1
|
He X, Wu J, Hou W, Li J, Xu H. Association of hydroxysteroid 11-beta dehydrogenase 1 polymorphisms with chronic liver fibrosis and the occurrence of hepatocellular carcinoma in a Han Chinese population. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wenli Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Vohra M, Sharma AR, Mallya S, Prabhu NB, Jayaram P, Nagri SK, Umakanth S, Rai PS. Implications of genetic variations, differential gene expression, and allele-specific expression on metformin response in drug-naïve type 2 diabetes. J Endocrinol Invest 2022; 46:1205-1218. [PMID: 36528847 DOI: 10.1007/s40618-022-01989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Metformin is widely used to treat type 2 diabetes mellitus (T2DM) individuals. Clinically, inter-individual variability of metformin response is of significant concern and is under interrogation. In this study, a targeted exome and whole transcriptome analysis were performed to identify predictive biomarkers of metformin response in drug-naïve T2DM individuals. METHODS The study followed a prospective study design. Drug-naïve T2DM individuals (n = 192) and controls (n = 223) were enrolled. T2DM individuals were administered with metformin monotherapy and defined as responders and non-responders based on their glycated haemoglobin change over three months. 146 T2DM individuals were used for the final analysis and remaining samples were lost during the follow-up. Target exome sequencing and RNA-seq was performed to analyze genetic and transcriptome profile. The selected SNPs were validated by genotyping and allele specific gene expression using the TaqMan assay. The gene prioritization, enrichment analysis, drug-gene interactions, disease-gene association, and correlation analysis were performed using various tools and databases. RESULTS rs1050152 and rs272893 in SLC22A4 were associated with improved response to metformin. The copy number loss was observed in PPARGC1A in the non-responders. The expression analysis highlighted potential differentially expressed targets for predicting metformin response (n = 35) and T2DM (n = 14). The expression of GDF15, TWISTNB, and RPL36A genes showed a maximum correlation with the change in HbA1c levels. The disease-gene association analysis highlighted MAGI2 rs113805659 to be linked with T2DM. CONCLUSION The results provide evidence for the genetic variations, perturbed transcriptome, allele-specific gene expression, and pathways associated with metformin drug response in T2DM.
Collapse
Affiliation(s)
- M Vohra
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - A R Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - S Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - N B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - P Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - S K Nagri
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - S Umakanth
- Department of Medicine, Dr. T.M.A. Pai Hospital, Manipal Academy of Higher Education, Manipal, India
| | - P S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
3
|
Kupczyk D, Bilski R, Kozakiewicz M, Studzińska R, Kędziora-Kornatowska K, Kosmalski T, Pedrycz-Wieczorska A, Głowacka M. 11β-HSD as a New Target in Pharmacotherapy of Metabolic Diseases. Int J Mol Sci 2022; 23:ijms23168984. [PMID: 36012251 PMCID: PMC9409048 DOI: 10.3390/ijms23168984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs), which are secreted by the adrenal cortex, are important regulators in the metabolism of carbohydrates, lipids, and proteins. For the proper functioning of the body, strict control of their release is necessary, as increased GCs levels may contribute to the development of obesity, type 2 diabetes mellitus, hypertension, cardiovascular diseases, and other pathological conditions contributing to the development of metabolic syndrome. 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) locally controls the availability of the active glucocorticoid, namely cortisol and corticosterone, for the glucocorticoid receptor. Therefore, the participation of 11β-HSD1 in the development of metabolic diseases makes both this enzyme and its inhibitors attractive targets in the pharmacotherapy of the above-mentioned diseases.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
- Correspondence: (D.K.); (R.S.)
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Dębowa 3, 85-626 Bydgoszcz, Poland
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089 Bydgoszcz, Poland
| | | | - Mariola Głowacka
- Faculty of Health Sciences, Mazovian State University in Płock, Plac Dąbrowskiego 2, 09-402 Płock, Poland
| |
Collapse
|
4
|
Szweda-Gandor N, Śnit M, Grzeszczak W. Association between Selected Polymorphisms rs12086634, rs846910, rs4844880, rs3753519 of 11β-Hydroxysteroid Dehydrogenase Type 1 ( HSD11B1) and the Presence of Insulin Resistance in the Polish Population of People Living in Upper Silesia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910168. [PMID: 34639470 PMCID: PMC8508480 DOI: 10.3390/ijerph181910168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022]
Abstract
Background: Many factors influence the development of insulin resistance, among other genetic factors. Cortisol is one of the factors that has a significant impact on the development of insulin resistance. The proteins that have a substantial effect on blood cortisol levels include 11β-hydroxysteroid dehydrogenase type 1. HSD11B1 is a microsomal enzyme that catalyzes the conversion of the stress hormone cortisol to the inactive metabolite cortisone. Gene encoding HSD11B1 is located on 1q32.2. This study was designed to assess the association between four polymorphic sides in HSD11B1 (rs12086634, rs846910, rs4844880, rs3753519) between subjects with and without insulin resistance in the Polish population of people living in Upper Silesia. Methods: The study included a total of 507 consecutive patients, 374 (73.77%) with and 133 (26.23%) without insulin resistance. Results: The results show that there were no statistically significant differences in the distribution of genotypes and alleles of the examined polymorphisms of the 11β-hydroxysteroid dehydrogenase type 1 gene between subjects with and without insulin resistance (determined using the HOMA-IR, insulin resistance index) and that rs846910 and rs1208663 polymorphisms of the 11β-hydroxysteroid dehydrogenase type 1 gene in the examined subjects have a significant effect on the magnitude of the HOMA-IR insulin resistance index. Conclusions: The study results suggested that genetic variation of rs846910 and rs1208663 polymorphism of the HSD11B1 gene is related to the susceptibility to insulin resistance. Our results provide a basis to begin basic research on the role of the HSD11B1 gene in the pathogenesis of insulin resistance.
Collapse
|
5
|
Mahmood N, Nawaz R, Kadir HA, Al Mughairbi F. Genetic Biomarkers in Association with Depressive Disorder in UAE Residents: A Pilot Case Study. Oman Med J 2021; 36:e293. [PMID: 34548933 PMCID: PMC8435088 DOI: 10.5001/omj.2021.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/14/2020] [Indexed: 11/03/2022] Open
Abstract
Objectives We sought to explore the expression of genes associated with depressive disorder in patients with depression compared to control patients. A large body of research in the area of genetics has shown familial aggregation for depressive disorders. The purpose of this study was to identify genetic risk factors in developing depression, particularly among the population residing in the UAE. Methods We investigated five associated genes (PPARGC1A, CAMKMT, HSD11B1, SLC6A4, and MAOA) previously linked to depression and anxiety in other populations. The study was carried out in Al Ain, although participants were from different nationalities. Blood samples were collected over a period of seven months, and lab work was carried out over a period of two months from September 1, 2018 to May 30, 2019. We screened the prevalence of the PPARGC1A, CAMKMT, HSD11B1, SLC6A4, and MAOA in 29 patients with depressive disorder and 30 controls using the quantitative real-time polymerase chain reaction method. Results The expression of the PPARGC1A gene, studied for the first time in the UAE population. The independent t-test was used to check the significance of difference between the expression levels of target genes where the control was set at a reference level of 1.0. PPARGC1A gene is lower among the depressed group which showed mean difference: 0.4 and p-value: 0.02, indicating a strong association with depression. No significant difference was found in the genes' expression of CAMKMT with p-value 0.150, MAOA p-value 0.070, SLC6A4 p-value 0.750, and HSD11B1 p-value 0.100 in two groups in comparison with (p < 0.050). Conclusions These results open several possibilities for further research to study the role of this gene as a protective factor against developing depression.
Collapse
Affiliation(s)
- Nailah Mahmood
- Department of Cognitive Sciences, College of Humanities and Social Science, United Arab Emirates University, Al Ain, UAE
| | - Rukhsana Nawaz
- Department of Cognitive Sciences, College of Humanities and Social Science, United Arab Emirates University, Al Ain, UAE
| | - Hidaya Abdul Kadir
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Fadwa Al Mughairbi
- Department of Cognitive Sciences, College of Humanities and Social Science, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
6
|
Mori RC, Santos-Bezerra DP, Pelaes TS, Admoni SN, Perez RV, Monteiro MB, Machado CG, Queiroz MS, Machado UF, Correa-Giannella ML. Variants in HSD11B1 gene modulate susceptibility to diabetes kidney disease and to insulin resistance in type 1 diabetes. Diabetes Metab Res Rev 2021; 37:e3352. [PMID: 32453474 DOI: 10.1002/dmrr.3352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND AIM 11β-Hydroxysteroid dehydrogenase 1 has been implicated in insulin resistance (IR) in the setting of metabolic disorders, and single nucleotide polymorphisms (SNPs) in its encoding gene (HSD11B1) have been associated with type 2 diabetes and metabolic syndrome. In type 1 diabetes (T1D), IR has been related to the development of chronic complications. We investigated the association of HSD11B1 SNPs with microvascular complications and with IR in a Brazilian cohort of T1D individuals. MATERIALS AND METHODS Five SNPs were genotyped in 466 T1D individuals (57% women; median of 37 years old, diabetes duration of 25 years and HbA1c of 8.4%). RESULTS The minor allele T of rs11799643 was nominally associated with diabetic retinopathy (OR = 0.52; confidence interval [CI] 95% = 0.28-0.96; P = .036). The minor allele C of rs17389016 was nominally associated with overt diabetic kidney disease (DKD) (OR = 1.90; CI 95% = 1.07-3.37; P = .028). A follow-up study revealed that 29% of the individuals lost ≥5 mL min-1 × 1.73 m2 per year of the estimated glomerular filtration rate (eGFR). In these individuals (eGFR decliners), C allele of rs17389016 was more frequent than in non-decliners (OR = 2.10; CI 95% = 1.14-3.89; P = .018). Finally, minor allele T of rs846906 associated with higher prevalence of arterial hypertension, higher body mass index and waist circumference, thus conferring risk to a lower estimated glucose disposal rate, a surrogate marker of insulin sensitivity (OR = 1.23; CI 95% = 1.06-1.42; P = .004). CONCLUSION SNPs in the HSD11B1 gene may confer susceptibility to DKD and to IR in T1D individuals.
Collapse
Affiliation(s)
- Rosana Cristina Mori
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniele Pereira Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tatiana Souza Pelaes
- Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sharon Nina Admoni
- Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Vessoni Perez
- Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Beatriz Monteiro
- Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cleide Guimarães Machado
- Divisão de Oftalmologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marcia Silva Queiroz
- Divisão de Endocrinologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Lúcia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, Brazil
| |
Collapse
|
7
|
Devang N, Adhikari P, Nandini M, Satyamoorthy K, Rai PS. Effect of licorice on patients with HSD11B1 gene polymorphisms- a pilot study. J Ayurveda Integr Med 2020; 12:131-135. [PMID: 32800398 PMCID: PMC7422817 DOI: 10.1016/j.jaim.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 11/26/2022] Open
Abstract
The positive association of HSD11B1 gene polymorphism with type 2 diabetes (T2D) and prediabetic conditions has been revealed. In the current study, we assessed the effectiveness of licorice on the clinical profile of the patients with HSD11B1 gene polymorphism. Licorice (Glycyrrhiza Glabra) is a competitive inhibitor of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSD1) enzyme and has been traditionally reported as an anti-ulcer, anti-pyretic, anti-thirst, anti-inflammatory, hypoglycemic and hypolipidemic agent. The aim of the study was to assess the effectiveness of licorice on the clinical profile of participants with HSD11B1 gene polymorphism. The study was performed using diabetic patients with HSD11B1 gene polymorphism. Biochemical and anthropometric parameters were measured using standard diagnostic tools. Fourteen patients were divided into two groups by simple randomization, Licorice group (treated with 750 mg licorice/day for three weeks), and placebo group (treated with 750 mg placebo/day for three weeks). Investigations were repeated at the end of three weeks. Licorice showed a significant reduction in serum insulin levels (p = 0.03). There was no significant change in any other clinical parameters either by licorice or placebo. Conclusively, licorice moderately improves serum insulin levels in patients with HSD11B1 gene polymorphism. From our pilot study, the safety of licorice is confirmed at a dose of 750 mg/day. However, the study can be repeated at a higher dose to show its effectiveness and safety.
Collapse
Affiliation(s)
- Nayana Devang
- Department of Biotechnology, National Institute of Technology Calicut, NIT Campus (P.O.), Calicut, 673601, Kerala, India.
| | - Prabha Adhikari
- Department of Medicine, Yenepoya Medical College, Yenepoya University, Mangalore, 575018, Karnataka, India
| | - M Nandini
- Department of Biochemistry, Kasturba Medical College, Manipal University, Mangalore, 575003, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal, 576104, Karnataka, India
| |
Collapse
|
8
|
Gregory S, Hill D, Grey B, Ketelbey W, Miller T, Muniz-Terrera G, Ritchie CW. 11β-hydroxysteroid dehydrogenase type 1 inhibitor use in human disease-a systematic review and narrative synthesis. Metabolism 2020; 108:154246. [PMID: 32333937 DOI: 10.1016/j.metabol.2020.154246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an intracellular enzyme that catalyses conversion of cortisone into cortisol; correspondingly, 11β-HSD1 inhibitors inhibit this conversion. This systematic review focuses on the use of 11β-HSD1 inhibitors in diseases known to be associated with abnormalities in hypothalamic pituitary adrenal (HPA) axis function. METHODS The databases screened for suitable papers were: MedLine, EMBASE, Web of Science, ClinicalTrials.gov, and Cochrane Central. RESULTS 1925 papers were identified, of which 29 were included in the final narrative synthesis. 11β-HSD1 and its inhibitors have been studied in diabetes, obesity, metabolic syndrome (MetS), and Alzheimer's disease (AD). Higher expression of 11β-HSD1 is seen in obesity and MetS, but has not yet been described in obesity or AD. Genetic studies identify 11β-HSD1 SNPs of interest in populations with diabetes, MetS, and AD. One phase II trial successfully reduced HbA1c in a diabetic population, however trials in MetS, obesity, and AD have not met primary endpoints. CONCLUSIONS Translation of this research from preclinical studies has proved challenging so far, however this is a growing area of research and more studies should focus on understanding the complex relationships between 11β-HSD1 and disease pathology, especially given the therapeutic potential of 11β-HSD1 inhibitors in development.
Collapse
Affiliation(s)
- Sarah Gregory
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - David Hill
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ben Grey
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Graciela Muniz-Terrera
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Abulizi A, Camporez JP, Zhang D, Samuel VT, Shulman GI, Vatner DF. Ectopic lipid deposition mediates insulin resistance in adipose specific 11β-hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism 2019; 93:1-9. [PMID: 30576689 PMCID: PMC6401251 DOI: 10.1016/j.metabol.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
CONTEXT Excessive adipose glucocorticoid action is associated with insulin resistance, but the mechanisms linking adipose glucocorticoid action to insulin resistance are still debated. We hypothesized that insulin resistance from excess glucocorticoid action may be attributed in part to increased ectopic lipid deposition in liver. METHODS We tested this hypothesis in the adipose specific 11β-hydroxysteroid dehydrogenase-1 (HSD11B1) transgenic mouse, an established model of adipose glucocorticoid excess. Tissue specific insulin action was assessed by hyperinsulinemic-euglycemic clamps, hepatic lipid content was measured, hepatic insulin signaling was assessed by immunoblotting. The role of hepatic lipid content was further probed by administration of the functionally liver-targeted mitochondrial uncoupler, Controlled Release Mitochondrial Protonophore (CRMP). FINDINGS High fat diet fed HSD11B1 transgenic mice developed more severe hepatic insulin resistance than littermate controls (endogenous suppression of hepatic glucose production was reduced by 3.8-fold, P < 0.05); this was reflected by decreased insulin-stimulated hepatic insulin receptor kinase tyrosine phosphorylation and AKT serine phosphorylation. Hepatic insulin resistance was associated with a 53% increase (P < 0.05) in hepatic triglyceride content, a 73% increase in diacylglycerol content (P < 0.01), and a 66% increase in PKCε translocation (P < 0.05). Hepatic insulin resistance was prevented with administration of CRMP by reversal of hepatic steatosis and prevention of hepatic diacylglycerol accumulation and PKCε activation. CONCLUSIONS These findings are consistent with excess adipose glucocorticoid activity being a predisposing factor for the development of lipid (diacylglycerol-PKCε)-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Abudukadier Abulizi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - João-Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Daniel F Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Shalimova A, Fadieienko G, Kolesnikova O, Isayeva A, Zlatkina V, Nemtsova V, Prosolenko K, Psarova V, Kyrychenko N, Kochuieva M. The Role of Genetic Polymorphism in the Formation of Arterial Hypertension, Type 2 Diabetes and their Comorbidity. Curr Pharm Des 2019; 25:218-227. [PMID: 30868946 DOI: 10.2174/1381612825666190314124049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hereditary component plays a significant role in the formation of insulin resistance (IR) - one of the pathogenetic links of arterial hypertension (AH) and type 2 diabetes mellitus (DM2). However, the genetic predisposition to IR can not be realized and does not manifest itself clinically in the absence of appropriate factors of the environment (excessive nutrition, low physical activity, etc.). OBJECTIVE The review summarizes the results of studies which describe the contribution of genetic polymorphism to the formation and progression of AH, DM2 and their comorbidity in various populations. RESULTS In many studies, it has been established that genetic polymorphism of candidate genes is influenced by the formation, course and complication of AH and DM2. According to research data, the modulating effect of polymorphism of some genetic markers of AH and DM2 on metabolism and hemodynamics has been established. The results of numerous studies have shown a higher frequency of occurrence of AH and DM2, as well as their more severe course with adverse genetic polymorphisms. At the same time, the role of genetic polymorphism in the formation of AH and DM2 differs in different populations. CONCLUSION Contradictory data on the influence of gene polymorphisms on the formation of AH and DM2 in different populations, as well as a small number of studies on the combined effects of several polymorphisms on the formation of comorbidity, determine the continuation of research in this direction.
Collapse
Affiliation(s)
- Anna Shalimova
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine.,Kharkiv National Medical University, Kharkiv, Ukraine
| | - Galyna Fadieienko
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Olena Kolesnikova
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Anna Isayeva
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Vira Zlatkina
- Kharkiv National Medical University, Kharkiv, Ukraine
| | | | | | | | | | - Maryna Kochuieva
- Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| |
Collapse
|
11
|
Chedid MF, do Nascimento FV, de Oliveira FS, de Souza BM, Kruel CRP, Gurski RR, Canani LH, Crispim D, Gerchman F. Interaction of HSD11B1 and H6PD polymorphisms in subjects with type 2 diabetes are protective factors against obesity: a cross-sectional study. Diabetol Metab Syndr 2019; 11:78. [PMID: 31558916 PMCID: PMC6755690 DOI: 10.1186/s13098-019-0474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The enzyme 11-beta hydroxysteroid dehydrogenase type 1 (HSD11B1) converts inactive cortisone to active cortisol in a process mediated by the enzyme hexose-6-phosphate dehydrogenase (H6PD). The generation of cortisol from this reaction may increase intra-abdominal cortisol levels and contribute to the physiopathogenesis of obesity and metabolic syndrome (MetS). The relationship of HSD11B1 rs45487298 and H6PD rs6688832 polymorphisms with obesity and MetS was studied. We also studied how HSD11B1 abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) gene expression is related to body fat distribution. METHODS Rates of obesity and MetS features were cross-sectionally analyzed according to these polymorphisms in 1006 Brazilian white patients with type 2 diabetes (T2DM). Additionally, HSD11B1 expression was analyzed in VAT and SAT in a different cohort of 28 participants with and without obesity who underwent elective abdominal operations. RESULTS Although polymorphisms of the two genes were not individually associated with MetS features, a synergistic effect was observed between both. Carriers of at least three minor alleles exhibited lower BMI compared to those with two or fewer minor alleles adjusting for gender and age (27.4 ± 4.9 vs. 29.3 ± 5.3 kg/m2; P = 0.005; mean ± SD). Obesity frequency was also lower in the first group (24.4% vs. 41.6%, OR = 0.43, 95% CI 0.21-0.87; P = 0.019). In the second cohort of 28 subjects, HSD11B1 gene expression in VAT was inversely correlated with BMI (r = - 0.435, P = 0.034), waist circumference (r = - 0.584, P = 0.003) and waist-to-height ratio (r = - 0.526, P = 0.010). CONCLUSIONS These polymorphisms might interact in the protection against obesity in T2DM individuals. Obese individuals may have decreased intra-abdominal VAT HSD11B1 gene expression resulting in decreasing intra-abdominal cortisol levels as a compensatory mechanism against central and general adiposity.
Collapse
Affiliation(s)
- Marcio F. Chedid
- Postgraduate Program of Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filipe V. do Nascimento
- Postgraduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda S. de Oliveira
- Postgraduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bianca M. de Souza
- Postgraduate Program of Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cleber R. P. Kruel
- Postgraduate Program of Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Richard R. Gurski
- Postgraduate Program of Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis H. Canani
- Postgraduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2350, Prédio 12, 4° andar, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Daisy Crispim
- Postgraduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2350, Prédio 12, 4° andar, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| | - Fernando Gerchman
- Postgraduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2350, Prédio 12, 4° andar, Bairro Santana, Porto Alegre, RS 90035-003 Brazil
| |
Collapse
|
12
|
Association of HSD11B1 rs12086634 and HSD11B1 rs846910 gene polymorphisms with polycystic ovary syndrome in South Indian women. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0596-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Abstract
The metabolic syndrome describes a clustering of risk factors—visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension—that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25–30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.
Collapse
Affiliation(s)
- Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|