1
|
Sakamoto R, Murrell MP. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat Commun 2024; 15:9731. [PMID: 39523366 PMCID: PMC11551154 DOI: 10.1038/s41467-024-53228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal dynamics of forces in cells coordinate essential behaviors like division, polarization, and migration. While intracellular signaling initiates contractile ring assembly during cell division, how mechanical forces coordinate division and their energetic costs remain unclear. Here, we develop an in vitro model where myosin-induced stress drives division-like shape changes in giant unilamellar vesicles (GUVs, liposomes). Myosin activity is controlled by light patterns globally or locally at the equator. Global activation causes slow, shallow cleavage furrows due to a tug-of-war between the equatorial and polar forces. By contrast, local activation leads to faster, deeper, and symmetric division as equatorial forces dominate. Dissociating the actin cortex at the poles is crucial for inducing significant furrowing. During furrowing, actomyosin flows align actin filaments parallel to the division plane, forming a contractile ring-like structure. Mechanical power is not greatest during contraction, but is maximized just before furrowing. This study reveals the quantitative relationship between force patterning and mechanical energy during division-like shape changes, providing insights into cell division mechanics.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
2
|
Sakamoto R, Murrell MP. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Commun Biol 2024; 7:840. [PMID: 38987288 PMCID: PMC11236970 DOI: 10.1038/s42003-024-06528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound "no-slip boundary" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated "slip boundary" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
3
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Blanchard GB, Scarpa E, Muresan L, Sanson B. Mechanical stress combines with planar polarised patterning during metaphase to orient embryonic epithelial cell divisions. Development 2024; 151:dev202862. [PMID: 38639390 PMCID: PMC11165716 DOI: 10.1242/dev.202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
5
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565883. [PMID: 37986763 PMCID: PMC10659369 DOI: 10.1101/2023.11.06.565883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. While mechanisms have been established for individual cells' dynamic behaviors, mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a RhoGEF and RhoGAP pair whose relocalization from nucleus to cortex results in actomyosin waves in egg chambers. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly and RhoGAP recruitment by ~4 seconds. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | | | | | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
- Lead contact
| |
Collapse
|
7
|
Wang C, Ding J, Wei Q, Du S, Gong X, Chew TG. Mechanosensitive accumulation of non-muscle myosin IIB during mitosis requires its translocation activity. iScience 2023; 26:107773. [PMID: 37720093 PMCID: PMC10504539 DOI: 10.1016/j.isci.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/02/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Non-muscle myosin II (NMII) is a force-generating mechanosensitive enzyme that responds to mechanical forces. NMIIs mechanoaccumulate at the cell cortex in response to mechanical forces. It is essential for cells to mechanically adapt to the physical environment, failure of which results in mitotic defects when dividing in confined environment. Much less is known about how NMII mechanoaccumulation is regulated during mitosis. We show that mitotic cells respond to compressive stress by promoting accumulation of active RhoA at the cell cortex as in interphase cells. RhoA mechanoresponse during mitosis activates and stabilizes NMIIB via ROCK signaling, leading to NMIIB mechanoaccumulation at the cell cortex. Using disease-related myosin II mutations, we found that NMIIB mechanoaccumulation requires its motor activity that translocates actin filaments, but not just its actin-binding function. Thus, the motor activity coordinates structural movement and nucleotide state changes to fine-tune actin-binding affinity optimal for NMIIs to generate and respond to forces.
Collapse
Affiliation(s)
- Chao Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Jingjing Ding
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Qiaodong Wei
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukang Du
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xiaobo Gong
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Gang Chew
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| |
Collapse
|
8
|
Cazzagon G, Roubinet C, Baum B. Polarized SCAR and the Arp2/3 complex regulate apical cortical remodeling in asymmetrically dividing neuroblasts. iScience 2023; 26:107129. [PMID: 37434695 PMCID: PMC10331462 DOI: 10.1016/j.isci.2023.107129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023] Open
Abstract
Although the formin-nucleated actomyosin cortex has been shown to drive the changes in cell shape that accompany animal cell division in both symmetric and asymmetric cell divisions, the mitotic role of cortical Arp2/3-nucleated actin networks remain unclear. Here using asymmetrically dividing Drosophila neural stem cells as a model system, we identify a pool of membrane protrusions that form at the apical cortex of neuroblasts as they enter mitosis. Strikingly, these apically localized protrusions are enriched in SCAR, and depend on SCAR and Arp2/3 complexes for their formation. Because compromising SCAR or the Arp2/3 complex delays the apical clearance of Myosin II at the onset of anaphase and induces cortical instability at cytokinesis, these data point to a role for an apical branched actin filament network in fine-tuning the actomyosin cortex to enable the precise control of cell shape changes during an asymmetric cell division.
Collapse
Affiliation(s)
- Giulia Cazzagon
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Chantal Roubinet
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Li D, Yang Y, Lv C, Wang Y, Chao X, Huang J, Singh SP, Yuan Y, Zhang C, Lou J, Gao P, Huang S, Li B, Cai H. GxcM-Fbp17/RacC-WASP signaling regulates polarized cortex assembly in migrating cells via Arp2/3. J Cell Biol 2023; 222:e202208151. [PMID: 37010470 PMCID: PMC10072221 DOI: 10.1083/jcb.202208151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chenglin Lv
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Ye Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengyu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
11
|
Azuma Y, Okada H, Onami S. Systematic analysis of cell morphodynamics in C. elegans early embryogenesis. FRONTIERS IN BIOINFORMATICS 2023; 3:1082531. [PMID: 37026092 PMCID: PMC10070942 DOI: 10.3389/fbinf.2023.1082531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
The invariant cell lineage of Caenorhabditis elegans allows unambiguous assignment of the identity for each cell, which offers a unique opportunity to study developmental dynamics such as the timing of cell division, dynamics of gene expression, and cell fate decisions at single-cell resolution. However, little is known about cell morphodynamics, including the extent to which they are variable between individuals, mainly due to the lack of sufficient amount and quality of quantified data. In this study, we systematically quantified the cell morphodynamics in 52 C. elegans embryos from the two-cell stage to mid-gastrulation at the high spatiotemporal resolution, 0.5 μm thickness of optical sections, and 30-second intervals of recordings. Our data allowed systematic analyses of the morphological features. We analyzed sphericity dynamics and found a significant increase at the end of metaphase in every cell, indicating the universality of the mitotic cell rounding. Concomitant with the rounding, the volume also increased in most but not all cells, suggesting less universality of the mitotic swelling. Combining all features showed that cell morphodynamics was unique for each cell type. The cells before the onset of gastrulation could be distinguished from all the other cell types. Quantification of reproducibility in cell-cell contact revealed that variability in division timings and cell arrangements produced variability in contacts between the embryos. However, the area of such contacts occupied less than 5% of the total area, suggesting the high reproducibility of spatial occupancies and adjacency relationships of the cells. By comparing the morphodynamics of identical cells between the embryos, we observed diversity in the variability between cells and found it was determined by multiple factors, including cell lineage, cell generation, and cell-cell contact. We compared the variabilities of cell morphodynamics and cell-cell contacts with those in ascidian Phallusia mammillata embryos. The variabilities were larger in C. elegans, despite smaller differences in embryo size and number of cells at each developmental stage.
Collapse
|
12
|
Osswald M, Barros-Carvalho A, Carmo AM, Loyer N, Gracio PC, Sunkel CE, Homem CCF, Januschke J, Morais-de-Sá E. aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium. Curr Biol 2022; 32:4411-4427.e8. [PMID: 36113470 PMCID: PMC9632327 DOI: 10.1016/j.cub.2022.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.
Collapse
Affiliation(s)
- Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Claudio E Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
13
|
Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front Med 2022; 16:339-357. [PMID: 35759087 DOI: 10.1007/s11684-022-0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Collapse
|
14
|
Hosseini K, Trus P, Frenzel A, Werner C, Fischer-Friedrich E. Skin epithelial cells change their mechanics and proliferation upon snail-mediated EMT signalling. SOFT MATTER 2022; 18:2585-2596. [PMID: 35294513 DOI: 10.1039/d2sm00159d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Skin cancer is the most commonly occurring cancer in the USA and Germany, and the fourth most common cancer worldwide. Snail-dependent epithelial-mesenchymal transition (EMT) was shown to initiate and promote skin cancer. Previous studies could show that EMT changes actin cortex regulation and cellular mechanics in epithelial cells of diverse tissue origin. However, in spite of its potentially high significance in the context of skin cancer, the effect of EMT on cellular mechanics, mitotic rounding and proliferation has not been studied in skin epithelial cells so far. In this work, we show that TGF-β-induced partial EMT results in a transformation of the mechanical phenotype of skin epithelial cells in a cell-cycle dependent manner. Concomitantly, we looked at EMT-induced changes of cell proliferation. While EMT decreases proliferation in 2D culture, we observed an EMT-induced boost of cellular proliferation when culturing cells as mechanically confined aggregates of skin epithelial cells. This proliferation boost was accompanied by enhanced mitotic rounding and composition changes of the actin cortex. We give evidence that observed EMT-induced changes depend on the EMT-upregulated transcription factor snail. Overall, our findings indicate that EMT-induced changes of cellular mechanics might play a currently unappreciated role in EMT-induced promotion of skin tumor proliferation.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Palina Trus
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Faculty of Physics, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Hadjivasiliou Z, Hunter G. Talking to your neighbors across scales: Long-distance Notch signaling during patterning. Curr Top Dev Biol 2022; 150:299-334. [DOI: 10.1016/bs.ctdb.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Gupta VK, Nam S, Yim D, Camuglia J, Martin JL, Sanders EN, O'Brien LE, Martin AC, Kim T, Chaudhuri O. The nature of cell division forces in epithelial monolayers. J Cell Biol 2021; 220:212389. [PMID: 34132746 PMCID: PMC8240854 DOI: 10.1083/jcb.202011106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA
| | - Donghyun Yim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Jaclyn Camuglia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
17
|
Monster JL, Donker L, Vliem MJ, Win Z, Matthews HK, Cheah JS, Yamada S, de Rooij J, Baum B, Gloerich M. An asymmetric junctional mechanoresponse coordinates mitotic rounding with epithelial integrity. J Cell Biol 2021; 220:e202001042. [PMID: 33688935 PMCID: PMC7953256 DOI: 10.1083/jcb.202001042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelia are continuously self-renewed, but how epithelial integrity is maintained during the morphological changes that cells undergo in mitosis is not well understood. Here, we show that as epithelial cells round up when they enter mitosis, they exert tensile forces on neighboring cells. We find that mitotic cell-cell junctions withstand these tensile forces through the mechanosensitive recruitment of the actin-binding protein vinculin to cadherin-based adhesions. Surprisingly, vinculin that is recruited to mitotic junctions originates selectively from the neighbors of mitotic cells, resulting in an asymmetric composition of cadherin junctions. Inhibition of junctional vinculin recruitment in neighbors of mitotic cells results in junctional breakage and weakened epithelial barrier. Conversely, the absence of vinculin from the cadherin complex in mitotic cells is necessary to successfully undergo mitotic rounding. Our data thus identify an asymmetric mechanoresponse at cadherin adhesions during mitosis, which is essential to maintain epithelial integrity while at the same time enable the shape changes of mitotic cells.
Collapse
Affiliation(s)
- Jooske L. Monster
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Donker
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein J. Vliem
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zaw Win
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Helen K. Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Joleen S. Cheah
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Buzz Baum
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Dantas M, Lima JT, Ferreira JG. Nucleus-Cytoskeleton Crosstalk During Mitotic Entry. Front Cell Dev Biol 2021; 9:649899. [PMID: 33816500 PMCID: PMC8014196 DOI: 10.3389/fcell.2021.649899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
In preparation for mitosis, cells undergo extensive reorganization of the cytoskeleton and nucleus, so that chromosomes can be efficiently segregated into two daughter cells. Coordination of these cytoskeletal and nuclear events occurs through biochemical regulatory pathways, orchestrated by Cyclin-CDK activity. However, recent studies provide evidence that physical forces are also involved in the early steps of spindle assembly. Here, we will review how the crosstalk of physical forces and biochemical signals coordinates nuclear and cytoplasmic events during the G2-M transition, to ensure efficient spindle assembly and faithful chromosome segregation.
Collapse
Affiliation(s)
- Margarida Dantas
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,BiotechHealth Ph.D. Programme, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Joana T Lima
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Nunes V, Ferreira JG. From the cytoskeleton to the nucleus: An integrated view on early spindle assembly. Semin Cell Dev Biol 2021; 117:42-51. [PMID: 33726956 DOI: 10.1016/j.semcdb.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/01/2022]
Abstract
Accurate chromosome segregation requires a complete restructuring of cellular organization. Microtubules remodel to assemble a mitotic spindle and the actin cytoskeleton rearranges to form a stiff actomyosin cortex. These cytoplasmic events must be spatially and temporally coordinated with mitotic chromosome condensation and nuclear envelope permeabilization, in order to ensure mitotic timing and fidelity. Here, we discuss the main cytoskeletal and nuclear events that occur during mitotic entry in proliferating animal cells, focusing on their coordinated contribution for early mitotic spindle assembly. We will also explore recent progress in understanding their regulatory biochemical and mechanical pathways.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; BiotechHealth PhD Programe, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal.
| |
Collapse
|
20
|
Hatte G, Prigent C, Tassan JP. Adherens junctions are involved in polarized contractile ring formation in dividing epithelial cells of Xenopus laevis embryos. Exp Cell Res 2021; 402:112525. [PMID: 33662366 DOI: 10.1016/j.yexcr.2021.112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.
Collapse
Affiliation(s)
- Guillaume Hatte
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France
| | - Claude Prigent
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France; Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, 34293, Montpellier, France
| | - Jean-Pierre Tassan
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France.
| |
Collapse
|
21
|
Tavares L, Grácio P, Ramos R, Traquete R, Relvas JB, Pereira PS. The Pebble/Rho1/Anillin pathway controls polyploidization and axonal wrapping activity in the glial cells of the Drosophila eye. Dev Biol 2021; 473:90-96. [PMID: 33581137 DOI: 10.1016/j.ydbio.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
During development glial cell are crucially important for the establishment of neuronal networks. Proliferation and migration of glial cells can be modulated by neurons, and in turn glial cells can differentiate to assume key roles such as axonal wrapping and targeting. To explore the roles of actin cytoskeletal rearrangements in glial cells, we studied the function of Rho1 in Drosophila developing visual system. We show that the Pebble (RhoGEF)/Rho1/Anillin pathway is required for glia proliferation and to prevent the formation of large polyploid perineurial glial cells, which can still migrate into the eye disc if generated. Surprisingly, this Rho1 pathway is not necessary to establish the total glial membrane area or for the differentiation of the polyploid perineurial cells. The resulting polyploid wrapping glial cells are able to initiate wrapping of axons in the basal eye disc, however the arrangement and density of glia nuclei and membrane processes in the optic stalk are altered and the ensheathing of the photoreceptor axonal fascicles is reduced.
Collapse
Affiliation(s)
- Lígia Tavares
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| | - Patrícia Grácio
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Raquel Ramos
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Rui Traquete
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - João B Relvas
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Paulo S Pereira
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| |
Collapse
|
22
|
Luthold C, Varlet AA, Lambert H, Bordeleau F, Lavoie JN. Chaperone-Assisted Mitotic Actin Remodeling by BAG3 and HSPB8 Involves the Deacetylase HDAC6 and Its Substrate Cortactin. Int J Mol Sci 2020; 22:ijms22010142. [PMID: 33375626 PMCID: PMC7795263 DOI: 10.3390/ijms22010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The fidelity of actin dynamics relies on protein quality control, but the underlying molecular mechanisms are poorly defined. During mitosis, the cochaperone BCL2-associated athanogene 3 (BAG3) modulates cell rounding, cortex stability, spindle orientation, and chromosome segregation. Mitotic BAG3 shows enhanced interactions with its preferred chaperone partner HSPB8, the autophagic adaptor p62/SQSTM1, and HDAC6, a deacetylase with cytoskeletal substrates. Here, we show that depletion of BAG3, HSPB8, or p62/SQSTM1 can recapitulate the same inhibition of mitotic cell rounding. Moreover, depletion of either of these proteins also interfered with the dynamic of the subcortical actin cloud that contributes to spindle positioning. These phenotypes were corrected by drugs that limit the Arp2/3 complex or HDAC6 activity, arguing for a role for BAG3 in tuning branched actin network assembly. Mechanistically, we found that cortactin acetylation/deacetylation is mitotically regulated and is correlated with a reduced association of cortactin with HDAC6 in situ. Remarkably, BAG3 depletion hindered the mitotic decrease in cortactin–HDAC6 association. Furthermore, expression of an acetyl-mimic cortactin mutant in BAG3-depleted cells normalized mitotic cell rounding and the subcortical actin cloud organization. Together, these results reinforce a BAG3′s function for accurate mitotic actin remodeling, via tuning cortactin and HDAC6 spatial dynamics.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada; (C.L.); (A.-A.V.); (H.L.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (F.B.); (J.N.L.)
| |
Collapse
|
23
|
Godard BG, Dumollard R, Munro E, Chenevert J, Hebras C, McDougall A, Heisenberg CP. Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division. Dev Cell 2020; 55:695-706.e4. [PMID: 33207225 DOI: 10.1016/j.devcel.2020.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.
Collapse
Affiliation(s)
- Benoit G Godard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Janet Chenevert
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | | |
Collapse
|
24
|
Castiglioni VG, Pires HR, Rosas Bertolini R, Riga A, Kerver J, Boxem M. Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. eLife 2020; 9:e62067. [PMID: 33300872 PMCID: PMC7755398 DOI: 10.7554/elife.62067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Helena R Pires
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Rodrigo Rosas Bertolini
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Amalia Riga
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Jana Kerver
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
25
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Kelkar M, Bohec P, Charras G. Mechanics of the cellular actin cortex: From signalling to shape change. Curr Opin Cell Biol 2020; 66:69-78. [DOI: 10.1016/j.ceb.2020.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
27
|
Hosseini K, Taubenberger A, Werner C, Fischer‐Friedrich E. EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001276. [PMID: 33042748 PMCID: PMC7539203 DOI: 10.1002/advs.202001276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Indexed: 05/26/2023]
Abstract
To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial-mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
Collapse
Affiliation(s)
- Kamran Hosseini
- Biotechnology CenterTechnische Universität DresdenTatzberg 47–49Dresden01307Germany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresden01062Germany
| | - Anna Taubenberger
- Biotechnology CenterTechnische Universität DresdenTatzberg 47–49Dresden01307Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax Bergmann CenterHohe Str. 6Dresden01069Germany
| | - Elisabeth Fischer‐Friedrich
- Biotechnology CenterTechnische Universität DresdenTatzberg 47–49Dresden01307Germany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresden01062Germany
| |
Collapse
|
28
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
New work reveals that interkinetic nuclear migration - the movement of nuclei towards the apical surface of dividing epithelial cells - is mechanically regulated, relying on a balance of forces between the mitotic cell and the surrounding tissue.
Collapse
Affiliation(s)
- Christian M Cammarota
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Dan Bergstralh
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
30
|
Svitkina TM. Actin Cell Cortex: Structure and Molecular Organization. Trends Cell Biol 2020; 30:556-565. [PMID: 32278656 PMCID: PMC7566779 DOI: 10.1016/j.tcb.2020.03.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
The actin cytoskeleton consists of structurally and biochemically different actin filament arrays. Among them, the actin cortex is thought to have key roles in cell mechanics, but remains a poorly characterized part of the actin cytoskeleton. The cell cortex is typically defined as a thin layer of actin meshwork that uniformly underlies the plasma membrane of the entire cell. However, this definition applies only to specific cases. In general, the cortex structure and subcellular distribution vary significantly across cell types and physiological states of the cell. In this review, I focus on our current knowledge of the structure and molecular composition of the cell cortex.
Collapse
Affiliation(s)
- Tatyana M Svitkina
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Lam MSY, Lisica A, Ramkumar N, Hunter G, Mao Y, Charras G, Baum B. Isotropic myosin-generated tissue tension is required for the dynamic orientation of the mitotic spindle. Mol Biol Cell 2020; 31:1370-1379. [PMID: 32320325 PMCID: PMC7353144 DOI: 10.1091/mbc.e19-09-0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The ability of cells to divide along their longest axis has been proposed to play an important role in maintaining epithelial tissue homeostasis in many systems. Because the division plane is largely set by the position of the anaphase spindle, it is important to understand how spindles become oriented. While several molecules have been identified that play key roles in spindle orientation across systems, most notably Mud/NuMA and cortical dynein, the precise mechanism by which spindles detect and align with the long cell axis remain poorly understood. Here, in exploring the dynamics of spindle orientation in mechanically distinct regions of the fly notum, we find that the ability of cells to properly reorient their divisions depends on local tissue tension. Thus, spindles reorient to align with the long cell axis in regions where isotropic tension is elevated, but fail to do so in elongated cells within the crowded midline, where tension is low, or in regions that have been mechanically isolated from the rest of the tissue via laser ablation. Importantly, these differences in spindle behavior outside and inside the midline can be recapitulated by corresponding changes in tension induced by perturbations that alter nonmuscle myosin II activity. These data lead us to propose that isotropic tension within an epithelium provides cells with a mechanically stable substrate upon which localized cortical motor complexes can act on astral microtubules to orient the spindle.
Collapse
Affiliation(s)
| | - Ana Lisica
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
| | | | | | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| | - Guillaume Charras
- London Centre for Nanotechnology
- Institute for the Physics of Living Systems, and
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology
- Institute for the Physics of Living Systems, and
| |
Collapse
|
32
|
Tissue Mechanics Regulate Mitotic Nuclear Dynamics during Epithelial Development. Curr Biol 2020; 30:2419-2432.e4. [PMID: 32413305 PMCID: PMC7342018 DOI: 10.1016/j.cub.2020.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Cell divisions are essential for tissue growth. In pseudostratified epithelia, where nuclei are staggered across the tissue, each nucleus migrates apically before undergoing mitosis. Successful apical nuclear migration is critical for planar-orientated cell divisions in densely packed epithelia. Most previous investigations have focused on the local cellular mechanisms controlling nuclear migration. Inter-species and inter-organ comparisons of different pseudostratified epithelia suggest global tissue architecture may influence nuclear dynamics, but the underlying mechanisms remain elusive. Here, we use the developing Drosophila wing disc to systematically investigate, in a single epithelial type, how changes in tissue architecture during growth influence mitotic nuclear migration. We observe distinct nuclear dynamics at discrete developmental stages, as epithelial morphology changes. We use genetic and physical perturbations to show a direct effect of cell density on mitotic nuclear positioning. We find Rho kinase and Diaphanous, which facilitate mitotic cell rounding in confined cell conditions, are essential for efficient apical nuclear movement. Perturbation of Diaphanous causes increasing defects in apical nuclear migration as the tissue grows and cell density increases, and these defects can be reversed by acute physical reduction of cell density. Our findings reveal how the mechanical environment imposed on cells within a tissue alters the molecular and cellular mechanisms adopted by single cells for mitosis. Mitotic nuclear dynamics change as the Drosophila wing disc develops and grows Cell density is the primary driver of the differences in mitotic nuclear dynamics Mitotic rounding and nuclear dynamics depend on Dia in a density-dependent manner Nuclear dynamic defects in Dia mutants can be reversed by physical perturbations
Collapse
|
33
|
Nunes V, Dantas M, Castro D, Vitiello E, Wang I, Carpi N, Balland M, Piel M, Aguiar P, Maiato H, Ferreira JG. Centrosome-nuclear axis repositioning drives the assembly of a bipolar spindle scaffold to ensure mitotic fidelity. Mol Biol Cell 2020; 31:1675-1690. [PMID: 32348198 PMCID: PMC7521851 DOI: 10.1091/mbc.e20-01-0047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the initial stages of cell division, the cytoskeleton is extensively reorganized so that a bipolar mitotic spindle can be correctly assembled. This process occurs through the action of molecular motors, cytoskeletal networks, and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. To investigate how cell shape, cytoskeletal organization, and molecular motors cross-talk to regulate initial spindle assembly, we use a combination of micropatterning with high-resolution imaging and 3D cellular reconstruction. We show that during prophase, centrosomes and nucleus reorient so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. We also find that this orientation depends on a combination of centrosome movement controlled by Arp2/3-mediated regulation of microtubule dynamics and Dynein-generated forces on the NE that regulate nuclear reorientation. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation.
Collapse
Affiliation(s)
- Vanessa Nunes
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Margarida Dantas
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,BiotechHealth PhD program, Instituto de Ciências Biomédicas (ICBAS), 4050-313 Porto, Portugal
| | - Domingos Castro
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Elisa Vitiello
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Irène Wang
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Nicolas Carpi
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1) 38058, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135 Porto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), 4200-135 Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina do Porto, 4200-450 Porto, Portugal
| |
Collapse
|
34
|
Aguilar‐Aragon M, Bonello TT, Bell GP, Fletcher GC, Thompson BJ. Adherens junction remodelling during mitotic rounding of pseudostratified epithelial cells. EMBO Rep 2020; 21:e49700. [PMID: 32030856 PMCID: PMC7132200 DOI: 10.15252/embr.201949700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.
Collapse
Affiliation(s)
| | - Teresa T Bonello
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| | - Graham P Bell
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | | | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
35
|
Matthews HK, Ganguli S, Plak K, Taubenberger AV, Win Z, Williamson M, Piel M, Guck J, Baum B. Oncogenic Signaling Alters Cell Shape and Mechanics to Facilitate Cell Division under Confinement. Dev Cell 2020; 52:563-573.e3. [PMID: 32032547 PMCID: PMC7063569 DOI: 10.1016/j.devcel.2020.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic RasV12 activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that RasV12-expressing cells are softer in interphase but stiffen more upon entry into mitosis. These RasV12-dependent changes allow cells to round up and divide faithfully when confined underneath a stiff hydrogel, conditions in which normal cells and cells with reduced levels of Ras-ERK signaling suffer multiple spindle assembly and chromosome segregation errors. Thus, by promoting cell rounding and stiffening in mitosis, oncogenic RasV12 enables cells to proliferate under conditions of mechanical confinement like those experienced by cells in crowded tumors.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sushila Ganguli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Zaw Win
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Max Williamson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058 Erlangen, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
36
|
Ko CS, Kalakuntla P, Martin AC. Apical Constriction Reversal upon Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division. Mol Biol Cell 2020; 31:1663-1674. [PMID: 32129704 PMCID: PMC7521848 DOI: 10.1091/mbc.e19-12-0673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled nonmitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.
Collapse
Affiliation(s)
- Clint S Ko
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Prateek Kalakuntla
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
37
|
Moreira S, Osswald M, Ventura G, Gonçalves M, Sunkel CE, Morais-de-Sá E. PP1-Mediated Dephosphorylation of Lgl Controls Apical-basal Polarity. Cell Rep 2020; 26:293-301.e7. [PMID: 30625311 DOI: 10.1016/j.celrep.2018.12.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Apical-basal polarity is a common trait that underlies epithelial function. Although the asymmetric distribution of cortical polarity proteins works in a functioning equilibrium, it also retains plasticity to accommodate cell division, during which the basolateral determinant Lgl is released from the cortex. Here, we investigated how Lgl restores its cortical localization to maintain the integrity of dividing epithelia. We show that cytoplasmic Lgl is reloaded to the cortex at mitotic exit in Drosophila epithelia. Lgl cortical localization depends on protein phosphatase 1, which dephosphorylates Lgl on the serines phosphorylated by aPKC and Aurora A kinases through a mechanism that relies on the regulatory subunit Sds22 and a PP1-interacting RVxF motif of Lgl. This mechanism maintains epithelial polarity and is of particular importance at mitotic exit to couple Lgl cortical reloading with the polarization of the apical domain. Hence, PP1-mediated dephosphorylation of Lgl preserves the apical-basal organization of proliferative epithelia.
Collapse
Affiliation(s)
- Sofia Moreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Mariana Osswald
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Guilherme Ventura
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Margarida Gonçalves
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eurico Morais-de-Sá
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
38
|
Structure and regulation of human epithelial cell transforming 2 protein. Proc Natl Acad Sci U S A 2019; 117:1027-1035. [PMID: 31888991 DOI: 10.1073/pnas.1913054117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epithelial cell transforming 2 (Ect2) protein activates Rho GTPases and controls cytokinesis and many other cellular processes. Dysregulation of Ect2 is associated with various cancers. Here, we report the crystal structure of human Ect2 and complementary mechanistic analyses. The data show the C-terminal PH domain of Ect2 folds back and blocks the canonical RhoA-binding site at the catalytic center of the DH domain, providing a mechanism of Ect2 autoinhibition. Ect2 is activated by binding of GTP-bound RhoA to the PH domain, which suggests an allosteric mechanism of Ect2 activation and a positive-feedback loop reinforcing RhoA signaling. This bimodal RhoA binding of Ect2 is unusual and was confirmed with Förster resonance energy transfer (FRET) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses. Several recurrent cancer-associated mutations map to the catalytic and regulatory interfaces, and dysregulate Ect2 in vitro and in vivo. Together, our findings provide mechanistic insights into Ect2 regulation in normal cells and under disease conditions.
Collapse
|
39
|
Kapoor S, Kotak S. Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in C. elegans embryos. Development 2019; 146:dev174565. [PMID: 31636075 PMCID: PMC7115938 DOI: 10.1242/dev.174565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Proper establishment of cell polarity is essential for development. In the one-cell C. elegans embryo, a centrosome-localised signal provides spatial information for polarity establishment. It is hypothesised that this signal causes local inhibition of the cortical actomyosin network, and breaks symmetry to direct partitioning of the PAR proteins. However, the molecular nature of the centrosomal signal that triggers cortical anisotropy in the actomyosin network to promote polarity establishment remains elusive. Here, we discover that depletion of Aurora A kinase (AIR-1 in C. elegans) causes pronounced cortical contractions on the embryo surface, and this creates more than one PAR-2 polarity axis. This function of AIR-1 appears to be independent of its role in microtubule nucleation. Importantly, upon AIR-1 depletion, centrosome positioning becomes dispensable in dictating the PAR-2 axis. Moreover, we uncovered that a Rho GEF, ECT-2, acts downstream of AIR-1 in regulating contractility and PAR-2 localisation, and, notably, AIR-1 depletion influences ECT-2 cortical localisation. Overall, this study provides a novel insight into how an evolutionarily conserved centrosome Aurora A kinase inhibits promiscuous PAR-2 domain formation to ensure singularity in the polarity establishment axis.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Dealing with apical–basal polarity and intercellular junctions: a multidimensional challenge for epithelial cell division. Curr Opin Cell Biol 2019; 60:75-83. [DOI: 10.1016/j.ceb.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
|
41
|
Duarte S, Viedma-Poyatos Á, Navarro-Carrasco E, Martínez AE, Pajares MA, Pérez-Sala D. Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nat Commun 2019; 10:4200. [PMID: 31519880 PMCID: PMC6744490 DOI: 10.1038/s41467-019-12029-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/09/2019] [Indexed: 01/27/2023] Open
Abstract
The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex. The intermediate filament vimentin reorganizes during mitosis, but its molecular regulation and impact on the cell during cell division is unclear. Here, the authors show that vimentin filaments redistribute to the cell cortex during mitosis intertwining with and affecting actin organization.
Collapse
Affiliation(s)
- Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
42
|
Doerr S, Ragkousi K. Cell polarity oscillations in mitotic epithelia. Curr Opin Genet Dev 2019; 57:47-53. [PMID: 31465986 DOI: 10.1016/j.gde.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Epithelial organization and function depend on coordinated cell polarity. In developing tissues, proliferative epithelia maintain whole tissue polarity as individual cells undergo symmetric divisions. However, recent work has shown that cells in diverse epithelia remodel their polarity in a cell cycle-dependent manner. Here, we discuss the different mechanisms that drive mitotic polarity oscillations and their implications for tissue morphogenesis.
Collapse
Affiliation(s)
- Sophia Doerr
- Department of Biology, Amherst College, Amherst, MA 01002, United States; Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States
| | - Katerina Ragkousi
- Department of Biology, Amherst College, Amherst, MA 01002, United States; Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States.
| |
Collapse
|
43
|
Farina F, Ramkumar N, Brown L, Samandar Eweis D, Anstatt J, Waring T, Bithell J, Scita G, Thery M, Blanchoin L, Zech T, Baum B. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J 2019; 38:e99843. [PMID: 31015335 PMCID: PMC6545563 DOI: 10.15252/embj.201899843] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.
Collapse
Affiliation(s)
- Francesca Farina
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- University of Grenoble, Grenoble, France
| | | | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | | | | | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Buzz Baum
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
| |
Collapse
|
44
|
Shutova MS, Svitkina TM. Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. BIOCHEMISTRY (MOSCOW) 2019; 83:1459-1468. [PMID: 30878021 DOI: 10.1134/s0006297918120040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various forms of cell motility critically depend on pushing, pulling, and resistance forces generated by the actin cytoskeleton. Whereas pushing forces largely depend on actin polymerization, pulling forces responsible for cell contractility and resistance forces maintaining the cell shape require interaction of actin filaments with the multivalent molecular motor myosin II. In contrast to muscle-specific myosin II paralogs, nonmuscle myosin II (NMII) functions in virtually all mammalian cells, where it executes numerous mechanical tasks. NMII is expressed in mammalian cells as a tissue-specific combination of three paralogs, NMIIA, NMIIB, and NMIIC. Despite overall similarity, these paralogs differ in their molecular properties, which allow them to play both unique and common roles. Importantly, the three paralogs can also cooperate with each other by mixing and matching their unique capabilities. Through specialization and cooperation, NMII paralogs together execute a great variety of tasks in many different cell types. Here, we focus on mammalian NMII paralogs and review novel aspects of their kinetics, regulation, and functions in cells from the perspective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cells.
Collapse
Affiliation(s)
- M S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - T M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Abstract
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis. Summary: A summary of the composition, architecture, mechanics and function of the cellular actin cortex, which determines the shape of animal cells, and, thus, provides the foundation for cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
46
|
Dix CL, Matthews HK, Uroz M, McLaren S, Wolf L, Heatley N, Win Z, Almada P, Henriques R, Boutros M, Trepat X, Baum B. The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell 2018; 45:132-145.e3. [PMID: 29634933 DOI: 10.1016/j.devcel.2018.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/17/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
Abstract
Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.
Collapse
Affiliation(s)
- Christina L Dix
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Helen K Matthews
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Susannah McLaren
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Lucie Wolf
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Nicholas Heatley
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Zaw Win
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Pedro Almada
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Ricardo Henriques
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08028, Spain
| | - Buzz Baum
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Shutova MS, Svitkina TM. Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun 2018; 506:394-402. [PMID: 29550471 DOI: 10.1016/j.bbrc.2018.03.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Nonmuscle myosin II is an actin-based motor that executes numerous mechanical tasks in cells including spatiotemporal organization of the actin cytoskeleton, adhesion, migration, cytokinesis, tissue remodeling, and membrane trafficking. Nonmuscle myosin II is ubiquitously expressed in mammalian cells as a tissue-specific combination of three paralogs. Recent studies reveal novel specific aspects of their kinetics, intracellular regulation and functions. On the other hand, the three paralogs also can copolymerize and cooperate in cells. Here we review the recent advances from the prospective of how distinct features of the three myosin II paralogs adapt them to perform specialized and joint tasks in the cell.
Collapse
Affiliation(s)
- Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Svitkina TM. Ultrastructure of the actin cytoskeleton. Curr Opin Cell Biol 2018; 54:1-8. [PMID: 29477121 DOI: 10.1016/j.ceb.2018.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023]
Abstract
The actin cytoskeleton is the primary force-generating machinery in the cell, which can produce pushing (protrusive) forces using energy of actin polymerization and pulling (contractile) forces via sliding of bipolar filaments of myosin II along actin filaments, as well as perform other key functions. These functions are essential for whole cell migration, cell interaction with the environment, mechanical properties of the cell surface and other key aspects of cell physiology. The actin cytoskeleton is a highly complex and dynamic system of actin filaments organized into various superstructures by multiple accessory proteins. High resolution architecture of functionally distinct actin arrays provides key clues for understanding actin cytoskeleton functions. This review summarizes recent advance in our understanding of the actin cytoskeleton ultrastructure.
Collapse
Affiliation(s)
- Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Tsoumpekos G, Nemetschke L, Knust E. Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension. J Cell Biol 2018; 217:1033-1045. [PMID: 29326288 PMCID: PMC5839783 DOI: 10.1083/jcb.201705104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023] Open
Abstract
Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth.
Collapse
Affiliation(s)
- Giorgos Tsoumpekos
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Linda Nemetschke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
50
|
Couturier L, Mazouni K, Bernard F, Besson C, Reynaud E, Schweisguth F. Regulation of cortical stability by RhoGEF3 in mitotic Sensory Organ Precursor cells in Drosophila. Biol Open 2017; 6:1851-1860. [PMID: 29101098 PMCID: PMC5769646 DOI: 10.1242/bio.026641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In epithelia, mitotic cells round up and push against their neighbors to divide. Mitotic rounding results from increased assembly of F-actin and cortical recruitment of Myosin II, leading to increased cortical stability. Whether this process is developmentally regulated is not well known. Here, we examined the regulation of cortical stability in Sensory Organ Precursor cells (SOPs) in the Drosophila pupal notum. SOPs differed in apical shape and actomyosin dynamics from their epidermal neighbors prior to division, and appeared to have a more rigid cortex at mitosis. We identified RhoGEF3 as an actin regulator expressed at higher levels in SOPs, and showed that RhoGEF3 had in vitro GTPase Exchange Factor (GEF) activity for Cdc42. Additionally, RhoGEF3 genetically interacted with both Cdc42 and Rac1 when overexpressed in the fly eye. Using a null RhoGEF3 mutation generated by CRISPR-mediated homologous recombination, we showed using live imaging that the RhoGEF3 gene, despite being dispensable for normal development, contributed to cortical stability in dividing SOPs. We therefore suggest that cortical stability is developmentally regulated in dividing SOPs of the fly notum. Summary: RhoGEF3 is a developmentally regulated Cdc42 GEF that contributes to cortical stability during asymmetric divisions of Sensory Organ Precursor cells in Drosophila.
Collapse
Affiliation(s)
- Lydie Couturier
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Khalil Mazouni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Fred Bernard
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Charlotte Besson
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Elodie Reynaud
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France .,CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|