1
|
Wang Z, Xu J, Mo L, Zhan R, Zhang J, Liu L, Jiang J, Zhang Y, Bai Y. The Application Potential of the Regulation of Tregs Function by Irisin in the Prevention and Treatment of Immune-Related Diseases. Drug Des Devel Ther 2024; 18:3005-3023. [PMID: 39050796 PMCID: PMC11268596 DOI: 10.2147/dddt.s465713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. These research findings provide important clues for understanding the mechanisms of irisin's action and theoretical basis for its potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiaqi Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Liqun Mo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Renshu Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yingying Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| |
Collapse
|
2
|
Effects of Tai-Chi and Running Exercises on Cardiorespiratory Fitness and Biomarkers in Sedentary Middle-Aged Males: A 24-Week Supervised Training Study. BIOLOGY 2022; 11:biology11030375. [PMID: 35336749 PMCID: PMC8945567 DOI: 10.3390/biology11030375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
This study examined the effectiveness of Tai-Chi and running exercises on cardiorespiratory fitness and biomarkers in sedentary middle-aged adults under 24 weeks of supervised training. Methods Thirty-six healthy middle-aged adults (55.6 ± 5.3 yr) were randomly assigned into Tai-Chi, running and control groups. During a 24-week training period, the Tai-Chi and running groups were asked to perform exercises for 60 min/day and 5 days/week, which were supervised by Tai-Chi and running instructors throughout. Resting heart rate, lean mass, blood pressure and blood lipids were measured, and cardiorespiratory fitness (VO2max, Vmax and Peak heart rate) was assessed at the baseline and the 12- and 24-week interventions. Results Compared to the no-exercise control group, both the Tai-Chi and running groups significantly decreased resting heart rate, diastolic blood pressure and cardiorespiratory fitness and increased lean mass across the training session (p < 0.05). Compared to the Tai-Chi group, the running group showed greater improvement in VO2max and Vmax (p < 0.05) and reduced triglyceride and low-density lipoprotein cholesterol (p < 0.05). Conclusion Both Tai-Chi and running exercise showed beneficial effects on cardiorespiratory fitness and enhanced health-related outcomes in middle-aged adults. Although Tai-Chi exercises were less effective in VO2max than running, Tai-Chi may be considered as a plausible alternative to running exercises that can be achieved in the indoor-based setting.
Collapse
|
3
|
McBey DP, Dotzert M, Melling CWJ. The effects of exercise training versus intensive insulin treatment on skeletal muscle fibre content in type 1 diabetes mellitus rodents. Lipids Health Dis 2021; 20:64. [PMID: 34229671 PMCID: PMC8262066 DOI: 10.1186/s12944-021-01494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). PURPOSE This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. METHODS Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. RESULTS The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. CONCLUSIONS These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.
Collapse
Affiliation(s)
- David P McBey
- School of Kinesiology, Western University, Medical Sciences Building 227, London, ON, N6A 3K7, Canada
| | - Michelle Dotzert
- School of Kinesiology, Western University, Medical Sciences Building 227, London, ON, N6A 3K7, Canada
| | - C W J Melling
- School of Kinesiology, Western University, Medical Sciences Building 227, London, ON, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Chen L, Dotzert M, Melling CJ, Zhang J. Tunable Photoluminescence of Carbon Dots used for Homogeneous Glucose Sensing Assay. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Youssef MM, Abd El-Latif HA, El-Yamany MF, Georgy GS. Aliskiren and captopril improve cognitive deficits in poorly controlled STZ-induced diabetic rats via amelioration of the hippocampal P-ERK, GSK3β, P-GSK3β pathway. Toxicol Appl Pharmacol 2020; 394:114954. [PMID: 32171570 DOI: 10.1016/j.taap.2020.114954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Learning and memory deficits are obvious symptoms that develop over time in patients with poorly controlled diabetes. Hyperactivity of the renin-angiotensin system (RAS) is directly associated with β-cell dysfunction and diabetic complications, including cognitive impairment. Here, we investigated the protective and molecular effects of two RAS modifiers, aliskiren; renin inhibitor and captopril; angiotensin converting enzyme inhibitor, on cognitive deficits in the rat hippocampus. Injection of low dose streptozotocin for 4 days resulted in type 1 diabetes. Then, poorly controlled diabetes was mimicked with ineffective daily doses of insulin for 4 weeks. The hyperglycaemia and pancreatic atrophy caused memory disturbance that were identifiable in behavioural tests, hippocampal neurodegeneration, and the following significant changes in the hippocampus, increases in the inflammatory marker interleukin 1β, cholinesterase, the oxidative stress marker malondialdehyde and protein expression of phosphorylated extracellular-signal-regulated kinase and glycogen synthase kinase-3 beta versus decrease in the antioxidant reduced glutathione and protein expression of phosphorylated glycogen synthase kinase-3 beta. Blocking RAS with either drugs along with insulin amended all previously mentioned parameters. Aliskiren stabilized the blood glucose level and restored normal pancreatic integrity and hippocampal malondialdehyde level. Aliskiren showed superior protection against the hippocampal degeneration displayed in the earlier behavioural modification in the passive avoidance test, and the aliskiren group outperformed the control group in the novel object recognition test. We therefore conclude that aliskiren and captopril reversed the diabetic state and cognitive deficits in rats with poorly controlled STZ-induced diabetes through reducing oxidative stress and inflammation and modulating protein expression.
Collapse
Affiliation(s)
- Madonna M Youssef
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt.
| | - H A Abd El-Latif
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - M F El-Yamany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt
| |
Collapse
|
6
|
McDonald MW, Olver TD, Dotzert MS, Jurrissen TJ, Noble EG, Padilla J, Melling CJ. Aerobic exercise training improves insulin-induced vasorelaxation in a vessel-specific manner in rats with insulin-treated experimental diabetes. Diab Vasc Dis Res 2019; 16:77-86. [PMID: 30537862 DOI: 10.1177/1479164118815279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular insulin resistance often precedes endothelial dysfunction in type 1 diabetes mellitus. Strategies to limit vascular dysfunction include intensive insulin therapy (4-9 mM) and aerobic training. To avoid the risk of hypoglycaemia, individuals often prescribed conventional insulin therapy (9-15 mM) and participate in resistance training. In a model of type 1 diabetes mellitus, this study examined insulin-induced vasomotor function in the aorta and femoral artery to determine (1) whether resistance training with conventional insulin therapy provides the same benefits as aerobic training with conventional insulin therapy, (2) whether aerobic training or resistance training, when paired with conventional insulin therapy, results in superior vasomotor function compared to intensive insulin therapy alone and (3) whether vessel-specific adaptations exist. Groups consisted of conventional insulin therapy, intensive insulin therapy, aerobic training with conventional insulin therapy and resistance training with conventional insulin therapy. Following multiple low doses of streptozotocin, male Sprague-Dawley rats were supplemented with insulin to maintain blood glucose concentrations (9-15 mM: conventional insulin therapy, aerobic training and resistance training; 4-9 mM: intensive insulin therapy) for 12 weeks. Aerobic training performed treadmill exercise and resistance training consisted of weighted climbing. Coinciding with increased Akt signalling, aerobic training resulted in enhanced insulin-induced vasorelaxation in the femoral artery. Intensive insulin therapy displayed increased mitogen-activated protein kinase signalling and no improvement in insulin-stimulated vasorelaxation compared to all other groups. These data suggest that aerobic training may be more beneficial for limiting the pathogenesis of vascular disease in type 1 diabetes mellitus than merely intensive insulin therapy.
Collapse
Affiliation(s)
- Matthew W McDonald
- 1 School of Kinesiology, Western University, London, ON, Canada
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - T Dylan Olver
- 3 Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Thomas J Jurrissen
- 4 Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Earl G Noble
- 1 School of Kinesiology, Western University, London, ON, Canada
- 5 Lawson Health Research Institute, London, ON, Canada
| | - Jaume Padilla
- 4 Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- 6 Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- 7 Department of Child Health, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
7
|
McDonald MW, Dotzert MS, Jiang M, Murray MR, Noble EG, James Melling CW. Exercise Training Induced Cardioprotection with Moderate Hyperglycemia versus Sedentary Intensive Glycemic Control in Type 1 Diabetic Rats. J Diabetes Res 2018; 2018:8485624. [PMID: 30116746 PMCID: PMC6079594 DOI: 10.1155/2018/8485624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/16/2018] [Indexed: 01/20/2023] Open
Abstract
Intensive insulin therapy (IIT; 4-7 mmol/L) is the preferred treatment for type 1 diabetes mellitus (T1DM) patients to reduce the risk of cardiovascular disease (CVD). However, this treatment strategy has been questioned as it is accompanied with a sedentary lifestyle leading to weight gain and insulin resistance. T1DM patients who partake in high-intensity aerobic training (AThigh) to reduce CVD often utilize conventional insulin therapy (CIT; 9-15 mmol/L) to offset the risk of hypoglycemia. Moreover, exercise modalities incorporating resistance training (RT) have been shown to further reduce this risk. The purpose of this investigation was twofold: (1) to determine if CIT paired with AThigh results in larger cardioprotection from an ischemia-reperfusion (I-R) injury than IIT and (2) to establish if the integration of RT with AThigh (ART) results in similar cardioprotection as AThigh. Diabetic (D) male Sprague-Dawley rats were divided into D-IIT (n = 12), D-CIT (n = 12), D-AThigh (n = 8), D-RT (n = 8), and D-ART (n = 8). T1DM was induced with streptozotocin, and blood glucose was adjusted with insulin. D-AThigh occurred on a treadmill (27 m/min; 1 hr), D-RT performed weighted ladder climbs, and D-ART alternated daily between AThigh and RT. Exercise occurred 5 days/wk for 12 wks. This investigation demonstrates that cardioprotection following an I-R injury was similar between D-AThigh and D-IIT. This cardioprotection is not exercise-specific, and each provides unique advantages. D-AThigh leads to improved glycemia while insulin sensitivity was enhanced following resistance exercises. Thus, exercise is an effective means to elicit cardioprotection in T1DM. However, in addition to glycemia, other factors should be considered when tailoring an exercise program for T1DM patients.
Collapse
Affiliation(s)
- Matthew W. McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Michelle S. Dotzert
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Mao Jiang
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Michael R. Murray
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Earl G. Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - C. W. James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| |
Collapse
|
8
|
Wang M, Li S, Wang F, Zou J, Zhang Y. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway. Mol Med Rep 2018; 17:8339-8348. [PMID: 29658605 DOI: 10.3892/mmr.2018.8863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 08/09/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type‑ІІ diabetes mellitus. The activity of ERK and AMPK, and the function of islet β‑cells were observed to be improved in experimental mice treated with aerobic exercise. Furthermore, blood lipid metabolism and insulin resistance were improved by treatment with aerobic exercise. Body weight and glucose concentration of serology was markedly improved in mouse models of type‑ІІ diabetes mellitus. Furthermore, TLR‑4 inhibition markedly promoted ERK and AMPK expression levels and activity. Thus, these results indicate that aerobic exercise may improve blood lipid metabolism, insulin resistance and glucose plasma concentration in mouse models of type‑ІІ diabetes mellitus. Thus indicating aerobic exercise is beneficial for improvement of blood lipid and insulin resistance via the TLR‑4‑mediated ERK/AMPK signaling pathway in the progression of type‑ІІ diabetes mellitus.
Collapse
Affiliation(s)
- Mei Wang
- State General Administration of Sports, Sports Science Institute, Mass Sports Research Center, Beijing 100061, P.R. China
| | - Sen Li
- Jiangsu Institute of Sports Science, Nanjing, Jiangsu 210033, P.R. China
| | - Fubaihui Wang
- State General Administration of Sports, Sports Science Institute, Mass Sports Research Center, Beijing 100061, P.R. China
| | - Jinhui Zou
- Guangxi Institute of Sports Science Mass Sports Research, Nanning, Guangxi 210014, P.R. China
| | - Yanfeng Zhang
- State General Administration of Sports, Sports Science Institute, Mass Sports Research Center, Beijing 100061, P.R. China
| |
Collapse
|
9
|
Hazell TJ, Olver TD, Kowalchuk H, McDonald MW, Dey A, Grisé KN, Noble EG, Melling CWJ, Lavery P, Weiler HA. Aerobic Endurance Training Does Not Protect Bone Against Poorly Controlled Type 1 Diabetes in Young Adult Rats. Calcif Tissue Int 2017; 100:374-381. [PMID: 28110443 DOI: 10.1007/s00223-016-0227-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) decreases trabecular bone volume and bone strength in rodents. The current study investigated the potential protective effects of aerobic endurance training (AET) on bone in STZ-induced T1DM young adult rats. Sixty-four 8-week-old male Sprague-Dawley rats were randomly divided into 4 groups of 16: control non-T1DM sedentary (CS) and exercised (CX), T1DM sedentary (DS) and exercised (DX). Blood glucose was maintained at 9-15 mmol/L using subcutaneously implanted insulin pellets (Linplant, Linshin Canada, Inc.). AET was performed at ~75-85% VO2max for 1 h/day, 5 day/week for 10 weeks. Areal and volumetric bone mineral density (aBMD and vBMD; excised femur) were measured using dual-energy X-ray absorptiometry (DXA; QDR 4500A) and micro computed tomography (μCT; Aloka). Bone strength was tested using a 3-point bending test (Instron 5544 Load Frame). Two-way ANOVA was used to test for T1DM and exercise differences followed by Tukey's HSD tests for interaction effects; significance was set at P < 0.05. T1DM had lower body weight (18.0%), aBMD (8.6%), cortical vBMD (1.6%), trabecular vBMD (2.1%), maximum load at break (22.2%), and increased elastic modulus (11.3%) vs. control (P < 0.001). Exercise in T1DM further decreased body weight (4.7%) vs. sedentary (P = 0.043) and maximum extension during the bending test that demonstrated DX was increased (7.3%) vs. CX (P = 0.033). There were no other beneficial effects of exercise on bone. These results suggest that 10 weeks of AET in rats do not have protective effects on bone in the short term and that T1DM rats have compromised bone health.
Collapse
Affiliation(s)
- Tom J Hazell
- Department of Kinesiology and Physical Education, Faculty Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - T Dylan Olver
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Hana Kowalchuk
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Matthew W McDonald
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Adwitia Dey
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Kenneth N Grisé
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Earl G Noble
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - C W James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, N6G 1AH, Canada
| | - Paula Lavery
- School of Dietetics and Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 2E3, Canada
| | - Hope A Weiler
- School of Dietetics and Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 2E3, Canada
| |
Collapse
|
10
|
Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 2016; 91:393-399. [PMID: 28063388 DOI: 10.1016/j.bios.2016.12.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022]
Abstract
In this paper, a nanostructured biosensor is developed to detect glucose in tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The designed FRET pair, including the donor, CdSe/ZnS quantum dots (QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of glucose, the quenched emission of QDs through the FRET mechanism is restored by displacing the dextran from Con A. To have a dual-modulation sensor for convenient and accurate detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the patterned sensor can be converted to fluorescence spectra with high signal-to-noise ratio and calibrated image pixel value. The photoluminescence intensity of the patterned FRET sensor increases linearly with increasing concentration of glucose from 0.03mmol/L to 3mmol/L, which covers the range of tear glucose levels for both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured by a handhold fluorescence microscope increases with increasing glucose. Four male Sprague-Dawley rats with different blood glucose concentrations were utilized to demonstrate the quick response of the patterned FRET sensor to 2µL of tear samples.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Wai Hei Tse
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Yi Chen
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Matthew W McDonald
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - James Melling
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Jin Zhang
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5B9.
| |
Collapse
|
11
|
Dotzert MS, Murray MR, McDonald MW, Olver TD, Velenosi TJ, Hennop A, Noble EG, Urquhart BL, Melling CWJ. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats. Sci Rep 2016; 6:26379. [PMID: 27197730 PMCID: PMC4873835 DOI: 10.1038/srep26379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training.
Collapse
Affiliation(s)
- Michelle S. Dotzert
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Michael R. Murray
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Matthew W. McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - T. Dylan Olver
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Thomas J. Velenosi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anzel Hennop
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Earl G. Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Brad L. Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - C. W. James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Bezerra MA, da Silva Nery C, de Castro Silveira PV, de Mesquita GN, de Gomes Figueiredo T, Teixeira MFHBI, de Moraes SRA. Previous physical exercise slows down the complications from experimental diabetes in the calcaneal tendon. Muscles Ligaments Tendons J 2016; 6:97-103. [PMID: 27331036 DOI: 10.11138/mltj/2016.6.1.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND the complications caused by diabetes increase fragility in the muscle-tendon system, resulting in degeneration and easier rupture. To avoid this issue, therapies that increase the metabolism of glucose by the body, with physical activity, have been used after the confirmation of diabetes. We evaluate the biomechanical behavior of the calcaneal tendon and the metabolic parameters in rats induced to experimental diabetes and submitted to pre- and post-induction exercise. METHODS 54-male-Wistar rats were randomly divided into four groups: Control Group (CG), Swimming Group (SG), Diabetic Group (DG), and Diabetic Swimming Group (DSG). The trained groups were submitted to swimming exercise, while unexercised groups remained restricted to the cages. Metabolic and biomechanical parameters were assessed. RESULTS the clinical parameters of DSG showed no change due to exercise protocol. The tendon analysis of the DSG showed increased values for the elastic modulus (p<0.01) and maximum tension (p<0.001) and lowest value for transverse area (p<0.001) when compared to the SG, however it showed no difference when compared to DG. CONCLUSION the homogeneous values presented by the tendons of the DG and DSG show that physical exercise applied in the pre- and post-induction wasn't enough to promote a protective effect against the tendinopathy process, but prevent the progress of degeneration.
Collapse
|
13
|
McDonald MW, Murray MR, Grise KN, Olver TD, Dey A, Shoemaker JK, Noble EG, Melling CWJ. The glucoregulatory response to high-intensity aerobic exercise following training in rats with insulin-treated type 1 diabetes mellitus. Appl Physiol Nutr Metab 2016; 41:631-9. [PMID: 27175938 DOI: 10.1139/apnm-2015-0558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An acute bout of exercise elicits a rapid, potentially deleterious, reduction in blood glucose in patients with type 1 diabetes mellitus (T1DM). In the current study, we examined whether a 10-week aerobic training program could alleviate the rapid exercise-associated reduction in blood glucose through changes in the glucoregulatory hormonal response or increased hepatic glycogen storage in an insulin-treated rat model of T1DM. Thirty-two male Sprague-Dawley rats were divided evenly into 4 groups: non-T1DM sedentary (C) (n = 8), non-T1DM exercised (CX) (n = 8), T1DM sedentary (D) (n = 8), and T1DM exercised (DX) (n = 8). Exercise training consisted of treadmill running for 5 days/week (1 h, 27 m/min, 6% grade) for 10 weeks. T1DM was induced by multiple streptozotocin injections (20 mg/kg) followed by implantation of subcutaneous insulin pellets. At week 1, an acute exercise bout led to a significant reduction in blood glucose in DX (p < 0.05), whereas CX exhibited an increase in blood glucose (p < 0.05). During acute exercise, serum epinephrine was increased in both DX and CX (p < 0.05), whereas serum glucagon was increased during recovery only in CX (p < 0.01). Following aerobic training in DX, the exercise-mediated reduction in blood glucose remained; however, serum glucagon increased to the same extent as in CX (p < 0.05). DX exhibited significantly less hepatic glycogen (p < 0.001) despite elevations in glycogenic proteins in the liver (p < 0.05). Elevated serum epinephrine and decreased hepatic adrenergic receptor expression were also evident in DX (p < 0.05). In summary, despite aerobic training in DX, abrupt blood glucose reductions and hepatic glycogen deficiencies were evident. These data suggest that sympathetic overactivity may contribute to deficiencies in hepatic glycogen storage.
Collapse
Affiliation(s)
- Matthew W McDonald
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Michael R Murray
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Kenneth N Grise
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - T Dylan Olver
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Adwitia Dey
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - J Kevin Shoemaker
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.,b Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Earl G Noble
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.,b Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - C W James Melling
- a School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.,c School of Health Studies, Faculty of Health Sciences, University of Western Ontario, 3M Centre, Room 2213, London, ON, N6A 5B9 Canada
| |
Collapse
|
14
|
Grisé KN, Olver TD, McDonald MW, Dey A, Jiang M, Lacefield JC, Shoemaker JK, Noble EG, Melling CWJ. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia. J Diabetes Res 2016; 2016:8164518. [PMID: 26885531 PMCID: PMC4739461 DOI: 10.1155/2016/8164518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM.
Collapse
Affiliation(s)
- Kenneth N. Grisé
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - T. Dylan Olver
- Neurovascular Research Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - Matthew W. McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - Adwitia Dey
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - Mao Jiang
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - James C. Lacefield
- Department of Electrical and Computer Engineering, Department of Medical Biophysics and Robarts Research Institute, Western University, London, ON, Canada N6A 3K7
| | - J. Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
- Department of Physiology and Pharmacology, Western University, London, ON, Canada N6A 3K7
- Lawson Health Research Institute, London, ON, Canada N6C 2R5
| | - Earl G. Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
- Lawson Health Research Institute, London, ON, Canada N6C 2R5
| | - C. W. James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
- *C. W. James Melling:
| |
Collapse
|
15
|
McDonald MW, Hall KE, Jiang M, Noble EG, Melling CJ. Ischemia-reperfusion injury and hypoglycemia risk in insulin-treated T1DM rats following different modalities of regular exercise. Physiol Rep 2014; 2:e12201. [PMID: 25413321 PMCID: PMC4255808 DOI: 10.14814/phy2.12201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/24/2022] Open
Abstract
While regular exercise is known to improve cardiovascular function, individuals with type 1 diabetes mellitus (T1DM) have an increased risk for exercise-induced hypoglycemia. Clinical data suggest that higher intensities of acute exercise may alleviate the onset of hypoglycemia; however, the cardiovascular benefit from these forms of exercise in patients with T1DM has yet to be established. The purpose of this study was to investigate the cardiovascular benefit of different regular exercise regimes, while monitoring blood glucose concentrations during the post-exercise period. Fifty rats (8-week-old Sprague-Dawley male) were equally divided into the following groups: nondiabetic sedentary (C), diabetic sedentary (DS), diabetic low-intensity aerobic exercise (DL), diabetic high-intensity aerobic exercise (DH) or diabetic resistance exercise (DR). Diabetes was induced using multiple streptozotocin injections (5×; 20 mg/kg) while subcutaneous insulin pellets maintained glycemia in a range typical for individuals that exercise with T1DM. Exercise consisted of six weeks of treadmill running (DL and DH) or weighted ladder climbs (DR). The cardiovascular benefit of each exercise program was determined by the myocardial recovery from ischemia-reperfusion injury. Exercise-related cardiovascular protection was dependent on the exercise modality, whereby DH demonstrated the greatest protection following an ischemic-reperfusion injury. Each exercise modality caused a significant decline in blood glucose in the post-exercise period; however, blood glucose levels did not reach hypoglycemic concentrations (<3.0 mmol/L) throughout the exercise intervention. These results suggest that elevating blood glucose concentrations prior to exercise allows patients with T1DM to perform exercise that is beneficial to the myocardium without the accompanying risk of hypoglycemia.
Collapse
Affiliation(s)
- Matthew W. McDonald
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Katharine E. Hall
- Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Mao Jiang
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - C.W. James Melling
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Olver TD, Grisé KN, McDonald MW, Dey A, Allen MD, Rice CL, Lacefield JC, Melling CJ, Noble EG, Shoemaker JK. The relationship between blood pressure and sciatic nerve blood flow velocity in rats with insulin-treated experimental diabetes. Diab Vasc Dis Res 2014; 11:281-289. [PMID: 24853907 DOI: 10.1177/1479164114533357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve blood flow (NBF) does not autoregulate but, instead, responds passively to changes in mean arterial pressure (MAP). How this relationship is impacted by insulin-treated experimental diabetes (ITED) is unknown. We tested the hypothesis that ITED will reduce NBF across a range of MAP in Sprague Dawley rats. Following 10 weeks of control or ITED conditions, conscious MAP (tail-cuff) was measured, and under anaesthesia, the MAP (carotid artery catheter, pressure transducer) and NBF (Doppler ultrasound, 40 MHz) responses to sodium nitroprusside (60 µg/kg) and phenylephrine (12 µg/kg) infusion were recorded (regression equations for MAP vs NBF were created for each rodent). Thereafter, motor nerve conduction velocity (MNCV) and nerve vascularization (haematoxylin and eosin stain) were determined. Conscious MAP was higher and MNCV was lower in the ITED group (p < 0.01). In response to drug infusions, the ΔMAP and ΔNBF were similar between groups (p ≥ 0.18). Estimated conscious NBF (based on substituting conscious MAP values into each individual regression equation) was greater in the ITED group (p < 0.01). Sciatic nerve vascularization was similar between groups (p ≥ 0.50). In contrast to the hypothesis, NBF was not reduced across a range of MAP. In spite of increased estimated conscious NBF values, MNCV was reduced in rats with ITED.
Collapse
Affiliation(s)
- T Dylan Olver
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Kenneth N Grisé
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Matthew W McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Adwitia Dey
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Matti D Allen
- Neuromuscular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Charles L Rice
- Neuromuscular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - James C Lacefield
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada Department of Medical Biophysics, Western University, London, ON, Canada Robarts Research Institute, Western University, London, ON, Canada
| | - Cw James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Earl G Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
17
|
Olver TD, McDonald MW, Grisé KN, Dey A, Allen MD, Medeiros PJ, Lacefield JC, Jackson DN, Rice CL, Melling CWJ, Noble EG, Shoemaker JK. Exercise training enhances insulin-stimulated nerve arterial vasodilation in rats with insulin-treated experimental diabetes. Am J Physiol Regul Integr Comp Physiol 2014; 306:R941-50. [DOI: 10.1152/ajpregu.00508.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin stimulates nerve arterial vasodilation through a nitric oxide (NO) synthase (NOS) mechanism. Experimental diabetes reduces vasa nervorum NO reactivity. Studies investigating hyperglycemia and nerve arterial vasodilation typically omit insulin treatment and use sedentary rats resulting in severe hyperglycemia. We tested the hypotheses that 1) insulin-treated experimental diabetes and inactivity (DS rats) will attenuate insulin-mediated nerve arterial vasodilation, and 2) deficits in vasodilation in DS rats will be overcome by concurrent exercise training (DX rats; 75–85% V̇o2 max, 1 h/day, 5 days/wk, for 10 wk). The baseline index of vascular conductance values (VCi = nerve blood flow velocity/mean arterial blood pressure) were similar ( P ≥ 0.68), but peak VCi and the area under the curve (AUCi) for the VCi during a euglycemic hyperinsulinemic clamp (EHC; 10 mU·kg−1·min−1) were lower in DS rats versus control sedentary (CS) rats and DX rats ( P ≤ 0.01). Motor nerve conduction velocity (MNCV) was lower in DS rats versus CS rats and DX rats ( P ≤ 0.01). When compared with DS rats, DX rats expressed greater nerve endothelial NOS (eNOS) protein content ( P = 0.04). In a separate analysis, we examined the impact of diabetes in exercise-trained rats alone. When compared with exercise-trained control rats (CX), DX rats had a lower AUCi during the EHC, lower MNCV values, and lower sciatic nerve eNOS protein content ( P ≤ 0.03). Therefore, vasa nervorum and motor nerve function are impaired in DS rats. Such deficits in rats with diabetes can be overcome by concurrent exercise training. However, in exercise-trained rats (CX and DX groups), moderate hyperglycemia lowers vasa nervorum and nerve function.
Collapse
Affiliation(s)
- T. Dylan Olver
- Neurovascular Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Matthew W. McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Kenneth N. Grisé
- Exercise Biochemistry Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Adwitia Dey
- Exercise Biochemistry Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Matti D. Allen
- Neuromusclar Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Philip J. Medeiros
- A. C. Burton Laboratory for Vascular Research, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - James C. Lacefield
- Department of Electrical and Computer Engineering, Department of Medical Biophysics and Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Dwayne N. Jackson
- A. C. Burton Laboratory for Vascular Research, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Charles L. Rice
- Neuromusclar Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada; and
| | - C. W. James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Earl G. Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - J. Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
McDonald MW, Murray MR, Hall KE, Noble EG, Melling CWJ. Morphological assessment of pancreatic islet hormone content following aerobic exercise training in rats with poorly controlled Type 1 diabetes mellitus. Islets 2014; 6:e29221. [PMID: 25483959 PMCID: PMC4594201 DOI: 10.4161/isl.29221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.
Collapse
Affiliation(s)
- Matthew W McDonald
- School of Kinesiology; Faculty of Health Sciences; University of Western Ontario; London, ON Canada
| | - Michael R Murray
- School of Kinesiology; Faculty of Health Sciences; University of Western Ontario; London, ON Canada
| | - Katharine E Hall
- Health and Rehabilitation Sciences; Faculty of Health Sciences; University of Western Ontario; London, ON Canada
| | - Earl G Noble
- School of Kinesiology; Faculty of Health Sciences; University of Western Ontario; London, ON Canada
- Lawson Health Research Institute; University of Western Ontario; London, ON Canada
| | - CW James Melling
- School of Kinesiology; Faculty of Health Sciences; University of Western Ontario; London, ON Canada
- Correspondence to: CW James Melling,
| |
Collapse
|
19
|
Wang Z, Fan H, Wang L, Wang T. Effects of routine rehabilitation training on glucose tolerance among nondiabetic stroke patients: a pilot study. Intern Med 2014; 53:2051-6. [PMID: 25224186 DOI: 10.2169/internalmedicine.53.2205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Impaired glucose tolerance (IGT) and diabetic glucose tolerance (DGT) are closely associated with vascular disease mortality and morbidity. This study was designed to determine whether routine stroke rehabilitation training can be used to improve the glucose status and whether IGT and DGT persist among nondiabetic stroke patients at discharge after such training. METHODS Eighty eligible subjects were evaluated using Oral Glucose Tolerance Tests (OGTTs) at entry and discharge at the rehabilitation medical departments of two large hospitals in China. Routine rehabilitation training was provided during hospitalization. The secondary outcome measurements were BMI, Fugl-Meyer motor score, Barthel index, HbA1c, triglycerides, HDL cholesterol and LDL cholesterol. Non-acute and nondiabetic stroke patients treated at the rehabilitation department. RESULTS Fifty-four patients had IGT or DGT at entry, while 61 patients exhibited abnormal glucose tolerance at discharge, accounting for 67.7% and 76.25% of all subjects respectively. The mean 2-hour plasma glucose level was 8.98 mmol/L at entry and 9.11 mmol/L at discharge. No changes were noted in the OGTT results or secondary outcomes after training (p>0.05), with the exceptions of significant improvements in the Fugl-Meyer motor score and Barthel index (p<0.05). CONCLUSION These preliminary results suggest that IGT and DGT are present at a high frequency among nondiabetic stroke patients both before and after routine rehabilitation training. Routine stroke rehabilitation training, which greatly improves functional outcomes, may have no effect on the incidence of abnormal glucose tolerance.
Collapse
Affiliation(s)
- Zun Wang
- Rehabilitation Department, The Second Medical School of Nanjing University of Traditional Chinese Medicine, China
| | | | | | | |
Collapse
|
20
|
Effect of low-intensity ergometer aerobic training on glucose tolerance in severely impaired nondiabetic stroke patients. J Stroke Cerebrovasc Dis 2013; 23:e187-93. [PMID: 24231135 DOI: 10.1016/j.jstrokecerebrovasdis.2013.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To investigate whether low-intensity ergometer aerobic training has beneficial effect on glucose tolerance in nondiabetic patients with severely impaired stroke. METHODS Fifty-four severely impaired stroke survivors were recruited and randomly assigned to the experimental group and control group. They have no diabetes history with fasting plasma glucose less than 7 mmol/L. Both groups participated in a 6-week rehabilitation training program with low-intensity ergometer aerobic training added only in the experimental group 3 times per week. Primary outcome variables were fasting glucose, fasting insulin, 2-hour glucose, and homeostasis model assessment-insulin resistance (HOMA-IR) in oral glucose tolerance test before and after intervention. RESULTS Before intervention, 36 of 54 (66.7%) were diagnosed with impaired glucose status or diabetic glucose tolerance totally. The average 2-hour plasma glucose level was 9.14 ± 1.39 mmol/L. After intervention, aerobic training significantly improved fasting insulin (from 8.51 ± 2.01 μU/mL to 7.11 ± 2.02 μU/mL), 2-hour glucose level (from 9.13 ± 1.14 mmol/L to 7.22 ± 1.23 mmol/L), and HOMA-IR (from 1.62 ± 1.01 to 1.29 ± .79) in the intervention group compared with the control group (P < .05). Aerobic training also significantly improved their glucose tolerance state (P < .05). CONCLUSIONS Preliminary findings suggest that abnormal glucose tolerance may be highly present among severely impaired nondiabetic stroke patients and low-intensity ergometer aerobic training may have beneficial role in improving glucose tolerance.
Collapse
|
21
|
Noble E, Melling J, Shoemaker K, Tikkanen H, Peltonen J, Stuckey M, Petrella RJ. Innovation to Reduce Cardiovascular Complications of Diabetes at the Intersection of Discovery, Prevention and Knowledge Exchange. Can J Diabetes 2013; 37:282-93. [DOI: 10.1016/j.jcjd.2013.07.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 01/20/2023]
|
22
|
Murias JM, Dey A, Campos OA, Estaki M, Hall KE, Melling CWJ, Noble EG. High-intensity endurance training results in faster vessel-specific rate of vasorelaxation in type 1 diabetic rats. PLoS One 2013; 8:e59678. [PMID: 23527249 PMCID: PMC3602035 DOI: 10.1371/journal.pone.0059678] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/16/2013] [Indexed: 02/07/2023] Open
Abstract
This study examined the effects of 6 weeks of moderate- (MD) and high-intensity endurance training (HD) and resistance training (RD) on the vasorelaxation responsiveness of the aorta, iliac, and femoral vessels in type 1 diabetic (D) rats. Vasorelaxation to acetylcholine was modeled as a mono-exponential function. A potential mediator of vasorelaxation, endothelial nitric oxide synthase (e-NOS) was determined by Western blots. Vessel lumen-to-wall ratios were calculated from H&E stains. The vasorelaxation time-constant (τ) (s) was smaller in control (C) (7.2±3.7) compared to D (9.1±4.4) and it was smaller in HD (5.4±1.5) compared to C, D, RD (8.3±3.7) and MD (8.7±3.8) (p<0.05). The rate of vasorelaxation (%·s−1) was larger in HD (2.7±1.2) compared to C (2.0±1.2), D (2.0±1.5), RD (2.0±1.0), and MD (2.0±1.2) (p<0.05). τ vasorelaxation was smaller in the femoral (6.9±3.7) and iliac (6.9±4.7) than the aorta (9.0±5.0) (p<0.05). The rate of vasorelaxation was progressively larger from the femoral (3.1±1.4) to the iliac (2.0±0.9) and to the aorta (1.3±0.5) (p<0.05). e-NOS content (% of positive control) was greater in HD (104±90) compared to C (71±64), D (85±65), RD (69±43), and MD (76±44) (p<0.05). e-NOS normalized to lumen-to-wall ratio (%·mm−1) was larger in the femoral (11.7±11.1) compared to the aorta (3.2±1.9) (p<0.05). Although vasorelaxation responses were vessel-specific, high-intensity endurance training was the most effective exercise modality in restoring the diabetes-related loss of vascular responsiveness. Changes in the vasoresponsiveness seem to be endothelium-dependent as evidenced by the greater e-NOS content in HD and the greater normalized e-NOS content in the smaller vessels.
Collapse
Affiliation(s)
- Juan M. Murias
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Adwitia Dey
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Oscar A. Campos
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Mehrbod Estaki
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Katharine E. Hall
- School of Health Studies, Western University, London, Ontario, Canada
| | - Christopher W. J. Melling
- School of Kinesiology, Western University, London, Ontario, Canada
- School of Health Studies, Western University, London, Ontario, Canada
| | - Earl G. Noble
- School of Kinesiology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|