1
|
Dronkers J, van Veldhuisen DJ, van der Meer P, Meems LMG. Heart Failure and Obesity: Unraveling Molecular Mechanisms of Excess Adipose Tissue. J Am Coll Cardiol 2024; 84:1666-1677. [PMID: 39415402 DOI: 10.1016/j.jacc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
Obesity is an ongoing pandemic and is associated with the development of heart failure (HF), and especially HF with preserved ejection fraction. The definition of obesity is currently based on anthropometric measurements but neglects the location and molecular properties of excess fat. Important depots associated with HF development are subcutaneous adipose tissue and visceral adipose tissue, both located in the abdominal region, and epicardial adipose tissue (EAT) surrounding the myocardium. However, mechanisms linking these different adipose tissue depots to HF development are incompletely understood. EAT in particular is of great interest because of its close proximity to the heart. In this review, we therefore focus on the characteristics of different adipose tissue depots and their response to obesity. In addition, we evaluate how different mechanisms associated with EAT expansion potentially contribute to HF and in particular HF with preserved ejection fraction development.
Collapse
Affiliation(s)
- Just Dronkers
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Laura M G Meems
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
2
|
Hu S, Lin S, Xu H, He X, Chen L, Feng Q, Sun N. Molecular Mechanisms of Iron Transport and Homeostasis Regulated by Antarctic Krill-Derived Heptapeptide-Iron Complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7517-7532. [PMID: 38527166 DOI: 10.1021/acs.jafc.3c05812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this study, the molecular mechanisms of iron transport and homeostasis regulated by the Antarctic krill-derived heptapeptide-iron (LVDDHFL-iron) complex were explored. LVDDHFL-iron significantly increased the hemoglobin, serum iron, total iron binding capacity levels, and iron contents in the liver and spleen to normal levels, regulated the gene expressions of iron homeostasis, and enhanced in vivo antioxidant capacity in iron-deficiency anemia mice (P < 0.05). The results revealed that iron ions within LVDDHFL-iron can be transported via the heme transporter and divalent metal transporter-1, and the absorption of LVDDHFL-iron involved receptor-mediated endocytosis. We also found that the transport of LVDDHFL-iron across cells via phagocytosis was facilitated by the up-regulation of the high mobility group protein, heat shock protein β, and V-type proton ATPase subunit, accompanied by the regulatory mechanism of autophagy. These findings provided deeper understandings of the mechanism of LVDDHFL-iron facilitating iron absorption.
Collapse
Affiliation(s)
- Shengjie Hu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, Education Department of Liaoning Province, Dalian 116034, P. R. China
| | - Haowei Xu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xueqing He
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Lei Chen
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qi Feng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Special Dietary Food, Education Department of Liaoning Province, Dalian 116034, P. R. China
| |
Collapse
|
3
|
Liu X, Hong X, Jiang S, Li R, Lv Q, Wang J, Wang X, Yang M, Geng H, Li Y. Epidemiological and transcriptome data identify potential key genes involved in iron overload for type 2 diabetes. Diabetol Metab Syndr 2023; 15:134. [PMID: 37344885 DOI: 10.1186/s13098-023-01110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Many previous studies have reported the association between iron overload (IO) and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanism is not clear. METHODS Epidemiological data from the National Health and Nutrition Examination Survey 2017-2018 (NHANES) was used to systematically explore the association between IO and diabetes. Furthermore, transcriptome data from Gene Expression Omnibus (GEO) were analyzed using bioinformatics methods to explore the underlying functional mechanisms at the molecular level. RESULTS Data from NHANES showed a "W" shape relationship between serum iron (frozen) and the risk of diabetes (P < 0.001) as well as a "∧" shape correlation between serum unsaturated iron binding capacity (UIBC) and the risk of diabetes (P = 0.007). Furthermore, the serum iron (frozen) was positively associated with fasting plasma glucose and HOMAB (P < 0.05), and UIBC was positively associated with fasting insulin (P < 0.05). Transcriptome data showed that two IO-related genes [Transferrin receptor (TFRC) and Solute carrier family-11 member-2 (SLC11A2)] were down-regulated in T2DM. The correlation analysis showed that expression levels of TFRC and SLC11A2 were significantly and positively correlated with genes involved in insulin secretion (P < 0.05). Protein-protein interaction network analysis showed that TFRC and SLC11A2 interacted with four key genes, including VAMP2, HIF1A, SLC2A1, and RAB11FIP2. CONCLUSION We found that IO status was associated with increased FPG and aggravated HOMAB, and two IO-related genes (TFRC and SLC11A2) might induce the occurrence of T2DM by influencing insulin secretion, which provides potential therapeutic targets for T2DM patients.
Collapse
Affiliation(s)
- Xuekui Liu
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
- Department of Anesthesiology, Xuzhou Renci Hospital, Xuzhou, China
| | - Xiu Hong
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Shiqiang Jiang
- Department of Anesthesiology, Xuzhou Renci Hospital, Xuzhou, China
| | - Rui Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Qian Lv
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Jie Wang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Xiuli Wang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Manqing Yang
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, China.
| | - Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
4
|
Hepcidin: a New Serial Biomarker for Iron Deficiency Anemia in Bariatric Surgery. Indian J Surg 2023. [DOI: 10.1007/s12262-023-03690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
|
5
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
6
|
Ding X, Bian N, Wang J, Chang X, An Y, Wang G, Liu J. Serum Ferritin Levels Are Associated with Adipose Tissue Dysfunction-Related Indices in Obese Adults. Biol Trace Elem Res 2023; 201:636-643. [PMID: 35297006 DOI: 10.1007/s12011-022-03198-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Iron overload is associated with type 2 diabetes and metabolic syndrome. However, little is known about the role of iron status on adipose tissue. We aimed to investigate the association of iron metabolism markers with adipose tissue dysfunction-related indices in obese individuals. A total of 226 obese adults with body mass index (BMI) ≥ 30 kg/m2 were recruited into the study. Hemoglobin, serum ferritin, iron, soluble transferrin receptor (sTfR), total iron-binding capacity (TIBC), transferrin saturation (TSAT), and other clinical parameters were measured. Adipose tissue dysfunction was assessed by adipose tissue insulin resistance (adipose-IR), visceral adiposity index (VAI), and lipid accumulation product (LAP) index. Serum ferritin levels, adipose-IR, and VAI progressively increased from class I to class III obesity and significantly higher in class III obesity. Correlation analysis suggested that only serum ferritin levels were positively correlated with adipose-IR (r = 0.284, P < 0.001), VAI (r = 0.209, P = 0.002), and LAP (r = 0.324, P < 0.001). Moreover, further logistic regression analysis revealed serum ferritin was significantly associated with elevated adipose-IR, VAI, and LAP. After adjustment for potential confounders, serum ferritin levels remained independently associated with elevated adipose-IR (OR = 1.004, 95% CI 1.000-1.009, P < 0.05) and VAI (OR = 1.005, 95% CI 1.001-1.009, P < 0.05). Serum ferritin was associated with elevated adipose-IR, VAI, and LAP, suggesting that ferritin could be an important early indicator for the risk of developing adipose tissue dysfunction in obese individuals.
Collapse
Affiliation(s)
- Xiaoyu Ding
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Nannan Bian
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Jiaxuan Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China.
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang district, Beijing, 100020, China.
| |
Collapse
|
7
|
Zhou Z, Zhang H, Chen K, Liu C. Iron status and obesity-related traits: A two-sample bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:985338. [PMID: 36864839 PMCID: PMC9971727 DOI: 10.3389/fendo.2023.985338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND The association between iron status and obesity-related traits is well established by observational studies, but the causality is uncertain. In this study, we performed a two-sample bidirectional Mendelian randomization analysis to investigate the causal link between iron status and obesity-related traits. METHODS The genetic instruments strongly associated with body mass index (BMI), waist-hip ratio (WHR), serum ferritin, serum iron, transferrin saturation (TSAT), and total iron-binding capacity (TIBC) were obtained through a series of screening processes from summary data of genome-wide association studies (GWAS) of European individuals. We used numerous MR analytical methods, such as inverse-variance weighting (IVW), MR-Egger, weighted median, and maximum likelihood to make the conclusions more robust and credible, and alternate methods, including the MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis to evaluate the horizontal pleiotropy and heterogeneities. In addition, the MR-PRESSO and RadialMR methods were utilized to identify and remove outliers, eventually achieving reduced heterogeneity and horizontal pleiotropy. RESULTS The results of IVW analysis indicated that genetically predicted BMI was associated with increased levels of serum ferritin (β: 0.077, 95% CI: 0.038, 0.116, P=1.18E-04) and decreased levels of serum iron (β: -0.066, 95% CI: -0.106, -0.026, P=0.001) and TSAT (β: -0.080, 95% CI: -0.124, -0.037, P=3.08E-04), but not associated with the levels of TIBC. However, the genetically predicted WHR was not associated with iron status. Genetically predicted iron status were not associated with BMI and WHR. CONCLUSIONS In European individuals, BMI may be the causative factor of serum ferritin, serum iron, and TSAT, but the iron status does not cause changes in BMI or WHR.
Collapse
Affiliation(s)
- Zengyuan Zhou
- Department of Nutrition, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zengyuan Zhou,
| | - Hanyu Zhang
- Department of General Practice, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Ke Chen
- Department of Nutrition, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, ;United States
| |
Collapse
|
8
|
El-Mallah CA, Beyh YS, Obeid OA. Iron Fortification and Supplementation: Fighting Anemia of Chronic Diseases or Fueling Obesity? Curr Dev Nutr 2021; 5:nzab032. [PMID: 33959691 PMCID: PMC8085477 DOI: 10.1093/cdn/nzab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The significant worldwide increase in obesity has become a major health problem. Excess adiposity has been extensively linked to inflammation. Recently, studies have shown that dietary intake and microbiota dysbiosis can affect the health of the gut and lead to low-grade systemic inflammation, worsening the state of obesity and further exacerbating inflammation. The latter is shown to decrease iron status and potentially increase the risk of anemia by inhibiting iron absorption. Hence, anemia of obesity is independent of iron intake and does not properly respond to increased iron ingestion. Therefore, countries with a high rate of obesity should assess the health impact of fortification and supplementation with iron due to their potential drawbacks. This review tries to elucidate the relation between inflammation and iron status to better understand the etiology of anemia of obesity and chronic diseases and wisely design any dietary or medical interventions for the management of anemia and/or obesity.
Collapse
Affiliation(s)
- Carla A El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Yara S Beyh
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Omar A Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Sakamoto S, Kirinashizawa M, Mohara Y, Watanabe Y. Generation and characterization of monoclonal antibodies against mature hepcidin and its application to neutralization and quantitative alteration assay. Biosci Biotechnol Biochem 2021; 85:340-350. [DOI: 10.1093/bbb/zbaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACTHepcidin regulates the quantity of ferroportin (FPN) on cellular membrane. In our cell assay expressing ferroportin labeled with green fluorescence, FPN was internalized and degraded only after treatment with hepcidin-25, not hepcidin-22 or hepcidin-20, leading to accumulation of cellular iron. Thus we generated murine monoclonal antibodies (mAbs) against hepcidin-25, and then characterized and validated their functions. Among them, several mAbs showed a neutralizing activity that may prevent ferroportin internalization induced by hepcidin-25. To measure hepcidin level in various fluids, mAbs specific for human and rat hepcidin-25 were selected. As for rat, a sandwich ELISA developed using clone rHN1 as capture antibody and biotinylated clone mHW1 as a detection reagent had high sensitivity, allowing for the detection of 1-100 ng/mL of hepcidin-25. Rat hepcidin-25 level in plasma was measured at an average concentration of 63.0 ng/mL in healthy condition, and at 218.2 ng/mL after stimulation of lipopolysaccharide.
Collapse
Affiliation(s)
- Shinji Sakamoto
- Pharmaceutical Frontier Research Laboratories, Japan Tobacco Inc., Yokohama City, Japan
| | - Mika Kirinashizawa
- Pharmaceutical Frontier Research Laboratories, Japan Tobacco Inc., Yokohama City, Japan
| | - Yumi Mohara
- Pharmaceutical Frontier Research Laboratories, Japan Tobacco Inc., Yokohama City, Japan
| | - Yoshihiro Watanabe
- Pharmaceutical Frontier Research Laboratories, Japan Tobacco Inc., Yokohama City, Japan
| |
Collapse
|
10
|
Iron Status in Elderly Women Impacts Myostatin, Adiponectin and Osteocalcin Levels Induced by Nordic Walking Training. Nutrients 2020; 12:nu12041129. [PMID: 32316589 PMCID: PMC7231223 DOI: 10.3390/nu12041129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/26/2023] Open
Abstract
Impaired iron metabolism is associated with increased risk of many morbidities. Exercise was shown to have a beneficial role; however, the mechanism is not well understood. The purpose of this study was to assess the relationship between exerkines and iron metabolism in elderly women before and after 12 weeks of Nordic Walking (NW) training. Exerkines like myostatin, adiponectin, and osteocalcin have been shown to have several positive effects on metabolism. Thirty-six post-menopausal women (66 ± 5 years old, mean ± SD) were randomly assigned to a NW intervention group (n = 18; body mass, 68.8 ± 11.37 kg; fat, 23.43 ± 7.5 kg; free fat mass, 45.37 ± 5.92 kg) or a control group (n = 18; body mass, 68.34 ± 11.81 kg; fat, 23.61 ± 10.03 kg; free fat mass, 44.73 ± 3.9 kg). The training was performed three times a week for 12 weeks, with the intensity adjusted to 70% of the individual maximum ability. Before and one day after the 12-weeks intervention, performance indices were assessed using a senior fitness test. Blood samples (5 mL) were obtained from the participants between 7 and 8 AM, following an overnight fast, at baseline and one day immediately after the 12-week training program. A significant and large time × group interaction was observed for iron (NW: 98.6 ± 26.68 to 76.1 ± 15.31; CON: 100.6 ± 25.37 to 99.1 ± 27.2; p = 0.01; ηp2 = 0.21), myostatin (NW: 4.42 ± 1.97 to 3.83 ± 1.52; CON: 4.11 ± 0.95 to 4.84 ± 1.19; p = 0.00; ηp2 = 0.62), adiponectin (NW: 12.0 ± 9.46 to 14.6 ± 10.64; CON: 12.8 ± 8.99 to 11.9 ± 8.53; p = 0.00; ηp2 = 0.58), and osteocalcin (NW: 38.9 ± 26.04 to 41.6 ± 25.09; CON: 37.1 ± 33.2 to 37.2 ± 32.29; p = 0.03; ηp2 = 0.13). Furthermore, we have observed the correlations: basal ferritin levels were inversely correlated with changes in myostatin (r = −0.51, p = 0.05), change in adiponectin, and change in serum iron (r = −0.45, p = 0.05), basal iron, and osteocalcin after training (r = -0.55, p = 0.04). These findings indicate that iron modulates NW training-induced changes in exerkine levels.
Collapse
|
11
|
Amstad Bencaiova G, Vogt DR, Hoesli I. Serum hepcidin and iron status parameters in pregnant women and the association with adverse maternal and fetal outcomes: a study protocol for a prospective cohort study. BMJ Open 2019; 9:e032280. [PMID: 31699745 PMCID: PMC6858208 DOI: 10.1136/bmjopen-2019-032280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Hepcidin production is normally upregulated by iron stores, and in obesity has been shown to be overexpressed and correlated with low iron status. The increased hepcidin may restrain the iron release from the cells by affecting the expression of ferroportin, which probably associates with the development of diabetes complication. First, we investigate the difference of serum hepcidin and iron parameters between obese and non-obese pregnant women; second, we examine the correlation between serum hepcidin and adverse maternal and neonatal outcomes in pregnant women. METHODS AND ANALYSIS This is a mono-centre, prospective cohort study with a study (obese) and a control group (non-obese women). In the first trimester, 188 singleton pregnancies will be recruited. Thereof, we expect 75 with a body mass index (BMI) ≥30 kg/m2 and 113 with a BMI 18.5-30 kg/m2. Serum hepcidin, iron and haematological parameters will be measured at 11-14, 24-28, 32-36 weeks of gestation and at time of delivery. Blood pressure, weight, BMI and smoking status will be examined at all visits. We will assess the composite endpoints adverse maternal outcomes (including pre-eclampsia, gestational hypertension, gestational diabetes mellitus, haemorrhage, placenta abruption) and adverse neonatal outcomes (preterm birth, intrauterine growth restriction, preterm premature rupture of membranes, Apgar score <7 at 5 min, stillbirth, neonatal death).Recruitment has started in April 2019. ETHICS AND DISSEMINATION This study received ethical approval from the ethics committee in Basel. The results of the study will be published in a peer-reviewed journal, and presented at national scientific conferences. TRIAL REGISTRATION NUMBER NCT03792464.
Collapse
Affiliation(s)
| | | | - Irene Hoesli
- Department of Obtetrics and Antenatal Care, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Segrestin B, Moreno-Navarrete JM, Seyssel K, Alligier M, Meugnier E, Nazare JA, Vidal H, Fernandez-Real JM, Laville M. Adipose Tissue Expansion by Overfeeding Healthy Men Alters Iron Gene Expression. J Clin Endocrinol Metab 2019; 104:688-696. [PMID: 30260393 DOI: 10.1210/jc.2018-01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. METHODS Twenty-six participants (mean body mass index ± SD, 24.7 ± 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. RESULTS Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 ± 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 ± 1.3-kg weight gain. In parallel to increased expression of lipid storage-related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 ± 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. CONCLUSION In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet.
Collapse
Affiliation(s)
- Berenice Segrestin
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Eating Disorder Unit, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Kevin Seyssel
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Maud Alligier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Martine Laville
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Endocrinology, Diabetes, and Nutrition Department, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| |
Collapse
|
13
|
Britton L, Bridle K, Reiling J, Santrampurwala N, Wockner L, Ching H, Stuart K, Subramaniam VN, Jeffrey G, St Pierre T, House M, Gummer J, Trengove R, Olynyk J, Crawford D, Adams L. Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease. Hepatol Commun 2018; 2:644-653. [PMID: 29881816 PMCID: PMC5983226 DOI: 10.1002/hep4.1190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/23/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023] Open
Abstract
Rodent and cell‐culture models support a role for iron‐related adipokine dysregulation and insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); however, substantial human data are lacking. We examined the relationship between measures of iron status, adipokines, and insulin resistance in patients with NAFLD in the presence and absence of venesection. This study forms part of the Impact of Iron on Insulin Resistance and Liver Histology in Nonalcoholic Steatohepatitis (IIRON2) study, a prospective randomized controlled trial of venesection for adults with NAFLD. Paired serum samples at baseline and 6 months (end of treatment) in controls (n = 28) and patients who had venesection (n = 23) were assayed for adiponectin, leptin, resistin, retinol binding protein‐4, tumor necrosis factor α, and interleukin‐6, using a Quantibody, customized, multiplexed enzyme‐linked immunosorbent assay array. Hepatic iron concentration (HIC) was determined using MR FerriScan. Unexpectedly, analysis revealed a significant positive correlation between baseline serum adiponectin concentration and HIC, which strengthened after correction for age, sex, and body mass index (rho = 0.36; P = 0.007). In addition, there were significant inverse correlations between HIC and measures of insulin resistance (adipose tissue insulin resistance (Adipo‐IR), serum insulin, serum glucose, homeostasis model assessment of insulin resistance, hemoglobin A1c, and hepatic steatosis), whereas a positive correlation was noted with the insulin sensitivity index. Changes in serum adipokines over 6 months did not differ between the control and venesection groups. Conclusion: HIC positively correlates with serum adiponectin and insulin sensitivity in patients with NAFLD. Further study is required to establish causality and mechanistic explanations for these associations and their relevance in the pathogenesis of insulin resistance and NAFLD. (Hepatology Communications 2018;2:644‐653)
Collapse
Affiliation(s)
- Laurence Britton
- Gallipoli Medical Research Institute Greenslopes Private Hospital Greenslopes Australia.,University of Queensland Herston Australia.,Department of Gastroenterology Princess Alexandra Hospital Woolloongabba Australia.,QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Kim Bridle
- Gallipoli Medical Research Institute Greenslopes Private Hospital Greenslopes Australia.,University of Queensland Herston Australia
| | - Janske Reiling
- Gallipoli Medical Research Institute Greenslopes Private Hospital Greenslopes Australia.,University of Queensland Herston Australia.,Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Nishreen Santrampurwala
- Gallipoli Medical Research Institute Greenslopes Private Hospital Greenslopes Australia.,University of Queensland Herston Australia.,QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Leesa Wockner
- QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Helena Ching
- Medical School, Faculty of Health Sciences University of Western Australia Crawley Australia
| | - Katherine Stuart
- Gallipoli Medical Research Institute Greenslopes Private Hospital Greenslopes Australia.,Department of Gastroenterology Princess Alexandra Hospital Woolloongabba Australia
| | - V Nathan Subramaniam
- QIMR Berghofer Medical Research Institute Brisbane Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences Queensland University of Technology Kelvin Grove Australia
| | - Gary Jeffrey
- Medical School, Faculty of Health Sciences University of Western Australia Crawley Australia.,Department of Hepatology Sir Charles Gairdner Hospital Perth Australia
| | - Tim St Pierre
- School of Physics University of Western Australia Crawley Australia
| | - Michael House
- School of Physics University of Western Australia Crawley Australia
| | - Joel Gummer
- Separation Science and Metabolomics Laboratory (Metabolomics Australia, Western Australia node) Murdoch University Murdoch Australia
| | - Robert Trengove
- Separation Science and Metabolomics Laboratory (Metabolomics Australia, Western Australia node) Murdoch University Murdoch Australia
| | - John Olynyk
- Department of Gastroenterology Fiona Stanley and Fremantle Hospital Group Murdoch Australia.,School of Health and Medical Sciences Edith Cowan University Joondalup Australia
| | - Darrell Crawford
- Gallipoli Medical Research Institute Greenslopes Private Hospital Greenslopes Australia.,University of Queensland Herston Australia
| | - Leon Adams
- Medical School, Faculty of Health Sciences University of Western Australia Crawley Australia.,Department of Hepatology Sir Charles Gairdner Hospital Perth Australia
| |
Collapse
|
14
|
Ferroportin Expression in Adipocytes Does Not Contribute to Iron Homeostasis or Metabolic Responses to a High Calorie Diet. Cell Mol Gastroenterol Hepatol 2018; 5:319-331. [PMID: 29552621 PMCID: PMC5852331 DOI: 10.1016/j.jcmgh.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Iron has an increasingly recognized role in the regulation of adipose tissue function, including the expression of adipokines involved in the pathogenesis of nonalcoholic fatty liver disease. The cellular iron exporter, ferroportin, has been proposed as being a key determinant of adipocyte iron homeostasis. METHODS We studied an adipocyte-specific ferroportin (Fpn1) knockout mouse model, using an Adipoq-Cre recombinase driven Fpn1 deletion and fed mice according to the fast food diet model of nonalcoholic steatohepatitis. RESULTS We showed successful selective deletion of Fpn1 in adipocytes, but found that this did not lead to increased adipocyte iron stores as measured by atomic absorption spectroscopy or histologically quantified iron granules after staining with 3,3'-diaminobenzidine-enhanced Perls' stain. Mice with adipocyte-specific Fpn1 deletion did not show dysregulation of adiponectin, leptin, resistin, or retinol-binding protein-4 expression. Similarly, adipocyte-specific Fpn1 deletion did not affect insulin sensitivity during hyperinsulinemic-euglycemic clamp studies or lead to histologic evidence of increased liver injury. We have shown, however, that the fast food diet model of nonalcoholic steatohepatitis generates an increase in adipose tissue macrophage infiltration with crown-like structures, as seen in human beings, further validating the utility of this model. CONCLUSIONS Ferroportin may not be a key determinant of adipocyte iron homeostasis in this knockout model. Further studies are needed to determine the mechanisms of iron metabolism in adipocytes and adipose tissue.
Collapse
Key Words
- AAS, atomic absorption spectroscopy
- ANOVA, analysis of variance
- AUC, area under the curve
- Adipoq, adiponectin
- Adipose Tissue
- EFP, epididymal fat pad
- FKO, ferroportin knockout
- Ferroportin
- Ferroportin Flox, Fpn1fl/fl
- Fpn1, ferroportin
- HIC, hepatic iron concentration
- Hamp1, hepcidin
- Iron
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- Nonalcoholic Fatty Liver Disease
- PCR, polymerase chain reaction
- RBP-4, retinol binding protein-4
- Tfr1, transferrin receptor-1
- bp, base pair
- cDNA, complementary DNA
- mRNA, messenger RNA
Collapse
|
15
|
Britton LJ, Subramaniam VN, Crawford DHG. Iron and non-alcoholic fatty liver disease. World J Gastroenterol 2016; 22:8112-8122. [PMID: 27688653 PMCID: PMC5037080 DOI: 10.3748/wjg.v22.i36.8112] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that promote liver injury in non-alcoholic fatty liver disease (NAFLD) are yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and novel therapeutic targets are required. Iron has been widely implicated in the pathogenesis of NAFLD and represents a potential target for treatment. Relationships between serum ferritin concentration and NAFLD are noted in a majority of studies, although serum ferritin is an imprecise measure of iron loading. Numerous mechanisms for a pathogenic role of hepatic iron in NAFLD have been demonstrated in animal and cell culture models. However, the human data linking hepatic iron to liver injury in NAFLD is less clear, with seemingly conflicting evidence, supporting either an effect of iron in hepatocytes or within reticulo-endothelial cells. Adipose tissue has emerged as a key site at which iron may have a pathogenic role in NAFLD. Evidence for this comes indirectly from studies that have evaluated the role of adipose tissue iron with respect to insulin resistance. Adding further complexity, multiple strands of evidence support an effect of NAFLD itself on iron metabolism. In this review, we summarise the human and basic science data that has evaluated the role of iron in NAFLD pathogenesis.
Collapse
|