1
|
Wang J, An Z, Wu Z, Zhou W, Sun P, Wu P, Dang S, Xue R, Bai X, Du Y, Chen R, Wang W, Huang P, Lam SM, Ai Y, Liu S, Shui G, Zhang Z, Liu Z, Huang J, Fang X, He K. Spatial organization of PI3K-PI(3,4,5)P 3-AKT signaling by focal adhesions. Mol Cell 2024:S1097-2765(24)00833-5. [PMID: 39488211 DOI: 10.1016/j.molcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyang An
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pengyu Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Piyu Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Xue
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xue Bai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongmei Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China
| | - Youwei Ai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Marshall-Burghardt S, Migueles-Ramírez RA, Lin Q, El Baba N, Saada R, Umar M, Mavalwala K, Hayer A. Excitable Rho dynamics control cell shape and motility by sequentially activating ERM proteins and actomyosin contractility. SCIENCE ADVANCES 2024; 10:eadn6858. [PMID: 39241071 PMCID: PMC11378911 DOI: 10.1126/sciadv.adn6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Migration of endothelial and many other cells requires spatiotemporal regulation of protrusive and contractile cytoskeletal rearrangements that drive local cell shape changes. Unexpectedly, the small GTPase Rho, a crucial regulator of cell movement, has been reported to be active in both local cell protrusions and retractions, raising the question of how Rho activity can coordinate cell migration. Here, we show that Rho activity is absent in local protrusions and active during retractions. During retractions, Rho rapidly activated ezrin-radixin-moesin proteins (ERMs) to increase actin-membrane attachment, and, with a delay, nonmuscle myosin 2 (NM2). Rho activity was excitable, with NM2 acting as a slow negative feedback regulator. Strikingly, inhibition of SLK/LOK kinases, through which Rho activates ERMs, caused elongated cell morphologies, impaired Rho-induced cell contractions, and reverted Rho-induced blebbing. Together, our study demonstrates that Rho activity drives retractions by sequentially enhancing ERM-mediated actin-membrane attachment for force transmission and NM2-dependent contractility.
Collapse
Affiliation(s)
- Seph Marshall-Burghardt
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rodrigo A Migueles-Ramírez
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- PhD Program in Quantitative Life Sciences, McGill University, Montréal, Québec, Canada
| | - Qiyao Lin
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Nada El Baba
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rayan Saada
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Mustakim Umar
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Kian Mavalwala
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Arnold Hayer
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
4
|
Zheng Y, Li J, Xu D, Liu L, Li Y, Yi J, Dong J, Pang D, Tang H. Tunneling nanotubes mediate KRas transport: Inducing tumor heterogeneity and altering cellular membrane mechanical properties. Acta Biomater 2024; 185:312-322. [PMID: 38969079 DOI: 10.1016/j.actbio.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Mutation in oncogene KRas plays a crucial role in the occurrence and progression of numerous malignant tumors. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. We hypothesize that oncogene KRas mutations are intrinsic to alterations in cellular mechanics that promote malignant tumor generation and progression. Here, we demonstrate the use of optical tweezers coupled with a confocal fluorescence imaging system and gene interference technique to reveal that the mutant KRas protein can be transported between homogeneous and heterogeneous tumor cells by tunneling nanotubes (TNTs), resulting in a significant reduction of membrane tension and acceleration of membrane phospholipid flow in the recipient cells. Simultaneously, the changes in membrane mechanical properties of the tumor cells also enhance the metastatic and invasive ability of the tumors, which further contribute to the deterioration of the tumors. This finding helps to clarify the association between oncogene mutations and changes in the mechanical properties of tumor cells, which provides a theoretical basis for the development of cancer treatment strategies. STATEMENT OF SIGNIFICANCE: Here, we present a laser confocal fluorescence system integrated with optical tweezers to observe the transfer of mutant KRasG12D protein from mutant cells to wild-type cells through TNTs. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. Our results demonstrate a significant decrease in membrane tension and an increase in membrane phospholipid flow in recipient cells. These alterations in mechanical properties augment the migration and invasive capabilities of tumor cells, contributing to tumor malignancy. Our findings propose that cellular mechanical properties could serve as new markers for tumor development, and targeting membrane tension may hold potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Yawen Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jiangtao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Dadi Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yuyao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jiayao Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Daiwen Pang
- College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
5
|
Chua XL, Tong CS, Su M, Xǔ XJ, Xiao S, Wu X, Wu M. Competition and synergy of Arp2/3 and formins in nucleating actin waves. Cell Rep 2024; 43:114423. [PMID: 38968072 PMCID: PMC11378572 DOI: 10.1016/j.celrep.2024.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
Actin assembly and dynamics are crucial for maintaining cell structure and changing physiological states. The broad impact of actin on various cellular processes makes it challenging to dissect the specific role of actin regulatory proteins. Using actin waves that propagate on the cortex of mast cells as a model, we discovered that formins (FMNL1 and mDia3) are recruited before the Arp2/3 complex in actin waves. GTPase Cdc42 interactions drive FMNL1 oscillations, with active Cdc42 and the constitutively active mutant of FMNL1 capable of forming waves on the plasma membrane independently of actin waves. Additionally, the delayed recruitment of Arp2/3 antagonizes FMNL1 and active Cdc42. This antagonism is not due to competition for monomeric actin but rather for their common upstream regulator, active Cdc42, whose levels are negatively regulated by Arp2/3 via SHIP1 recruitment. Collectively, our study highlights the complex feedback loops in the dynamic control of the actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
6
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras suppression potentiates rear actomyosin contractility-driven cell polarization and migration. Nat Cell Biol 2024; 26:1062-1076. [PMID: 38951708 PMCID: PMC11364469 DOI: 10.1038/s41556-024-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
Affiliation(s)
- Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Parijat Banerjee
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Guanghui Qin
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Huang CH, Albeck JG, Devreotes PN. Editorial: Self-organizing and excitable signaling networks in cell biology. Front Cell Dev Biol 2024; 12:1430911. [PMID: 38895156 PMCID: PMC11184134 DOI: 10.3389/fcell.2024.1430911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Affiliation(s)
- Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, CA, United States
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, CA, United States
| |
Collapse
|
8
|
Li M, Xing X, Yuan J, Zeng Z. Research progress on the regulatory role of cell membrane surface tension in cell behavior. Heliyon 2024; 10:e29923. [PMID: 38720730 PMCID: PMC11076917 DOI: 10.1016/j.heliyon.2024.e29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cell membrane surface tension has emerged as a pivotal biophysical factor governing cell behavior and fate. This review systematically delineates recent advances in techniques for cell membrane surface tension quantification, mechanosensing mechanisms, and regulatory roles of cell membrane surface tension in modulating major cellular processes. Micropipette aspiration, tether pulling, and newly developed fluorescent probes enable the measurement of cell membrane surface tension with spatiotemporal precision. Cells perceive cell membrane surface tension via conduits including mechanosensitive ion channels, curvature-sensing proteins (e.g. BAR domain proteins), and cortex-membrane attachment proteins (e.g. ERM proteins). Through membrane receptors like integrins, cells convert mechanical cues into biochemical signals. This conversion triggers cytoskeletal remodeling and extracellular matrix interactions in response to environmental changes. Elevated cell membrane surface tension suppresses cell spreading, migration, and endocytosis while facilitating exocytosis. Moreover, reduced cell membrane surface tension promotes embryonic stem cell differentiation and cancer cell invasion, underscoring cell membrane surface tension as a regulator of cell plasticity. Outstanding questions remain regarding cell membrane surface tension regulatory mechanisms and roles in tissue development/disease in vivo. Emerging tools to manipulate cell membrane surface tension with high spatiotemporal control in combination with omics approaches will facilitate the elucidation of cell membrane surface tension-mediated effects on signaling networks across various cell types/states. This will accelerate the development of cell membrane surface tension-based biomarkers and therapeutics for regenerative medicine and cancer. Overall, this review provides critical insights into cell membrane surface tension as a potent orchestrator of cell function, with broader impacts across mechanobiology.
Collapse
Affiliation(s)
- Manqing Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Zhuoying Zeng
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, 518035, China
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
9
|
Tong CS, Su M, Sun H, Chua XL, Xiong D, Guo S, Raj R, Ong NWP, Lee AG, Miao Y, Wu M. Collective dynamics of actin and microtubule and its crosstalk mediated by FHDC1. Front Cell Dev Biol 2024; 11:1261117. [PMID: 38567385 PMCID: PMC10985548 DOI: 10.3389/fcell.2023.1261117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024] Open
Abstract
The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1's interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Su Guo
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Ravin Raj
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Nicole Wen Pei Ong
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Ann Gie Lee
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Kuhn J, Banerjee P, Haye A, Robinson DN, Iglesias PA, Devreotes PN. Complementary Cytoskeletal Feedback Loops Control Signal Transduction Excitability and Cell Polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580131. [PMID: 38405988 PMCID: PMC10888828 DOI: 10.1101/2024.02.13.580131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To move through complex environments, cells must constantly integrate chemical and mechanical cues. Signaling networks, such as those comprising Ras and PI3K, transmit chemical cues to the cytoskeleton, but the cytoskeleton must also relay mechanical information back to those signaling systems. Using novel synthetic tools to acutely control specific elements of the cytoskeleton in Dictyostelium and neutrophils, we delineate feedback mechanisms that alter the signaling network and promote front- or back-states of the cell membrane and cortex. First, increasing branched actin assembly increases Ras/PI3K activation while reducing polymeric actin levels overall decreases activation. Second, reducing myosin II assembly immediately increases Ras/PI3K activation and sensitivity to chemotactic stimuli. Third, inhibiting branched actin alone increases cortical actin assembly and strongly blocks Ras/PI3K activation. This effect is mitigated by reducing filamentous actin levels and in cells lacking myosin II. Finally, increasing actin crosslinking with a controllable activator of cytoskeletal regulator RacE leads to a large decrease in Ras activation both globally and locally. Curiously, RacE activation can trigger cell spreading and protrusion with no detectable activation of branched actin nucleators. Taken together with legacy data that Ras/PI3K promotes branched actin assembly and myosin II disassembly, our results define front- and back-promoting positive feedback loops. We propose that these loops play a crucial role in establishing cell polarity and mediating signal integration by controlling the excitable state of the signal transduction networks in respective regions of the membrane and cortex. This interplay enables cells to navigate intricate topologies like tissues containing other cells, the extracellular matrix, and fluids.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Parijat Banerjee
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Andrew Haye
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Hu M, Li H, Zhu K, Guo L, Zhao M, Zhan H, Devreotes PN, Qing Q. Electric field modulation of ERK dynamics shows dependency on waveform and timing. Sci Rep 2024; 14:3167. [PMID: 38326365 PMCID: PMC10850077 DOI: 10.1038/s41598-024-53018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Different exogenous electric fields (EF) can guide cell migration, disrupt proliferation, and program cell development. Studies have shown that many of these processes were initiated at the cell membrane, but the mechanism has been unclear, especially for conventionally non-excitable cells. In this study, we focus on the electrostatic aspects of EF coupling with the cell membrane by eliminating Faradaic processes using dielectric-coated microelectrodes. Our data unveil a distinctive biphasic response of the ERK signaling pathway of epithelial cells (MCF10A) to alternate current (AC) EF. The ERK signal exhibits both inhibition and activation phases, with the former triggered by a lower threshold of AC EF, featuring a swifter peaking time and briefer refractory periods than the later-occurring activation phase, induced at a higher threshold. Interestingly, the biphasic ERK responses are sensitive to the waveform and timing of EF stimulation pulses, depicting the characteristics of electrostatic and dissipative interactions. Blocker tests and correlated changes of active Ras on the cell membrane with ERK signals indicated that both EGFR and Ras were involved in the rich ERK dynamics induced by EF. We propose that the frequency-dependent dielectric relaxation process could be an important mechanism to couple EF energy to the cell membrane region and modulate membrane protein-initiated signaling pathways, which can be further explored to precisely control cell behavior and fate with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Houpu Li
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Kan Zhu
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Liang Guo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Science, University of California, Davis, CA, 95616, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA.
- Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
12
|
Zhan H, Pal DS, Borleis J, Janetopoulos C, Huang CH, Devreotes PN. Self-organizing glycolytic waves fuel cell migration and cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577603. [PMID: 38328193 PMCID: PMC10849635 DOI: 10.1101/2024.01.28.577603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility. Interestingly, the cortical waves and ATP levels were positively correlated with the metastatic potential of cancer cells. The coordinated signal transduction, cytoskeletal, and glycolytic waves in cancer cells may explain their increased motility and their greater reliance on glycolysis, often referred to as the Warburg effect.
Collapse
Affiliation(s)
- Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Chris Janetopoulos
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Total Experience Learning, Albright College, Reading, PA 19612
| | - Chuan-Hsiang Huang
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- NDepartment of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Lead Contact
| |
Collapse
|
13
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Riedl M, Sixt M. The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction. Front Cell Dev Biol 2023; 11:1287420. [PMID: 38020899 PMCID: PMC10643615 DOI: 10.3389/fcell.2023.1287420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems.
Collapse
Affiliation(s)
- Michael Riedl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | |
Collapse
|
15
|
Lundgren SM, Rocha-Gregg BL, Akdoǧan E, Mysore MN, Hayes S, Collins SR. Signaling dynamics distinguish high- and low-priority neutrophil chemoattractant receptors. Sci Signal 2023; 16:eadd1845. [PMID: 37788324 PMCID: PMC10680494 DOI: 10.1126/scisignal.add1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Human neutrophils respond to multiple chemoattractants to guide their migration from the vasculature to sites of infection and injury, where they clear pathogens and amplify inflammation. To properly focus their responses during this complex navigation, neutrophils prioritize pathogen- and injury-derived signals over long-range inflammatory signals, such as the leukotriene LTB4, secreted by host cells. Different chemoattractants can also drive qualitatively different modes of migration even though their receptors couple to the same Gαi family of G proteins. Here, we used live-cell imaging to demonstrate that the responses differed in their signaling dynamics. Low-priority chemoattractants caused transient responses, whereas responses to high-priority chemoattractants were sustained. We observed this difference in both primary neutrophils and differentiated HL-60 cells, for downstream signaling mediated by Ca2+, a major regulator of secretion, and Cdc42, a primary regulator of polarity and cell steering. The rapid attenuation of Cdc42 activation in response to LTB4 depended on the phosphorylation sites Thr308 and Ser310 in the carboxyl-terminal tail of its receptor LTB4R in a manner independent of endocytosis. Mutation of these residues to alanine impaired chemoattractant prioritization, although it did not affect chemoattractant-dependent differences in migration persistence. Our results indicate that distinct temporal regulation of shared signaling pathways distinguishes between receptors and contributes to chemoattractant prioritization.
Collapse
Affiliation(s)
- Stefan M. Lundgren
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Briana L. Rocha-Gregg
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Emel Akdoǧan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Maya N. Mysore
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Samantha Hayes
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
16
|
Madsen RR, Toker A. PI3K signaling through a biochemical systems lens. J Biol Chem 2023; 299:105224. [PMID: 37673340 PMCID: PMC10570132 DOI: 10.1016/j.jbc.2023.105224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Le Chua X, Tong CS, Xǔ XJ, Su M, Xiao S, Wu X, Wu M. Competition and Synergy of Arp2/3 and Formins in Nucleating Actin Waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557508. [PMID: 37745345 PMCID: PMC10515902 DOI: 10.1101/2023.09.13.557508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The assembly and disassembly of actin filaments and their regulatory proteins are crucial for maintaining cell structure or changing physiological state. However, because of the tremendous global impact of actin on diverse cellular processes, dissecting the specific role of actin regulatory proteins remains challenging. In this study, we employ actin waves that propagate on the cortex of mast cell to investigate the interplay between formins and the Arp2/3 complex in the nucleating and turnover of cortical actin. Our findings reveal that the recruitment of FMNL1 and mDia3 precedes the Arp2/3 complex in cortical actin waves. Membrane and GTPase-interaction can drive oscillations of FMNL1 in an actin-dependent manner, but active Cdc42 waves or constitutively-active FMNL1 mutant can form without actin waves. In addition to the apparent coordinated assembly of formins and Arp2/3, we further reveal their antagonism, where inhibition of Arp2/3 complex by CK-666 led to a transient increase in the recruitment of formins and actin polymerization. Our analysis suggest that the antagonism could not be explained for the competition between FMNL1 and Arp2/3 for monomeric actin. Rather, it is regulated by a limited pool of their common upstream regulator, Cdc42, whose level is negatively regulated by Arp2/3. Collectively, our study highlights the multifaceted interactions, cooperative or competitive, between formins and Arp2/3 complex, in the intricate and dynamic control of actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou, China 310024
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
- Department of Physics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
18
|
Riedl M, Mayer I, Merrin J, Sixt M, Hof B. Synchronization in collectively moving inanimate and living active matter. Nat Commun 2023; 14:5633. [PMID: 37704595 PMCID: PMC10499792 DOI: 10.1038/s41467-023-41432-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals' internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical 'toy' experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives.
Collapse
Affiliation(s)
- Michael Riedl
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| | - Isabelle Mayer
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| | - Björn Hof
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
19
|
Lin Y, Pal DS, Banerjee P, Banerjee T, Qin G, Deng Y, Borleis J, Iglesias PA, Devreotes PN. Ras-mediated homeostatic control of front-back signaling dictates cell polarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555648. [PMID: 37693515 PMCID: PMC10491231 DOI: 10.1101/2023.08.30.555648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies in the model systems, Dictyostelium amoebae and HL-60 neutrophils, have shown that local Ras activity directly regulates cell motility or polarity. Localized Ras activation on the membrane is spatiotemporally regulated by its activators, RasGEFs, and inhibitors, RasGAPs, which might be expected to create a stable 'front' and 'back', respectively, in migrating cells. Focusing on C2GAPB in amoebae and RASAL3 in neutrophils, we investigated how Ras activity along the cortex controls polarity. Since existing gene knockout and overexpression studies can be circumvented, we chose optogenetic approaches to assess the immediate, local effects of these Ras regulators on the cell cortex. In both cellular systems, optically targeting the respective RasGAPs to the cell front extinguished existing protrusions and changed the direction of migration, as might be expected. However, when the expression of C2GAPB was induced globally, amoebae polarized within hours. Furthermore, within minutes of globally recruiting either C2GAPB in amoebae or RASAL3 in neutrophils, each cell type polarized and moved more rapidly. Targeting the RasGAPs to the cell backs exaggerated these effects on migration and polarity. Overall, in both cell types, RasGAP-mediated polarization was brought about by increased actomyosin contractility at the back and sustained, localized F-actin polymerization at the front. These experimental results were accurately captured by computational simulations in which Ras levels control front and back feedback loops. The discovery that context-dependent Ras activity on the cell cortex has counterintuitive, unanticipated effects on cell polarity can have important implications for future drug-design strategies targeting oncogenic Ras.
Collapse
|
20
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
21
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Pal DS, Lin Y, Zhan H, Banerjee T, Kuhn J, Providence S, Devreotes PN. Optogenetic modulation of guanine nucleotide exchange factors of Ras superfamily proteins directly controls cell shape and movement. Front Cell Dev Biol 2023; 11:1195806. [PMID: 37492221 PMCID: PMC10363612 DOI: 10.3389/fcell.2023.1195806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In this article, we provide detailed protocols on using optogenetic dimerizers to acutely perturb activities of guanine nucleotide exchange factors (GEFs) specific to Ras, Rac or Rho small GTPases of the migratory networks in various mammalian and amoeba cell lines. These GEFs are crucial components of signal transduction networks which link upstream G-protein coupled receptors to downstream cytoskeletal components and help cells migrate through their dynamic microenvironment. Conventional approaches to perturb and examine these signaling and cytoskeletal networks, such as gene knockout or overexpression, are protracted which allows networks to readjust through gene expression changes. Moreover, these tools lack spatial resolution to probe the effects of local network activations. To overcome these challenges, blue light-inducible cryptochrome- and LOV domain-based dimerization systems have been recently developed to control signaling or cytoskeletal events in a spatiotemporally precise manner. We illustrate that, within minutes of global membrane recruitment of full-length GEFs or their catalytic domains only, widespread increases or decreases in F-actin rich protrusions and cell size occur, depending on the particular node in the networks targeted. Additionally, we demonstrate localized GEF recruitment as a robust assay system to study local network activation-driven changes in polarity and directed migration. Altogether, these optical tools confirmed GEFs of Ras superfamily GTPases as regulators of cell shape, actin dynamics, and polarity. Furthermore, this optogenetic toolbox may be exploited in perturbing complex signaling interactions in varied physiological contexts including mammalian embryogenesis.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Kuhn
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Stephenie Providence
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Ingenuity Research Program, Baltimore Polytechnic Institute, Baltimore, MD, United States
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
23
|
Hladyshau S, Stoop JP, Kamada K, Nie S, Tsygankov D. Spatiotemporal Coordination of Rac1 and Cdc42 at the Whole Cell Level during Cell Ruffling. Cells 2023; 12:1638. [PMID: 37371108 DOI: 10.3390/cells12121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Rho-GTPases are central regulators within a complex signaling network that controls cytoskeletal organization and cell movement. The network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, along with their numerous effectors that provide mutual regulation through feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling, using a simulation model that couples GTPase signaling with cell morphodynamics and captures the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of time-lapsed recordings of cell dynamics and GTPase activity. Our data-driven modeling approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.
Collapse
Affiliation(s)
- Siarhei Hladyshau
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jorik P Stoop
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kosei Kamada
- Faculty of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shuyi Nie
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
24
|
Chen CC, Wang S, Yang JM, Huang CH. Targeting Ras signaling excitability in cancer cells through combined inhibition of FAK and PI3K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544386. [PMID: 37398082 PMCID: PMC10312644 DOI: 10.1101/2023.06.12.544386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The Ras/PI3K/ERK signaling network is frequently mutated in various human cancers including cervical cancer and pancreatic cancer. Previous studies showed that the Ras/PI3K/ERK signaling network displays features of excitable systems including propagation of activity waves, all-or-none responses, and refractoriness. Oncogenic mutations lead to enhanced excitability of the network. A positive feedback loop between Ras, PI3K, the cytoskeleton, and FAK was identified as a driver of excitability. In this study, we investigated the effectiveness of targeting signaling excitability by inhibiting both FAK and PI3K in cervical and pancreatic cancer cells. We found that the combination of FAK and PI3K inhibitors synergistically suppressed the growth of select cervical and pancreatic cancer cell lines through increased apoptosis and decreased mitosis. In particular, FAK inhibition caused downregulation of PI3K and ERK signaling in cervical cancer but not pancreatic cancer cells. Interestingly, PI3K inhibitors activated multiple receptor tyrosine kinases (RTKs), including insulin receptor and IGF-1R in cervical cancer cells, as well as EGFR, Her2, Her3, Axl, and EphA2 in pancreatic cancer cells. Our results highlight the potential of combining FAK and PI3K inhibition for treating cervical and pancreatic cancer, although appropriate biomarkers for drug sensitivity are needed, and concurrent targeting of RTKs may be required for resistant cells.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | - Suyang Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | - Jr-Ming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
25
|
Yang Q, Miao Y, Banerjee P, Hourwitz MJ, Hu M, Qing Q, Iglesias PA, Fourkas JT, Losert W, Devreotes PN. Nanotopography modulates intracellular excitable systems through cytoskeleton actuation. Proc Natl Acad Sci U S A 2023; 120:e2218906120. [PMID: 37126708 PMCID: PMC10175780 DOI: 10.1073/pnas.2218906120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
Cellular sensing of most environmental cues involves receptors that affect a signal-transduction excitable network (STEN), which is coupled to a cytoskeletal excitable network (CEN). We show that the mechanism of sensing of nanoridges is fundamentally different. CEN activity occurs preferentially on nanoridges, whereas STEN activity is constrained between nanoridges. In the absence of STEN, waves disappear, but long-lasting F-actin puncta persist along the ridges. When CEN is suppressed, wave propagation is no longer constrained by nanoridges. A computational model reproduces these experimental observations. Our findings indicate that nanotopography is sensed directly by CEN, whereas STEN is only indirectly affected due to a CEN-STEN feedback loop. These results explain why texture sensing is robust and acts cooperatively with multiple other guidance cues in complex, in vivo microenvironments.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Matt J. Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ85287
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ85287
- Biodesign Institute, Arizona State University, Tempe, AZ85287
| | - Pablo A. Iglesias
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD21218
| | - John T. Fourkas
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
26
|
Nałęcz-Jawecki P, Gagliardi PA, Kochańczyk M, Dessauges C, Pertz O, Lipniacki T. The MAPK/ERK channel capacity exceeds 6 bit/hour. PLoS Comput Biol 2023; 19:e1011155. [PMID: 37216347 PMCID: PMC10237675 DOI: 10.1371/journal.pcbi.1011155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Living cells utilize signaling pathways to sense, transduce, and process information. As the extracellular stimulation often has rich temporal characteristics which may govern dynamic cellular responses, it is important to quantify the rate of information flow through the signaling pathways. In this study, we used an epithelial cell line expressing a light-activatable FGF receptor and an ERK activity reporter to assess the ability of the MAPK/ERK pathway to transduce signal encoded in a sequence of pulses. By stimulating the cells with random light pulse trains, we demonstrated that the MAPK/ERK channel capacity is at least 6 bits per hour. The input reconstruction algorithm detects the light pulses with 1-min accuracy 5 min after their occurrence. The high information transmission rate may enable the pathway to coordinate multiple processes including cell movement and respond to rapidly varying stimuli such as chemoattracting gradients created by other cells.
Collapse
Affiliation(s)
- Paweł Nałęcz-Jawecki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Itoh T, Tsujita K. Exploring membrane mechanics: The role of membrane-cortex attachment in cell dynamics. Curr Opin Cell Biol 2023; 81:102173. [PMID: 37224683 DOI: 10.1016/j.ceb.2023.102173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
The role of plasma membrane (PM) tension in cell dynamics has gained increasing interest in recent years to understand the mechanism by which individual cells regulate their dynamic behavior. Membrane-to-cortex attachment (MCA) is a component of apparent PM tension, and its assembly and disassembly determine the direction of cell motility, controlling the driving forces of migration. There is also evidence that membrane tension plays a role in malignant cancer cell metastasis and stem cell differentiation. Here, we review recent important discoveries that explore the role of membrane tension in the regulation of diverse cellular processes, and discuss the mechanisms of cell dynamics regulated by this physical parameter.
Collapse
Affiliation(s)
- Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan; Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan; Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
28
|
Hladyshau S, Stoop JP, Kamada K, Nie S, Tsygankov DV. Spatiotemporal coordination of Rac1 and Cdc42 at the whole cell level during cell ruffling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535147. [PMID: 37034645 PMCID: PMC10081307 DOI: 10.1101/2023.03.31.535147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rho-GTPases are central regulators within a complex signaling network that controls the cytoskeletal organization and cell movement. This network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, and their numerous effectors that provide mutual regulation and feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling using a simulation model which couples GTPase signaling with cell morphodynamics to capture the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of the time-lapsed recordings of cell dynamics and GTPase activity. This approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.
Collapse
|
29
|
Ho KKY, Srivastava S, Kinnunen PC, Garikipati K, Luker GD, Luker KE. Oscillatory ERK Signaling and Morphology Determine Heterogeneity of Breast Cancer Cell Chemotaxis via MEK-ERK and p38-MAPK Signaling Pathways. Bioengineering (Basel) 2023; 10:bioengineering10020269. [PMID: 36829763 PMCID: PMC9952091 DOI: 10.3390/bioengineering10020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Chemotaxis, regulated by oscillatory signals, drives critical processes in cancer metastasis. Crucial chemoattractant molecules in breast cancer, CXCL12 and EGF, drive the activation of ERK and Akt. Regulated by feedback and crosstalk mechanisms, oscillatory signals in ERK and Akt control resultant changes in cell morphology and chemotaxis. While commonly studied at the population scale, metastasis arises from small numbers of cells that successfully disseminate, underscoring the need to analyze processes that cancer cells use to connect oscillatory signaling to chemotaxis at single-cell resolution. Furthermore, little is known about how to successfully target fast-migrating cells to block metastasis. We investigated to what extent oscillatory networks in single cells associate with heterogeneous chemotactic responses and how targeted inhibitors block signaling processes in chemotaxis. We integrated live, single-cell imaging with time-dependent data processing to discover oscillatory signal processes defining heterogeneous chemotactic responses. We identified that short ERK and Akt waves, regulated by MEK-ERK and p38-MAPK signaling pathways, determine the heterogeneous random migration of cancer cells. By comparison, long ERK waves and the morphological changes regulated by MEK-ERK signaling, determine heterogeneous directed motion. This study indicates that treatments against chemotaxis in consider must interrupt oscillatory signaling.
Collapse
Affiliation(s)
- Kenneth K. Y. Ho
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siddhartha Srivastava
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick C. Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishna Garikipati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| | - Kathryn E. Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (G.D.L.); (K.E.L.)
| |
Collapse
|
30
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
31
|
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6986445. [PMID: 36466092 PMCID: PMC9715334 DOI: 10.1155/2022/6986445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
33
|
Ji MJ, Son KH, Hong JH. Addition of oh8dG to Cardioplegia Attenuated Myocardial Oxidative Injury through the Inhibition of Sodium Bicarbonate Cotransporter Activity. Antioxidants (Basel) 2022; 11:antiox11091641. [PMID: 36139714 PMCID: PMC9495749 DOI: 10.3390/antiox11091641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
The biomarker 8-hydroxy-2′-deoxyguanosine (oh8dG) is derived from oxidized nucleic acids or products of oxidant-mediated DNA damage. Enhanced sodium bicarbonate cotransporter (NBC) activity is caused by reactive oxygen species (ROS) production in ventricular myocytes. Thus, we hypothesized that cardioplegia-solution-mediated ROS generation may be involved in the regulation of NBC activity in cardiomyocytes and that oh8dG treatment may modulate ROS and associated NBC activity. Langendorff-free cardioplegia-arrested cardiac strips and cardiomyocytes were isolated to determine the NBC activity and effects of oh8dG on oxidative-stress-mediated cardiac damage markers. We first determined the histidine-tryptophan-ketoglutarate (HTK) solution mediated NBC activity in cardiac strips and cells. The oh8dG treatment attenuated NBC activity in the electroneutral or electrogenic form of NBC. Additionally, exposure to HTK solution induced ROS, whereas co-administration of oh8dG attenuated ROS-mediated NBC activity, reduced ROS levels, and decreased the expression of apoptotic markers and fibrosis-associated proteins in cardiac cells. The oh8dG-administrated cardiac tissues were also protected from enhanced HTK-induced damage markers, heat shock protein 60 and polyADP-ribose. Our results show that oh8dG has a protective role against myocardial oxidative damage and provides a useful treatment strategy for restoring cardiac function.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea
- Correspondence: (K.H.S.); (J.H.H.); Tel.: +82-32-899-6682 (J.H.H.)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea
- Correspondence: (K.H.S.); (J.H.H.); Tel.: +82-32-899-6682 (J.H.H.)
| |
Collapse
|
34
|
Tamemoto N, Noguchi H. Excitable reaction-diffusion waves of curvature-inducing proteins on deformable membrane tubes. Phys Rev E 2022; 106:024403. [PMID: 36110014 DOI: 10.1103/physreve.106.024403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Living cells employ excitable reaction-diffusion waves for internal cellular functions, in which curvature-inducing proteins are often involved. However, the role of their mechanochemical coupling is not well understood. Here, we report the membrane deformation induced by the excitable reaction-diffusion waves of curvature-inducing proteins and the alternation in the waves due to the deformation, using a coarse-grained simulation of tubular membranes with a modified FitzHugh-Nagumo model. Protein-propagating waves deform tubular membranes and large deformations induce budding and erase waves. The wave speed and shape are determined by a combination of membrane deformation and spatial distribution of the curvature-inducing protein. Waves are also undulated in the azimuthal direction depending on the condition. Rotationally symmetric waves locally deform the tubes into a symmetric shape but maintain a straight shape on average. Our simulation method can be applied to other chemical reaction models and used to investigate various biomembrane phenomena.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
35
|
Yang Q, Miao Y, Campanello LJ, Hourwitz MJ, Abubaker-Sharif B, Bull AL, Devreotes PN, Fourkas JT, Losert W. Cortical waves mediate the cellular response to electric fields. eLife 2022; 11:73198. [PMID: 35318938 PMCID: PMC8942472 DOI: 10.7554/elife.73198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Electrotaxis, the directional migration of cells in a constant electric field, is important in regeneration, development, and wound healing. Electrotaxis has a slower response and a smaller dynamic range than guidance by other cues, suggesting that the mechanism of electrotaxis shares both similarities and differences with chemical-gradient-sensing pathways. We examine a mechanism centered on the excitable system consisting of cortical waves of biochemical signals coupled to cytoskeletal reorganization, which has been implicated in random cell motility. We use electro-fused giant Dictyostelium discoideum cells to decouple waves from cell motion and employ nanotopographic surfaces to limit wave dimensions and lifetimes. We demonstrate that wave propagation in these cells is guided by electric fields. The wave area and lifetime gradually increase in the first 10 min after an electric field is turned on, leading to more abundant and wider protrusions in the cell region nearest the cathode. The wave directions display 'U-turn' behavior upon field reversal, and this switch occurs more quickly on nanotopography. Our results suggest that electric fields guide cells by controlling waves of signal transduction and cytoskeletal activity, which underlie cellular protrusions. Whereas surface receptor occupancy triggers both rapid activation and slower polarization of signaling pathways, electric fields appear to act primarily on polarization, explaining why cells respond to electric fields more slowly than to other guidance cues.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States
| | - Leonard J Campanello
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Matt J Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, United States
| | | | - Abby L Bull
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, United States.,Department of Chemistry & Biochemistry, University of Maryland, College Park, United States
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| |
Collapse
|
36
|
Samson SC, Khan AM, Mendoza MC. ERK signaling for cell migration and invasion. Front Mol Biosci 2022; 9:998475. [PMID: 36262472 PMCID: PMC9573968 DOI: 10.3389/fmolb.2022.998475] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The RAS - Extracellular signal-regulated kinase (RAS-ERK) pathway plays a conserved role in promoting cell migration and invasion. Growth factors, adhesion, and oncogenes activate ERK. While historically studied with respect to its control of cell proliferation and differentiation, the signaling pattern and effectors specific for cell migration are now coming to light. New advances in pathway probes have revealed how steady-state ERK activity fluctuates within individual cells and propagates to neighboring cells. We review new findings on the different modes of ERK pathway stimulation and how an increased baseline level of activity promotes single cell and collective migration and invasion. We discuss how ERK drives actin polymerization and adhesion turnover for edge protrusion and how cell contraction stimulates cell movement and ERK activity waves in epithelial sheets. With the steady development of new biosensors for monitoring spatial and temporal ERK activity, determining how cells individually interpret the multiple in vivo signals to ERK is within reach.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Akib M Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
37
|
Yang JM, Chi WY, Liang J, Takayanagi S, Iglesias PA, Huang CH. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 2021; 184:6193-6206.e14. [PMID: 34838160 PMCID: PMC8686192 DOI: 10.1016/j.cell.2021.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Genetically encoded fluorescent biosensors are powerful tools for monitoring biochemical activities in live cells, but their multiplexing capacity is limited by the available spectral space. We overcome this problem by developing a set of barcoding proteins that can generate over 100 barcodes and are spectrally separable from commonly used biosensors. Mixtures of barcoded cells expressing different biosensors are simultaneously imaged and analyzed by deep learning models to achieve massively multiplexed tracking of signaling events. Importantly, different biosensors in cell mixtures show highly coordinated activities, thus facilitating the delineation of their temporal relationship. Simultaneous tracking of multiple biosensors in the receptor tyrosine kinase signaling network reveals distinct mechanisms of effector adaptation, cell autonomous and non-autonomous effects of KRAS mutations, as well as complex interactions in the network. Biosensor barcoding presents a scalable method to expand multiplexing capabilities for deciphering the complexity of signaling networks and their interactions between cells.
Collapse
Affiliation(s)
- Jr-Ming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | - Wei-Yu Chi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jessica Liang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Saki Takayanagi
- XDBio Graduate Program, Johns Hopkins School of Medicine, MD 21205, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Bell GRR, Rincón E, Akdoğan E, Collins SR. Optogenetic control of receptors reveals distinct roles for actin- and Cdc42-dependent negative signals in chemotactic signal processing. Nat Commun 2021; 12:6148. [PMID: 34785668 PMCID: PMC8595684 DOI: 10.1038/s41467-021-26371-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
During chemotaxis, neutrophils use cell surface G Protein Coupled Receptors to detect chemoattractant gradients. The downstream signaling system is wired with multiple feedback loops that amplify weak inputs and promote spatial separation of cell front and rear activities. Positive feedback could promote rapid signal spreading, yet information from the receptors is transmitted with high spatial fidelity, enabling detection of small differences in chemoattractant concentration across the cell. How the signal transduction network achieves signal amplification while preserving spatial information remains unclear. The GTPase Cdc42 is a cell-front polarity coordinator that is predictive of cell turning, suggesting an important role in spatial processing. Here we directly measure information flow from receptors to Cdc42 by pairing zebrafish parapinopsina, an optogenetic G Protein Coupled Receptor with reversible ON/OFF control, with a spectrally compatible red/far red Cdc42 Fluorescence Resonance Energy Transfer biosensor. Using this toolkit, we show that positive and negative signals downstream of G proteins shape a rapid, dose-dependent Cdc42 response. Furthermore, F-actin and Cdc42 itself provide two distinct negative signals that limit the duration and spatial spread of Cdc42 activation, maintaining output signals local to the originating receptors.
Collapse
Affiliation(s)
- George R R Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Esther Rincón
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Emel Akdoğan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
39
|
Yang Y, Chen SL, Xu Y, Yao Y, Liang JJ, Wang L, Jhanji V, Sun X, Ma D, Ng TK. Green Tea Catechins Attenuate Human Primary Pterygium Cell Survival and Migration Via Modulation of ERK p42/p44 and p38 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12209-12218. [PMID: 34610737 DOI: 10.1021/acs.jafc.1c04422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pterygium belongs to an ocular surface disease with triangular-shaped hyperplastic growth, characterized by conjunctivalization, inflammation, and connective tissue remodeling. We previously demonstrated neoplastic-like properties of pterygium cells. Green tea catechin, (-)-epigallocatechin gallate (EGCG), has been shown to possess antitumorigenic properties; herein, we aimed to determine the effects of green tea catechins on human primary pterygium cell survival and migration and compared to that on patients' conjunctival cells. Both human primary pterygium and conjunctival cells expressed EGCG receptor, the 67 kDa laminin receptor. Seven-day treatment of green tea extract (Theaphenon E; 16.25 μg/mL) and EGCG (25 μM) attenuated pterygium cell proliferation by 16.78% (p < 0.001) and 24.09% (p < 0.001) respectively, without significantly influencing conjunctival cells. Moreover, green tea extract (16.25 μg/mL) and EGCG (25 μM) treatments also hindered pterygium cell migration by 35.22% (p < 0.001) and 25.20% (p = 0.019), respectively, but not conjunctival cells. Yet, green tea extract and EGCG treatments did not significantly induce pterygium cell apoptosis. Furthermore, green tea extract and EGCG treatments significantly increased the phosphorylation of p38 protein but reduced the phosphorylation of p42/p44 protein in pterygium cells. In summary, this study revealed that green tea extract and EGCG attenuated human primary pterygium cell survival and migration in vitro without damaging conjunctival cells, suggesting a novel potential therapeutic approach for primary pterygium treatment.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Ophthalmology and Visual Science, Eye and Ear Nose Throat Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
- Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200433, China
- Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou 515041, Guangdong, China
- Shantou University Medical College, Shantou 515063, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Li Wang
- Department of Ophthalmology and Visual Science, Eye and Ear Nose Throat Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
- Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200433, China
- Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Department of Ophthalmology, UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and Ear Nose Throat Hospital, Shanghai Medical College, Fudan University, Shanghai 200433, China
- Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200433, China
- Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Di Ma
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou 515041, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou 515041, Guangdong, China
- Shantou University Medical College, Shantou 515063, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
40
|
Rens EG, Edelstein-Keshet L. Cellular Tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. Phys Biol 2021; 18. [PMID: 34544056 DOI: 10.1088/1478-3975/ac2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The small GTPases Rac and Rho are known to regulate eukaryotic cell shape, promoting front protrusion (Rac) or rear retraction (Rho) of the cell edge. Such cell deformation changes the contact and adhesion of cell to the extracellular matrix (ECM), while ECM signaling through integrin receptors also affects GTPase activity. We develop and investigate a model for this three-way feedback loop in 1D and 2D spatial domains, as well as in a fully deforming 2D cell shapes with detailed adhesion-bond biophysics. The model consists of reaction-diffusion equations solved numerically with open-source software, Morpheus, and with custom-built cellular Potts model simulations. We find a variety of patterns and cell behaviors, including persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction. We show that the observed spatial patterns depend on the cell shape, and vice versa.
Collapse
Affiliation(s)
- Elisabeth G Rens
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
41
|
Tsujita K, Satow R, Asada S, Nakamura Y, Arnes L, Sako K, Fujita Y, Fukami K, Itoh T. Homeostatic membrane tension constrains cancer cell dissemination by counteracting BAR protein assembly. Nat Commun 2021; 12:5930. [PMID: 34635648 PMCID: PMC8505629 DOI: 10.1038/s41467-021-26156-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
Malignancy is associated with changes in cell mechanics that contribute to extensive cell deformation required for metastatic dissemination. We hypothesized that the cell-intrinsic physical factors that maintain epithelial cell mechanics could function as tumor suppressors. Here we show, using optical tweezers, genetic interference, mechanical perturbations, and in vivo studies, that epithelial cells maintain higher plasma membrane (PM) tension than their metastatic counterparts and that high PM tension potently inhibits cancer cell migration and invasion by counteracting membrane curvature sensing/generating BAR family proteins. This tensional homeostasis is achieved by membrane-to-cortex attachment (MCA) regulated by ERM proteins, whose disruption spontaneously transforms epithelial cells into a mesenchymal migratory phenotype powered by BAR proteins. Consistently, the forced expression of epithelial–mesenchymal transition (EMT)-inducing transcription factors results in decreased PM tension. In metastatic cells, increasing PM tension by manipulating MCA is sufficient to suppress both mesenchymal and amoeboid 3D migration, tumor invasion, and metastasis by compromising membrane-mediated mechanosignaling by BAR proteins, thereby uncovering a previously undescribed mechanical tumor suppressor mechanism. Changes in cell mechanics contribute to cancer cell dissemination. Here the authors show that high plasma membrane (PM) tension inhibits cancer dissemination by counteracting mechanosensitive BAR family protein assembly, while restoration of PM tension phenotypically convert malignant cells into a non-motile epithelial cell state.
Collapse
Affiliation(s)
- Kazuya Tsujita
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan. .,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Shinobu Asada
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Luis Arnes
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Keisuke Sako
- National Cerebral and Cardiovascular Center Research Institute, Osaka, 565-8565, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
42
|
Kuhn J, Lin Y, Devreotes PN. Using Live-Cell Imaging and Synthetic Biology to Probe Directed Migration in Dictyostelium. Front Cell Dev Biol 2021; 9:740205. [PMID: 34676215 PMCID: PMC8523838 DOI: 10.3389/fcell.2021.740205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
For decades, the social amoeba Dictyostelium discoideum has been an invaluable tool for dissecting the biology of eukaryotic cells. Its short growth cycle and genetic tractability make it ideal for a variety of biochemical, cell biological, and biophysical assays. Dictyostelium have been widely used as a model of eukaryotic cell motility because the signaling and mechanical networks which they use to steer and produce forward motion are highly conserved. Because these migration networks consist of hundreds of interconnected proteins, perturbing individual molecules can have subtle effects or alter cell morphology and signaling in major unpredictable ways. Therefore, to fully understand this network, we must be able to quantitatively assess the consequences of abrupt modifications. This ability will allow us better control cell migration, which is critical for development and disease, in vivo. Here, we review recent advances in imaging, synthetic biology, and computational analysis which enable researchers to tune the activity of individual molecules in single living cells and precisely measure the effects on cellular motility and signaling. We also provide practical advice and resources to assist in applying these approaches in Dictyostelium.
Collapse
|
43
|
Hannum ME, Lin C, Bell K, Toskala A, Koch R, Galaniha T, Nolden A, Reed DR, Joseph P. The genetics of eating behaviors: research in the age of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.03.458854. [PMID: 34518838 DOI: 10.1101/2021.04.03.438340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
How much pleasure we take in eating is more than just how much we enjoy the taste of food. Food involvement - the amount of time we spend on food beyond the immediate act of eating and tasting - is key to the human food experience. We took a biological approach to test whether food-related behaviors, together capturing food involvement, have genetic components and are partly due to inherited variation. We collected data via an internet survey from a genetically informative sample of 419 adult twins (114 monozygotic twin pairs, 31 dizygotic twin pairs, and 129 singletons). Because we conducted this research during the pandemic, we also ascertained how many participants had experienced COVID-19-associated loss of taste and smell. Since these respondents had previously participated in research in person, we measured their level of engagement to evaluate the quality of their online responses. Additive genetics explained 16-44% of the variation in some measures of food involvement, most prominently various aspects of cooking, suggesting some features of the human food experience may be inborn. Other features reflected shared (early) environment, captured by respondents' twin status. About 6% of participants had a history of COVID-19 infection, many with transitory taste and smell loss, but all but one had recovered before the survey. Overall, these results suggest that people may have inborn as well as learned variations in their involvement with food. We also learned to adapt to research during a pandemic by considering COVID-19 status and measuring engagement in online studies of human eating behavior.
Collapse
|
44
|
Wong M, Gilmour D. Going your own way: Self-guidance mechanisms in cell migration. Curr Opin Cell Biol 2021; 72:116-123. [PMID: 34403875 DOI: 10.1016/j.ceb.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
How cells and tissues migrate from one location to another is a question of significant biological and medical relevance. Migration is generally thought to be controlled by external hardwired guidance cues, which cells follow by polarizing their internal locomotory machinery in the imposed direction. However, a number of recently discovered 'self-guidance' mechanisms have revealed that migrating cells have more control over the path they follow than previously thought. Here, directional information is generated by the migrating cells themselves via a dynamic interplay of cell-intrinsic and -extrinsic regulators. In this review, we discuss how self-guidance can emerge from mechanisms acting at different levels of scale and how these enable cells to rapidly adapt to environmental challenges.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
45
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
47
|
Tamemoto N, Noguchi H. Reaction-diffusion waves coupled with membrane curvature. SOFT MATTER 2021; 17:6589-6596. [PMID: 34166481 DOI: 10.1039/d1sm00540e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reaction-diffusion waves of proteins are known to be involved in fundamental cellular functions, such as cell migration, cell division, and vesicular transportation. In some of these phenomena, pattern formation on the membranes is induced by the coupling between membrane deformation and the reaction-diffusion system through curvature-inducing proteins that bend the biological membranes. Although the membrane shape and the dynamics of the curvature-inducing proteins affect each other in these systems, the effect of such mechanochemical feedback loops on the waves has not been studied in detail. In this study, reaction-diffusion waves coupled with membrane deformation are investigated using simulations combining a dynamically triangulated membrane model with the Brusselator model extended to include the effect of membrane curvature. It is found that the propagating wave patterns change into nonpropageting patterns and spiral wave patterns due to the mechanochemical effects. Moreover, the wave speed is positively or negatively correlated with the local membrane curvature depending on the spontaneous curvature and bending rigidity. In addition, self-oscillation of the vesicle shape occurs, associated with the reaction-diffusion waves of curvature-inducing proteins. This agrees with the experimental observation of GUVs with a reconstituted Min system, which plays a key role in the cell division of Escherichia coli. The findings of this study demonstrate the importance of mechanochemical coupling in biological phenomena.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
48
|
Three-dimensional stochastic simulation of chemoattractant-mediated excitability in cells. PLoS Comput Biol 2021; 17:e1008803. [PMID: 34260581 PMCID: PMC8330952 DOI: 10.1371/journal.pcbi.1008803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/03/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
During the last decade, a consensus has emerged that the stochastic triggering of an excitable system drives pseudopod formation and subsequent migration of amoeboid cells. The presence of chemoattractant stimuli alters the threshold for triggering this activity and can bias the direction of migration. Though noise plays an important role in these behaviors, mathematical models have typically ignored its origin and merely introduced it as an external signal into a series of reaction-diffusion equations. Here we consider a more realistic description based on a reaction-diffusion master equation formalism to implement these networks. In this scheme, noise arises naturally from a stochastic description of the various reaction and diffusion terms. Working on a three-dimensional geometry in which separate compartments are divided into a tetrahedral mesh, we implement a modular description of the system, consisting of G-protein coupled receptor signaling (GPCR), a local excitation-global inhibition mechanism (LEGI), and signal transduction excitable network (STEN). Our models implement detailed biochemical descriptions whenever this information is available, such as in the GPCR and G-protein interactions. In contrast, where the biochemical entities are less certain, such as the LEGI mechanism, we consider various possible schemes and highlight the differences between them. Our simulations show that even when the LEGI mechanism displays perfect adaptation in terms of the mean level of proteins, the variance shows a dose-dependence. This differs between the various models considered, suggesting a possible means for determining experimentally among the various potential networks. Overall, our simulations recreate temporal and spatial patterns observed experimentally in both wild-type and perturbed cells, providing further evidence for the excitable system paradigm. Moreover, because of the overall importance and ubiquity of the modules we consider, including GPCR signaling and adaptation, our results will be of interest beyond the field of directed migration. Though the term noise usually carries negative connotations, it can also contribute positively to the characteristic dynamics of a system. In biological systems, where noise arises from the stochastic interactions between molecules, its study is usually confined to genetic regulatory systems in which copy numbers are small and fluctuations large. However, noise can have important roles when the number of signaling molecules is large. The extension of pseudopods and the subsequent motion of amoeboid cells arises from the noise-induced trigger of an excitable system. Chemoattractant signals bias this triggering thereby directing cell motion. To date, this paradigm has not been tested by mathematical models that account accurately for the noise that arises in the corresponding reactions. In this study, we employ a reaction-diffusion master equation approach to investigate the effects of noise. Using a modular approach and a three-dimensional cell model with specific subdomains attributed to the cell membrane and cortex, we explore the spatiotemporal dynamics of the system. Our simulations recreate many experimentally-observed cell behaviors thereby supporting the biased-excitable network hypothesis.
Collapse
|
49
|
Yu LY, Tseng TJ, Lin HC, Hsu CL, Lu TX, Tsai CJ, Lin YC, Chu I, Peng CT, Chen HJ, Tsai FC. Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. SCIENCE ADVANCES 2021; 7:eabg2106. [PMID: 34321207 PMCID: PMC8318371 DOI: 10.1126/sciadv.abg2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
Integrating signals is essential for cell survival, leading to the concept of synthetic lethality. However, how signaling is integrated to control cell migration remains unclear. By conducting a "two-hit" screen, we revealed the synergistic reduction of cell migration when serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) were simultaneously suppressed. Single-cell analyses showed that STK40 knockdown reduced cell motility and coordination by strengthening focal adhesion (FA) complexes. Furthermore, STK40 knockdown reduced the stability of yes-associated protein (YAP) and subsequently decreased YAP transported into the nucleus, while MAPK inhibition further weakened YAP activities in the nucleus to disturb FA remodeling. Together, we unveiled an integrated STK40-YAP-MAPK system regulating cell migration and introduced "synthetic dysmobility" as a novel strategy to collaboratively control cell migration.
Collapse
Affiliation(s)
- Ling-Yea Yu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Jen Tseng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsuan-Chao Lin
- Department of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Lin Hsu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Xuan Lu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Ph.D. Program in Biological Sciences, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Chia-Jung Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yu-Chiao Lin
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I Chu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Tzu Peng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hou-Jen Chen
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
50
|
Lavrenyuk K, Conway D, Dahl KN. Imaging methods in mechanosensing: a historical perspective and visions for the future. Mol Biol Cell 2021; 32:842-854. [PMID: 33788578 PMCID: PMC8108522 DOI: 10.1091/mbc.e20-10-0671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the past three decades, as mechanobiology has become a distinct area of study, researchers have developed novel imaging tools to discover the pathways of biomechanical signaling. Early work with substrate engineering and particle tracking demonstrated the importance of cell–extracellular matrix interactions on the cell cycle as well as the mechanical flux of the intracellular environment. Most recently, tension sensor approaches allowed directly measuring tension in cell–cell and cell–substrate interactions. We retrospectively analyze how these various optical techniques progressed the field and suggest our vision forward for a unified theory of cell mechanics, mapping cellular mechanosensing, and novel biomedical applications for mechanobiology.
Collapse
Affiliation(s)
- Kirill Lavrenyuk
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| | - Daniel Conway
- Virginia Commonwealth University, College of Engineering, Richmond, VA 23284
| | - Kris Noel Dahl
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| |
Collapse
|