1
|
Sugimura K, Otani T. Vertex remodeling during epithelial morphogenesis. Curr Opin Cell Biol 2024; 91:102427. [PMID: 39332144 DOI: 10.1016/j.ceb.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Epithelial cells adhere to each other via intercellular junctions that can be classified into bicellular junctions and tricellular contacts (vertices). Epithelial morphogenesis involves cell rearrangement and requires remodeling of bicellular junctions and vertices. Although our understanding of how bicellular junction mechanics drive epithelial morphogenesis has advanced, the mechanisms underlying vertex remodeling during this process have only received attention recently. In this review, we outline recent progress in our understanding of how cells reorganize cell adhesion and the cytoskeleton to trigger the displacement and resolution of cell vertices. We will also discuss how cells achieve the optimal balance between the structural flexibility and stability of their vertices. Finally, we introduce new modeling frameworks designed to analyze mechanics at cell vertices. Integration of live imaging and modeling techniques is providing new insights into the active roles of cell vertices during epithelial morphogenesis.
Collapse
Affiliation(s)
- Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Tetsuhisa Otani
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan.
| |
Collapse
|
2
|
Dagher L, Descroix S, Maître JL. Intercellular fluid dynamics in tissue morphogenesis. Curr Biol 2024; 34:R1031-R1044. [PMID: 39437722 DOI: 10.1016/j.cub.2024.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
During embryonic development, cells shape our body, which is mostly made up of water. It is often forgotten that some of this water is found in intercellular fluid, which, for example, immerses the cells of developing embryos. Intercellular fluid contributes to the properties of tissues and influences cell behaviour, thereby participating in tissue morphogenesis. While our understanding of the role of cells in shaping tissues advances, the exploration of the contribution of intercellular fluid dynamics is just beginning. In this review, we delve into the intricate mechanisms employed by cells to control fluid movements both across and within sealed tissue compartments. These mechanisms encompass sealing by tight junctions and controlled leakage, osmotic pumping, hydraulic fracturing of cell adhesion, cell and tissue contractions, as well as beating cilia. We illustrate key concepts by drawing extensively from the early mouse embryo, which successively forms multiple lumens that play essential roles in its development. Finally, we detail experimental approaches and emerging techniques that allow for the quantitative characterization and the manipulation of intercellular fluids in vivo, as well as theoretical frameworks that are crucial for comprehending their dynamics.
Collapse
Affiliation(s)
- Louise Dagher
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University, 75005 Paris, France; Institut Curie, Laboratoire Physics of Cells and Cancer (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Laboratoire Physics of Cells and Cancer (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University, 75005 Paris, France.
| |
Collapse
|
3
|
van den Goor L, Iseler J, Koning KM, Miller AL. Mechanosensitive recruitment of Vinculin maintains junction integrity and barrier function at epithelial tricellular junctions. Curr Biol 2024; 34:4677-4691.e5. [PMID: 39341202 PMCID: PMC11496005 DOI: 10.1016/j.cub.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Apical cell-cell junctions, including adherens junctions and tight junctions, adhere epithelial cells to one another and regulate selective permeability at both bicellular junctions and tricellular junctions (TCJs). Although several specialized proteins are known to localize at TCJs, it remains unclear how actomyosin-mediated tension transmission at TCJs contributes to the maintenance of junction integrity and barrier function at these sites. Here, utilizing the embryonic epithelium of gastrula-stage Xenopus laevis embryos, we define a mechanism by which the mechanosensitive protein Vinculin helps anchor the actomyosin network at TCJs, thus maintaining TCJ integrity and barrier function. Using an optogenetic approach to acutely increase junctional tension, we find that Vinculin is mechanosensitively recruited to apical junctions immediately surrounding TCJs. In Vinculin knockdown (KD) embryos, junctional actomyosin intensity is decreased and becomes disorganized at TCJs. Using fluorescence recovery after photobleaching (FRAP), we show that Vinculin KD reduces actin stability at TCJs and destabilizes Angulin-1, a key tricellular tight junction protein involved in regulating barrier function at TCJs. When Vinculin KD embryos are subjected to increased tension, TCJ integrity is not maintained, filamentous actin (F-actin) morphology at TCJs is disrupted, and breaks in the signal of the tight junction protein ZO-1 signal are detected. Finally, using a live imaging barrier assay, we detect increased barrier leaks at TCJs in Vinculin KD embryos. Together, our findings show that Vinculin-mediated actomyosin organization is required to maintain junction integrity and barrier function at TCJs and reveal new information about the interplay between adhesion and barrier function at TCJs.
Collapse
Affiliation(s)
- Lotte van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jolene Iseler
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Katherine M Koning
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Farrus N, Maestro JL, Piulachs MD. CHMP4B contributes to maintaining the follicular cells integrity in the panoistic ovary of the cockroach Blattella germanica. Biol Cell 2024; 116:e2400010. [PMID: 38895958 DOI: 10.1111/boc.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The Endosomal Sorting Complex Required for Transport (ESCRT) is a highly conserved cellular machinery essential for many cellular functions, including transmembrane protein sorting, endosomal trafficking, and membrane scission. CHMP4B is a key component of ESCRT-III subcomplex and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster showing its relevance in maintaining this reproductive organ during the life of the fly. However, the role of the CHMP4B in the most basal panoistic ovaries remains elusive. RESULTS Using RNAi, we examined the function of CHMP4B in the ovary of Blattella germanica in two different physiological stages: in last instar nymphs, with proliferative follicular cells, and in vitellogenic adults when follicular cells enter in polyploidy and endoreplication. In Chmp4b-depleted specimens, the actin fibers change their distribution, appearing accumulated in the basal pole of the follicular cells, resulting in an excess of actin bundles that surround the basal ovarian follicle and modifying their shape. Depletion of Chmp4b also determines an actin accumulation in follicular cell membranes, resulting in different cell morphologies and sizes. In the end, these changes disrupt the opening of intercellular spaces between the follicular cells (patency) impeding the incorporation of yolk proteins to the growing oocyte and resulting in female sterility. In addition, the nuclei of follicular cells appeared unusually elongated, suggesting an incomplete karyokinesis. CONCLUSIONS These results proved CHMP4B essential in preserving the proper expression of cytoskeleton proteins vital for basal ovarian follicle growth and maturation and for yolk protein incorporation. Moreover, the correct distribution of actin fibers in the basal ovarian follicle emerged as a critical factor for the successful completion of ovulation and oviposition. SIGNIFICANCE The overall results, obtained in two different proliferative stages, suggest that the requirement of CHMP4B in B. germanica follicular epithelium is not related to the proliferative stage of the tissue.
Collapse
Affiliation(s)
- Nuria Farrus
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | - José Luis Maestro
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | | |
Collapse
|
5
|
Zhang X, Singh A, Soriano Martinez K, Ferree PM. Direct Parental (DIPA) CRISPR in the jewel wasp, Nasonia vitripennis. G3 (BETHESDA, MD.) 2024; 14:jkae095. [PMID: 38734969 PMCID: PMC11228858 DOI: 10.1093/g3journal/jkae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
While clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology has demonstrated remarkable promise as a gene-editing tool, its application in certain insects, such as the jewel wasp, Nasonia vitripennis, has been hindered by a lack of a tractable method for reagent delivery. Direct Parental (DIPA-) CRISPR recently emerged as a facile way to induce gene lesions because it involves adult injection with commercially available Cas9-sgRNA with no helper reagent. However, DIPA-CRISPR has so far been tested in only a few insects. Here, we have assessed the amenability of DIPA-CRISPR in N. vitripennis by targeting two eye pigmentation genes, cinnabar and vermilion, which function in the ommochrome pathway. Successful generation of lesions in both genes demonstrated the functionality of DIPA-CRISPR in N. vitripennis and its potential application to other genes, thereby expanding the range of insects suitable for this method. We varied two parameters, Cas9-sgRNA concentration and injection volume, to determine optimal injection conditions. We found that the larger injection volume coupled with either higher or lower reagent concentration was needed for consistent mutation production. However, DIPA-CRISPR yields an overall low mutation rate in N. vitripennis when compared to other tested insects, a characteristic that may be attributed to a proportionally low vitellogenic import efficiency in the jewel wasp. We discuss different factors that may be considered in determining when DIPA-CRISPR may be preferable over other reagent delivery methods.
Collapse
Affiliation(s)
- Xinmi Zhang
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Anabhra Singh
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Kassandra Soriano Martinez
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| | - Patrick M Ferree
- Department of Natural Sciences, Pitzer College and Scripps College, 925 N Mills Ave, Claremont, CA 91711, USA
| |
Collapse
|
6
|
Herriage HC, Calvi BR. Premature endocycling of Drosophila follicle cells causes pleiotropic defects in oogenesis. Genetics 2024; 226:iyae009. [PMID: 38302115 PMCID: PMC10990429 DOI: 10.1093/genetics/iyae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/18/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in the lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
8
|
Herriage HC, Calvi BR. Premature endocycling of Drosophila follicle cells causes pleiotropic defects in oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.10.561736. [PMID: 37873193 PMCID: PMC10592765 DOI: 10.1101/2023.10.10.561736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.
Collapse
Affiliation(s)
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
- Melvin and Bren Simon Cancer Center, Indianapolis, IN
- Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
9
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
10
|
Baraban M, Gordillo Pi C, Bonnet I, Gilles JF, Lejeune C, Cabrera M, Tep F, Breau MA. Actomyosin contractility in olfactory placode neurons opens the skin epithelium to form the zebrafish nostril. Dev Cell 2023; 58:361-375.e5. [PMID: 36841243 PMCID: PMC10023511 DOI: 10.1016/j.devcel.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
Despite their barrier function, epithelia can locally lose their integrity to create physiological openings during morphogenesis. The mechanisms driving the formation of these epithelial breaks are only starting to be investigated. Here, we study the formation of the zebrafish nostril (the olfactory orifice), which opens in the skin epithelium to expose the olfactory neurons to external odorant cues. Combining live imaging, drug treatments, laser ablation, and tissue-specific functional perturbations, we characterize a mechanical interplay between olfactory placode neurons and the skin, which plays a crucial role in the formation of the orifice: the neurons pull on the overlying skin cells in an actomyosin-dependent manner which, in combination with a local reorganization of the skin epithelium, triggers the opening of the orifice. This work identifies an original mechanism to break an epithelial sheet, in which an adjacent group of cells mechanically assists the epithelium to induce its local rupture.
Collapse
Affiliation(s)
- Marion Baraban
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France; Laboratoire Jean Perrin, 75005 Paris, France.
| | - Clara Gordillo Pi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | | | - Camille Lejeune
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Florian Tep
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France; Laboratoire Jean Perrin, 75005 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.
| |
Collapse
|
11
|
Zheng H, Wang N, Yun J, Xu H, Yang J, Zhou S. Juvenile hormone promotes paracellular transport of yolk proteins via remodeling zonula adherens at tricellular junctions in the follicular epithelium. PLoS Genet 2022; 18:e1010292. [PMID: 35759519 PMCID: PMC9269875 DOI: 10.1371/journal.pgen.1010292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
Juvenile hormone (JH) acts as a gonadotrophic hormone stimulating insect vitellogenesis and oogenesis. Paracellular transport of yolk proteins through intercellular channels (patency) in the follicular epithelium is a developmentally regulated and evolutionarily conserved process during vitellogenesis. However, the mechanisms underlying patency opening are poorly understood. Using the migratory locust Locusta migratoria as a model system, we report here that JH-regulated remodeling of zonula adherens (ZA), the belt-like adherens junction maintaining physical linking between follicle cells controlled the opening of patency. JH triggered phosphorylation of Partitioning defective protein 3 (Par3) via a signaling cascade including G protein-coupled receptor (GPCR), small GTPase Cell division cycle 42 (Cdc42) and atypical Protein kinase C (aPKC). Par3 phosphorylation resulted in its disassociation from β-Catenin, the cytoplasmic partner of ZA core component E-Cadherin. Release of Par3 from the β-Catenin/E-Cadherin complex caused ZA disassembly at tricellular contacts, consequently leading to patency enlargement. This study provides new insight into how JH stimulates insect vitellogenesis and egg production via inducing the opening of paracellular route for vitellogenin transport crossing the follicular epithelium barrier.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Ningbo Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Jiaqi Yun
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Huijing Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Jiebing Yang
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan, China
| |
Collapse
|
12
|
Shirai Y, Piulachs MD, Belles X, Daimon T. DIPA-CRISPR is a simple and accessible method for insect gene editing. CELL REPORTS METHODS 2022; 2:100215. [PMID: 35637909 PMCID: PMC9142683 DOI: 10.1016/j.crmeth.2022.100215] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Current approaches for insect gene editing require microinjection of materials into early embryos. This severely limits the application of gene editing to a great number of insect species, especially to those whose reproduction systems preclude access to early embryos for injection. To overcome these limitations, we report a simple and accessible method for insect gene editing, termed "direct parental" CRISPR (DIPA-CRISPR). We show that injection of Cas9 ribonucleoproteins (RNPs) into the haemocoel of adult females efficiently introduces heritable mutations in developing oocytes. Importantly, commercially available standard Cas9 protein can be directly used for DIPA-CRISPR, which makes this approach highly practical and feasible. DIPA-CRISPR enables highly efficient gene editing in the cockroaches, on which conventional approaches cannot be applied, and in the model beetle Tribolium castaneum. Due to its simplicity and accessibility, DIPA-CRISPR will greatly extend the application of gene editing technology to a wide variety of insects.
Collapse
Affiliation(s)
- Yu Shirai
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Cho Y, Haraguchi D, Shigetomi K, Matsuzawa K, Uchida S, Ikenouchi J. Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin. J Biophys Biochem Cytol 2022; 221:213005. [PMID: 35148372 PMCID: PMC8847807 DOI: 10.1083/jcb.202009037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023] Open
Abstract
The epithelial cell sheet functions as a barrier to prevent invasion of pathogens. It is necessary to eliminate intercellular gaps not only at bicellular junctions, but also at tricellular contacts, where three cells meet, to maintain epithelial barrier function. To that end, tight junctions between adjacent cells must associate as closely as possible, particularly at tricellular contacts. Tricellulin is an integral component of tricellular tight junctions (tTJs), but the molecular mechanism of its contribution to the epithelial barrier function remains unclear. In this study, we revealed that tricellulin contributes to barrier formation by regulating actomyosin organization at tricellular junctions. Furthermore, we identified α-catenin, which is thought to function only at adherens junctions, as a novel binding partner of tricellulin. α-catenin bridges tricellulin attachment to the bicellular actin cables that are anchored end-on at tricellular junctions. Thus, tricellulin mobilizes actomyosin contractility to close the lateral gap between the TJ strands of the three proximate cells that converge on tricellular junctions.
Collapse
Affiliation(s)
- Yuma Cho
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Daichi Haraguchi
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichi Uchida
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
van den Goor L, Miller AL. Closing the gap: Tricellulin/α-catenin interaction maintains epithelial integrity at vertices. J Cell Biol 2022; 221:e202202009. [PMID: 35191951 PMCID: PMC8932530 DOI: 10.1083/jcb.202202009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tricellular junctions play a critical role in regulating epithelial barrier function. In this issue, Cho et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202009037) demonstrate a novel interaction between tricellulin and α-catenin, which connects tricellular junctions to the actomyosin cytoskeleton, thus supporting the epithelial barrier at cell vertices.
Collapse
Affiliation(s)
- Lotte van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Zajac AL, Horne-Badovinac S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Curr Biol 2022; 32:735-748.e10. [PMID: 35021047 PMCID: PMC8891071 DOI: 10.1016/j.cub.2021.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are lined with a sheet-like basement membrane (BM) extracellular matrix at their basal surfaces that plays essential roles in adhesion and signaling. BMs also provide mechanical support to guide morphogenesis. Despite their importance, we know little about how epithelial cells secrete and assemble BMs during development. BM proteins are sorted into a basolateral secretory pathway distinct from other basolateral proteins. Because BM proteins self-assemble into networks, and the BM lines only a small portion of the basolateral domain, we hypothesized that the site of BM protein secretion might be tightly controlled. Using the Drosophila follicular epithelium, we show that kinesin-3 and kinesin-1 motors work together to define this secretion site. Similar to all epithelia, the follicle cells have polarized microtubules (MTs) along their apical-basal axes. These cells collectively migrate, and they also have polarized MTs along the migratory axis at their basal surfaces. We find follicle cell MTs form one interconnected network, which allows kinesins to transport Rab10+ BM secretory vesicles both basally and to the trailing edge of each cell. This positions them near the basal surface and the basal-most region of the lateral domain for exocytosis. When kinesin transport is disrupted, the site of BM protein secretion is expanded, and ectopic BM networks form between cells that impede migration and disrupt tissue architecture. These results show how epithelial cells can define a subdomain on their basolateral surface through MT-based transport and highlight the importance of controlling the exocytic site of network-forming proteins.
Collapse
Affiliation(s)
- Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Babio L, Lokman PM, Damsteegt EL, Dutoit L. Are Cell Junctions Implicated in the Regulation of Vitellogenin Uptake? Insights from an RNAseq-Based Study in Eel, Anguilla australis. Cells 2022; 11:550. [PMID: 35159359 PMCID: PMC8834532 DOI: 10.3390/cells11030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
At the onset of puberty, ovarian follicles become competent to incorporate large amounts of vitellogenin (Vtg). Using an RNAseq-based approach, transcriptomes from pre-vitellogenic (PV) and early vitellogenic (EV) ovaries from wild-caught eel, Anguilla australis, were compared to investigate the expression of specific genes encoding cell junction proteins that could be involved in regulating Vtg uptake. Partial support was found for the mechanical barrier hypothesis proposing that the access of Vtg to the oolemma is restricted by a tight junction (TJ) network within the granulosa cell layer, which changes between the PV and EV stage. Among 25 genes encoding TJ-constituting proteins, five were down-regulated and two were up-regulated. A chemical barrier hypothesis stating that gap junctions (GJs) are involved in modulating Vtg uptake was not supported, as only five GJs were found to be expressed in the ovary with no significant changes in expression between stages. Furthermore, the endocytic pathway was found to be up-regulated during the PV-EV transition. Finally, the study showed that gene expression patterns may help identify suitable candidates involved in the regulation of Vtg uptake, and provided novel sequence data for A. australis, including putative Vtg receptors corresponding to Lr8 and Lrp13 members of the low-density lipoprotein receptor family.
Collapse
Affiliation(s)
- Lucila Babio
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin 9054, New Zealand; (P.M.L.); (E.L.D.); (L.D.)
| | | | | | | |
Collapse
|
17
|
Abstract
Cell packing - the spatial arrangement of cells - determines the shapes of organs. Recently, investigations of organ development in a variety of model organisms have uncovered cellular mechanisms that are used by epithelial tissues to change cell packing, and thereby their shapes, to generate functional architectures. Here, we review these cellular mechanisms across a wide variety of developmental processes in vertebrates and invertebrates and identify a set of common motifs in the morphogenesis toolbox that, in combination, appear to allow any change in tissue shape. We focus on tissue elongation, folding and invagination, and branching. We also highlight how these morphogenetic processes are achieved by cell-shape changes, cell rearrangements, and oriented cell division. Finally, we describe approaches that have the potential to engineer three-dimensional tissues for both basic science and translational purposes. This review provides a framework for future analyses of how tissues are shaped by the dynamics of epithelial cell packing.
Collapse
Affiliation(s)
- Sandra B Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Ali-Murthy Z, Fetter RD, Wang W, Yang B, Royer LA, Kornberg TB. Elimination of nurse cell nuclei that shuttle into oocytes during oogenesis. J Cell Biol 2021; 220:212051. [PMID: 33950159 PMCID: PMC8105724 DOI: 10.1083/jcb.202012101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12-14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12-14.
Collapse
Affiliation(s)
- Zehra Ali-Murthy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Bin Yang
- Chan Zuckerberg Biohub, San Francisco, CA
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
19
|
Abstract
Epithelial barriers can open their junctions to enhance paracellular flux. A new article by Isasti-Sanchez et al. in this issue of Developmental Cell shows how changes in cell adhesion and relaxation of acto-myosin tension cooperate in opening the cell vertices of the Drosophila follicular epithelium.
Collapse
Affiliation(s)
- Veit Riechmann
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, D-68167 Mannheim, Germany.
| |
Collapse
|