1
|
Soares JMAL, Sousa-Neto SS, Lima CRDS, Drumond VZ, de Andrade BAB, Mesquita RA, Abreu LG, de Arruda JAA, Sampaio GC. Oral and Maxillofacial Manifestations of Kallmann Syndrome: A Systematic Analysis of the Literature. SPECIAL CARE IN DENTISTRY 2025; 45:1-21. [PMID: 39817612 DOI: 10.1111/scd.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/19/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
AIMS Kallmann syndrome (KS) is a rare genetic disorder characterized by congenital hypogonadotropic hypogonadism and varied clinical features. Despite its recognition, the oral and maxillofacial manifestations remain poorly understood. This study synthesized clinical aspects and management of KS-related oral and maxillofacial alterations. METHODS Searches were conducted in the PubMed, Web of Science, Scopus, Embase, and LILACS databases, supplemented by manual scrutiny and gray literature. Case series and/or case reports were included. The Joanna Briggs Institute tool was employed for critical appraisal of the studies. RESULTS A total of 46 studies comprising 108 cases were included. The mean age of individuals was 19.8 (±12.6) years, and there was a marked predominance of males (79.3%). Cleft lip/palate (32.7%) was the predominant oral condition, followed by high-arched palate (21.7%), and dental agenesis (19.8%). Oral treatment consisted of corrective surgery of the cleft lip and/or palate (n = 9), myoplasty (n = 1), and tooth extraction/orthodontic treatment (n = 1). Hyposmia/anosmia (71.3%) was the most frequently reported manifestation. CONCLUSION Early diagnosis and interdisciplinary collaboration are essential for addressing the complex nature of KS-related oral and maxillofacial alterations and improving patient outcomes. The scarcity of data on oral treatment underscores the need for additional research and clinical attention in this field.
Collapse
Affiliation(s)
| | - Sebastião Silvério Sousa-Neto
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Cleiton Rone Dos Santos Lima
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Victor Zanetti Drumond
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Alves Mesquita
- Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerhilde Callou Sampaio
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Schei-Andersen AJ, van Oirschot B, Drissen MMCM, Schieving J, Schuurs-Hoeijmakers JHM, Vos JR, Barton CM, Hoogerbrugge N. Exploring the Prevalence of Oral Features for Early Detection of PTEN Hamartoma Tumour Syndrome. Int Dent J 2024; 74:1424-1431. [PMID: 38697906 PMCID: PMC11551572 DOI: 10.1016/j.identj.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024] Open
Abstract
AIMS Patients with PTEN hamartoma tumour syndrome (PHTS) have an increased risk of developing cancer due to a pathogenic germline variant in the PTEN tumour suppressor gene. Early recognition of PHTS facilitates initiation of cancer surveillance which is highly effective in preventing the development of advanced malignancies. PHTS is rare and due to its varied phenotype, even within families, oral abnormalities may be a valuable tool in the identification of these patients at an early stage before cancer development. MATERIALS AND METHODS Between 1997 and 2020, phenotypic characteristics were evaluated in 81 paediatric (median age: 9 years) and 86 adult (median age: 40 years) PHTS patients by one of 2 medical experts during yearly surveillance visits at a Dutch PHTS expertise centre. Oral features evaluated included gingival hypertrophy, oral papillomas, and high palate (in adults). RESULTS Within adults, gingival hypertrophy was present in 94%, oral papillomas in 88%, and a high palate in 89%. All adult patients had at least one of these oral features, and 99% showed at least 2 oral features. Oral features were less common in paediatric patients, especially under 11 years of age. Gingival hypertrophy was observed in 44% and oral papillomas in 54% of paediatric patients. CONCLUSIONS The presence of 2 or 3 oral features may indicate PHTS in adults or adolescents, especially if macrocephaly is present. Dental professionals are well-positioned to recognise these oral manifestations could be related to PHTS. They can initiate an overall clinical assessment of the patient by alerting the patient's medical practitioner of the findings and the possible need for genetic testing. This could significantly improve outcomes, including life expectancy, for patients and possibly for their relatives. CLINICAL RELEVANCE Dental professionals are ideally placed to recognise oral features and initiate early assessment of PHTS which could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Ane J Schei-Andersen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart van Oirschot
- Department of Dentistry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Meggie M C M Drissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jolanda Schieving
- Department of Paediatric Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janet R Vos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Claire M Barton
- PTEN Research Foundation, Registered office: 4th Floor, St James House, St James Square, Cheltenham, UK; Barton Oncology Ltd, Dormers, The Green, Croxley Green, Hertfordshire, UK
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Lee JM, Jung H, de Paula Machado Pasqua B, Park Y, Tang Q, Jeon S, Lee SK, Lee JW, Kwon HJE. MLL4 regulates postnatal palate growth and midpalatal suture development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603832. [PMID: 39372750 PMCID: PMC11451598 DOI: 10.1101/2024.07.16.603832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
MLL4, also known as KMT2D, is a histone methyltransferase that acts as an important epigenetic regulator in various organogenesis programs. Mutations in the MLL4 gene are the major cause of Kabuki syndrome, a human developmental disorder that involves craniofacial birth defects, including anomalies in the palate. This study aimed to investigate the role of MLL4 and the underlying mechanisms in the development and growth of the palate. We generated a novel conditional knockout (cKO) mouse model with tissue-specific deletion of Mll4 in the palatal mesenchyme. Using micro-computed tomography (CT), histological analysis, cell mechanism assays, and gene expression profiling, we examined palate development and growth in the Mll4-cKO mice. Gross craniofacial examination at adult stages revealed mild midfacial hypoplasia and midline defects of the palate in Mll4-cKO mice, including a widened midpalatal suture and disrupted midline rugae pattern. Micro-CT-based time-course skeletal analysis during postnatal palatogenesis through adulthood demonstrated a transverse growth deficit in overall palate width in Mll4-cKO mice. Whole-mount and histological staining at perinatal stages identified that the midline defects in the Mll4-cKO mice emerged as early as one day prior to birth, presenting as a widened midpalatal suture, accompanied by increased cell apoptosis in the suture mesenchyme. Genome-wide mRNA expression analysis of the midpalatal suture tissue revealed that MLL4 is essential for the timely expression of major cartilage development genes, such as Col2a1 and Acan, at birth.Immunofluorescence staining for osteochondral differentiation markers demonstrated a marked decrease in the chondrogenic marker COL2A1, while the expression of the osteogenic marker RUNX2 remained unchanged, in the Mll4-cKO midpalatal suture. Additionally, SOX9, a master regulator of chondrogenesis, exhibited a significant decrease in protein expression. Indeed, time-course histological analysis during postnatal palate growth revealed retardation in the development of the suture cartilage in Mll4-cKO mice. Taken together, our results demonstrate that MLL4 is essential for orchestrating key cellular and molecular events that ensure proper midpalatal suture development and palate growth.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Hunmin Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Bruno de Paula Machado Pasqua
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, NY 14203, U.S.A
| | - Qinghuang Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Shin Jeon
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, PA 19104, U.S.A
| | - Soo-Kyung Lee
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, PA 19104, U.S.A
| | - Jae W. Lee
- Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, PA 19104, U.S.A
| | - Hyuk-Jae Edward Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| |
Collapse
|
4
|
Kim SE, Kim HY, Wlodarczyk BJ, Finnell RH. Linkage between Fuz and Gpr161 genes regulates sonic hedgehog signaling during mouse neural tube development. Development 2024; 151:dev202705. [PMID: 39369306 PMCID: PMC11463954 DOI: 10.1242/dev.202705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored. This study identified the genetic and biochemical linkage between Fuz and Gpr161 in mouse neural tube development. Fuz was found to be genetically epistatic to Gpr161 with respect to regulation of Shh signaling in mouse neural tube development. The Fuz protein biochemically interacts with Gpr161, and Fuz regulates Gpr161-mediated ciliary localization, a process that might utilize β-arrestin 2. Our study characterizes a previously unappreciated Gpr161-Fuz axis that regulates Shh signaling during mouse neural tube development.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
| | | | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Singh S, Nampoothiri S, Narayanan DL, Chaudhry C, Salvankar S, Girisha KM. Biallelic loss of function variants in FUZ result in an orofaciodigital syndrome. Eur J Hum Genet 2024; 32:1022-1026. [PMID: 38702430 PMCID: PMC11291644 DOI: 10.1038/s41431-024-01619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Orofaciodigital syndrome is a distinctive subtype of skeletal ciliopathies. Disease-causing variants in the genes encoding the CPLANE complex result in a wide variety of skeletal dysplasia with disturbed ciliary functions. The phenotypic spectrum includes orofaciodigital syndrome and short rib polydactyly syndrome. FUZ, as a part of the CPLANE complex, is involved in intraflagellar vesicular trafficking within primary cilia. Previously, the variants, c.98_111+9del and c.851G>T in FUZ were identified in two individuals with a skeletal ciliopathy, manifesting digital anomalies (polydactyly, syndactyly), orofacial cleft, short ribs and cardiac defects. Here, we present two novel variants, c.601G>A and c.625_636del in biallelic state, in two additional subjects exhibiting phenotypic overlap with the previously reported cases. Our findings underscore the association between biallelic loss of function variants in FUZ and skeletal ciliopathy akin to orofaciodigital syndrome.
Collapse
Affiliation(s)
- Swati Singh
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
- Suma Genomics Private Limited, Manipal, India.
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| |
Collapse
|
6
|
Brooks EC, Han SJY, Bonatto Paese CL, Lewis AA, Aarnio-Peterson M, Brugmann SA. The ciliary protein C2cd3 is required for mandibular musculoskeletal tissue patterning. Differentiation 2024; 138:100782. [PMID: 38810379 PMCID: PMC11227401 DOI: 10.1016/j.diff.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.
Collapse
Affiliation(s)
- Evan C Brooks
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Simon J Y Han
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Amya A Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
Liu Z, Sa G, Zhang Z, Wu Q, Zhou J, Yang X. Regulatory role of primary cilia in oral and maxillofacial development and disease. Tissue Cell 2024; 88:102389. [PMID: 38714113 DOI: 10.1016/j.tice.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Primary cilia have versatile functions, such as receiving signals from the extracellular microenvironment, mediating signaling transduction, and transporting ciliary substances, in tissue and organ development and clinical disease pathogenesis. During early development (embryos within 10 weeks) in the oral and maxillofacial region, defects in the structure and function of primary cilia can result in severe craniofacial malformations. For example, mice with mutations in the cilia-related genes Kif3a and IFT88 exhibit midline expansion and cleft lip/palate, which occur due to abnormalities in the fusion of the single frontonasal prominence and maxillary prominences. In the subsequent development of the oral and maxillofacial region, we discussed the regulatory role of primary cilia in the development of the maxilla, mandible, Meckel cartilage, condylar cartilage, lip, tongue, and tooth, among others. Moreover, primary cilia are promising regulators in some oral and maxillofacial diseases, such as tumors and malocclusion. We also summarize the regulatory mechanisms of primary cilia in oral and maxillofacial development and related diseases, including their role in various signaling transduction pathways. For example, aplasia of submandibular glands in the Kif3a mutant mice is associated with a decrease in SHH signaling within the glands. This review summarizes the similarities and specificities of the role of primary cilia in tissue and organ development and disease progression in the oral and maxillofacial region, which is expected to contribute several ideas for the treatment of primary cilia-related diseases.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guoliang Sa
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhuoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Qingwei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jing Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuewen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
8
|
Sharma R, Kalot R, Levin Y, Babayeva S, Kachurina N, Chung CF, Liu KJ, Bouchard M, Torban E. The CPLANE protein Fuzzy regulates ciliogenesis by suppressing actin polymerization at the base of the primary cilium via p190A RhoGAP. Development 2024; 151:dev202322. [PMID: 38546045 PMCID: PMC11006408 DOI: 10.1242/dev.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.
Collapse
Affiliation(s)
- Rhythm Sharma
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Yossef Levin
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Sima Babayeva
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Nadezda Kachurina
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Chen-Feng Chung
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Institute, Department of Medicine of the McGill University,McGill University, Montreal H3A 1A3, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| |
Collapse
|
9
|
Taqi D, Nematollahi S, Lemin S, Rauch F, Hamdy R, Dahan-Oliel N. Arthrogryposis multiplex congenita: dental and maxillofacial phenotype - A scoping review. Bone 2024; 179:116955. [PMID: 37951521 DOI: 10.1016/j.bone.2023.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Arthrogryposis multiplex congenita (AMC) is a heterogeneous group of disorders associated with decreased fetal movement, with a prevalence between 1/3000 and 1/5200 live births. Typical features of AMC include multiple joint contractures present at birth, and can affect all joints of the body, from the jaw, and involving the upper limbs, lower limbs and spine. The jaws may be affected in 25 % of individuals with AMC, with limited jaw movement and mouth opening. Other oral and maxillofacial deformities may be present in AMC, including cleft palate, micrognathia, periodontitis and delayed teething. To our knowledge, oral and maxillofacial abnormalities have not been systematically assessed in individuals with AMC. Therefore, this scoping review was conducted to identify, collect, and describe a comprehensive map of the existing knowledge on dental and maxillofacial involvement in individuals with AMC. METHODOLOGY A scoping review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. The PRISMA guidelines for scoping reviews were followed and databases were searched for empirical articles in English and French published until October 2022. We searched MEDLINE, Embase, Web of Science and ERIC databases. Two authors independently reviewed the articles and extracted the data. RESULTS Of a total of 997 studies that were identified, 96 met the inclusion criteria and were subsequently included in this scoping review. These 96 studies collectively provided insights into 167 patients who exhibited some form of oral and/or maxillofacial involvement. Notably, 25 % of these patients were within the age range of 0-6 months. It is worth highlighting that only 22 out of the 96 studies (22.9 %), had the primary objective of evaluating dental and/or maxillofacial deformities. Among the patients studied, a prevalent pattern emerged, revealing that severe anomalies such as micrognathia (56 %), high-arched palate (29 %), cleft palate (40 %), limited mouth opening (31 %), and dental anomalies (28 %) were frequently observed. Importantly, many of these patients were found to have more than one of these anomalies. Even though these maxillofacial impairments are known to be associated with dental problems (e.g., cleft palate is associated with oligodontia, hypodontia, and malocclusion), their secondary effects on the dental phenotype were not reported in the studies. CONCLUSION Our findings have uncovered a notable deficiency in existing literature concerning dental and maxillofacial manifestations in AMC. This underscores the need for interdisciplinary collaboration and the undertaking of extensive prospective cohort studies focused on AMC. These studies should assess the oral and maxillofacial abnormalities that can impact daily functioning and overall quality of life.
Collapse
Affiliation(s)
- Doaa Taqi
- Faculty of Medicine and Health Sciences, School of Physical and Occupational Therapy, McGill University, Canada.
| | - Shahrzad Nematollahi
- Faculty of Medicine and Health Sciences, School of Physical and Occupational Therapy, McGill University, Canada
| | - Sarah Lemin
- Northeastern Ohio Medical University, Canada
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, QC, Canada; Department of Human Genetics, McGill University, Canada
| | - Reggie Hamdy
- Shriners Hospital for Children-Canada, Montreal, QC, Canada; Department of Human Genetics, McGill University, Canada
| | - Noemi Dahan-Oliel
- Faculty of Medicine and Health Sciences, School of Physical and Occupational Therapy, McGill University, Canada; Shriners Hospital for Children-Canada, Montreal, QC, Canada
| |
Collapse
|
10
|
Lodge EJ, Barrell WB, Liu KJ, Andoniadou CL. The Fuzzy planar cell polarity protein (FUZ), necessary for primary cilium formation, is essential for pituitary development. J Anat 2024; 244:358-367. [PMID: 37794731 PMCID: PMC10780146 DOI: 10.1111/joa.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz-/- mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz-/- homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz-/- mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz-/- mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz-/- mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.
Collapse
Affiliation(s)
- Emily J. Lodge
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - William B. Barrell
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
- Department of Medicine IIIUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| |
Collapse
|
11
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
12
|
Zhang N, Barrell WB, Liu KJ. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible. J Anat 2023; 243:90-99. [PMID: 36899483 PMCID: PMC10273353 DOI: 10.1111/joa.13858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.
Collapse
Affiliation(s)
- Nian Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
- State Key Laboratory of Oral Disease, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatogy, Sichuan UniversityChengduChina
| | - William B. Barrell
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
13
|
Willie D, Holmes G, Jabs EW, Wu M. Cleft Palate in Apert Syndrome. J Dev Biol 2022; 10:jdb10030033. [PMID: 35997397 PMCID: PMC9397066 DOI: 10.3390/jdb10030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Apert syndrome is a rare genetic disorder characterized by craniosynostosis, midface retrusion, and limb anomalies. Cleft palate occurs in a subset of Apert syndrome patients. Although the genetic causes underlying Apert syndrome have been identified, the downstream signaling pathways and cellular mechanisms responsible for cleft palate are still elusive. To find clues for the pathogenic mechanisms of palatal defects in Apert syndrome, we review the clinical characteristics of the palate in cases of Apert syndrome, the palatal phenotypes in mouse models, and the potential signaling mechanisms involved in palatal defects. In Apert syndrome patients, cleft of the soft palate is more frequent than of the hard palate. The length of the hard palate is decreased. Cleft palate is associated most commonly with the S252W variant of FGFR2. In addition to cleft palate, high-arched palate, lateral palatal swelling, or bifid uvula are common in Apert syndrome patients. Mouse models of Apert syndrome display palatal defects, providing valuable tools to understand the underlying mechanisms. The mutations in FGFR2 causing Apert syndrome may change a signaling network in epithelial–mesenchymal interactions during palatogenesis. Understanding the pathogenic mechanisms of palatal defects in Apert syndrome may shed light on potential novel therapeutic solutions.
Collapse
|
14
|
Roth DM, Souter K, Graf D. Craniofacial sutures: Signaling centres integrating mechanosensation, cell signaling, and cell differentiation. Eur J Cell Biol 2022; 101:151258. [PMID: 35908436 DOI: 10.1016/j.ejcb.2022.151258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
Cranial sutures are dynamic structures in which stem cell biology, bone formation, and mechanical forces interface, influencing the shape of the skull throughout development and beyond. Over the past decade, there has been significant progress in understanding mesenchymal stromal cell (MSC) differentiation in the context of suture development and genetic control of suture pathologies, such as craniosynostosis. More recently, the mechanosensory function of sutures and the influence of mechanical signals on craniofacial development have come to the forefront. There is currently a gap in understanding of how mechanical signals integrate with MSC differentiation and ossification to ensure appropriate bone development and mediate postnatal growth surrounding sutures. In this review, we discuss the role of mechanosensation in the context of cranial sutures, and how mechanical stimuli are converted to biochemical signals influencing bone growth, suture patency, and fusion through mediation of cell differentiation. We integrate key knowledge from other paradigms where mechanosensation forms a critical component, such as bone remodeling and orthodontic tooth movement. The current state of the field regarding genetic, cellular, and physiological mechanisms of mechanotransduction will be contextualized within suture biology.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Katherine Souter
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Ogura K, Kobayashi Y, Hikita R, Tsuji M, Moriyama K. Three-dimensional analysis of the palatal morphology in growing patients with Apert syndrome and Crouzon syndrome. Congenit Anom (Kyoto) 2022; 62:153-160. [PMID: 35468239 DOI: 10.1111/cga.12470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Patients with Apert syndrome or Crouzon syndrome present with severe defects in oral-maxillofacial growth and development. In this study, we conducted a quantitative three-dimensional (3D) analysis of the palatal morphology of patients with Apert syndrome and Crouzon syndrome. Four patients with Apert syndrome (average age, 11.0 ± 0.8 years) and five with Crouzon syndrome (average age, 10.1 ± 1.6 years) were investigated. The participants' maxillary dental casts were scanned and analyzed using 3D imaging. Palatal width, depth, cross-sectional area, and palatal angle (PW, PD, PCA, and PA, respectively) were measured, and standard scores were calculated based on sex- and age-matched Japanese standard values; the actual palatal surface areas (PSA) and palatal volumes (PV) were also measured. Our results show that patients with Apert syndrome and Crouzon syndrome had a very narrow PW (standard score: -3.79 and - 0.47, respectively). 3D analysis revealed that patients with Apert syndrome had a significantly shallower PD (standard score: -1.35) than those with Crouzon syndrome (standard score: 2.47), resulting in a smaller PCA (standard score: -5.13), PSA (5.49 cm2 ), and PV (1.11 cm3 ) and larger PA (standard score: -0.12) than those in patients with Crouzon syndrome. This might be due to the former having a narrower and shallower palate caused by the predominant swelling of the palatal mucosa. These findings improve our understanding of the differences in palatal morphology between Apert syndrome and Crouzon syndrome patients.
Collapse
Affiliation(s)
- Kenji Ogura
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiho Kobayashi
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Hikita
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Tsuji
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Moriyama
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Barrell WB, Adel Al-Lami H, Goos JAC, Swagemakers SMA, van Dooren M, Torban E, van der Spek PJ, Mathijssen IMJ, Liu KJ. Identification of a novel variant of the ciliopathic gene FUZZY associated with craniosynostosis. Eur J Hum Genet 2022; 30:282-290. [PMID: 34719684 PMCID: PMC8904458 DOI: 10.1038/s41431-021-00988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a birth defect occurring in approximately one in 2000 live births, where premature fusion of the cranial bones inhibits growth of the skull during critical periods of brain development. The resulting changes in skull shape can lead to compression of the brain, causing severe complications. While we have some understanding of the molecular pathology of craniosynostosis, a large proportion of cases are of unknown genetic aetiology. Based on studies in mouse, we previously proposed that the ciliopathy gene Fuz should be considered a candidate craniosynostosis gene. Here, we report a novel variant of FUZ (c.851 G > C, p.(Arg284Pro)) found in monozygotic twins presenting with craniosynostosis. To investigate whether Fuz has a direct role in regulating osteogenic fate and mineralisation, we cultured primary osteoblasts and mouse embryonic fibroblasts (MEFs) from Fuz mutant mice. Loss of Fuz resulted in increased osteoblastic mineralisation. This suggests that FUZ protein normally acts as a negative regulator of osteogenesis. We then used Fuz mutant MEFs, which lose functional primary cilia, to test whether the FUZ p.(Arg284Pro) variant could restore FUZ function during ciliogenesis. We found that expression of the FUZ p.(Arg284Pro) variant was sufficient to partially restore cilia numbers, but did not mediate a comparable response to Hedgehog pathway activation. Together, this suggests the osteogenic effects of FUZ p.(Arg284Pro) do not depend upon initiation of ciliogenesis.
Collapse
Affiliation(s)
- William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Hadeel Adel Al-Lami
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marieke van Dooren
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
18
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
19
|
Wang IY, Chung CF, Babayeva S, Sogomonian T, Torban E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J Dev Biol 2021; 10:jdb10010001. [PMID: 35076510 PMCID: PMC8788523 DOI: 10.3390/jdb10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.
Collapse
Affiliation(s)
- Irene-Yanran Wang
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Tamara Sogomonian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
20
|
Hruba E, Kavkova M, Dalecka L, Macholan M, Zikmund T, Varecha M, Bosakova M, Kaiser J, Krejci P, Hovorakova M, Buchtova M. Loss of Sprouty Produces a Ciliopathic Skeletal Phenotype in Mice Through Upregulation of Hedgehog Signaling. J Bone Miner Res 2021; 36:2258-2274. [PMID: 34423857 DOI: 10.1002/jbmr.4427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023]
Abstract
The Sprouty family is a highly conserved group of intracellular modulators of receptor tyrosine kinase (RTK)-signaling pathways, which have been recently linked to primary cilia. Disruptions in the structure and function of primary cilia cause inherited disorders called ciliopathies. We aimed to evaluate Sprouty2 and Sprouty4 gene-dependent alterations of ciliary structure and to focus on the determination of its association with Hedgehog signaling defects in chondrocytes. Analysis of the transgenic mice phenotype with Sprouty2 and Sprouty4 deficiency revealed several defects, including improper endochondral bone formation and digit patterning, or craniofacial and dental abnormalities. Moreover, reduced bone thickness and trabecular bone mass, skull deformities, or chondroma-like lesions were revealed. All these pathologies might be attributed to ciliopathies. Elongation of the ciliary axonemes in embryonic and postnatal growth plate chondrocytes was observed in Sprouty2-/- and Sprouty2+/- /Sprouty4-/- mutants compared with corresponding littermate controls. Also, cilia-dependent Hedgehog signaling was upregulated in Sprouty2/4 mutant animals. Ptch1 and Ihh expression were upregulated in the autopodium and the proximal tibia of Sprouty2-/- /Sprouty4-/- mutants. Increased levels of the GLI3 repressor (GLI3R) form were detected in Sprouty2/4 mutant primary fibroblast embryonic cell cultures and tissues. These findings demonstrate that mouse lines deficient in Sprouty proteins manifest phenotypic features resembling ciliopathic phenotypes in multiple aspects and may serve as valuable models to study the association between overactivation of RTK and dysfunction of primary cilia during skeletogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Linda Dalecka
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miloš Macholan
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Bosakova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Krejci
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Arrigo AB, Lin JHI. Endocytic Protein Defects in the Neural Crest Cell Lineage and Its Pathway Are Associated with Congenital Heart Defects. Int J Mol Sci 2021; 22:8816. [PMID: 34445520 PMCID: PMC8396181 DOI: 10.3390/ijms22168816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
Endocytic trafficking is an under-appreciated pathway in cardiac development. Several genes related to endocytic trafficking have been uncovered in a mutagenic ENU screen, in which mutations led to congenital heart defects (CHDs). In this article, we review the relationship between these genes (including LRP1 and LRP2) and cardiac neural crest cells (CNCCs) during cardiac development. Mice with an ENU-induced Lrp1 mutation exhibit a spectrum of CHDs. Conditional deletion using a floxed Lrp1 allele with different Cre drivers showed that targeting neural crest cells with Wnt1-Cre expression replicated the full cardiac phenotypes of the ENU-induced Lrp1 mutation. In addition, LRP1 function in CNCCs is required for normal OFT lengthening and survival/expansion of the cushion mesenchyme, with other cell lineages along the NCC migratory path playing an additional role. Mice with an ENU-induced and targeted Lrp2 mutation demonstrated the cardiac phenotype of common arterial trunk (CAT). Although there is no impact on CNCCs in Lrp2 mutants, the loss of LRP2 results in the depletion of sonic hedgehog (SHH)-dependent cells in the second heart field. SHH is known to be crucial for CNCC survival and proliferation, which suggests LRP2 has a non-autonomous role in CNCCs. In this article, other endocytic trafficking proteins that are associated with CHDs that may play roles in the NCC pathway during development, such as AP1B1, AP2B1, FUZ, MYH10, and HECTD1, are reviewed.
Collapse
Affiliation(s)
- Angelo B. Arrigo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Jiuann-Huey Ivy Lin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15224, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
22
|
Kobayashi Y, Ogura K, Hikita R, Tsuji M, Moriyama K. Craniofacial, oral, and cervical morphological characteristics in Japanese patients with Apert syndrome or Crouzon syndrome. Eur J Orthod 2021; 43:36-44. [PMID: 32144423 DOI: 10.1093/ejo/cjaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Mutations in the fibroblast growth factor receptor 2 (FGFR2) gene are responsible for both Apert syndrome (AS) and Crouzon syndrome (CS). These diseases share phenotypic characteristics, including midfacial hypoplasia and premature fusion of the calvarial suture(s). Given the extensive range of craniofacial growth and developmental abnormalities, management of these patients requires a multidisciplinary approach. This study aimed to compare craniofacial, oral, and cervical morphological characteristics in Japanese orthodontic patients with AS or CS. SUBJECTS AND METHODS Lateral cephalograms, orthopantomograms, dental casts, medical interview records, facial photographs, and intraoral photographs of 7 AS patients and 12 CS patients on initial visits were used in this study. Cephalometric analyses were performed, and standard scores were calculated based on age- and sex-matched Japanese standard values. RESULTS Cephalometric analysis revealed that AS patients had significantly more severe maxillary hypoplasia in two dimensions and increased clockwise mandibular rotation. Additionally, cleft of the soft palate, anterior open bite, severe crowding in the maxillary dental arch, and congenitally missing teeth occurred more frequently among AS patients. Multiple fusions between cervical vertebrae C2, C3, C5, and C6 were observed in the AS patients. LIMITATIONS Small sample size. CONCLUSIONS/IMPLICATIONS Our study shows that AS patients have more severe craniofacial and maxillofacial deformities than CS patients.
Collapse
Affiliation(s)
- Yukiho Kobayashi
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ogura
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Hikita
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Tsuji
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Yue M, Lan Y, Liu H, Wu Z, Imamura T, Jiang R. Tissue-specific analysis of Fgf18 gene function in palate development. Dev Dyn 2021; 250:562-573. [PMID: 33034111 PMCID: PMC8016697 DOI: 10.1002/dvdy.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Accepted: 09/27/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Previous studies showed that mice lacking Fgf18 function had cleft palate defects and that the FGF18 locus was associated with cleft lip and palate in humans, but what specific roles Fgf18 plays during palatogenesis are unclear. RESULTS We show that Fgf18 exhibits regionally restricted expression in developing palatal shelves, mandible, and tongue, during palatal outgrowth and fusion in mouse embryos. Tissue-specific inactivation of Fgf18 throughout neural crest-derived craniofacial mesenchyme caused shortened mandible and reduction in ossification of the frontal, nasal, and anterior cranial base skeletal elements in Fgf18c/c ;Wnt1-Cre mutant mice. About 64% of Fgf18c/c ;Wnt1-Cre mice exhibited cleft palate. Whereas palatal shelf elevation was impaired in many Fgf18c/c ;Wnt1-Cre embryos, no significant difference in palatal cell proliferation was detected between Fgf18c/c ;Wnt1-Cre embryos and their control littermates. Embryonic maxillary explants from Fgf18c/c ;Wnt1-Cre embryos showed successful palatal shelf elevation and fusion in organ culture similar to the maxillary explants from control embryos. Furthermore, tissue-specific inactivation of Fgf18 in the early palatal mesenchyme did not cause cleft palate. CONCLUSION These results demonstrate a critical role for Fgf18 expression in the neural crest-derived mesenchyme for the development of the mandible and multiple craniofacial bones but Fgf18 expression in the palatal mesenchyme is dispensable for palatogenesis.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Shriners Hospitals for Children, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhaoming Wu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Toru Imamura
- Cell Regulation Laboratory, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo 192-0982, Japan
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Shriners Hospitals for Children, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Bonatto Paese CL, Brooks EC, Aarnio-Peterson M, Brugmann SA. Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 2021; 148:148/4/dev194175. [PMID: 33589509 DOI: 10.1242/dev.194175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Evan C Brooks
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Aarnio-Peterson
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Shriners Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Maldonado E, Martínez-Sanz E, Partearroyo T, Varela-Moreiras G, Pérez-Miguelsanz J. Maternal Folic Acid Deficiency Is Associated to Developing Nasal and Palate Malformations in Mice. Nutrients 2021; 13:251. [PMID: 33467180 PMCID: PMC7830789 DOI: 10.3390/nu13010251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022] Open
Abstract
Craniofacial development requires extremely fine-tuned developmental coordination of multiple specialized tissues. It has been evidenced that a folate deficiency (vitamin B9), or its synthetic form, folic acid (FA), in maternal diet could trigger multiple craniofacial malformations as oral clefts, tongue, or mandible abnormalities. In this study, a folic acid-deficient (FAD) diet was administered to eight-week-old C57/BL/6J female mouse for 2-16 weeks. The head symmetry, palate and nasal region were studied in 24 control and 260 experimental fetuses. Our results showed a significant reduction in the mean number of fetuses per litter according to maternal weeks on FAD diet (p < 0.01). Fetuses were affected by cleft palate (3.8%) as well as other severe congenital abnormalities, for the first time related to maternal FAD diet, as head asymmetries (4.6%), high arched palate (3.5%), nasal septum malformed (7.3%), nasopharynx duct shape (15%), and cilia and epithelium abnormalities (11.2% and 5.8%). Dysmorphologies of the nasal region were the most frequent, appearing at just four weeks following a maternal FAD diet. This is the first time that nasal region development is experimentally related to this vitamin deficiency. In conclusion, our report offers novel discoveries about the importance of maternal folate intake on midface craniofacial development of the embryos. Moreover, the longer the deficit lasts, the more serious the consequent effects appear to be.
Collapse
Affiliation(s)
- Estela Maldonado
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.-S.); (J.P.-M.)
- Grupo UCM de Investigación nº 920202 “Investigación en Desarrollo del Paladar y Fisura Palatina. Desarrollo Craneofacial”, Facultad de Odontología, Plaza de Ramón y Cajal, 3, 28040 Madrid, Spain
| | - Elena Martínez-Sanz
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.-S.); (J.P.-M.)
- Grupo UCM de Investigación nº 920202 “Investigación en Desarrollo del Paladar y Fisura Palatina. Desarrollo Craneofacial”, Facultad de Odontología, Plaza de Ramón y Cajal, 3, 28040 Madrid, Spain
| | - Teresa Partearroyo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain; (T.P.); (G.V.-M.)
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for life)”, ref: E02/0720, Alcorcón, 28925 Madrid, Spain
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain; (T.P.); (G.V.-M.)
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for life)”, ref: E02/0720, Alcorcón, 28925 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.-S.); (J.P.-M.)
- Grupo UCM de Investigación nº 911308 “Mecanismos Moleculares Cronobiológicos”, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/ del Prof. Martín Lagos, s/n, 28040 Madrid, Spain
| |
Collapse
|
26
|
Verheul TCJ, van Hijfte L, Perenthaler E, Barakat TS. The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Front Cell Dev Biol 2020; 8:592164. [PMID: 33102493 PMCID: PMC7554316 DOI: 10.3389/fcell.2020.592164] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
First described in 1991, Yin Yang 1 (YY1) is a transcription factor that is ubiquitously expressed throughout mammalian cells. It regulates both transcriptional activation and repression, in a seemingly context-dependent manner. YY1 has a well-established role in the development of the central nervous system, where it is involved in neurogenesis and maintenance of homeostasis in the developing brain. In neurodevelopmental and neurodegenerative disease, the crucial role of YY1 in cellular processes in the central nervous system is further underscored. In this mini-review, we discuss the various mechanisms leading to the transcriptional activating and repressing roles of YY1, including its role as a traditional transcription factor, its interactions with cofactors and chromatin modifiers, the role of YY1 in the non-coding genome and 3D chromatin organization and the possible implications of the phase-separation mechanism on YY1 function. We provide examples on how these processes can be involved in normal development and how alterations can lead to various diseases.
Collapse
Affiliation(s)
- Thijs C J Verheul
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
27
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
28
|
Putoux A, Baas D, Paschaki M, Morlé L, Maire C, Attié-Bitach T, Thomas S, Durand B. Altered GLI3 and FGF8 signaling underlies acrocallosal syndrome phenotypes in Kif7 depleted mice. Hum Mol Genet 2020; 28:877-887. [PMID: 30445565 DOI: 10.1093/hmg/ddy392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/14/2022] Open
Abstract
Acrocallosal syndrome (ACLS) is a rare genetic disorder characterized by agenesis or hypoplasia of corpus callosum (CC), polydactyly, craniofacial dysmorphism and severe intellectual deficiency. We previously identified KIF7, a key ciliary component of the Sonic hedgehog (SHH) pathway, as being a causative gene for this syndrome, thus including ACLS in the group of ciliopathies. In both humans and mice, KIF7 depletion leads to abnormal GLI3 processing and over-activation of SHH target genes. To understand the pathological mechanisms involved in CC defects in this syndrome, we took advantage of a previously described Kif7-/- mouse model to demonstrate that in addition to polydactyly and neural tube closure defects, these mice present CC agenesis with characteristic Probst bundles, thus recapitulating major ACLS features. We show that CC agenesis in these mice is associated with specific patterning defects of the cortical septum boundary leading to altered distribution of guidepost cells required to guide the callosal axons through the midline. Furthermore, by crossing Kif7-/- mice with Gli3Δ699 mice exclusively producing the repressive isoform of GLI3 (GLI3R), we demonstrate that decreased GLI3R signaling is fully responsible for the ACLS features in these mice, as all phenotypes are rescued by increasing GLI3R activity. Moreover, we show that increased FGF8 signaling is responsible in part for CC defects associated to KIF7 depletion, as modulating FGF8 signaling rescued CC formation anteriorly in Kif7-/- mice. Taken together our data demonstrate that ACLS features rely on defective GLI3R and FGF8 signaling.
Collapse
Affiliation(s)
- Audrey Putoux
- Centre de Recherche en Neurosciences de Lyon, Équipe GENDEV, INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France.,Service de Génétique et Centre de Référence des Anomalies du Développement de la Région Auvergne-Rhône-Alpes, CHU de Lyon, France
| | - Dominique Baas
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Marie Paschaki
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Laurette Morlé
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Charline Maire
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Histology-Embryology and Cytogenetics, Necker Hospital, AP-HP, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| |
Collapse
|
29
|
Watanabe M, Kawasaki M, Kawasaki K, Kitamura A, Nagai T, Kodama Y, Meguro F, Yamada A, Sharpe PT, Maeda T, Takagi R, Ohazama A. Ift88 limits bone formation in maxillary process through suppressing apoptosis. Arch Oral Biol 2019; 101:43-50. [PMID: 30878609 DOI: 10.1016/j.archoralbio.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The development of the maxillary bone is under strict molecular control because of its complicated structure. Primary cilia play a critical role in craniofacial development, since defects in primary cilia are known to cause congenital craniofacial dysmorphologies as a wide spectrum of human diseases: the ciliopathies. The primary cilia also are known to regulate bone formation. However, the role of the primary cilia in maxillary bone development is not fully understood. DESIGN To address this question, we generated mice with a mesenchymal conditional deletion ofIft88 using the Wnt1Cre mice (Ift88fl/fl;Wnt1Cre). The gene Ift88 encodes a protein that is required for the function and formation of primary cilia. RESULTS It has been shown thatIft88fl/fl;Wnt1Cre mice exhibit cleft palate. Here, we additionally observed excess bone formation in the Ift88 mutant maxillary process. We also found ectopic apoptosis in the Ift88 mutant maxillary process at an early stage of development. To investigate whether the ectopic apoptosis is related to the Ift88 mouse maxillary phenotypes, we generated Ift88fl/fl;Wnt1Cre;p53-/- mutants to reduce apoptosis. The Ift88fl/fl;Wnt1Cre;p53-/- mice showed no excess bone formation, suggesting that the cells evading apoptosis by the presence of Ift88 in wild-type mice limit bone formation in maxillary development. On the other hand, the palatal cleft was retained in the Ift88fl/fl;Wnt1Cre;p53-/- mice, indicating that the excess bone formation or abnormal apoptosis was independent of the cleft palate phenotype in Ift88 mutant mice. CONCLUSIONS Ift88 limits bone formation in the maxillary process by suppressing apoptosis.
Collapse
Affiliation(s)
- Momoko Watanabe
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kitamura
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK.
| |
Collapse
|
30
|
Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int J Oral Sci 2019; 11:3. [PMID: 30783111 PMCID: PMC6381108 DOI: 10.1038/s41368-018-0040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/09/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway is essential for cellular proliferation and differentiation during embryonic development. Gain and loss of function of Hh signalling are known to result in an array of craniofacial malformations. To determine the critical period for Hh pathway antagonist-induced frontal bone hypoplasia, we examined patterns of dysmorphology caused by Hh signalling inhibition. Pregnant mice received a single oral administration of Hh signalling inhibitor GDC-0449 at 100 mg•kg−1 or 150 mg•kg−1 body weight at preselected time points between embryonic days (E)8.5 and 12.5. The optimal teratogenic concentration of GDC-0449 was determined to be 150 mg•kg−1. Exposure between E9.5 and E10.5 induced frontal bone dysplasia, micrognathia and limb defects, with administration at E10.5 producing the most pronounced effects. This model showed decreased ossification of the frontal bone with downregulation of Hh signalling. The osteoid thickness of the frontal bone was significantly reduced. The amount of neural crest-derived frontal bone primordium was reduced after GDC-0449 exposure owing to a decreased rate of cell proliferation and increased cell death. During embryonic development, the Hedgehog signalling pathway regulates the migration, proliferation and differentiation of cranial neural crest cells in the early frontal bone. The Hedgehog signalling pathway transmits information to embryonic cells for their proper cell differentiation, and increased or reduced function of that signalling results in various craniofacial malformations. A team headed by Weihui Chen at Fujian Medical University in China investigated the patterns of abnormalities caused by inhibition of Hedgehog signalling in pregnant mice at preselected embryonic time points. The team was able to identify the critical period for sensitivity to GDC-0449, a potent Hedgehog signalling inhibitor. The authors believe that their mouse model can be effective in further investigating the mechanisms of craniofacial malformations and will have a profound impact on identifying candidate human disease genes and associated environmental factors.
Collapse
|
31
|
Hao Y, Tang S, Yuan Y, Liu R, Chen Q. Roles of FGF8 subfamily in embryogenesis and oral‑maxillofacial diseases (Review). Int J Oncol 2019; 54:797-806. [PMID: 30628659 DOI: 10.3892/ijo.2019.4677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/19/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are diffusible polypeptides released by a variety of cell types. FGF8 subfamily members regulate embryonic development processes through controlling progenitor cell growth and differentiation, and are also functional in adults in tissue repair to maintain tissue homeostasis. FGF8 family members exhibit unique binding affinities with FGF receptors and tissue distribution patterns. Increasing evidence suggests that, by regulating multiple cellular signaling pathways, alterations in the FGF8 subfamily are involved in craniofacial development, odontogenesis, tongue development and salivary gland branching morphogenesis. Aberrant FGF signaling transduction, caused by mutations as well as abnormal expression or isoform splicing, plays an important role in the development of oral diseases. Targeting FGF8 subfamily members provides a new promising strategy for the treatment of oral diseases. The aim of this review was to summarize the aberrant regulations of FGF8 subfamily members and their potential implications in oral‑maxillofacial diseases.
Collapse
Affiliation(s)
- Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
32
|
Wan Y, Lantz B, Cusack BJ, Szabo-Rogers HL. Prickle1 regulates differentiation of frontal bone osteoblasts. Sci Rep 2018; 8:18021. [PMID: 30575813 PMCID: PMC6303328 DOI: 10.1038/s41598-018-36742-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/27/2018] [Indexed: 11/08/2022] Open
Abstract
Enlarged fontanelles and smaller frontal bones result in a mechanically compromised skull. Both phenotypes could develop from defective migration and differentiation of osteoblasts in the skull bone primordia. The Wnt/Planar cell polarity (Wnt/PCP) signaling pathway regulates cell migration and movement in other tissues and led us to test the role of Prickle1, a core component of the Wnt/PCP pathway, in the skull. For these studies, we used the missense allele of Prickle1 named Prickle1Beetlejuice (Prickle1Bj). The Prickle1Bj/Bj mutants are microcephalic and develop enlarged fontanelles between insufficient frontal bones, while the parietal bones are normal. Prickle1Bj/Bj mutants have several other craniofacial defects including a midline cleft lip, incompletely penetrant cleft palate, and decreased proximal-distal growth of the head. We observed decreased Wnt/β-catenin and Hedgehog signaling in the frontal bone condensations of the Prickle1Bj/Bj mutants. Surprisingly, the smaller frontal bones do not result from defects in cell proliferation or death, but rather significantly delayed differentiation and decreased expression of migratory markers in the frontal bone osteoblast precursors. Our data suggests that Prickle1 protein function contributes to both the migration and differentiation of osteoblast precursors in the frontal bone.
Collapse
Affiliation(s)
- Yong Wan
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandi Lantz
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Cusack
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather L Szabo-Rogers
- Center for Craniofacial Regeneration, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Chen ZS, Li L, Peng S, Chen FM, Zhang Q, An Y, Lin X, Li W, Koon AC, Chan TF, Lau KF, Ngo JCK, Wong WT, Kwan KM, Chan HYE. Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep 2018; 19:embr.201745409. [PMID: 30026307 DOI: 10.15252/embr.201745409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023] Open
Abstract
Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Li Li
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaohong Peng
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Francis M Chen
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qian Zhang
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xiao Lin
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wen Li
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ting-Fung Chan
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wing Tak Wong
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kin Ming Kwan
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China .,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
34
|
Veistinen LK, Mustonen T, Hasan MR, Takatalo M, Kobayashi Y, Kesper DA, Vortkamp A, Rice DP. Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Front Physiol 2017; 8:1036. [PMID: 29311969 PMCID: PMC5742257 DOI: 10.3389/fphys.2017.01036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Loss-of-function mutations in GLI3 and IHH cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that Ihh ligand, the receptor Ptch1 and Gli transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both Ihh-/- and Gli3Xt-J/Xt-J embryonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone development. RUNX2 is a master regulatory transcription factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expanded and aberrant osteogenesis observed in Gli3Xt-J/Xt-J mice, and consistent with Runx2-I expression by relatively immature osteoprogenitors. Ihh-/- mice exhibited small calvarial bones and HH target genes, Ptch1 and Gli1, were absent. This indicates that IHH is the functional HH ligand, and that it is not compensated by another HH ligand. To decipher the roles and potential interaction of Gli3 and Ihh, we generated Ihh-/-;Gli3Xt-J/Xt-J compound mutant mice. Even in the absence of Ihh, Gli3 deletion was sufficient to induce aberrant precocious ossification across the developing suture, indicating that the craniosynostosis phenotype of Gli3Xt-J/Xt-J mice is not dependent on IHH ligand. Also, we found that Ihh was not required for Runx2 expression as the expression of RUNX2 target genes was unaffected by deletion of Ihh. To test whether RUNX2 has a role upstream of IHH, we performed RUNX2 siRNA knock down experiments in WT calvarial osteoblasts and explants and found that Ihh expression is suppressed. Our results show that IHH is the functional HH ligand in the embryonic mouse calvaria osteogenic condensations, where it regulates the progression of osteoblastic differentiation. As GLI3 represses the expression of Runx2-II and Ihh, and also elevates the Runx2-I expression, and as IHH may be regulated by RUNX2 these results raise the possibility of a regulatory feedback circuit to control calvarial osteogenesis and suture patency. Taken together, RUNX2-controlled osteoblastic cell fate is regulated by IHH through concomitant inhibition of GLI3-repressor formation and activation of downstream targets.
Collapse
Affiliation(s)
- Lotta K Veistinen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Minerva Research Institute, Helsinki, Finland
| | - Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Yukiho Kobayashi
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dörthe A Kesper
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Agbu SO, Liang Y, Liu A, Anderson KV. The small GTPase RSG1 controls a final step in primary cilia initiation. J Cell Biol 2017; 217:413-427. [PMID: 29038301 PMCID: PMC5748968 DOI: 10.1083/jcb.201604048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are essential for normal development and tissue homeostasis, but the mechanisms that remodel the centriole to promote cilia initiation are not well understood. Agbu et al. report that mouse RSG1, a small GTPase, regulates a late step in cilia initiation, downstream of TTBK2 and the CPLANE protein INTU. Primary cilia, which are essential for normal development and tissue homeostasis, are extensions of the mother centriole, but the mechanisms that remodel the centriole to promote cilia initiation are poorly understood. Here we show that mouse embryos that lack the small guanosine triphosphatase RSG1 die at embryonic day 12.5, with developmental abnormalities characteristic of decreased cilia-dependent Hedgehog signaling. Rsg1 mutant embryos have fewer primary cilia than wild-type embryos, but the cilia that form are of normal length and traffic Hedgehog pathway proteins within the cilium correctly. Rsg1 mother centrioles recruit proteins required for cilia initiation and dock onto ciliary vesicles, but axonemal microtubules fail to elongate normally. RSG1 localizes to the mother centriole in a process that depends on tau tubulin kinase 2 (TTBK2), the CPLANE complex protein Inturned (INTU), and its own GTPase activity. The data suggest a specific role for RSG1 in the final maturation of the mother centriole and ciliary vesicle that allows extension of the ciliary axoneme.
Collapse
Affiliation(s)
- Stephanie O Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Yinwen Liang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
36
|
Schock EN, Brugmann SA. Neural crest cells utilize primary cilia to regulate ventral forebrain morphogenesis via Hedgehog-dependent regulation of oriented cell division. Dev Biol 2017; 431:168-178. [PMID: 28941984 DOI: 10.1016/j.ydbio.2017.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/20/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Development of the brain directly influences the development of the face via both physical growth and Sonic hedgehog (SHH) activity; however, little is known about how neural crest cells (NCCs), the mesenchymal population that comprise the developing facial prominences, influence the development of the brain. We utilized the conditional ciliary mutant Wnt1-Cre;Kif3afl/fl to demonstrate that loss of primary cilia on NCCs resulted in a widened ventral forebrain. We found that neuroectodermal Shh expression, dorsal/ventral patterning, and amount of proliferation in the ventral neuroectoderm was not changed in Wnt1-Cre;Kif3afl/fl mutants; however, tissue polarity and directional cell division were disrupted. Furthermore, NCCs of Wnt1-Cre;Kif3afl/fl mutants failed to respond to a SHH signal emanating from the ventral forebrain. We were able to recapitulate the ventral forebrain phenotype by removing Smoothened from NCCs (Wnt1-Cre;Smofl/fl) indicating that changes in the ventral forebrain were mediated through a Hedgehog-dependent mechanism. Together, these data suggest a novel, cilia-dependent mechanism for NCCs during forebrain development.
Collapse
Affiliation(s)
- Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
37
|
Schock EN, Brugmann SA. Discovery, Diagnosis, and Etiology of Craniofacial Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028258. [PMID: 28213462 DOI: 10.1101/cshperspect.a028258] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Seventy-five percent of congenital disorders present with some form of craniofacial malformation. The frequency and severity of these malformations makes understanding the etiological basis crucial for diagnosis and treatment. A significant link between craniofacial malformations and primary cilia arose several years ago with the determination that ∼30% of ciliopathies could be primarily defined by their craniofacial phenotype. The link between the cilium and the face has proven significant, as several new "craniofacial ciliopathies" have recently been diagnosed. Herein, we reevaluate public disease databases, report several new craniofacial ciliopathies, and propose several "predicted" craniofacial ciliopathies. Furthermore, we discuss why the craniofacial complex is so sensitive to ciliopathic dysfunction, addressing tissue-specific functions of the cilium as well as its role in signal transduction relevant to craniofacial development. As a whole, these analyses suggest a characteristic facial phenotype associated with craniofacial ciliopathies that can perhaps be used for rapid discovery and diagnosis of similar disorders in the future.
Collapse
Affiliation(s)
- Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
38
|
Micrognathia in mouse models of ciliopathies. Biochem Soc Trans 2017; 44:1753-1759. [PMID: 27913686 DOI: 10.1042/bst20160241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/17/2022]
Abstract
Defects in the development of the mandible can lead to micrognathia, or small jaw, which manifests in ciliopathic conditions, such as orofaciodigital syndrome, Meckel-Gruber syndrome, and Bardet-Biedl syndrome. Although micrognathia occurs frequently in human and mouse ciliopathies, it has been difficult to pinpoint the underlying cellular causes. In this mini-review, we shed light on the tissue-specific contributions to ciliary dysfunction in the development of the mandible. First, we outline the steps involved in setting up the jaw primordium and subsequent steps in the outgrowth of the mandibular skeleton. We then determine the critical tissue interactions using mice carrying a conditional mutation in the cilia gene Ofd1 Our studies highlight the usefulness of the Ofd1 mouse model and illustrate long-term possibilities for understanding the cellular and biochemical events underlying micrognathia.
Collapse
|
39
|
Bryant D, Johnson A. Meeting report - Intercellular interactions in context: towards a mechanistic understanding of cells in organs. J Cell Sci 2017; 130:2083-2085. [PMID: 28738319 DOI: 10.1242/jcs.205740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Company of Biologists held the workshop 'Intercellular interactions in context: towards a mechanistic understanding of cells in organs' at historic Wiston House in West Sussex, UK, 5-8 February 2017. The meeting brought together around 30 scientists from disparate backgrounds - yet with a common interest of how tissue morphogenesis occurs and its dysregulation leads to pathologies - to intensively discuss their latest research, the current state of the field, as well as any challenges for the future. This report summarises the concepts and challenges that arose as key questions for the fields of cell, cancer and developmental biology. By design of the organizers - Andrew Ewald (John Hopkins University, MA), John Wallingford (University of Texas at Austin, TX) and Peter Friedl (Radboud University, Nijmegen, The Netherlands) - the attendee makeup was cross-sectional: both in terms of career stage and scientific background. This intermingling was mirrored in the workshop format; all participants - irrespective of career stage - were given equal speaking and question time, and all early-career researchers also chaired a session, which promoted an atmosphere for discussions that were open, egalitarian and supportive. This was particularly evident in the scheduled 'out-of-the-box' sessions, which provided an avenue for participants to raise ideas and concepts or to discuss specific problems they wanted feedback or clarification on. In the following, rather than act as court reporters and convey chronological accounting of presentations, we present the questions that arose from the workshop and should be posed to the field at large, by discussing the presentations as they relate to these concepts.
Collapse
Affiliation(s)
- David Bryant
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Aaron Johnson
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
40
|
Weaver CA, Miller SF, da Fontoura CSG, Wehby GL, Amendt BA, Holton NE, Allareddy V, Southard TE, Moreno Uribe LM. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion. Am J Orthod Dentofacial Orthop 2017; 151:539-558. [PMID: 28257739 DOI: 10.1016/j.ajodo.2016.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. METHODS Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. RESULTS Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1AJUBA, SNAI3SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. CONCLUSIONS Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified.
Collapse
Affiliation(s)
| | - Steven F Miller
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Ill; Department of Dental Medicine, College of Dental Medicine-Illinois, Midwestern University, Downers Grove, Ill
| | - Clarissa S G da Fontoura
- The Iowa Institute for Oral and Craniofacial Research, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - George L Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Nathan E Holton
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Veeratrishul Allareddy
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Thomas E Southard
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Lina M Moreno Uribe
- The Iowa Institute for Oral and Craniofacial Research, College of Dentistry, University of Iowa, Iowa City, Iowa; Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
41
|
Schock EN, Struve JN, Chang CF, Williams TJ, Snedeker J, Attia AC, Stottmann RW, Brugmann SA. A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS One 2017; 12:e0174206. [PMID: 28346501 PMCID: PMC5367710 DOI: 10.1371/journal.pone.0174206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/06/2017] [Indexed: 01/13/2023] Open
Abstract
Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jaime N. Struve
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado, United States of America
| | - John Snedeker
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Aria C. Attia
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rolf W. Stottmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
42
|
Millington G, Elliott KH, Chang YT, Chang CF, Dlugosz A, Brugmann SA. Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev Biol 2017; 424:124-137. [PMID: 28286175 DOI: 10.1016/j.ydbio.2017.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
Abstract
Ciliopathies are a class of diseases caused by the loss of a ubiquitous, microtubule-based organelle called a primary cilium. Ciliopathies commonly result in defective development of the craniofacial complex, causing midfacial defects, craniosynostosis, micrognathia and aglossia. Herein, we explored how the conditional loss of primary cilia on neural crest cells (Kif3af/f;Wnt1-Cre) generated aglossia. On a cellular level, our data revealed that aglossia in Kif3af/f;Wnt1-Cre embryos was due to a loss of mesoderm-derived muscle precursors migrating into and surviving in the tongue anlage. To determine the molecular basis for this phenotype, we performed RNA-seq, in situ hybridization, qPCR and Western blot analyses. We found that transduction of the Sonic hedgehog (Shh) pathway, rather than other pathways previously implicated in tongue development, was aberrant in Kif3af/f;Wnt1-Cre embryos. Despite increased production of full-length GLI2 and GLI3 isoforms, previously identified GLI targets important for mandibular and glossal development (Foxf1, Foxf2, Foxd1 and Foxd2) were transcriptionally downregulated in Kif3af/f;Wnt1-Cre embryos. Genetic removal of GLI activator (GLIA) isoforms in neural crest cells recapitulated the aglossia phenotype and downregulated Fox gene expression. Genetic addition of GLIA isoforms in neural crest cells partially rescued the aglossia phenotype and Fox gene expression in Kif3af/f;Wnt1-Cre embryos. Together, our data suggested that glossal development requires primary cilia-dependent GLIA activity in neural crest cells. Furthermore, these data, in conjunction with our previous work, suggested prominence specific roles for GLI isoforms; with development of the frontonasal prominence relying heavily on the repressor isoform and the development of the mandibular prominence/tongue relying heavily on the activator isoform.
Collapse
Affiliation(s)
- Grethel Millington
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Andrzej Dlugosz
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States.
| |
Collapse
|
43
|
Tabler JM, Rigney MM, Berman GJ, Gopalakrishnan S, Heude E, Al-Lami HA, Yannakoudakis BZ, Fitch RD, Carter C, Vokes S, Liu KJ, Tajbakhsh S, Egnor SR, Wallingford JB. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. eLife 2017; 6. [PMID: 28177282 PMCID: PMC5358977 DOI: 10.7554/elife.19153] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus. DOI:http://dx.doi.org/10.7554/eLife.19153.001 Nearly all animals communicate using sound. In many cases these sounds are in the form of a voice, which in mammals is generated by a specialized organ in the throat called the larynx. Millions of people throughout the world have voice defects that make it difficult for them to communicate. Such defects are distinct from speech defects such as stuttering, and instead result from an inability to control the pitch or volume of the voice. This has a huge impact because our voice is so central to our quality of life. A wide range of human birth defects that are caused by genetic mutations are known to result in voice problems. These include disorders in which the Hedgehog signaling pathway, which allows cells to exchange information, is defective. Projections called cilia that are found on the outside of many cells transmit Hedgehog signals, and birth defects that affect the cilia (called ciliopathies) also often result in voice problems. Although the shape of the larynx has a crucial effect on voice, relatively little is known about how it develops in embryos. Mice are often studied to investigate how human embryos develop. By studying mouse embryos that had genetic mutations similar to those seen in humans with ciliopathies, Tabler, Rigney et al. now show that many different tissues interact in complex ways to form the larynx. A specific group of cells known as the neural crest was particularly important. The neural crest helps to form the face and skull and an excess of these cells causes face and skull defects in individuals with ciliopathies. Tabler, Rigney et al. show that having too many neural crest cells can also contribute towards defects in the larynx of mice with ciliopathies, despite the larynx being in the neck. Further investigation showed that the Hedgehog signaling pathway was required for the larynx to develop properly. Furthermore, recordings of the vocalizations of the mutant mice showed that they had defective voices, thus linking the defects in the shape of the larynx with changes in the vocalizations that the mice made. Overall, Tabler, Rigney et al. show that mice can be used to investigate how the genes that control the shape of the larynx affect the voice. The next step will be to use mice to investigate other genetic defects that cause voice defects in humans. Further research in other animals could also help us to understand how the larynx has evolved. DOI:http://dx.doi.org/10.7554/eLife.19153.002
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Maggie M Rigney
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Gordon J Berman
- Department of Biology, Emory University, Atlanta, United States
| | - Swetha Gopalakrishnan
- Stem Cells and Development, CNRS UMR3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Eglantine Heude
- Stem Cells and Development, CNRS UMR3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Hadeel Adel Al-Lami
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Basil Z Yannakoudakis
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Rebecca D Fitch
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Christopher Carter
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Steven Vokes
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Karen J Liu
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS UMR3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Se Roian Egnor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United states
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
44
|
Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis. Am J Med Genet A 2017; 173:1406-1429. [PMID: 28160402 DOI: 10.1002/ajmg.a.38159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Craniosynostosis, the premature ossification of one or more skull sutures, is a clinically and genetically heterogeneous congenital anomaly affecting approximately one in 2,500 live births. In most cases, it occurs as an isolated congenital anomaly, that is, nonsyndromic craniosynostosis (NCS), the genetic, and environmental causes of which remain largely unknown. Recent data suggest that, at least some of the midline NCS cases may be explained by two loci inheritance. In approximately 25-30% of patients, craniosynostosis presents as a feature of a genetic syndrome due to chromosomal defects or mutations in genes within interconnected signaling pathways. The aim of this review is to provide a detailed and comprehensive update on the genetic and environmental factors associated with NCS, integrating the scientific findings achieved during the last decade. Focus on the neurodevelopmental, imaging, and treatment aspects of NCS is also provided.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Latium Musculoskeletal Tıssue Bank, Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simeon A Boyadjiev
- Division of Genomic Medicine, Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California
| |
Collapse
|
45
|
Adler PN, Wallingford JB. From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins. Trends Cell Biol 2017; 27:379-390. [PMID: 28153580 DOI: 10.1016/j.tcb.2016.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022]
Abstract
Why some genes are more popular than others remains an open question, but one example of this phenomenon involves the genes controlling planar cell polarity (PCP), the polarization of cells within a plane of a tissue. Indeed, the so-called 'core' PCP genes such as dishevelled, frizzled, and prickle have been extensively studied both in animal models and by human genetics. By contrast, other genes that influence PCP signaling have received far less attention. Among the latter are inturned, fuzzy, and fritz, but recent work should bring these once obscure regulators into the limelight. We provide here a brief history of planar polarity effector (PPE) and CPLANE (ciliogenesis and planar polarity effector) proteins, discuss recent advances in understanding their molecular mechanisms of action, and describe their roles in human disease.
Collapse
Affiliation(s)
- Paul N Adler
- Departments of Biology and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Chang YT, Chaturvedi P, Schock EN, Brugmann SA. Understanding Mechanisms of GLI-Mediated Transcription during Craniofacial Development and Disease Using the Ciliopathic Mutant, talpid2. Front Physiol 2016; 7:468. [PMID: 27799912 PMCID: PMC5065992 DOI: 10.3389/fphys.2016.00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/29/2016] [Indexed: 01/23/2023] Open
Abstract
The primary cilium is a ubiquitous, microtubule-based organelle that cells utilize to transduce molecular signals. Ciliopathies are a group of diseases that are caused by a disruption in the structure or function of the primary cilium. Over 30% of all ciliopathies are primarily defined by their craniofacial phenotypes, which typically include midfacial defects, cleft lip/palate, micrognathia, aglossia, and craniosynostosis. The frequency and severity of craniofacial phenotypes in ciliopathies emphasizes the importance of the cilium during development of the craniofacial complex. Molecularly, many ciliopathic mutants, including the avian talpid2 (ta2), report pathologically high levels of full-length GLI3 (GLI3FL), which can go on to function as an activator (GLIA), and reduced production of truncated GLI3 (GLI3T), which can go on to function as a repressor (GLIR). These observations suggest that the craniofacial phenotypes of ciliary mutants like ta2 are caused either by excessive activity of the GLIA or reduced activity of GLIR. To decipher between these two scenarios, we examined GLI3 occupation at the regulatory regions of target genes and subsequent target gene expression. Using in silico strategies we identified consensus GLI binding regions (GBRs) in the avian genome and confirmed GLI3 binding to the regulatory regions of its targets by chromatin immunoprecipitation (ChIP). In ta2 mutants, there was a strikingly low number of GLI3 target genes that had significantly increased expression in facial prominences compared to the control embryo and GLI3 occupancy at GBRs associated with target genes was largely reduced. In vitro DNA binding assays, further supported ChIP results, indicated that the excessive GLI3FL generated in ta2 mutants did not bind to GBRs. In light of these results, we explored the possibility of GLI co-regulator proteins playing a role in regulatory mechanism of GLI-mediated transcription. Taken together our studies suggest that craniofacial ciliopathic phenotypes are produced via reduced GLIT production, allowing for target gene transcription to be mediated by the combinatorial code of GLI co-regulators.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterCincinnati, OH, USA
| |
Collapse
|
47
|
Tabler JM, Rice CP, Liu KJ, Wallingford JB. A novel ciliopathic skull defect arising from excess neural crest. Dev Biol 2016; 417:4-10. [PMID: 27395007 DOI: 10.1016/j.ydbio.2016.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023]
Abstract
The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies.
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Molecular Biosciences, University of Texas at Austin, United States
| | - Christopher P Rice
- Department of Molecular Biosciences, University of Texas at Austin, United States
| | - Karen J Liu
- Department of Craniofacial Development and Stem Cell Biology, King's College London, UK.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
48
|
Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelley MR, Kim S, Park TJ, Braun D, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-lami HA, Yeung Y, Choi YJ, Duffourd Y, Faivre L, Rivière JB, Chen J, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 2016; 48:648-56. [PMID: 27158779 PMCID: PMC4978421 DOI: 10.1038/ng.3558] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. Ciliopathies are a spectrum of human diseases resulting from defects in cilia structure or function. The mechanisms regulating the assembly of ciliary multiprotein complexes and the transport of these complexes to the base of cilia remain largely unknown. Combining proteomics, in vivo imaging and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy and Wdpcp), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector), and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy-associated protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with ciliopathies in human patients.
Collapse
Affiliation(s)
| | - Chanjae Lee
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - S. Paige Taylor
- Departments of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ivan Duran
- Departments of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daniel H. Cohn
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, California, USA, 90095
| | - Ange-Line Bruel
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
| | | | - Kevin Drew
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Marcus R. Kelley
- Stanford University School of Medicine, Baxter Laboratory, Department of Microbiology & Immunology, Stanford, California 94305
| | - Sukyoung Kim
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Tae Joo Park
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Daniella Braun
- HHMI and Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Kerstin Wagner
- Cardiological Pediatric unit, Hospital Center, Luxemburg
| | - Anne Malfroot
- Clinic of Pediatric Respiratory Diseases, Infectious Diseases, Travel Clinic and Cystic Fibrosis Clinic at the Universitair Ziekenhuis UZ Brussel, Belgium
| | - Inusha Panigrahi
- Department of Pediatrics Advanced, Pediatric Centre Pigmer, Chandigarh, India
| | - Brunella Franco
- Department of Medical Translational Sciences, Division of Pediatrics, Federico II University of Naples, Italy
- Telethon Institute of Genetics and Medicine-TIGEM , Naples Italy
| | - Hadeel Adel Al-lami
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | - Yvonne Yeung
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | - Yeon Ja Choi
- Departments of Pathology and Dermatology, Stony Brook University, Stony Brook, NY 11794
| | | | - Yannis Duffourd
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
| | - Laurence Faivre
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Clinical genetics centre and Eastern referral centre for developmental anomalies and malformative syndromes, FHU-TRANSLAD, Children Hospital, CHU Dijon, F-21079 Dijon, France
| | - Jean-Baptiste Rivière
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Laboratory of Molecular Genetics, FHU-TRANSLAD, PTB, CHU Dijon, F-21079 Dijon, France
| | - Jiang Chen
- Departments of Pathology and Dermatology, Stony Brook University, Stony Brook, NY 11794
| | - Karen J. Liu
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | | | - Friedhelm Hildebrandt
- HHMI and Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christel Thauvin-Robinet
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Laboratory of Molecular Genetics, FHU-TRANSLAD, PTB, CHU Dijon, F-21079 Dijon, France
| | - Deborah Krakow
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, California, USA, 90095
| | - Peter K. Jackson
- Stanford University School of Medicine, Baxter Laboratory, Department of Microbiology & Immunology, Stanford, California 94305
| | | |
Collapse
|
49
|
Szabo-Rogers H, Yakob W, Liu KJ. Frontal Bone Insufficiency in Gsk3β Mutant Mice. PLoS One 2016; 11:e0149604. [PMID: 26886780 PMCID: PMC4757545 DOI: 10.1371/journal.pone.0149604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
The development of the mammalian skull is a complex process that requires multiple tissue interactions and a balance of growth and differentiation. Disrupting this balance can lead to changes in the shape and size of skull bones, which can have serious clinical implications. For example, insufficient ossification of the bony elements leads to enlarged anterior fontanelles and reduced mechanical protection of the brain. In this report, we find that loss of Gsk3β leads to a fully penetrant reduction of frontal bone size and subsequent enlarged frontal fontanelle. In the absence of Gsk3β the frontal bone primordium undergoes increased cell death and reduced proliferation with a concomitant increase in Fgfr2-IIIc and Twist1 expression. This leads to a smaller condensation and premature differentiation. This phenotype appears to be Wnt-independent and is not rescued by decreasing the genetic dose of β-catenin/Ctnnb1. Taken together, our work defines a novel role for Gsk3β in skull development.
Collapse
Affiliation(s)
- Heather Szabo-Rogers
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
| | - Wardati Yakob
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
| | - Karen J. Liu
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
- * E-mail:
| |
Collapse
|
50
|
Xavier GM, Seppala M, Barrell W, Birjandi AA, Geoghegan F, Cobourne MT. Hedgehog receptor function during craniofacial development. Dev Biol 2016; 415:198-215. [PMID: 26875496 DOI: 10.1016/j.ydbio.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - William Barrell
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Anahid A Birjandi
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Finn Geoghegan
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|