1
|
Huveneers S, Phng LK. Endothelial cell mechanics and dynamics in angiogenesis. Curr Opin Cell Biol 2024; 91:102441. [PMID: 39342870 DOI: 10.1016/j.ceb.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
The efficient distribution of oxygen and metabolites is critical for embryonic development and growth as well as tissue homeostasis. This is achieved by endothelial cells forming and maintaining a closed, circulatory network of tubular blood vessels. Endothelial cells are highly plastic cells with the capability to generate diverse dynamic responses at different stages of vessel development in order to build vessel networks of tissue-specific patterns and morphologies. In this review, we discuss new conceptual advances gained from in vitro and in vivo models of angiogenesis on the control of endothelial cell dynamics. We highlight the complex interplay between mechanical cues, actin cytoskeleton and endothelial behaviors, and the emerging importance of hydrostatic pressure in complementing actin-dependent mechanisms to regulate endothelial cell mechanics and angiogenesis. Understanding these processes provides insights into vascular repair and regeneration mechanisms.
Collapse
Affiliation(s)
- Stephan Huveneers
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands. https://twitter.com/Huveneers_Lab
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
2
|
Ma N, Wibowo YC, Wirtz P, Baltus D, Wieland T, Jansen S. Tankyrase inhibition interferes with junction remodeling, induces leakiness, and disturbs YAP1/TAZ signaling in the endothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1763-1789. [PMID: 37741944 PMCID: PMC10858845 DOI: 10.1007/s00210-023-02720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Tankyrase inhibitors are increasingly considered for therapeutic use in malignancies that are characterized by high intrinsic β-catenin activity. However, how tankyrase inhibition affects the endothelium after systemic application remains poorly understood. In this study, we aimed to investigate how the tankyrase inhibitor XAV939 affects endothelial cell function and the underlying mechanism involved. Endothelial cell function was analyzed using sprouting angiogenesis, endothelial cell migration, junctional dynamics, and permeability using human umbilical vein endothelial cells (HUVEC) and explanted mouse retina. Underlying signaling was studied using western blot, immunofluorescence, and qPCR in HUVEC in addition to luciferase reporter gene assays in human embryonic kidney cells. XAV939 treatment leads to altered junctional dynamics and permeability as well as impaired endothelial migration. Mechanistically, XAV939 increased stability of the angiomotin-like proteins 1 and 2, which impedes the nuclear translocation of YAP1/TAZ and consequently suppresses TEAD-mediated transcription. Intriguingly, XAV939 disrupts adherens junctions by inducing RhoA-Rho dependent kinase (ROCK)-mediated F-actin bundling, whereas disruption of F-actin bundling through the ROCK inhibitor H1152 restores endothelial cell function. Unexpectedly, this was accompanied by an increase in nuclear TAZ and TEAD-mediated transcription, suggesting differential regulation of YAP1 and TAZ by the actin cytoskeleton in endothelial cells. In conclusion, our findings elucidate the complex relationship between the actin cytoskeleton, YAP1/TAZ signaling, and endothelial cell function and how tankyrase inhibition disturbs this well-balanced signaling.
Collapse
Affiliation(s)
- Nan Ma
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Yohanes Cakrapradipta Wibowo
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Phillip Wirtz
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Doris Baltus
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Mannheim, Germany.
| | - Sepp Jansen
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Ali H, Malik MZ, Abu-Farha M, Abubaker J, Cherian P, Nizam R, Jacob S, Bahbahani Y, Naim M, Ahmad S, Al-Sayegh M, Thanaraj TA, Ong ACM, Harris PC, Al-Mulla F. Global analysis of urinary extracellular vesicle small RNAs in autosomal dominant polycystic kidney disease. J Gene Med 2024; 26:e3674. [PMID: 38404150 DOI: 10.1002/jgm.3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease progressing to end-stage renal disease. There is a pressing need for the identification of early ADPKD biomarkers to enable timely intervention and the development of effective therapeutic approaches. Here, we profiled human urinary extracellular vesicles small RNAs by small RNA sequencing in patients with ADPKD and compared their differential expression considering healthy control individuals to identify dysregulated small RNAs and analyze downstream interaction to gain insight about molecular pathophysiology. METHODS This is a cross-sectional study where urine samples were collected from a total of 23 PKD1-ADPKD patients and 28 healthy individuals. Urinary extracellular vesicles were purified, and small RNA was isolated and sequenced. Differentially expressed Small RNA were identified and functional enrichment analysis of the critical miRNAs was performed to identify driver genes and affected pathways. RESULTS miR-320b, miR-320c, miR-146a-5p, miR-199b-3p, miR-671-5p, miR-1246, miR-8485, miR-3656, has_piR_020497, has_piR_020496 and has_piR_016271 were significantly upregulated in ADPKD patient urine extracellular vesicles and miRNA-29c was significantly downregulated. Five 'driver' target genes (FBRS, EDC3, FMNL3, CTNNBIP1 and KMT2A) were identified. CONCLUSIONS The findings of the present study make significant contributions to the understanding of ADPKD pathogenesis and to the identification of novel biomarkers and potential drug targets aimed at slowing disease progression in ADPKD.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Yousif Bahbahani
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
- Medical Division, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Medhat Naim
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Sajjad Ahmad
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Mohammad Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Albert C M Ong
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Fahd Al-Mulla
- Department of Translational Medicine, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| |
Collapse
|
4
|
Yamamoto K, Watanabe-Takano H, Oguri-Nakamura E, Matsuno H, Horikami D, Ishii T, Ohashi R, Kubota Y, Nishiyama K, Murata T, Mochizuki N, Fukuhara S. Rap1 small GTPase is essential for maintaining pulmonary endothelial barrier function in mice. FASEB J 2023; 37:e23310. [PMID: 38010922 DOI: 10.1096/fj.202300830rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Hitomi Matsuno
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Nishiyama
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
The challenge of dissecting gene function in model organisms: Tools to characterize genetic mutants and assess transcriptional adaptation in zebrafish. Methods Cell Biol 2023; 176:1-25. [PMID: 37164532 DOI: 10.1016/bs.mcb.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genome editing technologies including the CRISPR/Cas9 system have greatly improved our knowledge of gene function and biological processes, however, these approaches have also brought new challenges to determining genotype-phenotype correlations. In this chapter, we briefly review gene-editing technologies used in zebrafish and discuss the differences in phenotypes that can arise when gene expression is inhibited by anti-sense or by gene editing techniques. We outline possible explanations for why knockout phenotypes are milder, tissue-restricted, or even absent, compared with severe knockdown phenotypes. One proposed explanation is transcriptional adaptation, a form of genetic robustness that is induced by deleterious mutations but not gene knockdowns. Although much is unknown about what triggers this process, its relevance in shaping genome expression has been shown in multiple animal models. We recently explored if transcriptional adaptation could explain genotype-phenotype discrepancies seen between two zebrafish models of the centrosomal protein Cep290 deficiency. We compared cilia-related phenotypes in knockdown (anti-sense) and knockout (mutation) Cep290 models and showed that only cep290 gene mutation induces the upregulation of genes encoding the cilia-associated small GTPases Arl3, Arl13b, and Unc119b. Importantly, the ectopic expression of Arl3, Arl13b, and Unc119b in cep290 morphant zebrafish embryos rescued cilia defects. Here we provide protocols and experimental approaches that can be used to explore if transcriptional adaptation may be modulating gene expression in a zebrafish ciliary mutant model.
Collapse
|
7
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
8
|
Chau TCY, Keyser MS, Da Silva JA, Morris EK, Yordanov TE, Duscyz KP, Paterson S, Yap AS, Hogan BM, Lagendijk AK. Dynamically regulated focal adhesions coordinate endothelial cell remodelling in developing vasculature. Development 2022; 149:285926. [PMID: 36314606 DOI: 10.1242/dev.200454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Tevin C Y Chau
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mikaela S Keyser
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason A Da Silva
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Elysse K Morris
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Teodor E Yordanov
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kinga P Duscyz
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre and The PeterMac Callum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre and The PeterMac Callum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3000, Australia.,Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anne Karine Lagendijk
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun 2022; 13:5276. [PMID: 36075898 PMCID: PMC9458672 DOI: 10.1038/s41467-022-32853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35’s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence, apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization through limiting Rac1 and RhoA activity, which is required to set up proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent brake of actin remodeling during blood vessel development. The promiscuous GTPase Rab35 has been shown to be involved in many important cellular functions. In this article, Francis et al. illustrate how Rab35 acts as a critical brake to actin remodeling during sprouting angiogenesis and how it is necessary for proper blood vessel development.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Hayle Kincross
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
10
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
11
|
Halabi R, Cechmanek PB, Hehr CL, McFarlane S. Semaphorin3f as a cardiomyocyte derived regulator of heart chamber development. Cell Commun Signal 2022; 20:126. [PMID: 35986301 PMCID: PMC9389736 DOI: 10.1186/s12964-022-00874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background During development a pool of precursors form a heart with atrial and ventricular chambers that exhibit distinct transcriptional and electrophysiological properties. Normal development of these chambers is essential for full term survival of the fetus, and deviations result in congenital heart defects. The large number of genes that may cause congenital heart defects when mutated, and the genetic variability and penetrance of the ensuing phenotypes, reveals a need to understand the molecular mechanisms that allow for the formation of chamber-specific cardiomyocyte differentiation. Methods We used in situ hybridization, immunohistochemistry and functional analyses to identify the consequences of the loss of the secreted semaphorin, Sema3fb, in the development of the zebrafish heart by using two sema3fb CRISPR mutant alleles. Results We find that in the developing zebrafish heart sema3fb mRNA is expressed by all cardiomyocytes, whereas mRNA for a known receptor Plexina3 (Plxna3) is expressed preferentially by ventricular cardiomyocytes. In sema3fb CRISPR zebrafish mutants, heart chamber development is impaired; the atria and ventricles of mutants are smaller in size than their wild type siblings, apparently because of differences in cell size and not cell numbers. Analysis of chamber differentiation indicates defects in chamber specific gene expression at the border between the ventricular and atrial chambers, with spillage of ventricular chamber genes into the atrium, and vice versa, and a failure to restrict specialized cardiomyocyte markers to the atrioventricular canal (AVC). The hypoplastic heart chambers are associated with decreased cardiac output and heart edema. Conclusions Based on our data we propose a model whereby cardiomyocytes secrete a Sema cue that, because of spatially restricted expression of the receptor, signals in a ventricular chamber-specific manner to establish a distinct border between atrial and ventricular chambers that is important to produce a fully functional heart. Video abstract
Supplementary information The online version contains supplementary material available at 10.1186/s12964-022-00874-8.
Collapse
|
12
|
Rosa A, Giese W, Meier K, Alt S, Klaus-Bergmann A, Edgar LT, Bartels E, Collins R, Szymborska A, Coxam B, Bernabeu MO, Gerhardt H. Wasp controls oriented migration of endothelial cells to achieve functional vascular patterning. Development 2021; 149:273808. [PMID: 34931661 PMCID: PMC8918813 DOI: 10.1242/dev.200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations. Summary: Regular diameter of developing veins and arteries in the zebrafish trunk is controlled by differential endothelial cell proliferation and WASp-driven directed cell migration.
Collapse
Affiliation(s)
- André Rosa
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Wolfgang Giese
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Silvanus Alt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Lowell T Edgar
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Eireen Bartels
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Russell Collins
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Miguel O Bernabeu
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.,The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom. 5 Berlin Institute of Health (BIH), Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
13
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
14
|
Yamamoto K, Takagi Y, Ando K, Fukuhara S. Rap1 Small GTPase Regulates Vascular Endothelial-Cadherin-Mediated Endothelial Cell-Cell Junctions and Vascular Permeability. Biol Pharm Bull 2021; 44:1371-1379. [PMID: 34602545 DOI: 10.1248/bpb.b21-00504] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vascular permeability of the endothelium is finely controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions. In the majority of normal adult tissues, endothelial cells in blood vessels maintain vascular permeability at a relatively low level, while in response to inflammation, they limit vascular barrier function to induce plasma leakage and extravasation of immune cells as a defense mechanism. Thus, the dynamic but also simultaneously tight regulation of vascular permeability by endothelial cells is responsible for maintaining homeostasis and, as such, impairments of its underlying mechanisms result in hyperpermeability, leading to the development and progression of various diseases including coronavirus disease 2019 (COVID-19), a newly emerging infectious disease. Recently, increasing numbers of studies have been unveiling the important role of Rap1, a small guanosine 5'-triphosphatase (GTPase) belonging to the Ras superfamily, in the regulation of vascular permeability. Rap1 enhances VE-cadherin-mediated endothelial cell-cell junctions to potentiate vascular barrier functions via dynamic reorganization of the actin cytoskeleton. Importantly, Rap1 signaling activation reportedly improves vascular barrier function in animal models of various diseases associated with vascular hyperpermeability, suggesting that Rap1 might be an ideal target for drugs intended to prevent vascular barrier dysfunction. Here, we describe recent progress in understanding the mechanisms by which Rap1 potentiates VE-cadherin-mediated endothelial cell-cell adhesions and vascular barrier function. We also discuss how alterations in Rap1 signaling are related to vascular barrier dysfunction in diseases such as acute pulmonary injury and malignancies. In addition, we examine the possibility of Rap1 signaling as a target of drugs for treating diseases associated with vascular hyperpermeability.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Yuki Takagi
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| |
Collapse
|
15
|
Pan MH, Wan X, Wang HH, Pan ZN, Zhang Y, Sun SC. FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis in mouse oocytes†. Biol Reprod 2021; 102:1203-1212. [PMID: 32167535 DOI: 10.1093/biolre/ioaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
Formin-like 3 (FMNL3) is a member of the formin-likes (FMNLs), which belong to the formin family. As an F-actin nucleator, FMNL3 is essential for several cellular functions, such as polarity control, invasion, and migration. However, the roles of FMNL3 during oocytes meiosis remain unclear. In this study, we investigated the functions of FMNL3 during mouse oocyte maturation. Our results showed that FMNL3 mainly concentrated in the oocyte cortex and spindle periphery. Depleting FMNL3 led to the failure of polar body extrusion, and we also found large polar bodies in the FMNL3-deleted oocytes, indicating the occurrence of symmetric meiotic division. There was no effect of FMNL3 on spindle organization; however, we observed spindle migration defects at late metaphase I, which might be due to the decreased cytoplasmic actin. Microinjecting Fmnl3-EGFP mRNA into Fmnl3-depleted oocytes significantly rescued these defects. In addition, the results of co-immunoprecipitation and the perturbation of protein expression experiments suggested that FMNL3 interacted with the actin-binding protein FASCIN for the regulation of actin filaments in oocytes. Thus, our results provide the evidence that FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, China
| |
Collapse
|
16
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
17
|
Lee M, Betz C, Yin J, Paatero I, Schellinx N, Carte AN, Wilson CW, Ye W, Affolter M, Belting HG. Control of dynamic cell behaviors during angiogenesis and anastomosis by Rasip1. Development 2021; 148:271819. [PMID: 34383884 PMCID: PMC8380458 DOI: 10.1242/dev.197509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
Organ morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveals distinct functions of Rasip1 during sprouting angiogenesis, anastomosis and lumen formation. During angiogenic sprouting, loss of Rasip1 causes cell pairing defects due to a destabilization of tricellular junctions, indicating that stable tricellular junctions are essential to maintain multicellular organization within the sprout. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function mimics the junctional defects of rasip1 mutants. Furthermore, downregulation of ccm1 and heg1 leads to a delocalization of Rasip1 at cell junctions, indicating that junctional tethering of Rasip1 is required for its function in junction formation and stabilization during sprouting angiogenesis. Summary:In vivo analysis of rasip1 mutants reveals multiple roles for Rasip1 during angiogenic sprouting, anastomosis and lumen formation, including stabilization of tricellular junctions to permit coordinated cell rearrangements and multicellular tube formation.
Collapse
Affiliation(s)
- Minkyoung Lee
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Charles Betz
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Jianmin Yin
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Ilkka Paatero
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Niels Schellinx
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Adam N Carte
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Christopher W Wilson
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Weilan Ye
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
18
|
The Formin Fmn2b Is Required for the Development of an Excitatory Interneuron Module in the Zebrafish Acoustic Startle Circuit. eNeuro 2021; 8:ENEURO.0329-20.2021. [PMID: 34193512 PMCID: PMC8272403 DOI: 10.1523/eneuro.0329-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
The formin family member Fmn2 is a neuronally enriched cytoskeletal remodeling protein conserved across vertebrates. Recent studies have implicated Fmn2 in neurodevelopmental disorders, including sensory processing dysfunction and intellectual disability in humans. Cellular characterization of Fmn2 in primary neuronal cultures has identified its function in the regulation of cell-substrate adhesion and consequently growth cone translocation. However, the role of Fmn2 in the development of neural circuits in vivo, and its impact on associated behaviors have not been tested. Using automated analysis of behavior and systematic investigation of the associated circuitry, we uncover the role of Fmn2b in zebrafish neural circuit development. As reported in other vertebrates, the zebrafish ortholog of Fmn2 is also enriched in the developing zebrafish nervous system. We find that Fmn2b is required for the development of an excitatory interneuron pathway, the spiral fiber neuron, which is an essential circuit component in the regulation of the Mauthner cell (M-cell)-mediated acoustic startle response. Consistent with the loss of the spiral fiber neurons tracts, high-speed video recording revealed a reduction in the short latency escape events while responsiveness to the stimuli was unaffected. Taken together, this study provides evidence for a circuit-specific requirement of Fmn2b in eliciting an essential behavior in zebrafish. Our findings underscore the importance of Fmn2 in neural development across vertebrate lineages and highlight zebrafish models in understanding neurodevelopmental disorders.
Collapse
|
19
|
Phng LK, Belting HG. Endothelial cell mechanics and blood flow forces in vascular morphogenesis. Semin Cell Dev Biol 2021; 120:32-43. [PMID: 34154883 DOI: 10.1016/j.semcdb.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|
20
|
Campinho P, Lamperti P, Boselli F, Vilfan A, Vermot J. Blood Flow Limits Endothelial Cell Extrusion in the Zebrafish Dorsal Aorta. Cell Rep 2021; 31:107505. [PMID: 32294443 DOI: 10.1016/j.celrep.2020.03.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Blood flow modulates endothelial cell (EC) response during angiogenesis. Shear stress is known to control gene expression related to the endothelial-mesenchymal transition and endothelial-hematopoietic transition. However, the impact of blood flow on the cellular processes associated with EC extrusion is less well understood. To address this question, we dynamically record EC movements and use 3D quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories in the zebrafish dorsal aorta. We find that ECs spread toward the cell extrusion area following the tissue deformation direction dictated by flow-derived mechanical forces. Cell extrusion increases when blood flow is impaired. Similarly, the mechanosensor polycystic kidney disease 2 (pkd2) limits cell extrusion, suggesting that ECs actively sense mechanical forces in the process. These findings identify pkd2 and flow as critical regulators of EC extrusion and suggest that mechanical forces coordinate this process by maintaining ECs within the endothelium.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Paola Lamperti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Francesco Boselli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
21
|
de Oliveira MB, Meier K, Jung S, Bartels-Klein E, Coxam B, Geudens I, Szymborska A, Skoczylas R, Fechner I, Koltowska K, Gerhardt H. Vasohibin 1 selectively regulates secondary sprouting and lymphangiogenesis in the zebrafish trunk. Development 2021; 148:dev194993. [PMID: 33547133 PMCID: PMC7904002 DOI: 10.1242/dev.194993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023]
Abstract
Previous studies have shown that Vasohibin 1 (Vash1) is stimulated by VEGFs in endothelial cells and that its overexpression interferes with angiogenesis in vivo Recently, Vash1 was found to mediate tubulin detyrosination, a post-translational modification that is implicated in many cell functions, such as cell division. Here, we used the zebrafish embryo to investigate the cellular and subcellular mechanisms of Vash1 on endothelial microtubules during formation of the trunk vasculature. We show that microtubules within venous-derived secondary sprouts are strongly and selectively detyrosinated in comparison with other endothelial cells, and that this difference is lost upon vash1 knockdown. Vash1 depletion in zebrafish specifically affected secondary sprouting from the posterior cardinal vein, increasing endothelial cell divisions and cell number in the sprouts. We show that altering secondary sprout numbers and structure upon Vash1 depletion leads to defective lymphatic vessel formation and ectopic lymphatic progenitor specification in the zebrafish trunk.
Collapse
Affiliation(s)
- Marta Bastos de Oliveira
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Simone Jung
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Eireen Bartels-Klein
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Ilse Geudens
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Ines Fechner
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Partner site, Potsdamer Str. 58, 10785 Berlin, Germany
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
- Vascular Patterning Laboratory, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straβe 2, 10178 Berlin, Germany
| |
Collapse
|
22
|
Marcksl1 modulates endothelial cell mechanoresponse to haemodynamic forces to control blood vessel shape and size. Nat Commun 2020; 11:5476. [PMID: 33127887 PMCID: PMC7603353 DOI: 10.1038/s41467-020-19308-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
The formation of vascular tubes is driven by extensive changes in endothelial cell (EC) shape. Here, we have identified a role of the actin-binding protein, Marcksl1, in modulating the mechanical properties of EC cortex to regulate cell shape and vessel structure during angiogenesis. Increasing and depleting Marcksl1 expression level in vivo results in an increase and decrease, respectively, in EC size and the diameter of microvessels. Furthermore, endothelial overexpression of Marcksl1 induces ectopic blebbing on both apical and basal membranes, during and after lumen formation, that is suppressed by reduced blood flow. High resolution imaging reveals that Marcksl1 promotes the formation of linear actin bundles and decreases actin density at the EC cortex. Our findings demonstrate that a balanced network of linear and branched actin at the EC cortex is essential in conferring cortical integrity to resist the deforming forces of blood flow to regulate vessel structure. During lumen formation in blood vessels, endothelial cells become exposed to hemodynamic forces that induce membrane blebbing and changes in cell shape. Here, the authors show endothelial cells develop an actin-based protective mechanism in the cell cortex that prevents excessive blebbing to control cell shape and vessel diameter.
Collapse
|
23
|
Werner AC, Weckbach LT, Salvermoser M, Pitter B, Cao J, Maier-Begandt D, Forné I, Schnittler HJ, Walzog B, Montanez E. Coronin 1B Controls Endothelial Actin Dynamics at Cell-Cell Junctions and Is Required for Endothelial Network Assembly. Front Cell Dev Biol 2020; 8:708. [PMID: 32850828 PMCID: PMC7411154 DOI: 10.3389/fcell.2020.00708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Development and homeostasis of blood vessels critically depend on the regulation of endothelial cell–cell junctions. VE-cadherin (VEcad)-based cell–cell junctions are connected to the actin cytoskeleton and regulated by actin-binding proteins. Coronin 1B (Coro1B) is an actin binding protein that controls actin networks at classical lamellipodia. The role of Coro1B in endothelial cells (ECs) is not fully understood and investigated in this study. Here, we demonstrate that Coro1B is a novel component and regulator of cell–cell junctions in ECs. Immunofluorescence studies show that Coro1B colocalizes with VEcad at cell–cell junctions in monolayers of ECs. Live-cell imaging reveals that Coro1B is recruited to, and operated at actin-driven membrane protrusions at cell–cell junctions. Coro1B is recruited to cell–cell junctions via a mechanism that requires the relaxation of the actomyosin cytoskeleton. By analyzing the Coro1B interactome, we identify integrin-linked kinase (ILK) as new Coro1B-associated protein. Coro1B colocalizes with α-parvin, an interactor of ILK, at the leading edge of lamellipodia protrusions. Functional experiments reveal that depletion of Coro1B causes defects in the actin cytoskeleton and cell–cell junctions. Finally, in matrigel tube network assays, depletion of Coro1B results in reduced network complexity, tube number and tube length. Together, our findings point toward a critical role for Coro1B in the dynamic remodeling of endothelial cell–cell junctions and the assembly of endothelial networks.
Collapse
Affiliation(s)
- Ann-Cathrin Werner
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ludwig T Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Medizinische Klinik I, Klinikum Großhadern, Munich, Germany
| | - Melanie Salvermoser
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Bettina Pitter
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center, LMU Munich, Munich, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eloi Montanez
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and IDIBELL, Barcelona, Spain
| |
Collapse
|
24
|
The Arp2/3 complex and the formin, Diaphanous, are both required to regulate the size of germline ring canals in the developing egg chamber. Dev Biol 2020; 461:75-85. [PMID: 31945342 DOI: 10.1016/j.ydbio.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/30/2023]
Abstract
Intercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and growth of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold growth that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and growth. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and growth throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain stability. Our data suggest that nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.
Collapse
|
25
|
Yanakieva I, Erzberger A, Matejčić M, Modes CD, Norden C. Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. J Cell Biol 2019; 218:3272-3289. [PMID: 31420451 PMCID: PMC6781452 DOI: 10.1083/jcb.201901077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
Using quantitative live imaging in the developing zebrafish embryo, Yanakieva et al. show that distinct actin-dependent mechanisms position nuclei in neuroepithelia of different morphology. In curved neuroepithelia, a novel formin-dependent mechanism is discovered for which the authors propose a proof-of-principle theoretical model. Correct nuclear position is crucial for cellular function and tissue development. Depending on cell context, however, the cytoskeletal elements responsible for nuclear positioning vary. While these cytoskeletal mechanisms have been intensely studied in single cells, how nuclear positioning is linked to tissue morphology is less clear. Here, we compare apical nuclear positioning in zebrafish neuroepithelia. We find that kinetics and actin-dependent mechanisms of nuclear positioning vary in tissues of different morphology. In straight neuroepithelia, nuclear positioning is controlled by Rho-ROCK–dependent myosin contractility. In contrast, in basally constricted neuroepithelia, a novel formin-dependent pushing mechanism is found for which we propose a proof-of-principle force generation theory. Overall, our data suggest that correct nuclear positioning is ensured by the adaptability of the cytoskeleton to cell and tissue shape. This in turn leads to robust epithelial maturation across geometries. The conclusion that different nuclear positioning mechanisms are favored in tissues of different morphology highlights the importance of developmental context for the execution of intracellular processes.
Collapse
Affiliation(s)
- Iskra Yanakieva
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anna Erzberger
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marija Matejčić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Center for Systems Biology, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
26
|
Sulistomo HW, Nemoto T, Yanagita T, Takeya R. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction. J Biol Chem 2018; 294:2924-2934. [PMID: 30573686 DOI: 10.1074/jbc.ra118.005471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Neural tube closure requires apical constriction during which contraction of the apical F-actin network forces the cell into a wedged shape, facilitating the folding of the neural plate into a tube. However, how F-actin assembly at the apical surface is regulated in mammalian neurulation remains largely unknown. We report here that formin homology 2 domain-containing 3 (Fhod3), a formin protein that mediates F-actin assembly, is essential for cranial neural tube closure in mouse embryos. We found that Fhod3 is expressed in the lateral neural plate but not in the floor region of the closing neural plate at the hindbrain. Consistently, in Fhod3-null embryos, neural plate bending at the midline occurred normally, but lateral plates seemed floppy and failed to flex dorsomedially. Because the apical accumulation of F-actin and constriction were impaired specifically at the lateral plates in Fhod3-null embryos, we concluded that Fhod3-mediated actin assembly contributes to lateral plate-specific apical constriction to advance closure. Intriguingly, Fhod3 expression at the hindbrain was restricted to neuromeric segments called rhombomeres. The rhombomere-specific accumulation of apical F-actin induced by the rhombomere-restricted expression of Fhod3 was responsible for the outward bulging of rhombomeres involving apical constriction along the anteroposterior axis, as rhombomeric bulging was less prominent in Fhod3-null embryos than in the wild type. Fhod3 thus plays a crucial role in the morphological changes associated with neural tube closure at the hindbrain by mediating apical constriction not only in the mediolateral but also in the anteroposterior direction, thereby contributing to tube closure and rhombomere segmentation, respectively.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Takayuki Nemoto
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| | - Toshihiko Yanagita
- the Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ryu Takeya
- From the Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan and
| |
Collapse
|
27
|
Angulo-Urarte A, Casado P, Castillo SD, Kobialka P, Kotini MP, Figueiredo AM, Castel P, Rajeeve V, Milà-Guasch M, Millan J, Wiesner C, Serra H, Muixi L, Casanovas O, Viñals F, Affolter M, Gerhardt H, Huveneers S, Belting HG, Cutillas PR, Graupera M. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat Commun 2018; 9:4826. [PMID: 30446640 PMCID: PMC6240100 DOI: 10.1038/s41467-018-07172-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement. Angiogenesis requires dynamic endothelial rearrangements and relative position changes within the vascular tubes. Here the authors show that a PI3K/NUAK1/MYPT1/MLCP pathway regulates actomyosin contractility in endothelial cells and cellular rearrangement during vascular patterning.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandra D Castillo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Piotr Kobialka
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana M Figueiredo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Milà-Guasch
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Jaime Millan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Calle Nicolás Cabrera, 28049, Madrid, Spain
| | - Cora Wiesner
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Helena Serra
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Muixi
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain.,Departament de Ciències Fisiològiques II, Universitat de Barcelona, Carrer de la Feixa Llarga, 08907, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Holger Gerhardt
- Max-Delbrueck Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.,The German Center for Cardiovascular Research (DZHK), Oudenarder Str. 16, 13347, Berlin, Germany.,The Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mariona Graupera
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain.
| |
Collapse
|
28
|
Szymborska A, Gerhardt H. Hold Me, but Not Too Tight-Endothelial Cell-Cell Junctions in Angiogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029223. [PMID: 28851748 DOI: 10.1101/cshperspect.a029223] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial cell-cell junctions must perform seemingly incompatible tasks during vascular development-providing stable connections that prevent leakage, while allowing dynamic cellular rearrangements during sprouting, anastomosis, lumen formation, and functional remodeling of the vascular network. This review aims to highlight recent insights into the molecular mechanisms governing endothelial cell-cell adhesion in the context of vascular development.
Collapse
Affiliation(s)
- Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.,Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium.,DZHK (German Centre for Cardiovascular Research), partner site Berlin.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
29
|
Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S, Guichard B, Lenz M, Romet-Lemonne G, Jegou A. Modulation of formin processivity by profilin and mechanical tension. eLife 2018; 7:34176. [PMID: 29799413 PMCID: PMC5969902 DOI: 10.7554/elife.34176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
Collapse
Affiliation(s)
- Luyan Cao
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Mikael Kerleau
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Emiko L Suzuki
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Sandy Jouet
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
30
|
LeCorgne H, Tudosie AM, Lavik K, Su R, Becker KN, Moore S, Walia Y, Wisner A, Koehler D, Alberts AS, Williams FE, Eisenmann KM. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish. Front Pharmacol 2018; 9:340. [PMID: 29692731 PMCID: PMC5902741 DOI: 10.3389/fphar.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.
Collapse
Affiliation(s)
- Hunter LeCorgne
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Andrew M Tudosie
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kari Lavik
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Robin Su
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn N Becker
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Sara Moore
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Yashna Walia
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Daniel Koehler
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Arthur S Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| |
Collapse
|
31
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
32
|
Rho SS, Ando K, Fukuhara S. Dynamic Regulation of Vascular Permeability by Vascular Endothelial Cadherin-Mediated Endothelial Cell-Cell Junctions. J NIPPON MED SCH 2018; 84:148-159. [PMID: 28978894 DOI: 10.1272/jnms.84.148] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells lining blood vessels regulate vascular barrier function, which controls the passage of plasma proteins and circulating cells across the endothelium. In most normal adult tissues, endothelial cells preserve basal vascular permeability at a low level, while they increase permeability in response to inflammation. Therefore, vascular permeability is tightly controlled by a number of extracellular stimuli and mediators to maintain tissue homeostasis. Accordingly, impaired regulation of endothelial permeability causes various diseases, including chronic inflammation, asthma, edema, sepsis, acute respiratory distress syndrome, anaphylaxis, tumor angiogenesis, and diabetic retinopathy. Vascular endothelial (VE)-cadherin, a member of the classical cadherin superfamily, is a component of cell-to-cell adherens junctions in endothelial cells and plays an important role in regulating vascular permeability. VE-cadherin mediates intercellular adhesion through trans-interactions formed by its extracellular domain, while its cytoplasmic domain is anchored to the actin cytoskeleton via α- and β-catenins, leading to stabilization of VE-cadherin at cell-cell junctions. VE-cadherin-mediated cell adhesions are dynamically, but tightly, controlled by mechanisms that involve protein phosphorylation and reorganization of the actomyosin cytoskeleton. Phosphorylation of VE-cadherin, and its associated-catenins, results in dissociation of the VE-cadherin/catenin complex and internalization of VE-cadherin, leading to increased vascular permeability. Furthermore, reorganization of the actomyosin cytoskeleton by Rap1, a small GTPase that belongs to the Ras subfamily, and Rho family small GTPases, regulates VE-cadherin-mediated cell adhesions to control vascular permeability. In this review, we describe recent progress in understanding the signaling mechanisms that enable dynamic regulation of VE-cadherin adhesions and vascular permeability. In addition, we discuss the possibility of novel therapeutic approaches targeting the signaling pathways controlling VE-cadherin-mediated cell adhesion in diseases associated with vascular hyper-permeability.
Collapse
Affiliation(s)
- Seung-Sik Rho
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital
| |
Collapse
|
33
|
McRae M, LaFratta LM, Nguyen BM, Paris JJ, Hauser KF, Conway DE. Characterization of cell-cell junction changes associated with the formation of a strong endothelial barrier. Tissue Barriers 2018; 6:e1405774. [PMID: 29388870 DOI: 10.1080/21688370.2017.1405774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A principal function of endothelial cells is the formation of a barrier between the blood and tissues. This barrier arises from the physical connections at cell-cell junctions, which includes cytoskeletal tight junction and adherens junction proteins. Methods that alter barrier function must therefore affect these cell-cell connections. The blood brain barrier (BBB) represents perhaps the most selective endothelial barrier, which arises from endothelial cell interactions with astrocytes and pericytes. Even in non-central nervous system (CNS) endothelial cells, barrier properties can be enhanced, mimicking the BBB, through induction of intercellular junctions, by either direct co-culture with astrocytes, supplementation with astrocyte conditioned medium (ACM) and/or pharmacologic enhancement of cAMP. To understand how cell-cell junctions change during endothelial barrier enhancement, we examined the effects of ACM and/or cAMP donors added to standard media on human umbilical vein endothelial cells (HUVEC). HUVEC cultured with cAMP-elevating agents had the most enhanced barrier function as measured by Electric Cell-substrate Impedance Sensing (ECIS®), a real-time, label-free, impedance based method of studying cell barrier properties. However, subtle differences in actin and cell-cell junction proteins were seen across all four culture conditions. cAMP-elevating agents also triggered the redistribution of ZO-1 and VE-cadherin to cell-cell junctions, and intensified the actin microfilament network at the cell cortex. Using a VE-cadherin FRET-force sensor, we observed a decrease in VE-cadherin force in HUVEC cultured with ACM with cAMP donors. Our data indicate cAMP elevation induces both junctional strengthening and reduced VE-cadherin forces. Additionally, treatment with an inhibitor of formin, which reduced actin stress fibers, enhanced barrier function. These data suggest that barrier function is modulated both through the trafficking of proteins to cell-cell junctions, and through the modulation and a relaxation of mechanical force through adherens junctions as intercellular junctional complexes become established.
Collapse
Affiliation(s)
- MaryPeace McRae
- a Department of Pharmacotherapy and Outcomes Science , School of Pharmacy, Virginia Commonwealth University , Richmond , VA , USA
| | - Lindsay M LaFratta
- b Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin M Nguyen
- b Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , VA , USA
| | - Jason J Paris
- c Department of BioMolecular Sciences , School of Pharmacy, University of Mississippi, University , MS , USA
| | - Kurt F Hauser
- d Department of Pharmacology , Virginia Commonwealth University , Richmond , VA , USA
| | - Daniel E Conway
- b Department of Biomedical Engineering , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
34
|
Molina-Ortiz P, Orban T, Martin M, Habets A, Dequiedt F, Schurmans S. Rasa3 controls turnover of endothelial cell adhesion and vascular lumen integrity by a Rap1-dependent mechanism. PLoS Genet 2018; 14:e1007195. [PMID: 29381707 PMCID: PMC5806903 DOI: 10.1371/journal.pgen.1007195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/09/2018] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
Rasa3 is a GTPase activating protein of the GAP1 family which targets R-Ras and Rap1. Although catalytic inactivation or deletion of Rasa3 in mice leads to severe hemorrhages and embryonic lethality, the biological function and cellular location of Rasa3 underlying these defects remains unknown. Here, using a combination of loss of function studies in mouse and zebrafish as well as in vitro cell biology approaches, we identify a key role for Rasa3 in endothelial cells and vascular lumen integrity. Specific ablation of Rasa3 in the mouse endothelium, but not in megakaryocytes and platelets, lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out mice. Reduced plexus/sprouts formation and vascular lumenization defects were observed when Rasa3 was specifically inactivated in mouse endothelial cells at the postnatal or adult stages. Similar results were obtained in zebrafish after decreasing Rasa3 expression. In vitro, depletion of Rasa3 in cultured endothelial cells increased β1 integrin activation and cell adhesion to extracellular matrix components, decreased cell migration and blocked tubulogenesis. During migration, these Rasa3-depleted cells exhibited larger and more mature adhesions resulting from a perturbed dynamics of adhesion assembly and disassembly which significantly increased their life time. These defects were due to a hyperactivation of the Rap1 GTPase and blockade of FAK/Src signaling. Finally, Rasa3-depleted cells showed reduced turnover of VE-cadherin-based adhesions resulting in more stable endothelial cell-cell adhesion and decreased endothelial permeability. Altogether, our results indicate that Rasa3 is a critical regulator of Rap1 in endothelial cells which controls adhesions properties and vascular lumen integrity; its specific endothelial cell inactivation results in occluded blood vessels, hemorrhages and early embryonic death in mouse, mimicking thus the Rasa3-/- mouse phenotype. Because it delivers oxygen and nutriments to every tissue in the body, the vascular system is essential to vertebrate life. Blood vessels consist of a layer of interconnected endothelial cells delineating a luminal space through which blood flows. Formation of vascular lumens is a critical step in vascular development, as vessels should allow unrestricted blood flow while absorbing the pressure from cardiac activity yet retaining flexibility to adapt to homeostatic needs. Our current knowledge of how lumens are established and maintained is still modest and has come essentially from in vitro systems. Here, using a combination of loss of function studies in mouse and zebrafish and in vitro cell biology approaches, we show that Rasa3, a GTPase activating protein of the GAP1 family, controls Rap1 activation, endothelial cell adhesion and migration as well as formation of vascular lumens. We also found that inactivation of Rasa3 specifically in mouse endothelial cells lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out mice.
Collapse
Affiliation(s)
- Patricia Molina-Ortiz
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
| | - Tanguy Orban
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Maud Martin
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Audrey Habets
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Franck Dequiedt
- Laboratory of Protein signaling and Interactions Signalisation, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
35
|
Zilberman Y, Abrams J, Anderson DC, Nance J. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J Cell Biol 2017; 216:3729-3744. [PMID: 28903999 PMCID: PMC5674880 DOI: 10.1083/jcb.201611061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Joshua Abrams
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Dorian C Anderson
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
36
|
Sauteur L, Affolter M, Belting HG. Distinct and redundant functions of Esama and VE-cadherin during vascular morphogenesis. Development 2017; 144:1554-1565. [PMID: 28264837 DOI: 10.1242/dev.140038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
Abstract
The cardiovascular system forms during early embryogenesis and adapts to embryonic growth by sprouting angiogenesis and vascular remodeling. These processes require fine-tuning of cell-cell adhesion to maintain and re-establish endothelial contacts, while allowing cell motility. We have compared the contribution of two endothelial cell-specific adhesion proteins, VE-cadherin (VE-cad/Cdh5) and Esama (endothelial cell-selective adhesion molecule a), during angiogenic sprouting and blood vessel fusion (anastomosis) in the zebrafish embryo by genetic analyses. Different combinations of mutant alleles can be placed into a phenotypic series with increasing defects in filopodial contact formation. Contact formation in esama mutants appears similar to wild type, whereas esama-/-; ve-cad+/- and ve-cad single mutants exhibit intermediate phenotypes. The lack of both proteins interrupts filopodial interaction completely. Furthermore, double mutants do not form a stable endothelial monolayer, and display intrajunctional gaps, dislocalization of Zo-1 and defects in apical-basal polarization. In summary, VE-cadherin and Esama have distinct and redundant functions during blood vessel morphogenesis, and both adhesion proteins are central to endothelial cell recognition during anastomosis.
Collapse
Affiliation(s)
- Loïc Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
37
|
Wu Y, Shen Z, Wang K, Ha Y, Lei H, Jia Y, Ding R, Wu D, Gan S, Li R, Luo B, Jiang H, Jie W. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF-β1-induced epithelia-to-mesenchymal transition. Sci Rep 2017; 7:42507. [PMID: 28198387 PMCID: PMC5309845 DOI: 10.1038/srep42507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
Formin-like 3 (FMNL3) plays a crucial role in cytoskeletal mediation and is potentially a biomarker for cell migration; however, its role in cancer metastasis remains unknown. In this study, we found elevated FMNL3 protein expression in clinical nasopharyngeal carcinoma (NPC) tissues. FMNL3 expression positively correlated to the clinical stage, T (tumour), N (lymph node metastasis) and M (distant metastasis) classification of NPC patients. Moreover, FMNL3 positively correlated to Vimentin expression and negatively correlated to E-cadherin expression in clinical NPC samples. In vitro experiments showed that FMNL3 expression was inversely related to NPC cell differentiation status. Overexpression of FMNL3 led to epithelial-to-mesenchymal transition (EMT) in well differentiated CNE1 cells. TGF-β1-treated poorly differentiated CNE2 cells showed changes in EMT accompanied by enhanced FMNL3 expression and cell migration. On the contrary, knockdown of FMNL3 partially attenuated the TGF-β1-promoted CNE2 cell migration, together with associated changes in EMT markers. Finally, knockdown of FMNL3 also weakened EMT in tumours in xenographs. Our study indicates for the first time that TGF-β1/FMNL3 signalling may be a novel mechanism mediating EMT in NPC, which is closely associated with NPC metastasis.
Collapse
Affiliation(s)
- Yanxia Wu
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhihua Shen
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Keke Wang
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yanping Ha
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Hong Lei
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yanan Jia
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, China
| | - Ranran Ding
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongmei Wu
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Botao Luo
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Hanguo Jiang
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wei Jie
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
38
|
Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes. PLoS One 2017; 12:e0172227. [PMID: 28192479 PMCID: PMC5305201 DOI: 10.1371/journal.pone.0172227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/01/2017] [Indexed: 01/13/2023] Open
Abstract
Tmem88a is a transmembrane protein that is thought to be a negative regulator of the Wnt signalling pathway. Several groups have used antisense morpholino oligonucleotides in an effort to characterise the role of tmem88a in zebrafish cardiovascular development, but they have not obtained consistent results. Here, we generate an 8 bp deletion in the coding region of the tmem88a locus using TALENs, and we have gone on to establish a viable homozygous tmem88aΔ8 mutant line. Although tmem88aΔ8 mutants have reduced expression of some key haematopoietic genes, differentiation of erythrocytes and neutrophils is unaffected, contradicting our previous study using antisense morpholino oligonucleotides. We find that expression of the tmem88a paralogue tmem88b is not significantly changed in tmem88aΔ8 mutants and injection of the tmem88a splice-blocking morpholino oligonucleotide into tmem88aΔ8 mutants recapitulates the reduction of erythrocytes observed in morphants using o-Dianisidine. This suggests that there is a partial, but inessential, requirement for tmem88a during haematopoiesis and that morpholino injection exacerbates this phenotype in tmem88a morpholino knockdown embryos.
Collapse
|
39
|
Sedzinski J, Hannezo E, Tu F, Biro M, Wallingford JB. RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells. J Cell Sci 2017; 130:420-428. [PMID: 28089989 PMCID: PMC5278671 DOI: 10.1242/jcs.194704] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation.
Collapse
Affiliation(s)
- Jakub Sedzinski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag 6, Newtown, New South Wales 2042, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
Evans IM, Kennedy SA, Paliashvili K, Santra T, Yamaji M, Lovering RC, Britton G, Frankel P, Kolch W, Zachary IC. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis. Mol Cell Proteomics 2016; 16:168-180. [PMID: 28007913 PMCID: PMC5294206 DOI: 10.1074/mcp.m116.064428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement.
Collapse
Affiliation(s)
- Ian M Evans
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Susan A Kennedy
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ketevan Paliashvili
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Tapesh Santra
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maiko Yamaji
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Ruth C Lovering
- **Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Gary Britton
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Paul Frankel
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Walter Kolch
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.,¶Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,‖School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian C Zachary
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom;
| |
Collapse
|
41
|
Hayer A, Shao L, Chung M, Joubert LM, Yang HW, Tsai FC, Bisaria A, Betzig E, Meyer T. Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells. Nat Cell Biol 2016; 18:1311-1323. [PMID: 27842057 DOI: 10.1038/ncb3438] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
The development and maintenance of tissues requires collective cell movement, during which neighbouring cells coordinate the polarity of their migration machineries. Here, we ask how polarity signals are transmitted from one cell to another across symmetrical cadherin junctions, during collective migration. We demonstrate that collectively migrating endothelial cells have polarized VE-cadherin-rich membrane protrusions, 'cadherin fingers', which leading cells extend from their rear and follower cells engulf at their front, thereby generating opposite membrane curvatures and asymmetric recruitment of curvature-sensing proteins. In follower cells, engulfment of cadherin fingers occurs along with the formation of a lamellipodia-like zone with low actomyosin contractility, and requires VE-cadherin/catenin complexes and Arp2/3-driven actin polymerization. Lateral accumulation of cadherin fingers in follower cells precedes turning, and increased actomyosin contractility can initiate cadherin finger extension as well as engulfment by a neighbouring cell, to promote follower behaviour. We propose that cadherin fingers serve as guidance cues that direct collective cell migration.
Collapse
Affiliation(s)
- Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lin Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hee Won Yang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Feng-Chiao Tsai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anjali Bisaria
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
42
|
Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 2016; 74:279-292. [PMID: 27506620 PMCID: PMC5219012 DOI: 10.1007/s00018-016-2325-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell-cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell-cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell-cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell-cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.
Collapse
|
43
|
Rao MV, Zaidel-Bar R. Formin-mediated actin polymerization at cell-cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair. Mol Biol Cell 2016; 27:2844-56. [PMID: 27440924 PMCID: PMC5025271 DOI: 10.1091/mbc.e16-06-0429] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 02/05/2023] Open
Abstract
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. Fmnl3 and mDia1 cooperate in stabilizing E-cadherin at cell–cell junctions and facilitate strong cell adhesion and monolayer cohesion during collective cell migration. Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.
Collapse
Affiliation(s)
- Megha Vaman Rao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
44
|
Sundaram MV, Cohen JD. Time to make the doughnuts: Building and shaping seamless tubes. Semin Cell Dev Biol 2016; 67:123-131. [PMID: 27178486 DOI: 10.1016/j.semcdb.2016.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jennifer D Cohen
- Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Rengarajan M, Hayer A, Theriot JA. Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes. PLoS Pathog 2016; 12:e1005603. [PMID: 27152864 PMCID: PMC4859537 DOI: 10.1371/journal.ppat.1005603] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 04/06/2016] [Indexed: 01/11/2023] Open
Abstract
Vascular endothelial cells act as gatekeepers that protect underlying tissue from blood-borne toxins and pathogens. Nevertheless, endothelial cells are able to internalize large fibrin clots and apoptotic debris from the bloodstream, although the precise mechanism of such phagocytosis-like uptake is unknown. We show that cultured primary human endothelial cells (HUVEC) internalize both pathogenic and non-pathogenic Listeria bacteria comparably, in a phagocytosis-like process. In contrast with previously studied host cell types, including intestinal epithelial cells and hepatocytes, we find that endothelial internalization of Listeria is independent of all known pathogenic bacterial surface proteins. Consequently, we exploited the internalization and intracellular replication of L. monocytogenes to identify distinct host cell factors that regulate phagocytosis-like uptake in HUVEC. Using siRNA screening and subsequent genetic and pharmacologic perturbations, we determined that endothelial infectivity was modulated by cytoskeletal proteins that normally modulate global architectural changes, including phosphoinositide-3-kinase, focal adhesions, and the small GTPase Rho. We found that Rho kinase (ROCK) is acutely necessary for adhesion of Listeria to endothelial cells, whereas the actin-nucleating formins FHOD1 and FMNL3 specifically regulate internalization of bacteria as well as inert beads, demonstrating that formins regulate endothelial phagocytosis-like uptake independent of the specific cargo. Finally, we found that neither ROCK nor formins were required for macrophage phagocytosis of L. monocytogenes, suggesting that endothelial cells have distinct requirements for bacterial internalization from those of classical professional phagocytes. Our results identify a novel pathway for L. monocytogenes uptake by human host cells, indicating that this wily pathogen can invade a variety of tissues by using a surprisingly diverse suite of distinct uptake mechanisms that operate differentially in different host cell types.
Collapse
Affiliation(s)
- Michelle Rengarajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Ando K, Fukuhara S, Izumi N, Nakajima H, Fukui H, Kelsh RN, Mochizuki N. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 2016; 143:1328-39. [PMID: 26952986 PMCID: PMC4852519 DOI: 10.1242/dev.132654] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022]
Abstract
Mural cells (MCs) consisting of vascular smooth muscle cells and pericytes cover the endothelial cells (ECs) to regulate vascular stability and homeostasis. Here, we clarified the mechanism by which MCs develop and cover ECs by generating transgenic zebrafish lines that allow live imaging of MCs and by lineage tracing in vivo To cover cranial vessels, MCs derived from either neural crest cells or mesoderm emerged around the preformed EC tubes, proliferated and migrated along EC tubes. During their migration, the MCs moved forward by extending their processes along the inter-EC junctions, suggesting a role for inter-EC junctions as a scaffold for MC migration. In the trunk vasculature, MCs derived from mesoderm covered the ventral side of the dorsal aorta (DA), but not the posterior cardinal vein. Furthermore, the MCs migrating from the DA or emerging around intersegmental vessels (ISVs) preferentially covered arterial ISVs rather than venous ISVs, indicating that MCs mostly cover arteries during vascular development. Thus, live imaging and lineage tracing enabled us to clarify precisely how MCs cover the EC tubes and to identify the origins of MCs.
Collapse
Affiliation(s)
- Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Nanae Izumi
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Robert N Kelsh
- Centre for Regenerative Medicine, Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan AMED-CREST, Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Suita, Osaka 565-8565, Japan
| |
Collapse
|
47
|
Gebala V, Collins R, Geudens I, Phng LK, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 2016; 18:443-50. [PMID: 26928868 PMCID: PMC6485462 DOI: 10.1038/ncb3320] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/27/2016] [Indexed: 12/18/2022]
Abstract
How vascular tubes build, maintain and adapt continuously perfused lumens to meet local metabolic needs remains poorly understood. Recent studies showed that blood flow itself plays a critical role in the remodelling of vascular networks, and suggested it is also required for the lumenization of new vascular connections. However, it is still unknown how haemodynamic forces contribute to the formation of new vascular lumens during blood vessel morphogenesis. Here we report that blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing spherical deformations of the apical membrane of endothelial cells, in a process that we have termed inverse blebbing. We show that endothelial cells react to these membrane intrusions by local and transient recruitment and contraction of actomyosin, and that this mechanism is required for single, unidirectional lumen expansion in angiogenic sprouts. Our work identifies inverse membrane blebbing as a cellular response to high external pressure. We show that in the case of blood vessels such membrane dynamics can drive local cell shape changes required for global tissue morphogenesis, shedding light on a pressure-driven mechanism of lumen formation in vertebrates.
Collapse
Affiliation(s)
- Véronique Gebala
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.,Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Russell Collins
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ilse Geudens
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Li-Kun Phng
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.,Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
48
|
Agarwal AK, Tunison K, Dalal JS, Yen CLE, Farese RV, Horton JD, Garg A. Mogat1 deletion does not ameliorate hepatic steatosis in lipodystrophic (Agpat2-/-) or obese (ob/ob) mice. J Lipid Res 2016; 57:616-30. [PMID: 26880786 DOI: 10.1194/jlr.m065896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/31/2022] Open
Abstract
Reducing triacylglycerol (TAG) in the liver continues to pose a challenge in states of nonalcoholic hepatic steatosis. MonoacylglycerolO-acyltransferase (MOGAT) enzymes convert monoacylglycerol (MAG) to diacylglycerol, a precursor for TAG synthesis, and are involved in a major pathway of TAG synthesis in selected tissues, such as small intestine. MOGAT1 possesses MGAT activity in in vitro assays, but its physiological function in TAG metabolism is unknown. Recent studies suggest a role for MOGAT1 in hepatic steatosis in lipodystrophic [1-acylglycerol-3-phosphateO-acyltransferase (Agpat)2(-/-)] and obese (ob/ob) mice. To test this, we deletedMogat1in theAgpat2(-/-)andob/obgenetic background to generateMogat1(-/-);Agpat2(-/-)andMogat1(-/-);ob/obdouble knockout (DKO) mice. Here we report that, despite the absence ofMogat1in either DKO mouse model, we did not find any decrease in liver TAG by 16 weeks of age. Additionally, there were no measureable changes in plasma glucose (diabetes) and insulin resistance. Our data indicate a minimal role, if any, of MOGAT1 in liver TAG synthesis, and that TAG synthesis in steatosis associated with lipodystrophy and obesity is independent of MOGAT1. Our findings suggest that MOGAT1 likely has an alternative function in vivo.
Collapse
Affiliation(s)
- Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katie Tunison
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jasbir S Dalal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chi-Liang Eric Yen
- Gladstone Institute of Cardiovascular Disease San Francisco, San Francisco, CA 94158
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease San Francisco, San Francisco, CA 94158
| | - Jay D Horton
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390 Division of Gastroenterology and Departments of Molecular Genetics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
49
|
Formins at the Junction. Trends Biochem Sci 2015; 41:148-159. [PMID: 26732401 DOI: 10.1016/j.tibs.2015.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.
Collapse
|
50
|
Li J, Yue Y, Zhao Q. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos. Zebrafish 2015; 13:9-18. [PMID: 26671342 DOI: 10.1089/zeb.2015.1117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.
Collapse
Affiliation(s)
- Junbo Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University , Nanjing, China
| | - Yunyun Yue
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University , Nanjing, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University , Nanjing, China
| |
Collapse
|