PDCs seeded on decellularized periosteum was significantly enhanced 6 h after stress release of the periosteum. The cell culture supernatant obtained after periosteal prestress release was able to significantly promote the migration ability of PDCs within 24 h. Enzyme-linked immunosorbnent assay (ELISA) experiments showed that the expression of stroma-derived factor-1α (SDF-1α) and vascular endothelial growth factor (VEGF) in the supernatant increased significantly after 3 h and 12 h of stress release, respectively. Furthermore, periosteal stress release promoted the high expression of osteogenic markers osteocalcin (OCN), osteopontin (OPN), and collagen type I of PDCs. The change in stress environment caused by the release of periosteal prestress was sensed by integrin β1, a mechanoreceptor on the membrane of PDCs, which further stimulated the expression of YAP in the nucleus. These investigations provided a novel method to evaluate the importance of mechanical stimulation in periosteum, which is also of great significance for the design and fabrication of artificial periosteum with mechanical regulation function.
Collapse
Affiliation(s)
- Gangli Dong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Jinsong Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, P. R. China.
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| |
Collapse
|
8
|
Wang F, Wang H, Zhang H, Sun B, Wang Z. A Novel Mechanism of MSCs Responding to Occlusal Force for Bone Homeostasis. J Dent Res 2024; 103:642-651. [PMID: 38665065 DOI: 10.1177/00220345241236120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Alveolar bone, as tooth-supporting bone for mastication, is sensitive to occlusal force. However, the mechanism of alveolar bone loss after losing occlusal force remains unclear. Here, we performed single-cell RNA sequencing of nonhematopoietic (CD45-) cells in mouse alveolar bone after removing the occlusal force. Mesenchymal stromal cells (MSCs) and endothelial cell (EC) subsets were significantly decreased in frequency, as confirmed by immunofluorescence and flow cytometry. The osteogenic and proangiogenic abilities of MSCs were impaired, and the expression of mechanotransducers yes associated protein 1 (Yap) and WW domain containing transcription regulator 1 (Taz) in MSCs decreased. Conditional deletion of Yap and Taz from LepR+ cells, which are enriched in MSCs that are important for adult bone homeostasis, significantly decreased alveolar bone mass and resisted any further changes in bone mass induced by occlusal force changes. Interestingly, LepR-Cre; Yapf/f; Tazf/f mice showed a decrease in CD31hi endomucin (Emcn)hi endothelium, and the expression of some EC-derived signals acting on osteoblastic cells was inhibited in alveolar bone. Mechanistically, conditional deletion of Yap and Taz in LepR+ cells inhibited the secretion of pleiotrophin (Ptn), which impaired the proangiogenic capacity of LepR+ cells. Knockdown in MSC-derived Ptn repressed human umbilical vein EC tube formation in vitro. More important, administration of recombinant PTN locally recovered the frequency of CD31hiEmcnhi endothelium and rescued the low bone mass phenotype of LepR-Cre; Yapf/f; Tazf/f mice. Taken together, these findings suggest that occlusal force governs MSC-regulated endothelium to maintain alveolar bone homeostasis through the Yap/Taz/Ptn axis, providing a reference for further understanding of the relationship between dysfunction and bone homeostasis.
Collapse
Affiliation(s)
- F Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - H Zhang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - B Sun
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Z Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
9
|
Li X, Cui Y, He X, Mao L. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy. Macromol Biosci 2024; 24:e2300484. [PMID: 38241425 DOI: 10.1002/mabi.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
Blood vessels and nerve fibers are distributed throughout the skeletal tissue, which enhance the development and function of each other and have an irreplaceable role in bone formation and remodeling. Despite significant progress in bone tissue engineering, the inadequacy of nerve-vascular network reconstruction remains a major limitation. This is partly due to the difficulty of integrating and regulating multiple tissue types with artificial materials. Thus, understanding the anatomy and underlying coupling mechanisms of blood vessels and nerve fibers within bone to further develop neuro-vascularized bone implant biomaterials is an extremely critical aspect in the field of bone regeneration. Hydrogels have good biocompatibility, controllable mechanical characteristics, and osteoconductive and osteoinductive properties, making them important candidates for research related to neuro-vascularized bone regeneration. This review reports the classification and physicochemical properties of hydrogels, with a focus on the application advantages and status of hydrogels for bone regeneration. The authors also highlight the effect of neurovascular coupling on bone repair and regeneration and the necessity of achieving neuro-vascularized bone regeneration. Finally, the recent progress and design strategies of hydrogel-based biomaterials for neuro-vascularized bone regeneration are discussed.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| |
Collapse
|
10
|
Kowalczuk K, Dasgupta A, Páez Larios F, Ulrich HF, Wegner V, Brendel JC, Eggeling C, Mosig AS, Schacher FH. Self-Degrading Multifunctional PEG-Based Hydrogels-Tailormade Substrates for Cell Culture. Macromol Biosci 2024; 24:e2300383. [PMID: 38102978 DOI: 10.1002/mabi.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Indexed: 12/17/2023]
Abstract
The use of PEG-based hydrogels as cell culture matrix to mimic the natural extracellular matrix (ECM) has been realized using a range of well-defined, tunable, and dynamic scaffolds, although they require cell adhesion ligands such as RGDS-peptide (Arg-Gly-Asp-Ser) to promote cell adhesion. Herein the synthesis of ionic and degradable hydrogels is demonstrated for cell culture by crosslinking [PEG-SH]4 with the zwitterionic crosslinker N,N-bis(acryloxyethyl)-N-methyl-N-(3-sulfopropyl) ammonium betaine (BMSAB) and the cationic crosslinker N,N-bis(acryloxyethyl)-N,N-dimethyl-1-ammonium iodide (BDMAI). Depending on the amount of ionic crosslinker used in gel formation, the hydrogels show tunable gelation time and stiffness. At the same time, the ionic groups act as catalysts for hydrolytic degradation, thereby allowing to define a stability window. The latter could be tailored in a straightforward manner by introducing the non-degradable crosslinker tri(ethylene glycol) divinyl ether. In addition, both ionic crosslinkers favor cell attachment in comparison to the pristine PEG hydrogels. The degradation is examined by swelling behavior, rheology, and fluorescence correlation spectroscopy indicating degradation kinetics depending on diffusion of incorporated fluorescent molecules.
Collapse
Affiliation(s)
- Kathrin Kowalczuk
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754, Jena, Germany
| | - Anindita Dasgupta
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Francisco Páez Larios
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Hans F Ulrich
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Valentin Wegner
- Institute of Biochemistry II, Jena University Hospital, Am Nonnenplan 2-4, 07743, Jena, Germany
| | - Johannes C Brendel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Christian Eggeling
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754, Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Alexander S Mosig
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754, Jena, Germany
- Institute of Biochemistry II, Jena University Hospital, Am Nonnenplan 2-4, 07743, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, D-07754, Jena, Germany
| |
Collapse
|
11
|
Hu R, Cao Y, Wang Y, Zhao T, Yang K, Fan M, Guan M, Hou Y, Ying J, Ma X, Deng N, Sun X, Zhang Y, Zhang X. TMEM120B strengthens breast cancer cell stemness and accelerates chemotherapy resistance via β1-integrin/FAK-TAZ-mTOR signaling axis by binding to MYH9. Breast Cancer Res 2024; 26:48. [PMID: 38504374 PMCID: PMC10949598 DOI: 10.1186/s13058-024-01802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the β1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.
Collapse
Affiliation(s)
- Ran Hu
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Tingting Zhao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Mingwei Fan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Mengyao Guan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Yuekang Hou
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jiao Ying
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Xiaowen Ma
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Ning Deng
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
12
|
Meizlish ML, Kimura Y, Pope SD, Matta R, Kim C, Philip NH, Meyaard L, Gonzalez A, Medzhitov R. Mechanosensing regulates tissue repair program in macrophages. SCIENCE ADVANCES 2024; 10:eadk6906. [PMID: 38478620 PMCID: PMC10936955 DOI: 10.1126/sciadv.adk6906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024]
Abstract
Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.
Collapse
Affiliation(s)
- Matthew L. Meizlish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yoshitaka Kimura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Scott D. Pope
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Naomi H. Philip
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Wu Y, Song P, Wang M, Liu H, Jing Y, Su J. Extracellular derivatives for bone metabolism. J Adv Res 2024:S2090-1232(24)00024-9. [PMID: 38218580 DOI: 10.1016/j.jare.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Bone metabolism can maintain the normal homeostasis and function of bone tissue. Once the bone metabolism balance is broken, it will cause osteoporosis, osteoarthritis, bone defects, bone tumors, or other bone diseases. However, such orthopedic diseases still have many limitations in clinical treatment, such as drug restrictions, drug tolerance, drug side effects, and implant rejection. AIM OF REVIEW In complex bone therapy and bone regeneration, extracellular derivatives have become a promising research focus to solve the problems of bone metabolic diseases. These derivatives, which include components such as extracellular matrix, growth factors, and extracellular vesicles, have significant therapeutic potential. It has the advantages of good biocompatibility, low immune response, and dynamic demand for bone tissue. The purpose of this review is to provide a comprehensive perspective on extracellular derivatives for bone metabolism and elucidate the intrinsic properties and versatility of extracellular derivatives. Further discussion of them as innovative advanced orthopedic materials for improving the effectiveness of bone therapy and regeneration processes. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we first listed the types and functions of three extracellular derivatives. Then, we discussed the effects of extracellular derivatives of different cell sources on bone metabolism. Subsequently, we collected applications of extracellular derivatives in the treatment of bone metabolic diseases and summarized the advantages and challenges of extracellular derivatives in clinical applications. Finally, we prospected the extracellular derivatives in novel orthopedic materials and clinical applications. We hope that the comprehensive understanding of extracellular derivatives in bone metabolism will provide new solutions to bone diseases.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
14
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
15
|
Bharadwaj A, Sharma J, Singh J, Kumari M, Dargar T, Kalita B, Mathew SJ. Musculoskeletal defects associated with myosin heavy chain-embryonic loss of function are mediated by the YAP signaling pathway. EMBO Mol Med 2023; 15:e17187. [PMID: 37492882 PMCID: PMC10493586 DOI: 10.15252/emmm.202217187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Mutations in MYH3, the gene encoding the developmental myosin heavy chain-embryonic (MyHC-embryonic) skeletal muscle-specific contractile protein, cause several congenital contracture syndromes. Among these, recessive loss-of-function MYH3 mutations lead to spondylocarpotarsal synostosis (SCTS), characterized by vertebral fusions and scoliosis. We find that Myh3 germline knockout adult mice display SCTS phenotypes such as scoliosis and vertebral fusion, in addition to reduced body weight, muscle weight, myofiber size, and grip strength. Myh3 knockout mice also exhibit changes in muscle fiber type, altered satellite cell numbers and increased muscle fibrosis. A mass spectrometric analysis of embryonic skeletal muscle from Myh3 knockouts identified integrin signaling and cytoskeletal regulation as the most affected pathways. These pathways are closely connected to the mechanosensing Yes-associated protein (YAP) transcriptional regulator, which we found to be significantly activated in the skeletal muscle of Myh3 knockout mice. To test whether increased YAP signaling might underlie the musculoskeletal defects in Myh3 knockout mice, we treated these mice with CA3, a small molecule inhibitor of YAP signaling. This led to increased muscle fiber size, rescue of most muscle fiber type alterations, normalization of the satellite cell marker Pax7 levels, increased grip strength, reduced fibrosis, and decline in scoliosis in Myh3 knockout mice. Thus, increased YAP activation underlies the musculoskeletal defects seen in Myh3 knockout mice, indicating its significance as a key pathway to target in SCTS and other MYH3-related congenital syndromes.
Collapse
Affiliation(s)
- Anushree Bharadwaj
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jaydeep Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jagriti Singh
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Mahima Kumari
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Tanushri Dargar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Faculte de MedicineInstitut NeuroMyoGeneLyonFrance
| | - Bhargab Kalita
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Department of Pathology and Perlmutter Cancer CenterNew York University School of MedicineNew YorkNYUSA
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
16
|
Goldshmid R, Simaan-Yameen H, Ifergan L, Loebel C, Burdick JA, Seliktar D. Modulus-dependent effects on neurogenic, myogenic, and chondrogenic differentiation of human mesenchymal stem cells in three-dimensional hydrogel cultures. J Biomed Mater Res A 2023; 111:1441-1458. [PMID: 37066837 DOI: 10.1002/jbm.a.37545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/18/2023]
Abstract
Human mesenchymal stromal cells (hMSCs) are of significant interest as a renewable source of therapeutically useful cells. In tissue engineering, hMSCs are implanted within a scaffold to provide enhanced capacity for tissue repair. The present study evaluates how mechanical properties of that scaffold can alter the phenotype and genotype of the cells, with the aim of augmenting hMSC differentiation along the myogenic, neurogenic or chondrogenic linages. The hMSCs were grown three-dimensionally (3D) in a hydrogel comprised of poly(ethylene glycol) (PEG)-conjugated to fibrinogen. The hydrogel's shear storage modulus (G'), which was controlled by increasing the amount of PEG-diacrylate cross-linker in the matrix, was varied in the range of 100-2000 Pascal (Pa). The differentiation into each lineage was initiated by a defined culture medium, and the hMSCs grown in the different modulus hydrogels were characterized using gene and protein expression. Materials having lower storage moduli (G' = 100 Pa) exhibited more hMSCs differentiating to neurogenic lineages. Myogenesis was favored in materials having intermediate modulus values (G' = 500 Pa), whereas chondrogenesis was favored in materials with a higher modulus (G' = 1000 Pa). Enhancing the differentiation pathway of hMSCs in 3D hydrogel scaffolds using simple modifications to mechanical properties represents an important achievement toward the effective application of these cells in tissue engineering.
Collapse
Affiliation(s)
- Revital Goldshmid
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Haneen Simaan-Yameen
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liaura Ifergan
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Claudia Loebel
- Materials Science & Engineering Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Dror Seliktar
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
18
|
Zhu M, Xu M, Zhang J, Zheng C. The role of Hippo pathway in ovarian development. Front Physiol 2023; 14:1198873. [PMID: 37334049 PMCID: PMC10275494 DOI: 10.3389/fphys.2023.1198873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The follicle is the functional unit of the ovary, whereby ovarian development is largely dependent on the development of the follicles themselves. The activation, growth, and progression of follicles are modulated by a diverse range of factors, including reproductive endocrine system and multiple signaling pathways. The Hippo pathway exhibits a high degree of evolutionary conservation between both Drosophila and mammalian systems, and is recognized for its pivotal role in regulating cellular proliferation, control of organ size, and embryonic development. During the process of follicle development, the components of the Hippo pathway show temporal and spatial variations. Recent clinical studies have shown that ovarian fragmentation can activate follicles. The mechanism is that the mechanical signal of cutting triggers actin polymerization. This process leads to the disruption of the Hippo pathway and subsequently induces the upregulation of downstream CCN and apoptosis inhibitors, thereby promoting follicle development. Thus, the Hippo pathway plays a crucial role in both the activation and development of follicles. In this article, we focused on the development and atresia of follicles and the function of Hippo pathway in these processes. Additionally, the physiological effects of Hippo pathway in follicle activation are also explored.
Collapse
|
19
|
Jian Z, Li Y, Zhang C, Zhong W, Ai D, He Y, Song J. Low-Intensity Pulsed Ultrasound Attenuates Periodontal Ligament Cells Apoptosis by Activating Yes-Associated Protein-Regulated Autophagy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1227-1237. [PMID: 36878833 DOI: 10.1016/j.ultrasmedbio.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The goal of the work described here was to determine if low-intensity pulsed ultrasound (LIPUS) has an anti-inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in periodontal ligament cells (PDLCs). The mechanism underlying this effect remains to be explored and is likely related to PDLC apoptosis regulated by Yes-associated protein (YAP) and autophagy. METHODS To verify this hypothesis, we used a rat model of periodontitis and primary human PDLCs. We examined alveolar bone resorption in rats and apoptosis, autophagy and YAP activity in LPS-treated PDLCs with and without application of LIPUS by cellular immunofluorescence, transmission electron microscopy and Western blotting. Then, siRNA transfection was used to decrease YAP expression to confirm the regulatory role of YAP in the anti-apoptotic effect of LIPUS on PDLCs. DISCUSSION We found that LIPUS attenuated alveolar bone resorption in rats and this was accompanied by YAP activation. LIPUS inhibited hPDLC apoptosis by YAP activation, and promoted autophagic degradation to help autophagy completion. These effects were reversed after YAP expression was blocked. CONCLUSION LIPUS attenuates PDLC apoptosis by activating Yes-associated protein-regulated autophagy.
Collapse
Affiliation(s)
- Zixiang Jian
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Li
- NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Peking, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao He
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
20
|
Zhang X, Cao D, Xu L, Xu Y, Gao Z, Pan Y, Jiang M, Wei Y, Wang L, Liao Y, Wang Q, Yang L, Xu X, Gao Y, Gao S, Wang J, Yue R. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell 2023; 30:378-395.e8. [PMID: 37028404 DOI: 10.1016/j.stem.2023.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Abstract
Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Cao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liting Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhua Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zehua Gao
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanzhong Pan
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Jiang
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yue Liao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaocui Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
21
|
Zhu L, Tang Y, Li XY, Kerk SA, Lyssiotis CA, Sun X, Wang Z, Cho JS, Ma J, Weiss SJ. Proteolytic regulation of a galectin-3/Lrp1 axis controls osteoclast-mediated bone resorption. J Cell Biol 2023; 222:e202206121. [PMID: 36880731 PMCID: PMC9998966 DOI: 10.1083/jcb.202206121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
Bone-resorbing osteoclasts mobilize proteolytic enzymes belonging to the matrix metalloproteinase (MMP) family to directly degrade type I collagen, the dominant extracellular matrix component of skeletal tissues. While searching for additional MMP substrates critical to bone resorption, Mmp9/Mmp14 double-knockout (DKO) osteoclasts-as well as MMP-inhibited human osteoclasts-unexpectedly display major changes in transcriptional programs in tandem with compromised RhoA activation, sealing zone formation and bone resorption. Further study revealed that osteoclast function is dependent on the ability of Mmp9 and Mmp14 to cooperatively proteolyze the β-galactoside-binding lectin, galectin-3, on the cell surface. Mass spectrometry identified the galectin-3 receptor as low-density lipoprotein-related protein-1 (Lrp1), whose targeting in DKO osteoclasts fully rescues RhoA activation, sealing zone formation and bone resorption. Together, these findings identify a previously unrecognized galectin-3/Lrp1 axis whose proteolytic regulation controls both the transcriptional programs and the intracellular signaling cascades critical to mouse as well as human osteoclast function.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Samuel A. Kerk
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Jun Ma
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Goh D, Yang Y, Lee EH, Hui JHP, Yang Z. Managing the Heterogeneity of Mesenchymal Stem Cells for Cartilage Regenerative Therapy: A Review. Bioengineering (Basel) 2023; 10:bioengineering10030355. [PMID: 36978745 PMCID: PMC10045936 DOI: 10.3390/bioengineering10030355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Articular cartilage defects commonly result from trauma and are associated with significant morbidity. Since cartilage is an avascular, aneural, and alymphatic tissue with a poor intrinsic healing ability, the regeneration of functional hyaline cartilage remains a difficult clinical problem. Mesenchymal stem cells (MSCs) are multipotent cells with multilineage differentiation potential, including the ability to differentiate into chondrocytes. Due to their availability and ease of ex vivo expansion, clinicians are increasingly applying MSCs in the treatment of cartilage lesions. However, despite encouraging pre-clinical and clinical data, inconsistencies in MSC proliferative and chondrogenic potential depending on donor, tissue source, cell subset, culture conditions, and handling techniques remain a key barrier to widespread clinical application of MSC therapy in cartilage regeneration. In this review, we highlight the strategies to manage the heterogeneity of MSCs ex vivo for more effective cartilage repair, including reducing the MSC culture expansion period, and selecting MSCs with higher chondrogenic potential through specific genetic markers, surface markers, and biophysical attributes. The accomplishment of a less heterogeneous population of culture-expanded MSCs may improve the scalability, reproducibility, and standardisation of MSC therapy for clinical application in cartilage regeneration.
Collapse
Affiliation(s)
- Doreen Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Yanmeng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Correspondence: ; Tel.: +65-6516-5398
| |
Collapse
|
23
|
Di X, Xiang L, Jian Z. YAP-mediated mechanotransduction in urinary bladder remodeling: Based on RNA-seq and CUT&Tag. Front Genet 2023; 14:1106927. [PMID: 36741311 PMCID: PMC9895788 DOI: 10.3389/fgene.2023.1106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Yes-associated protein (YAP) is an important transcriptional coactivator binding to transcriptional factors that engage in many downstream gene transcription. Partial bladder outlet obstruction (pBOO) causes a massive burden to patients and finally leads to bladder fibrosis. Several cell types engage in the pBOO pathological process, including urothelial cells, smooth muscle cells, and fibroblasts. To clarify the function of YAP in bladder fibrosis, we performed the RNA-seq and CUT&Tag of the bladder smooth muscle cell to analyze the YAP ablation of human bladder smooth muscle cells (hBdSMCs) and immunoprecipitation of YAP. 141 differentially expressed genes (DEGs) were identified through RNA-seq between YAP-knockdown and nature control. After matching with the results of CUT&Tag, 36 genes were regulated directly by YAP. Then we identified the hub genes in the DEGs, including CDCA5, CENPA, DTL, NCAPH, and NEIL3, that contribute to cell proliferation. Thus, our study provides a regulatory network of YAP in smooth muscle proliferation. The possible effects of YAP on hBdSMC might be a vital target for pBOO-associated bladder fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Zhongyu Jian,
| |
Collapse
|
24
|
Burns JS, Kassem M. Identifying Biomarkers for Osteogenic Potency Assay Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:39-58. [PMID: 37258783 DOI: 10.1007/978-3-031-30040-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone. However, donor heterogeneity and loss of osteogenic differentiation capacity during extended cell culture have made the discovery of reliable potency assay biomarkers difficult. Nonetheless, functional osteoblast models derived from telomerised human bone marrow stromal cells have allowed extensive comparative analysis of gene expression, microRNA, morphological phenotypes and secreted proteins. This chapter highlights numerous insights into the molecular mechanisms underpinning osteogenic differentiation of multipotent stromal cells and bone formation, discussing aspects involved in the choice of useful biomarkers for functional attributes that can be quantitively measured in osteogenic potency assays.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - Moustapha Kassem
- University Hospital of Odense, University of Southern Denmark, Odense, Denmark
- Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Pagani CA, Bancroft AC, Tower RJ, Livingston N, Sun Y, Hong JY, Kent RN, Strong AL, Nunez JH, Medrano JMR, Patel N, Nanes BA, Dean KM, Li Z, Ge C, Baker BM, James AW, Weiss SJ, Franceschi RT, Levi B. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. SCIENCE ADVANCES 2022; 8:eabq6152. [PMID: 36542719 PMCID: PMC9770942 DOI: 10.1126/sciadv.abq6152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.
Collapse
Affiliation(s)
- Chase A. Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Alec C. Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert J. Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jonathan Y. Hong
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert N. Kent
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy L. Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Johanna H. Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jessica Marie R. Medrano
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A. Nanes
- Department of Dermatology, University of Texas Southwestern, Dallas, TX, USA
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
| | - Kevin M. Dean
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
- Cecil H. and The Ida Green Center for Systems Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chunxi Ge
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M. Baker
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J. Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
26
|
Brookes MJ, Roundhill EA, Jeys L, Parry M, Burchill SA, Rankin KS. Membrane-type 1 matrix metalloproteinase as predictor of survival and candidate therapeutic target in Ewing sarcoma. Pediatr Blood Cancer 2022; 69:e29959. [PMID: 36106829 DOI: 10.1002/pbc.29959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ewing sarcoma (ES) is the second most common primary bone malignancy, with an urgent need for new treatments. ES is associated with high rates of progression and relapse, driven by drug-resistant cells capable of migration, self-renewal and single-cell tumorigenesis, termed cancer stem-like cells (CSCs). Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-bound proteolytic enzyme, which, via direct and indirect mechanisms, digests four of the main types of collagen. This can be hijacked in malignancy for invasion and metastasis, with high expression predicting decreased survival in multiple cancers. In this study, we have examined the hypothesis that MT1-MMP is expressed by ES cells and explored the relationship between expression and outcomes. PROCEDURE MT1-MMP expression in ES established cell lines, primary patient-derived cultures and daughter ES-CSCs was characterised by RNA sequencing, Western blotting, immunocytochemistry and flow cytometry. Immunohistochemistry was used to detect MT1-MMP in tumour biopsies, and the relationship between expression, event-free and overall survival examined. RESULTS MT1-MMP was detected at both RNA and protein levels in five of six established cell lines, all primary cultures (n = 25) and all daughter ES-CSCs (n = 7). Immunohistochemistry of treatment-naïve biopsy tissue demonstrated that high MT1-MMP expression predicted decreased event-free and overall survival (p = .017 and .036, respectively; n = 47); this was not significant in multivariate analysis. CONCLUSIONS MT1-MMP is expressed by ES cells, including ES-CSCs, making it a candidate therapeutic target. The level of MT1-MMP expression at diagnosis may be considered as a prognostic biomarker if validated by retrospective analysis of a larger cohort of clinical trial samples.
Collapse
Affiliation(s)
- Marcus J Brookes
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Elizabeth A Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Northfield, Birmingham, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Northfield, Birmingham, UK
| | - Susan A Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,North of England Bone and Soft Tissue Tumour Service, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Chen SH, Kao HK, Wun JR, Chou PY, Chen ZY, Chen SH, Hsieh ST, Fang HW, Lin FH. Thermosensitive hydrogel carrying extracellular vesicles from adipose-derived stem cells promotes peripheral nerve regeneration after microsurgical repair. APL Bioeng 2022; 6:046103. [PMID: 36345317 PMCID: PMC9637024 DOI: 10.1063/5.0118862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Peripheral nerve injuries are commonly occurring traumas of the extremities; functional recovery is hindered by slow nerve regeneration (<1 mm/day) following microsurgical repair and subsequent muscle atrophy. Functional recovery after peripheral nerve repair is highly dependent on local Schwann cell activity and axon regeneration speed. Herein, to promote nerve regeneration, paracrine signals of adipose-derived stem cells were applied in the form of extracellular vesicles (EVs) loaded in a thermosensitive hydrogel (PALDE) that could solidify rapidly and sustain high EV concentration around a repaired nerve during surgery. Cell experiments revealed that PALDE hydrogel markedly promotes Schwann-cell migration and proliferation and axon outgrowth. In a rat sciatic nerve repair model, the PALDE hydrogel increased repaired-nerve conduction efficacy; contraction force of leg muscles innervated by the repaired nerve also recovered. Electromicroscopic examination of downstream nerves indicated that fascicle diameter and myeline thickness in the PALDE group (1.91 ± 0.61 and 1.06 ± 0.40 μm, respectively) were significantly higher than those in PALD and control groups. Thus, this EV-loaded thermosensitive hydrogel is a potential cell-free therapeutic modality to improve peripheral-nerve regeneration, offering sustained and focused EV release around the nerve-injury site to overcome rapid clearance and maintain EV bioactivity in vivo.
Collapse
Affiliation(s)
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Jing-Ru Wun
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | | | | | | | - Hsu-Wei Fang
- Authors to whom correspondence should be addressed: and
| | - Feng-Huei Lin
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
28
|
Kümper M, Zamek J, Steinkamp J, Pach E, Mauch C, Zigrino P. Role of MMP3 and fibroblast-MMP14 in skin homeostasis and repair. Eur J Cell Biol 2022; 101:151276. [PMID: 36162272 DOI: 10.1016/j.ejcb.2022.151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Early lethality of mice with complete deletion of the matrix metalloproteinase MMP14 emphasized the proteases' pleiotropic functions. MMP14 deletion in adult dermal fibroblasts (MMP14Sf-/-) caused collagen type I accumulation and upregulation of MMP3 expression. To identify the compensatory role of MMP3, mice were generated with MMP3 deletion in addition to MMP14 loss in fibroblasts. These double deficient mice displayed a fibrotic phenotype in skin and tendons as detected in MMP14Sf-/- mice, but no additional obvious defects were detected. However, challenging the mice with full thickness excision wounds resulted in delayed closure of early wounds in the double deficient mice compared to wildtype and MMP14 single knockout controls. Over time wounds closed and epidermal integrity was restored. Interestingly, on day seven, post-wounding myofibroblast density was lower in the wounds of all knockout than in controls, they were higher on day 14. The delayed resolution of myofibroblasts from the granulation tissue is paralleled by reduced apoptosis of these cells, although proliferation of myofibroblasts is induced in the double deficient mice. Further analysis showed comparable TGFβ1 and TGFβR1 expression among all genotypes. In addition, in vitro, fibroblasts lacking MMP3 and MMP14 retained their ability to differentiate into myofibroblasts in response to TGFβ1 treatment and mechanical stress. However, in vivo, p-Smad2 was reduced in myofibroblasts at day 5 post-wounding, in double, but most significant in single knockout, indicating their involvement in TGFβ1 activation. Thus, although MMP3 does not compensate for the lack of fibroblast-MMP14 in tissue homeostasis, simultaneous deletion of both proteases in fibroblasts delays wound closure during skin repair. Notably, single and double deficiency of these proteases modulates myofibroblast formation and resolution in wounds.
Collapse
Affiliation(s)
- Maike Kümper
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Jan Zamek
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Joy Steinkamp
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Elke Pach
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Cornelia Mauch
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
29
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
30
|
Tsai CR, Martin JF. Hippo signaling in cardiac fibroblasts during development, tissue repair, and fibrosis. Curr Top Dev Biol 2022; 149:91-121. [PMID: 35606063 PMCID: PMC10898347 DOI: 10.1016/bs.ctdb.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionarily conserved Hippo signaling pathway plays key roles in regulating the balance between cell proliferation and apoptosis, cell differentiation, organ size control, tissue repair, and regeneration. Recently, the Hippo pathway has been shown to regulate heart fibrosis, defined as excess extracellular matrix (ECM) deposition and increased tissue stiffness. Cardiac fibroblasts (CFs) are the primary cell type that produces, degrades, and remodels the ECM during homeostasis, aging, inflammation, and tissue repair and regeneration. Here, we review the available evidence from the current literature regarding how the Hippo pathway regulates the formation and function of CFs during heart development and tissue repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, United States.
| |
Collapse
|
31
|
Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars) 2022; 17:492-507. [PMID: 35350840 PMCID: PMC8919829 DOI: 10.1515/med-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14) is associated with the development of many cancers. MT1-MMP may promote the entry of yes-associated protein1 (YAP1) into the nucleus by regulating the regulation of β1-integrin. The purpose of this study was to investigate the effects of MT1-MMP, β1-integrin and YAP1 on the prognosis of gliomas. The expression of proteins was detected by bioinformatics and immunohistochemistry. The relationship between three proteins and clinicopathological parameters was analyzed by the χ2 test. Survival analysis was used to investigate the effects of three proteins on prognosis. The results showed that high expressions of MT1-MMP, β1-integrin and YAP1 were found in glioblastoma (GBM) compared with lower-grade glioma (LGG). There was a significantly positive correlation between MT1-MMP and β1-integrin (r = 0.387), MT1-MMP and YAP1 (r = 0.443), β1-integrin and YAP1 (r = 0.348). Survival analysis showed that patients with overexpression of MT1-MMP, β1-integrin and YAP1 had a worse prognosis. YAP1 expression was the independent prognostic factor for progression-free survival (PFS). There was a statistical correlation between the expression of MT1-MMP and YAP1 and isocitrate dehydrogenase 1 (IDHl) mutation. Thus, this study suggested that MT1-MMP, β1-integrin and YAP1, as tumor suppressors, are expected to be promising prognostic biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Yangyang Zhai
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
- State Key Laboratory of Etiology and Prevention of High Incidence in Central Asia , Xinjiang Medical University, 830000 , P. R. China
| | - Wei Sang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Yusheng Shen
- Department of Neurosurgery, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang 830054 , P. R. China
| | - Yanran Hu
- Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region of China , 830011 , P. R. China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| |
Collapse
|
32
|
Tang Y, Zhu L, Cho JS, Li XY, Weiss SJ. Matrix remodeling controls a nuclear lamin A/C-emerin network that directs Wnt-regulated stem cell fate. Dev Cell 2022; 57:480-495.e6. [PMID: 35150612 PMCID: PMC8891068 DOI: 10.1016/j.devcel.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Skeletal stem cells (SSCs) reside within a three-dimensional extracellular matrix (ECM) compartment and differentiate into multiple cell lineages, thereby controlling tissue maintenance and regeneration. Within this environment, SSCs can proteolytically remodel the surrounding ECM in response to growth factors that direct lineage commitment via undefined mechanisms. Here, we report that Mmp14-dependent ECM remodeling coordinates canonical Wnt signaling and guides stem cell fate by triggering an integrin-activated reorganization of the SCC cytoskeleton that controls nuclear lamin A/C levels via the linker of nucleoskeleton and cytoskeleton (LINC) complexes. In turn, SSC lamin A/C levels dictate the localization of emerin, an inner nuclear membrane protein whose ability to regulate β-catenin activity modulates Wnt signaling while directing lineage commitment in vitro and in vivo. These findings define a previously undescribed axis wherein SSCs use Mmp14-dependent ECM remodeling to control cytoskeletal and nucleoskeletal organization, thereby governing Wnt-dependent stem cell fate decisions.
Collapse
Affiliation(s)
- Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lingxin Zhu
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Corresponding Authors: Stephen J. Weiss, MD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216, Yi Tang, PhD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216
| |
Collapse
|
33
|
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in Bone and Cartilage Biology. Front Cell Dev Biol 2022; 9:788773. [PMID: 35059398 PMCID: PMC8764375 DOI: 10.3389/fcell.2021.788773] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.
Collapse
Affiliation(s)
- Mylène Zarka
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Eric Haÿ
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Martine Cohen-Solal
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
34
|
Role of Yes-associated protein (YAP) in regulation of mesenchymal stem cell tenogenic differentiation. J Mol Histol 2022; 53:273-283. [DOI: 10.1007/s10735-022-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
35
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
36
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 294] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
37
|
Liang L, Sui R, Song Y, Zhao Y. Acidic microenvironment enhances MT1-MMP-mediated cancer cell motility through integrin β1/cofilin/F-actin axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1558-1566. [PMID: 34568889 DOI: 10.1093/abbs/gmab130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor acidic microenvironment is the main feature of many solid tumors. As a part of the tumor microenvironment, it has a profound impact on the occurrence and development of tumors. However, the research on how tumor cells sense the changes of the external microenvironment and how the intracellular subcellular structures transmit the signals from extracellular to intracellular is unclear. In this study, we identify that the acidic microenvironment enhances cancer cell motility, and the expression of membrane-anchored membrane type 1-matrix metalloproteinase is also associated with cell motility, which indicates more degradation of the ECM under the acidic microenvironment. Moreover, the expression of cofilin is low in the acidic microenvironment, and the F-actin filaments are distributed more along the cells. The cytoskeletal F-actin changes are consistent with the potential of a high-invasive phenotype. Further study reveals the upstream control of the signal transductions from extracellular to intracellular, that is, the integrin β1 functions to trigger the biological responses under the acidic microenvironment. Our results demonstrate that the acidic microenvironment enhances cancer cell motility through the integrin β1/cofilin/F-actin signal axis. This study clearly shows the scheme of the signal transmissions from extracellular to intracellular and further reveals the cytoskeletal roles for the contributions of cancer cell motility under acidic microenvironment, which provides new targets for cancer intervention from the biochemical and biophysical perspectives.
Collapse
Affiliation(s)
- Lubiao Liang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Ran Sui
- College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yajin Zhao
- School of Stomatology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
38
|
Niari SA, Rahbarghazi R, Geranmayeh MH, Karimipour M. Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science. J Biomed Mater Res A 2021; 110:725-737. [PMID: 34751503 DOI: 10.1002/jbm.a.37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
40
|
Isaev K, Jiang L, Wu S, Lee CA, Watters V, Fort V, Tsai R, Coutinho FJ, Hussein SMI, Zhang J, Wu J, Dirks PB, Schramek D, Reimand J. Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas. Cell Rep 2021; 37:109873. [PMID: 34686327 DOI: 10.1016/j.celrep.2021.109873] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/21/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as functional units in cancer and powerful biomarkers; however, most remain uncharacterized. Here, we analyze 5,592 prognostic lncRNAs in 9,446 cancers of 30 types using machine learning. We identify 166 lncRNAs whose expression correlates with survival and improves the accuracy of common clinical variables, molecular features, and cancer subtypes. Prognostic lncRNAs are often characterized by switch-like expression patterns. In low-grade gliomas, HOXA10-AS activation is a robust marker of poor prognosis that complements IDH1/2 mutations, as validated in another retrospective cohort, and correlates with developmental pathways in tumor transcriptomes. Loss- and gain-of-function studies in patient-derived glioma cells, organoids, and xenograft models identify HOXA10-AS as a potent onco-lncRNA that regulates cell proliferation, contact inhibition, invasion, Hippo signaling, and mitotic and neuro-developmental pathways. Our study underscores the pan-cancer potential of the non-coding transcriptome for identifying biomarkers and regulators of cancer progression.
Collapse
Affiliation(s)
- Keren Isaev
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lingyan Jiang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Christian A Lee
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Valérie Watters
- Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Victoire Fort
- Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Ricky Tsai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Samer M I Hussein
- Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Peter B Dirks
- SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Engel-Pizcueta C, Pujades C. Interplay Between Notch and YAP/TAZ Pathways in the Regulation of Cell Fate During Embryo Development. Front Cell Dev Biol 2021; 9:711531. [PMID: 34490262 PMCID: PMC8417249 DOI: 10.3389/fcell.2021.711531] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cells in growing tissues receive both biochemical and physical cues from their microenvironment. Growing evidence has shown that mechanical signals are fundamental regulators of cell behavior. However, how physical properties of the microenvironment are transduced into critical cell behaviors, such as proliferation, progenitor maintenance, or differentiation during development, is still poorly understood. The transcriptional co-activators YAP/TAZ shuttle between the cytoplasm and the nucleus in response to multiple inputs and have emerged as important regulators of tissue growth and regeneration. YAP/TAZ sense and transduce physical cues, such as those from the extracellular matrix or the actomyosin cytoskeleton, to regulate gene expression, thus allowing them to function as gatekeepers of progenitor behavior in several developmental contexts. The Notch pathway is a key signaling pathway that controls binary cell fate decisions through cell-cell communication in a context-dependent manner. Recent reports now suggest that the crosstalk between these two pathways is critical for maintaining the balance between progenitor maintenance and cell differentiation in different tissues. How this crosstalk integrates with morphogenesis and changes in tissue architecture during development is still an open question. Here, we discuss how progenitor cell proliferation, specification, and differentiation are coordinated with morphogenesis to construct a functional organ. We will pay special attention to the interplay between YAP/TAZ and Notch signaling pathways in determining cell fate decisions and discuss whether this represents a general mechanism of regulating cell fate during development. We will focus on research carried out in vertebrate embryos that demonstrate the important roles of mechanical cues in stem cell biology and discuss future challenges.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
42
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
43
|
Zhu L, Tang Y, Li XY, Keller ET, Yang J, Cho JS, Feinberg TY, Weiss SJ. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med 2021; 12:12/529/eaaw6143. [PMID: 32024800 DOI: 10.1126/scitranslmed.aaw6143] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. .,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan T Keller
- Department of Pathology, Department of Urology and the Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamar Y Feinberg
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Schurman CA, Verbruggen SW, Alliston T. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling. Proc Natl Acad Sci U S A 2021; 118:e2023999118. [PMID: 34161267 PMCID: PMC8237574 DOI: 10.1073/pnas.2023999118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal fragility in the elderly does not simply result from a loss of bone mass. However, the mechanisms underlying the concurrent decline in bone mass, quality, and mechanosensitivity with age remain unclear. The important role of osteocytes in these processes and the age-related degeneration of the intricate lacunocanalicular network (LCN) in which osteocytes reside point to a primary role for osteocytes in bone aging. Since LCN complexity severely limits experimental dissection of these mechanisms in vivo, we used two in silico approaches to test the hypothesis that LCN degeneration, due to aging or an osteocyte-intrinsic defect in transforming growth factor beta (TGF-β) signaling (TβRIIocy-/-), is sufficient to compromise essential osteocyte responsibilities of mass transport and exposure to mechanical stimuli. Using reconstructed confocal images of bone with fluorescently labeled osteocytes, we found that osteocytes from aged and TβRIIocy-/- mice had 33 to 45% fewer, and more tortuous, canaliculi. Connectomic network analysis revealed that diminished canalicular density is sufficient to impair diffusion even with intact osteocyte numbers and overall LCN architecture. Computational fluid dynamics predicts that the corresponding drop in shear stress experienced by aged or TβRIIocy-/- osteocytes is highly sensitive to canalicular surface area but not tortuosity. Simulated expansion of the osteocyte pericellular space to mimic osteocyte perilacunar/canalicular remodeling restored predicted shear stress for aged osteocytes to young levels. Overall, these models show how loss of LCN volume through LCN pruning may lead to impaired fluid dynamics and osteocyte exposure to mechanostimulation. Furthermore, osteocytes emerge as targets of age-related therapeutic efforts to restore bone health and function.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| | - Stefaan W Verbruggen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, E1 4NS
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- The Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143;
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| |
Collapse
|
45
|
Pocaterra A, Scattolin G, Romani P, Ament C, Ribback S, Chen X, Evert M, Calvisi DF, Dupont S. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol 2021; 4:763. [PMID: 34155338 PMCID: PMC8217270 DOI: 10.1038/s42003-021-02286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces control cell behavior, including cancer progression. Cells sense forces through actomyosin to activate YAP. However, the regulators of F-actin dynamics playing relevant roles during mechanostransduction in vitro and in vivo remain poorly characterized. Here we identify the Fascin1 F-actin bundling protein as a factor that sustains YAP activation in response to ECM mechanical cues. This is conserved in the mouse liver, where Fascin1 regulates YAP-dependent phenotypes, and in human cholangiocarcinoma cell lines. Moreover, this is relevant for liver tumorigenesis, because Fascin1 is required in the AKT/NICD cholangiocarcinogenesis model and it is sufficient, together with AKT, to induce cholangiocellular lesions in mice, recapitulating genetic YAP requirements. In support of these findings, Fascin1 expression in human intrahepatic cholangiocarcinomas strongly correlates with poor patient prognosis. We propose that Fascin1 represents a pro-oncogenic mechanism that can be exploited during intrahepatic cholangiocarcinoma development to overcome a mechanical tumor-suppressive environment.
Collapse
Affiliation(s)
- Arianna Pocaterra
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Gloria Scattolin
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Matthias Evert
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
46
|
Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021; 10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Designing simple biomaterials to replicate the biochemical and mechanical properties of tissues is an ongoing challenge in tissue engineering. For several decades, new biomaterials have been engineered using cytocompatible chemical reactions and spontaneous ligations via click chemistries to generate scaffolds and water swollen polymer networks, known as hydrogels, with tunable properties. However, most of these materials are static in nature, providing only macroscopic tunability of the scaffold mechanics, and do not reflect the dynamic environment of natural extracellular microenvironment. For more complex applications such as organoids or co-culture systems, there remain opportunities to investigate cells that locally remodel and change the physicochemical properties within the matrices. In this review, advanced biomaterials where dynamic covalent chemistry is used to produce stable 3D cell culture models and high-resolution constructs for both in vitro and in vivo applications, are discussed. The implications of dynamic covalent chemistry on viscoelastic properties of in vitro models are summarized, case studies in 3D cell culture are critically analyzed, and opportunities to further improve the performance of biomaterials for 3D tissue engineering are discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Alexander E. G. Baker
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| |
Collapse
|
47
|
Huang X, Qu R, Peng Y, Yang Y, Fan T, Sun B, Khan AU, Wu S, Wei K, Xu C, Dai J, Ouyang J, Zhong S. Mechanical Sensing Element PDLIM5 Promotes Osteogenesis of Human Fibroblasts by Affecting the Activity of Microfilaments. Biomolecules 2021; 11:biom11050759. [PMID: 34069539 PMCID: PMC8161207 DOI: 10.3390/biom11050759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chujiang Xu
- Department of Orthopedics, TCM-Integrated Hospital, Southern Medical University, Guangzhou 510000, China;
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| |
Collapse
|
48
|
Li Y, Wang J, Zhong W. Regulation and mechanism of YAP/TAZ in the mechanical microenvironment of stem cells (Review). Mol Med Rep 2021; 24:506. [PMID: 33982785 PMCID: PMC8134874 DOI: 10.3892/mmr.2021.12145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Stem cells receive cues from their physical and mechanical microenvironment via mechanosensing and mechanotransduction. These cues affect proliferation, self‑renewal and differentiation into specific cell fates. A growing body of evidence suggests that yes‑associated protein (YAP) and transcriptional coactivator with PDZ‑binding motif (TAZ) mechanotransduction is key for driving stem cell behavior and regeneration via the Hippo and other signaling pathways. YAP/TAZ receive a range of physical cues, including extracellular matrix stiffness, cell geometry, flow shear stress and mechanical forces in the cytoskeleton, and translate them into cell‑specific transcriptional programs. However, the mechanism by which mechanical signals regulate YAP/TAZ activity in stem cells is not fully understand. The present review summarizes the current knowledge of the mechanisms involved in YAP/TAZ regulation on the physical and mechanical microenvironment, as well as its potential effects on stem cell differentiation.
Collapse
Affiliation(s)
- Ying Li
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jinming Wang
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Weiliang Zhong
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
49
|
Lian M, Sun B, Han Y, Yu B, Xin W, Xu R, Ni B, Jiang W, Hao Y, Zhang X, Shen Y, Qiao Z, Dai K. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials 2021; 274:120841. [PMID: 33984633 DOI: 10.1016/j.biomaterials.2021.120841] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) secrete paracrine trophic factors that are beneficial for tissue regeneration. In this study, a sponge-like scaffold with hierarchical and interconnected pores was developed using low-temperature deposition modeling (LDM) printing. Its effects on the cellular behavior, especially on the paracrine secretion patterns of MSCs, were comprehensively investigated. We found that compared with the scaffolds printed via the fused deposition modeling (FDM) technique, the LDM-printed sponges enhanced the adhesion, retention, survival, and ingrowth of MSCs and promoted cell-material interactions. Moreover, the paracrine functions of the cultured MSCs on the LDM-printed sponges were improved, with significant secretion of upregulated immunomodulatory, angiogenic, and osteogenic factors. MSCs on the LDM-printed sponges exert beneficial paracrine effects on multiple regenerative processes, including macrophage polarization, tube formation, and osteogenesis, verifying the enhanced immunomodulatory, angiogenic, and osteogenic potential. Further protein function assays indicated that focal adhesion kinase (FAK), downstream AKT, and yes-associated-protein (YAP) signaling might participate in the required mechanotransductive pathways, through which the hierarchical porous structures stimulated the paracrine effects of MSCs. In a rat distal femoral defect model, the MSC-laden LDM-printed sponges significantly promoted vascularized bone regeneration. The results of the present study demonstrate that the hierarchical porous biomimetic sponges prepared via LDM printing have potential applications in tissue engineering based on their cell-material interaction promotion and MSC paracrine function modulation effects. Furthermore, our findings suggest that the optimization of biomaterial properties to direct the paracrine signaling of MSCs would enhance tissue regeneration.
Collapse
Affiliation(s)
- Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Binbin Sun
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Han
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bin Yu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weiwei Xin
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Ruida Xu
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yongqiang Hao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiuyin Zhang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China.
| | - Zhiguang Qiao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China.
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
50
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|