1
|
Schmidt CE, Müller HD. Myocardial Fibrosis in Diabetic Cardiomyopathy: Mechanisms, Implications, and Therapeutic Perspectives. Curr Probl Cardiol 2024:102976. [PMID: 39706391 DOI: 10.1016/j.cpcardiol.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct form of heart disease characterized by structural and functional alterations in the myocardium, occurring in the absence of other cardiac conditions. This review delves into the pathophysiological mechanisms underlying myocardial fibrosis in DCM, highlighting the pivotal role of fibroblast transdifferentiation into myofibroblasts. We examine the interplay between hyperglycemia, immune cell activation, and neurohumoral signaling pathways, with a particular focus on the transforming growth factor-beta (TGF-β) signaling cascade and its contributions to collagen deposition and cardiac dysfunction. Despite significant advancements in understanding the cellular and molecular mechanisms of DCM, critical gaps remain in elucidating the precise regulatory networks involved in fibroblast activation and the role of microRNAs in these processes. By providing a comprehensive overview of current knowledge, this review aims to identify potential therapeutic targets to mitigate myocardial fibrosis and improve clinical outcomes in diabetic patients. Ultimately, addressing these gaps will pave the way for novel therapeutic strategies that can enhance heart function and reduce the burden of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Clara Elisabeth Schmidt
- Bioanalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA; Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Hans Dietrich Müller
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
2
|
Xu CZ, Gao QY, Gao GH, Chen ZT, Wu MX, Liao GH, Cai YW, Chen N, Wang JF, Zhang HF. FTMT-dependent mitophagy is crucial for ferroptosis resistance in cardiac fibroblast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119825. [PMID: 39168410 DOI: 10.1016/j.bbamcr.2024.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/05/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Metabolic responses to cellular stress are pivotal in cell ferroptosis, with mitophagy serving as a crucial mechanism in both metabolic processes and ferroptosis. This study aims to elucidate the effects of high glucose on cardiomyocytes (CMs) and cardiac fibroblasts (CFs) regarding ferroptosis and to uncover the underlying mechanisms involved. We examined alterations in glycolysis, mitochondrial oxidative phosphorylation (OXPHOS), and mitophagy, which are essential for metabolic adaptations and ferroptosis. High glucose exposure induced ferroptosis specifically in CMs, while CFs exhibited resistance to ferroptosis, increased glycolytic activity, and no change in OXPHOS. Moreover, high glucose treatment enhanced mitophagy and upregulated mitochondrial ferritin (FTMT). Notably, the combination of FTMT and the autophagy-related protein nuclear receptor coactivator 4 (NCOA4) increased under high glucose conditions. Silencing FTMT significantly impeded mitophagy and eliminated ferroptosis resistance in CFs cultured under high glucose conditions. The transcription factor forkhead box A1 (FOXA1) was upregulated in CFs upon high glucose exposure, playing a crucial role in the increased expression of FTMT. Within the 5'-flanking sequence of the FTMT mRNA, approximately -500 nt from the transcription initiation site, three putative FOXA1 binding sites were identified. High glucose augmented the binding affinity between FOXA1 and these sequences, thereby promoting FTMT transcription. In summary, high glucose upregulated FOXA1 expression and stimulated FTMT promoter activity in CFs, thereby promoting FTMT-dependent mitophagy and conferring ferroptosis resistance in CFs.
Collapse
Affiliation(s)
- Cheng-Zhang Xu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guang-Hao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guang-Hong Liao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yang-Wei Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Nuo Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
4
|
Chen Y, Huang J, Wang H, Cui H, Liang Z, Huang D, Deng X, Du B, Li P. Polysaccharides from Sacha Inchi shell reduces renal fibrosis in mice by modulating the TGF-β1/Smad pathway and intestinal microbiota. Int J Biol Macromol 2024; 280:136039. [PMID: 39332559 DOI: 10.1016/j.ijbiomac.2024.136039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Renal fibrosis is a common pathway involved in the progression of various chronic kidney to end-stage diseases, posing a substantial global public health challenge in the search for effective and safe treatments. This study investigated the effects and mechanisms of sacha inchi shell polysaccharide (SISP) on renal fibrosis induced by a high-salt diet (HSD) in mice. By analysing kidney-related protein pathways and the structure of gut microbiota, we found that SISP significantly reduced urinary protein levels induced by a HSD from 41.08 to 22.95 μg/mL and increased urinary creatinine from 787.43 to 1294.50 μmol/L. It reduced renal interstitial collagen fibres by 11.30 %, thereby improving the kidney function. SISP lowered the mRNA expression of TGF-B1, fibronectin, α-SMA, Smad2/3, and TGFBRII, leading to decreased protein levels of TGF-β1, p-Smad2/3, p-TGFβRII, fibronectin, α-SMA, p-Smad2/3/Smad2/3, and p-TGFβRII/TGFβRII. These changes blocked downstream transcription in the TGF-β1/Smad signalling pathway, thereby attenuating renal fibrosis in HSD mice. In addition, SISP altered the intestinal flora imbalance in HSD mice by reducing the relative abundance of the genera, Akkermansia, Faecalibaculum, and unidentified_Ruminococcaceae, and reversing the decline in the levels of the genera, Lactobacillus and Bacteroides. In conclusion, SISP is a promising nutraceutical for renal fibrosis management.
Collapse
Affiliation(s)
- Yanlan Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyuan Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huaixu Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haohui Cui
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zizhao Liang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Darong Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Deng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
6
|
Chen Q, Wang W, Xu Q, Dai Y, Zhu X, Chen Z, Sun N, Leung C, Gao F, Wu K. The enhancing effects of selenomethionine on harmine in attenuating pathological cardiac hypertrophy via glycolysis metabolism. J Cell Mol Med 2024; 28:e70124. [PMID: 39351650 PMCID: PMC11443162 DOI: 10.1111/jcmm.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Pathological cardiac hypertrophy, a common feature in various cardiovascular diseases, can be more effectively managed through combination therapies using natural compounds. Harmine, a β-carboline alkaloid found in plants, possesses numerous pharmacological functions, including alleviating cardiac hypertrophy. Similarly, Selenomethionine (SE), a primary organic selenium source, has been shown to mitigate cardiac autophagy and alleviate injury. To explores the therapeutic potential of combining Harmine with SE to treat cardiac hypertrophy. The synergistic effects of SE and harmine against cardiac hypertrophy were assessed in vitro with angiotensin II (AngII)-induced hypertrophy and in vivo using a Myh6R404Q mouse model. Co-administration of SE and harmine significantly reduced hypertrophy-related markers, outperforming monotherapies. Transcriptomic and metabolic profiling revealed substantial alterations in key metabolic and signalling pathways, particularly those involved in energy metabolism. Notably, the combination therapy led to a marked reduction in the activity of key glycolytic enzymes. Importantly, the addition of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) did not further potentiate these effects, suggesting that the antihypertrophic action is predominantly mediated through glycolytic inhibition. These findings highlight the potential of SE and harmine as a promising combination therapy for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Qi Chen
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Wen‐Yan Wang
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Qing‐Yang Xu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical NeurobiologySchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Yan‐Fa Dai
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Xing‐Yu Zhu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Zhao‐Yang Chen
- Department of Cardiology, Heart Center of Fujian ProvinceFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Ning Sun
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical NeurobiologySchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Chung‐Hang Leung
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacaoP. R. China
| | - Fei Gao
- Department of cardiology, Beijing An Zhen HospitalCapital Medical UniversityChaoyangBeijingP. R. China
| | - Ke‐Jia Wu
- Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| |
Collapse
|
7
|
Huang G, Zhang Y, Zhang Y, Zhou X, Xu Y, Wei H, Chen X, Ma Y. Oridonin Attenuates Diabetes‑induced Renal Fibrosis via the Inhibition of TXNIP/NLRP3 and NF‑κB Pathways by Activating PPARγ in Rats. Exp Clin Endocrinol Diabetes 2024; 132:536-544. [PMID: 38718831 DOI: 10.1055/a-2322-7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Oridonin possesses remarkable anti-inflammatory, immunoregulatory properties. However, the renoprotective effects of oridonin and the underlying molecular mechanisms in diabetic nephropathy (DN). We hypothesized that oridonin could ameliorate diabetes‑induced renal fibrosis. METHODS Streptozocin (STZ)-induced diabetic rats were provided with a high-fat diet to establish a type 2 diabetes mellitus (T2DM) animal model, and then treated with Oridonin (10, 20 mg/kg/day) for two weeks. Kidney function and renal fibrosis were assessed. High glucose-induced human renal proximal tubule epithelial cells (HK-2) were also treated with oridonin. The expression of inflammatory factors and fibrotic markers were analyzed. RESULTS Oridonin treatment preserved kidney function and markedly limited the renal fibrosis size in diabetic rats. The renal fibrotic markers were inhibited in the oridonin 10 mg/kg/day and 20 mg/kg/day groups compared to the T2DM group. The expression of thioredoxin-interacting proteins/ nod-like receptor protein-3 (TXNIP/NLRP3) and nuclear factor (NF)‑κB pathway decreased, while that of peroxisome proliferator-activated receptor-gamma (PPARγ) increased in the oridonin treatment group compared to the non-treated group. In vitro, PPARγ intervention could significantly regulate the effect of oridonin on the high glucose-induced inflammatory changes in HK-2 cells. CONCLUSION Oridonin reduces renal fibrosis and preserves kidney function via the inhibition of TXNIP/NLRP3 and NF‑κB pathways by activating PPARγ in rat T2DM model, which indicates potential effect of oridonin in the treatment of DN.
Collapse
Affiliation(s)
- Gengzhen Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Second people's Hospital, Chengdu, China
| | - Yaodan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaotao Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiting Wei
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuerong Ma
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
9
|
Zhong H, Tang H, Wang Y, Tang S, Zhu H. MiR-29c alleviates hyperglycemia-induced inflammation via targeting TGF-β in cardiomyocytes. Mol Cell Biochem 2024; 479:2047-2054. [PMID: 37589861 DOI: 10.1007/s11010-023-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-β (TGF-β) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-β expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-β protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-β mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3'-UTR of TGF-β was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-β in cardiomyocytes, which provides a potential target for the treatment of DCM.
Collapse
Affiliation(s)
- Hongli Zhong
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Haitao Tang
- Anhui International Travel Healthcare Center (Hefei Customs Port Clinic), Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Yang YX, Guo J, Liu C, Nan JX, Wu YL, Jin CH. Synthesis of amide derivatives containing the imidazole moiety and evaluation of their anti-cardiac fibrosis activity. Arch Pharm (Weinheim) 2024; 357:e2400131. [PMID: 38678538 DOI: 10.1002/ardp.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Three series of N-{[4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl}acetamides (14a-d, 15a-n, and 16a-f) were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. The target compounds showed high ALK5 inhibitory activity and selectivity. The half maximal inhibitory concentration (IC50) for phosphorylation of ALK5 of 16f (9.1 nM), the most potent compound, was 2.7 times that of the clinical candidate EW-7197 (vactosertib) and 14 times that of the clinical candidate LY-2157299. The selectivity index of 16f against p38α mitogen-activated protein kinase was >109, which was much higher than that of positive controls (EW-7197: >41, and LY-2157299: 4). Furthermore, a molecular docking study provided the interaction modes between the target compounds and ALK5. Compounds 14c, 14d, and 16f effectively inhibited the protein expression of α-smooth muscle actin (α-SMA), collagen I, and tissue inhibitor of metalloproteinase 1 (TIMP-1)/matrix metalloproteinase 13 (MMP-13) in transforming growth factor-β-induced human umbilical vein endothelial cells. Compounds 14c and 16f showed especially high activity at low concentrations, which suggests that these compounds could inhibit myocardial cell fibrosis. Compounds 14c, 14d, and 16f are potential preclinical candidates for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| |
Collapse
|
11
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
13
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
14
|
Ji L, Lou S, Fang Y, Wang X, Zhu W, Liang G, Lee K, Luo W, Zhuang Z. Patchouli Alcohol Protects the Heart against Diabetes-Related Cardiomyopathy through the JAK2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:631. [PMID: 38794201 PMCID: PMC11124524 DOI: 10.3390/ph17050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains relatively unexplored. To explore the effect of PatA on diabetes-induced cardiac injury and dysfunction in mice, streptozotocin (STZ) was used to mimic type 1 diabetes in mice. Serological markers and echocardiography show that PatA treatment protects the heart against cardiomyopathy by controlling myocardial fibrosis but not by reducing hyperglycemia in diabetic mice. Discovery Studio 2017 software was used to perform reverse target screening of PatA, and we found that JAK2 may be a potential target of PatA. RNA-seq analysis of heart tissues revealed that PatA activity in the myocardium was primarily associated with the inflammatory fibrosis through the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. In vitro, we also found that PatA alleviates high glucose (HG) + palmitic acid (PA)-induced fibrotic and inflammatory responses via inhibiting the JAK2/STAT3 signaling pathway in H9C2 cells. Our findings illustrate that PatA mitigates the effects of HG + PA- or STZ-induced cardiomyopathy by acting on the JAK2/STAT3 signaling pathway. These insights indicate that PatA could potentially serve as a therapeutic agent for DCM treatment.
Collapse
Affiliation(s)
- Lijun Ji
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Shuaijie Lou
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Yi Fang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Xu Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Weiwei Zhu
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Kwangyoul Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| |
Collapse
|
15
|
Wei W, Xie P, Wang X. Interval training suppresses nod-like receptor protein 3 inflammasome activation to improve cardiac function in myocardial infarction rats by hindering the activation of the transforming growth factor-β1 pathway. J Cardiothorac Surg 2024; 19:283. [PMID: 38730417 PMCID: PMC11088074 DOI: 10.1186/s13019-024-02756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-β1 (TGF-β1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-β1 and receptor was detected. RESULTS MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening (LVFS), left ventricular systolic pressure (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-β1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-β1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-β1 pathway, thus improving the cardiac function of MI rats.
Collapse
Affiliation(s)
- Wei Wei
- Cardiovascular medicine, Zhangye Second People's Hospital, North Section of West 3rd Ring Road, Binhe New District, Ganzhou District, Zhangye, 734000, China
| | - Ping Xie
- Cardiovascular medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xuemei Wang
- Cardiovascular medicine, Zhangye Second People's Hospital, North Section of West 3rd Ring Road, Binhe New District, Ganzhou District, Zhangye, 734000, China.
| |
Collapse
|
16
|
Khazdair MR, Moshtagh M, Anaeigoudari A, Jafari S, Kazemi T. Protective effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction - A comprehensive review. Food Sci Nutr 2024; 12:3137-3149. [PMID: 38726397 PMCID: PMC11077248 DOI: 10.1002/fsn3.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a class of illnesses that affect the heart or blood vessels, leading to the most common causes of death worldwide. In 2017, CVD caused approximately 17.8 million deaths that were increased approximately to 20.5 million deaths in 2021, globally. Also, nearly 80% of worldwide CVD deaths occur in some countries. Some herbs and their constituents due to their several pharmacological activities have been used for medicinal purposes. Carvacrol is a phenolic mono-terpenoid found in the oils of aromatic herbs with several biological properties. The possible therapeutic effects of carvacrol on lipid profiles, oxidative stress, hypertension, and cardiac dysfunction were summarized in the current study. The data from this review article were obtained by searching the terms including; "Carvacrol", "Hypertension", Hypotensive, "Cardiac dysfunction", "Ischemia", "Lipid profile", and Oxidative stress in several web databases such as Web of Sciences, PubMed Central, and Google Scholar, until November 2023. The results of the reviewed studies revealed that carvacrol inhibits acetylcholinesterase (AchE) activity and alters lipid profiles, reducing heart rate as well as systolic and diastolic blood pressure (BP). Carvacrol also decreased the proinflammatory cytokine (IL-1β), while increasing secretion of anti-inflammatory cytokine (IL-10). Moreover, carvacrol improved oxidative stress and mitigated the number of apoptotic cells. The pharmacological effects of carvacrol on CVD might be through its antioxidative, anti-inflammatory, and antiapoptotic effects. The mentioned therapeutic effects of carvacrol on lipid profile, hypertension, and cardiac dysfunction indicate the possible remedy effect of carvacrol for the treatment of CVD.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mozhgan Moshtagh
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | - Shima Jafari
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
- Department of Clinical Pharmacy, School of PharmacyBirjand University of Medical SciencesBirjandIran
| | - Toba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
17
|
Guo W, Yang C, Zou J, Yu T, Li M, He R, Chen K, Hell RCR, Gross ER, Zou X, Lu Y. Interleukin-1β polarization in M1 macrophage mediates myocardial fibrosis in diabetes. Int Immunopharmacol 2024; 131:111858. [PMID: 38492336 PMCID: PMC11330059 DOI: 10.1016/j.intimp.2024.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Diabetes is a global health problem whose common complication is diabetic cardiomyopathy, characterized by chronic inflammation of the heart muscle. Macrophages are the main white blood cells found in the resting heart. Therefore, we investigated the underling mechanism of macrophage on myocardial fibrosis in diabetes. METHODS Here, echocardiography was utilized to evaluate cardiac function, and the degree of myocardial fibrosis was assessed using Masson's trichrome staining, followed by single-cell RNA sequencing (scRNA-seq) to analyze the phenotype, function, developmental trajectory, and interactions between immune cells, endothelial cells (ECs), and fibroblasts (FBs) in the hearts of db/db mice at different stages of diabetes. Macrophages and cardiac fibroblasts were also co-cultured in order to study the signaling between macrophages and fibroblasts. RESULTS We found that with the development of diabetes mellitus, myocardial hypertrophy and fibrosis occurred that was accompanied by cardiac dysfunction. A significant proportion of immune cells, endothelial cells, and fibroblasts were identified by RNA sequencing. The most significant changes observed were in macrophages, which undergo M1 polarization and are critical for oxidative stress and extracellular matrix (ECM) formation. We further found that M1 macrophages secreted interleukin-1β (IL-1β), which interacted with the receptor on the surface of fibroblasts, to cause myocardial fibrosis. In addition, crosstalk between M1 macrophages and endothelial cells also plays a key role in fibrosis and immune response regulation through IL-1β and corresponding receptors. CONCLUSIONS M1 macrophages mediate diabetic myocardial fibrosis through interleukin-1β interaction with fibroblasts.
Collapse
Affiliation(s)
- Wenli Guo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiawei Zou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Yu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mingde Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ruilin He
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Keyang Chen
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Rafaela C R Hell
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, 94305 CA, United States
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, 94305 CA, United States
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
18
|
Yasuma T, Gabazza EC. Cell Death in Acute Organ Injury and Fibrosis. Int J Mol Sci 2024; 25:3930. [PMID: 38612740 PMCID: PMC11012379 DOI: 10.3390/ijms25073930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tissue fibrosis is characterized by the excessive accumulation of extracellular matrix in various organs, including the lungs, liver, skin, kidneys, pancreas, and heart, ultimately leading to organ failure [...].
Collapse
Affiliation(s)
- Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan;
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan;
| |
Collapse
|
19
|
Khan AR, Alnoud MAH, Ali H, Ali I, Ahmad S, Ul Hassan SS, Shaikh AL, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU. Beyond the beat: A pioneering investigation into exercise modalities for alleviating diabetic cardiomyopathy and enhancing cardiac health. Curr Probl Cardiol 2024; 49:102222. [PMID: 38000567 DOI: 10.1016/j.cpcardiol.2023.102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | | | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
20
|
Tong R, Wu T, Chen J. Chinese Medicine Supplementing Qi and Activating Blood Circulation Relieves the Progression of Diabetic Cardiomyopathy. Endocr Metab Immune Disord Drug Targets 2024; 24:163-171. [PMID: 37138487 DOI: 10.2174/1871530323666230501151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is the leading cause of diabetic death as the final occurrence of heart failure and arrhythmia. Traditional Chinese medicine is usually used to treat various diseases including diabetes. OBJECTIVE This study sought to investigate the effects of Traditional Chinese medicine supplementing Qi and activating blood circulation (SAC) in DCM. METHODS After the construction of the DCM model by streptozotocin (STZ) injection and high glucose/fat diet feeding, rats were administered intragastrically with SAC. Then, cardiac systolic/diastolic function was evaluated by detecting left ventricular systolic pressure (LVSP), maximal rate of left ventricular pressure rise (+LVdp/dtmax), and fall (-LVdp/dtmax), heart rate (HR), left ventricular ejection fraction (EF), LV fractional shortening (FS) and left ventricular end-diastolic pressure (LVEDP). Masson’s and TUNEL staining were used to assess fibrosis and cardiomyocyte apoptosis. RESULTS DCM rats exhibited impaired cardiac systolic/diastolic function manifested by decreasing LVSP, + LVdp/dtmax, -LVdp/dtmax, HR, EF and FS, and increasing LVEDP. Intriguingly, traditional Chinese medicine SAC alleviated the above-mentioned symptoms, indicating a potential role in improving cardiac function. Masson’s staining substantiated that SAC antagonized the increased collagen deposition and interstitial fibrosis area and the elevations in protein expression of fibrosis-related collagen I and fibronectin in heart tissues of DCM rats. Furthermore, TUNEL staining confirmed that traditional Chinese medicine SAC also attenuated cardiomyocyte apoptosis in DCM rats. Mechanically, DCM rats showed the aberrant activation of the TGF-β/Smad signaling, which was inhibited after SAC. CONCLUSION SAC may exert cardiac protective efficacy in DCM rats via the TGF-β/Smad signaling, indicating a new promising therapeutic approach for DCM.
Collapse
Affiliation(s)
- Ruxi Tong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, P.R. China
| | - Tianmin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, P.R. China
| | - Jinshui Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, P.R. China
| |
Collapse
|
21
|
Li H, Zhu X, Cao X, Lu Y, Zhou J, Zhang X. Single-cell analysis reveals lysyl oxidase (Lox) + fibroblast subset involved in cardiac fibrosis of diabetic mice. J Adv Res 2023; 54:223-237. [PMID: 36706988 DOI: 10.1016/j.jare.2023.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Myocardial fibrosis and cardiac dysfunction are the main characteristics of diabetic heart disease. However, the molecular mechanisms underlying diabetic myocardial fibrosis remain unclear. OBJECTIVES This study aimed to investigate the heterogeneity of cardiac fibroblasts in diabetic mice and its possible mechanism in the development of diabetic myocardial fibrosis. METHODS We established a diabetic mouse model by injecting mice with streptozotocin. The overall cell profiles in diabetic hearts were analyzed using single-cell RNA transcriptomic techniques. Cardiac function was evaluated by echocardiography. Cardiac fibrosis was assessed by Masson's trichrome and Sirius red staining. Protein expression was analyzed using Western blotting and immunofluorescence staining. RESULTS A total of 11,585 cells were captured in control (Ctrl) and diabetic (DM) hearts. Twelve cell types were identified in this study. The number of fibroblasts was significantly higher in the DM hearts than in the Ctrl group. The fibroblasts were further re-clustered into nine subsets. Interestingly, cluster 4 fibroblasts were significantly increased in diabetic hearts compared with other fibroblast clusters. Lysyl oxidase (Lox) was highly expressed in DM fibroblasts (especially in cluster 4). Beta-aminopropionitrile, a Lox inhibitor, inhibited collagen expression and alleviated cardiac dysfunction in the diabetic group. Lysyl oxidase inhibition also reduced high glucose-induced collagen protein upregulation in primary fibroblasts. Moreover, a TGF-β receptor inhibitor not only prevented an increase in Lox and Col I but also inhibited the phosphorylation of Smad2/3 in fibroblasts. CONCLUSIONS This study revealed the heterogeneity of cardiac fibroblasts in diabetic mice for the first time. Fibroblasts with high expression of Lox (cluster 4 fibroblasts) were identified to play a crucial role in fibrosis in diabetic heart disease. The findings of this study may provide a possible therapeutic target for interstitial fibrosis.
Collapse
Affiliation(s)
- Heyangzi Li
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Zhu
- Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xi Cao
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yicheng Lu
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoming Zhang
- Department of Basic Medicine Sciences, and Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Hai Z, Wu Y, Ning Z. Salidroside attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-II through inhibition of LOXL2-TGF-β1-Smad2/3 pathway. Heliyon 2023; 9:e21220. [PMID: 37920527 PMCID: PMC10618763 DOI: 10.1016/j.heliyon.2023.e21220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/16/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Aims and objectives Salidroside (SAL), an active component isolated from the Chinese plant Rose Rhodiola, has anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and renal protective properties. Atrial fibrosis developed due to angiotensin II (Ang II) plays a crucial function in developing atrial fibrillation (AF). This research investigates the involvement of SAL in AF, its vulnerability to AF, and Ang II-induced inflammatory atrial fibrosis. Methods Ang II (2 mg/kg/day) was infused underneath the skin into male C57BL/6 mice (8-10 weeks old, n = 40) for four weeks to create the AF model. SAL (50 mg/kg/day) was given intraperitoneally once per day for 28 days. Analyses of morphology, histology, and biochemical were carried out. Transesophageal burst pacing was used in vivo to induce AF. Results Ang II injection increased mice's heart rate and systolic blood pressure (SBP), whereas SAL treatment was significantly reduced. Ang II infusion increased left atrial diameter (LAD) in mice, which was attenuated after SAL treatment. SAL alone did not affect AF inducibility, but SAL therapy markedly decreased Ang II-induced AF inducibility. Additionally, the expression levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were inhibited with SAL therapy in mice. Compared to the Ang II group, Ang II infusion raised malondialdehyde (MDA) levels and reduced superoxide dismutase (SOD) and catalase (CAT) activity, but SAL therapy altered all of these effects. SAL treatment significantly reduced LOXL2, TGF-β1, p-Smad2 and p-Smad3 protein expression than the Ang II group mice. Conclusion SAL inhibits atrial fibrosis and potentially attenuates increased susceptibility to AF by suppressing the LOXL2-TGF-β1-Smad2/3 pathway.
Collapse
Affiliation(s)
- Zhen Hai
- Department of Cardiology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203, China
| | - Yingbiao Wu
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), No.1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), No.1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| |
Collapse
|
23
|
Yang Y, Yang H, Yang C. Circ-AMOTL1 enhances cardiac fibrosis through binding with EIF4A3 and stabilizing MARCKS expression in diabetic cardiomyopathy. Cell Signal 2023; 111:110853. [PMID: 37586467 DOI: 10.1016/j.cellsig.2023.110853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-β1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.
Collapse
Affiliation(s)
- Yang Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Huan Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Chong Yang
- Cardiology department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China.
| |
Collapse
|
24
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
25
|
Zhang Z, Dai Y, Xiao Y, Liu Q. Protective effects of catalpol on cardio-cerebrovascular diseases: A comprehensive review. J Pharm Anal 2023; 13:1089-1101. [PMID: 38024856 PMCID: PMC10657971 DOI: 10.1016/j.jpha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 12/01/2023] Open
Abstract
Catalpol, an iridoid glucoside isolated from Rehmannia glutinosa, has gained attention due to its potential use in treating cardio-cerebrovascular diseases (CVDs). This extensive review delves into recent studies on catalpol's protective properties in relation to various CVDs, such as atherosclerosis, myocardial ischemia, infarction, cardiac hypertrophy, and heart failure. The review also explores the compound's anti-oxidant, anti-inflammatory, and anti-apoptotic characteristics, emphasizing the role of vital signaling pathways, including PGC-1α/TERT, PI3K/Akt, AMPK, Nrf2/HO-1, estrogen receptor (ER), Nox4/NF-κB, and GRP78/PERK. The article discusses emerging findings on catalpol's ability to alleviate diabetic cardiovascular complications, thrombosis, and other cardiovascular-related conditions. Although clinical studies specifically addressing catalpol's impact on CVDs are scarce, the compound's established safety and well-tolerated nature suggest that it could be a valuable treatment alternative for CVD patients. Further investigation into catalpol and related iridoid derivatives may unveil new opportunities for devising natural and efficacious CVD therapies.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yongguo Dai
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
26
|
Sun W, Mi H, He DY, Li W, Songyang YY. Liraglutide Suppresses Myocardial Fibrosis Progression by Inhibiting the Smad Signaling Pathway. Curr Med Sci 2023; 43:955-960. [PMID: 37594676 DOI: 10.1007/s11596-023-2776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Liraglutide is a commonly used hypoglycemic agent in clinical practice, and has been demonstrated to have protective effects against the development of cardiovascular disease. However, its potential role in myocardial fibrosis remains unexplored. The present study aims to assess the impact of liraglutide on the activation of cardiac fibroblasts. METHODS Primary rat adult fibroblasts were isolated, cultured, and randomly allocated into 4 groups: control group, transforming growth factor beta1 (TGFβ1) stimulation group, liraglutide group, and TGFβ1+liraglutide group. Fibroblast activation was induced by TGFβ1. Cell proliferation activity was assessed using the CKK-8 kit, and cellular activity was determined using the MTT kit. Reverse transcrition-quantitative polymerase chain reaction (RT-qPCR) was utilized to quantify the level of collagen transcription, immunofluorescence staining was performed to detect the expression level of type III collagen and α-smooth muscle protein (α-SMA), and immunoblotting was conducted to monitor alterations in signal pathways. RESULTS The addition of 10, 25, 50 and 100 nmol/L of liraglutide did not induce any significant impact on the viability of fibroblasts (P>0.05). The rate of cellular proliferation was significantly higher in the TGFβl stimulation group than in the control group. However, the treatment with 50 and 100 nmol/L of liraglutide resulted in the reduction of TGFβl-induced cell proliferation (P<0.05). The RT-qPCR results revealed that the transcription levels of type I collagen, type III collagen, and α-SMA were significantly upregulated in the TGFβl stimulation group, when compared to the control group (P<0.05). However, the expression levels of these aforementioned factors significantly decreased in the TGFβl+liraglutide group (P<0.05). The immunofluorescence staining results revealed a significant increase in the expression levels of type III collagen and α-SMA in the TGFβl stimulation group, when compared to the control group (P<0.05). However, these expression levels significantly decreased in the TGFβl+liraglutide group, when compared to the TGFβl stimulation group (P<0.05). The Western blotting results revealed that the expression levels of phosphorylated smad2 and smad3 significantly increased in the TGFβl stimulation group, when compared to the control group (P<0.05), while these decreased in the TGFβl+liraglutide group (P<0.05). CONCLUSION Liraglutide inhibits myocardial fibrosis development by suppressing the smad signaling pathway, reducing the activation and secretion of cardiac fibroblasts.
Collapse
Affiliation(s)
- Wen Sun
- Department of Geriatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Hong Mi
- Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - De-Ying He
- Department of Geriatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yi-Yan Songyang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
27
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
28
|
Vishwakarma VK, Shah S, Kaur T, Singh AP, Arava SK, Kumar N, Yadav RK, Yadav S, Arora T, Yadav HN. Effect of vinpocetine alone and in combination with enalapril in experimental model of diabetic cardiomyopathy in rats: possible involvement of PDE-1/TGF-β/ Smad 2/3 signalling pathways. J Pharm Pharmacol 2023; 75:1198-1211. [PMID: 37229596 DOI: 10.1093/jpp/rgad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DC) is one of the severe secondary complications of diabetes mellitus in humans. Vinpocetine is an alkaloid having pleiotropic pharmacological effects. The present study is designed to investigate the effect of vinpocetine in DC in rats. METHODS Rats were fed a high-fat diet for nine weeks along with single dose of streptozotocin after the second week to induce DC. The haemodynamic evaluation was performed to assess the functional status of rats using the Biopac system. Cardiac echocardiography, biochemical, oxidative stress parameters and inflammatory cytokine level were analysed in addition to haematoxylin-eosin and Masson's trichome staining to study histological changes, cardiomyocyte diameter and fibrosis, respectively. Phosphodiesterase-1 (PDE-1), transforming growth factor-β (TGF-β) and p-Smad 2/3 expression in cardiac tissues were quantified using western blot/RT-PCR. KEY FINDING Vinpocetine treatment and its combination with enalapril decreased the glucose levels compared to diabetic rats. Vinpocetine improved the echocardiographic parameters and cardiac functional status of rats. Vinpocetine decreased the cardiac biochemical parameters, oxidative stress, inflammatory cytokine levels, cardiomyocyte diameter and fibrosis in rats. Interestingly, expressions of PDE-1, TGF-β and p-Smad 2/3 were ameliorated by vinpocetine alone and in combination with enalapril. CONCLUSIONS Vinpocetine is a well-known inhibitor of PDE-1 and the protective effect of vinpocetine in DC is exerted by inhibition of PDE-1 and subsequent inhibition of the expression of TGF-β/Smad 2/3.
Collapse
Affiliation(s)
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Tajpreet Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Niraj Kumar
- Department of Neuroanesthesiogy and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Raj Kanwar Yadav
- Department Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Yadav
- Department of Obstetrics and Gynaecology, SHKM Government Medical College, Nuh, Haryana, India
| | - Taruna Arora
- RBMCH, ICMR-Head Quarter's Ansari Nagar, New Delhi, India
| | | |
Collapse
|
29
|
Meng L, Lu Y, Wang X, Cheng C, Xue F, Xie L, Zhang Y, Sui W, Zhang M, Zhang Y, Zhang C. NPRC deletion attenuates cardiac fibrosis in diabetic mice by activating PKA/PKG and inhibiting TGF-β1/Smad pathways. SCIENCE ADVANCES 2023; 9:eadd4222. [PMID: 37531438 PMCID: PMC10396312 DOI: 10.1126/sciadv.add4222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Cardiac fibrosis plays a key role in the progression of diabetic cardiomyopathy (DCM). Previous studies demonstrated the cardioprotective effects of natriuretic peptides. However, the effects of natriuretic peptide receptor C (NPRC) on cardiac fibrosis in DCM remains unknown. Here, we observed that myocardial NPRC expression was increased in mice and patients with DCM. NPRC-/- diabetic mice showed alleviated cardiac fibrosis, as well as improved cardiac function and remodeling. NPRC knockdown in both cardiac fibroblasts and cardiomyocytes decreased collagen synthesis and proliferation of cardiac fibroblasts. RNA sequencing identified that NPRC deletion up-regulated the expression of TGF-β-induced factor homeobox 1 (TGIF1), which inhibited the phosphorylation of Smad2/3. Furthermore, TGIF1 up-regulation was mediated by the activation of cAMP/PKA and cGMP/PKG signaling induced by NPRC deletion. These findings suggest that NPRC deletion attenuated cardiac fibrosis and improved cardiac remodeling and function in diabetic mice, providing a promising approach to the treatment of diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinlu Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaoyuan Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | | | - Yun Zhang
- Corresponding author. (Y.Z.); (C.Z.)
| | | |
Collapse
|
30
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
31
|
Li H, Li C, Zheng T, Wang Y, Wang J, Fan X, Zheng X, Tian G, Yuan Z, Chen T. Cardiac Fibroblast Activation Induced by Oxygen-Glucose Deprivation Depends on the HIF-1α/miR-212-5p/KLF4 Pathway. J Cardiovasc Transl Res 2023; 16:778-792. [PMID: 37284939 DOI: 10.1007/s12265-023-10360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 06/08/2023]
Abstract
It is widely accepted that miRNAs play an important role in the pathogenesis of myocardial fibrosis. This study aimed to identify a new pathway of miR-212-5p in the activation of human cardiac fibroblasts (HCFs) induced by oxygen-glucose deprivation (OGD). First, we found that KLF4 protein was markedly decreased in OGD-induced HCFs. Then, bioinformatics analysis and verification experiments were used to identify the existence of an interaction of KLF4 with miR-212-5p. Functional experiments indicated that OGD significantly upregulated the expression of hypoxia inducible factor-1 alpha (HIF-1α) in HCFs, which positively regulated miR-212-5p transcription by binding to its promoter. MiR-212-5p inhibited the expression of Krüppel-like factor 4 (KLF4) protein by binding to the 3' untranslated coding regions (UTRs) of KLF4 mRNA. Inhibition of miR-212-5p effectively inhibited the activation of OGD-induced HCFs by upregulating KLF4 expression and inhibited cardiac fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Hongbing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Chenxing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Tao Zheng
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Yaning Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jin Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xiaojuan Fan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xueyang Zheng
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200001, China.
| | - Gang Tian
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Tao Chen
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
32
|
Shu H, Cheng J, Li N, Zhang Z, Nie J, Peng Y, Wang Y, Wang DW, Zhou N. Obesity and atrial fibrillation: a narrative review from arrhythmogenic mechanisms to clinical significance. Cardiovasc Diabetol 2023; 22:192. [PMID: 37516824 PMCID: PMC10387211 DOI: 10.1186/s12933-023-01913-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023] Open
Abstract
The prevalence of obesity and atrial fibrillation (AF), which are inextricably linked, is rapidly increasing worldwide. Obesity rates are higher among patients with AF than healthy individuals. Some epidemiological data indicated that obese patients were more likely to develop AF, but others reported no significant correlation. Obesity-related hypertension, diabetes, and obstructive sleep apnea are all associated with AF. Additionally, increased epicardial fat, systemic inflammation, and oxidative stress caused by obesity can induce atrial enlargement, inflammatory activation, local myocardial fibrosis, and electrical conduction abnormalities, all of which led to AF and promoted its persistence. Weight loss reduced the risk and reversed natural progression of AF, which may be due to its anti-fibrosis and inflammation effect. However, fluctuations in weight offset the benefits of weight loss. Therefore, the importance of steady weight loss urges clinicians to incorporate weight management interventions in the treatment of patients with AF. In this review, we discuss the epidemiology of obesity and AF, summarize the mechanisms by which obesity triggers AF, and explain how weight loss improves the prognosis of AF.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jia Cheng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zixuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
33
|
Zhang T, Zhang Y, Li S, Ge H, Song Q, Zhang Y, Yang G, Li A. Gentianella acuta-derived Gen-miR-1 suppresses myocardial fibrosis by targeting HAX1/HMG20A/Smads axis to attenuate inflammation in cardiac fibroblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154923. [PMID: 37352750 DOI: 10.1016/j.phymed.2023.154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Continuous activation and inflammation of cardiac fibroblasts (CFs) are essential for myocardial fibrosis. Gentianella acuta (Michx.) Hiitonen (G. acuta), that contains xanthones with cardioprotective properties, a typical healthful herb extensively used to treat cardiovascular diseases in Inner Mongolia region of China. However, it remains unknown whether or not G. acuta-derived miRNAs can shield CFs from activation by inflammatory stimulation. Therefore, we tend to investigated the role and core mechanism of G. acuta-derived Gen-miR-1 in regulating fibrosis and inflammation induced by TGF-β1. METHODS An animal model for myocardial infarction was built by subcutaneous injections of ISO and treated with Gen-miR-1 using intragastric administration. The protective effect of Gen-miR-1 on the heart was assessed by pathomorphological analysis of myocardial fibrosis. Using loss- and gain-of-function approaches, Gen-miR-1 regulation of HAX1/HMG20A/Smads axis was investigated by utilizing luciferase assay, Western blot, co-immunoprecipitation, etc. RESULTS: Screened and identified Gen-miR-1 from G. acuta. Gen-miR-1 can enter the mouse body, and markedly inhibit myocardial infarction induced by ISO in mice, as well as suppresses fibrosis in CFs and attenuates the inflammatory response elicited by TGF-β1 in vitro. Gen-miR-1 downregulates HCLS1-related Protein X-1 (HAX1) expression through direct binding to the 3' UTR of HAX1, which in turn relieves HAX1 from promoting the expression of high-mobility group protein 20A (HMG20A), whereas HMG20A downregulation restrains the activation of TGF-β1/Smads signaling pathways, subsequently resulting in a decrease of fibrosis and in facilitating CFs anti-inflammatory effects induced by Gen-miR-1 in the context of CFs activation induced by TGF-β1. CONCLUSIONS Our results first uncovered unique bioactive components in G. acuta and elucidated the molecular mechanism by which G. acuta-derived Gen-miR-1 suppress inflammation and myocardial fibrosis. These findings expand our understanding of G. acuta's therapeutic properties and bioactive constituents. Gen-miR-1-regulated HAX1/HMG20A/Smads axis will be one potential therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Si Li
- Department of Technology, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Hongyao Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Qiuhang Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China
| | - Gaoshan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China.
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang, PR China.
| |
Collapse
|
34
|
Yao Y, Lin L, Tang W, Shen Y, Chen F, Li N. Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway. Acta Histochem 2023; 125:152044. [PMID: 37196380 DOI: 10.1016/j.acthis.2023.152044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.
Collapse
Affiliation(s)
- Yanmei Yao
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Fayu Chen
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Ning Li
- Department of Hematology and Oncology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
| |
Collapse
|
35
|
Dhat R, Mongad D, Raji S, Arkat S, Mahapatra NR, Singhal N, Sitasawad SL. Epigenetic modifier alpha-ketoglutarate modulates aberrant gene body methylation and hydroxymethylation marks in diabetic heart. Epigenetics Chromatin 2023; 16:12. [PMID: 37101286 PMCID: PMC10134649 DOI: 10.1186/s13072-023-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Hyperglycemic myocardial microenvironment significantly alters chromatin architecture and the transcriptome, resulting in aberrant activation of signaling pathways in a diabetic heart. Epigenetic marks play vital roles in transcriptional reprogramming during the development of DCM. The current study is aimed to profile genome-wide DNA (hydroxy)methylation patterns in the hearts of control and streptozotocin (STZ)-induced diabetic rats and decipher the effect of modulation of DNA methylation by alpha-ketoglutarate (AKG), a TET enzyme cofactor, on the progression of DCM. METHODS Diabetes was induced in male adult Wistar rats with an intraperitoneal injection of STZ. Diabetic and vehicle control animals were randomly divided into groups with/without AKG treatment. Cardiac function was monitored by performing cardiac catheterization. Global methylation (5mC) and hydroxymethylation (5hmC) patterns were mapped in the Left ventricular tissue of control and diabetic rats with the help of an enrichment-based (h)MEDIP-sequencing technique by using antibodies specific for 5mC and 5hmC. Sequencing data were validated by performing (h)MEDIP-qPCR analysis at the gene-specific level, and gene expression was analyzed by qPCR. The mRNA and protein expression of enzymes involved in the DNA methylation and demethylation cycle were analyzed by qPCR and western blotting. Global 5mC and 5hmC levels were also assessed in high glucose-treated DNMT3B knockdown H9c2 cells. RESULTS We found the increased expression of DNMT3B, MBD2, and MeCP2 with a concomitant accumulation of 5mC and 5hmC, specifically in gene body regions of diabetic rat hearts compared to the control. Calcium signaling was the most significantly affected pathway by cytosine modifications in the diabetic heart. Additionally, hypermethylated gene body regions were associated with Rap1, apelin, and phosphatidyl inositol signaling, while metabolic pathways were most affected by hyperhydroxymethylation. AKG supplementation in diabetic rats reversed aberrant methylation patterns and restored cardiac function. Hyperglycemia also increased 5mC and 5hmC levels in H9c2 cells, which was normalized by DNMT3B knockdown or AKG supplementation. CONCLUSION This study demonstrates that reverting hyperglycemic damage to cardiac tissue might be possible by erasing adverse epigenetic signatures by supplementing epigenetic modulators such as AKG along with an existing antidiabetic treatment regimen.
Collapse
Affiliation(s)
- Rohini Dhat
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Dattatray Mongad
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra, 411007, India
| | - Sivarupa Raji
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Silpa Arkat
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nishant Singhal
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
36
|
Pham TK, Nguyen THT, Yi JM, Kim GS, Yun HR, Kim HK, Won JC. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice. Exp Mol Med 2023; 55:767-778. [PMID: 37009790 PMCID: PMC10167305 DOI: 10.1038/s12276-023-00958-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs for type 2 diabetes mellitus (T2DM). We investigated whether evogliptin® (EVO), a DPP-4 inhibitor, could protect against diabetic cardiomyopathy (DCM) and the underlying mechanisms. Eight-week-old diabetic and obese db/db mice were administered EVO (100 mg/kg/day) daily by oral gavage for 12 weeks. db/db control mice and C57BLKS/J as wild-type (WT) mice received equal amounts of the vehicle. In addition to the hypoglycemic effect, we examined the improvement in cardiac contraction/relaxation ability, cardiac fibrosis, and myocardial hypertrophy by EVO treatment. To identify the mechanisms underlying the improvement in diabetic cardiomyopathy by EVO treatment, its effect on lipotoxicity and the mitochondrial damage caused by lipid droplet accumulation in the myocardium were analyzed. EVO lowered the blood glucose and HbA1c levels and improved insulin sensitivity but did not affect the body weight or blood lipid profile. Cardiac systolic/diastolic function, hypertrophy, and fibrosis were improved in the EVO-treated group. EVO prevented cardiac lipotoxicity by reducing the accumulation of lipid droplets in the myocardium through suppression of CD36, ACSL1, FABP3, PPARgamma, and DGAT1 and enhancement of the phosphorylation of FOXO1, indicating its inhibition. The EVO-mediated improvement in mitochondrial function and reduction in damage were achieved through activation of PGC1a/NRF1/TFAM, which activates mitochondrial biogenesis. RNA-seq results for the whole heart confirmed that EVO treatment mainly affected the differentially expressed genes (DEGs) related to lipid metabolism. Collectively, these findings demonstrate that EVO improves cardiac function by reducing lipotoxicity and mitochondrial injury and provides a potential therapeutic option for DCM.
Collapse
Affiliation(s)
- Trong Kha Pham
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
- Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
- University of Science, Vietnam National University, Hanoi, Vietnam
| | - To Hoai T Nguyen
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
- Department of Health Sciences and Technology, Graduate School, Inje University, Busan, South Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, South Korea
| | - Gwang Sil Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University, Seoul, South Korea
| | - Hyeong Rok Yun
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Physiology, College of Medicine, Inje University, Busan, South Korea.
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Seoul, South Korea
| |
Collapse
|
37
|
Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci 2023; 24:ijms24044004. [PMID: 36835428 PMCID: PMC9963026 DOI: 10.3390/ijms24044004] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Most chronic inflammatory illnesses include fibrosis as a pathogenic characteristic. Extracellular matrix (ECM) components build up in excess to cause fibrosis or scarring. The fibrotic process finally results in organ malfunction and death if it is severely progressive. Fibrosis affects nearly all tissues of the body. The fibrosis process is associated with chronic inflammation, metabolic homeostasis, and transforming growth factor-β1 (TGF-β1) signaling, where the balance between the oxidant and antioxidant systems appears to be a key modulator in managing these processes. Virtually every organ system, including the lungs, heart, kidney, and liver, can be affected by fibrosis, which is characterized as an excessive accumulation of connective tissue components. Organ malfunction is frequently caused by fibrotic tissue remodeling, which is also frequently linked to high morbidity and mortality. Up to 45% of all fatalities in the industrialized world are caused by fibrosis, which can damage any organ. Long believed to be persistently progressing and irreversible, fibrosis has now been revealed to be a very dynamic process by preclinical models and clinical studies in a variety of organ systems. The pathways from tissue damage to inflammation, fibrosis, and/or malfunction are the main topics of this review. Furthermore, the fibrosis of different organs with their effects was discussed. Finally, we highlight many of the principal mechanisms of fibrosis. These pathways could be considered as promising targets for the development of potential therapies for a variety of important human diseases.
Collapse
|
38
|
Silencing FHL2 inhibits bleomycin-induced pulmonary fibrosis through the TGF-β1/Smad signaling pathway. Exp Cell Res 2023; 423:113470. [PMID: 36641135 DOI: 10.1016/j.yexcr.2023.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVE This study aimed to investigate the inhibiting effects of FHL2 and Arbutin on cell fibrosis and their possible mechanisms. METHODS The mRNA expression of FHL2 in pulmonary fibrosis tissues was analyzed by bioinformatics. TGF⁃β1 induced fibrosis of mouse lung fibroblast (Mlg) and mouse primary pulmonary fibroblast (PPF) in rat's lung fibroblasts. FHL2 siRNA was transfected into Mlg and mouse PPF cells to inhibit FHL2. FHL2, α-smooth muscle actin (α-SMA), collagen 1 (Col I), and Fibronectin (Fn) were detected by qRT-PCR. Western blot expression levels of Smad3, p-Smad3, Smad2, and p-Smad2 proteins in cells. High-throughput drug screening for FHL2 inhibitors and the inhibitory effect of Arbutin on pulmonary fibrosis were validated in cellular and animal models of pulmonary fibrosis. RESULTS The mRNA expression of FHL2 in lung fiber tissue was increased. Meanwhile, the decrease of FHL2 expression significantly inhibited the cellular fibrosis morphological changes of rat's lung fibroblasts (Mlgs) and primary lung fibroblasts (PPFs). The expression levels of α⁃SMA, Col I, and Fn were decreased. High-throughput screening showed that Arbutin targeted FHL2. Arbutin alleviated bleomycin (BLM)-induced pulmonary fibrosis in rats by inhibiting FHL2 and then the TGF-β1/Smad signaling pathway. CONCLUSION Inhibition of FHL2 can effectively reduce the fibrosis process induced by TGF⁃β1 and bleomycin, and then inhibit the fibrosis.
Collapse
|
39
|
Lu MK, Jen CI, Chao CH, Hsu YC, Ng LT. SPS, a sulfated galactoglucan of Laetiporus sulphureus, exhibited anti-inflammatory activities. Int J Biol Macromol 2023; 226:1236-1247. [PMID: 36442562 DOI: 10.1016/j.ijbiomac.2022.11.237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Laetiporus sulphureus is an edible and medicinal mushroom. A sulfated galactoglucan (SPS) was isolated by the papain method. Polysaccharides (PS) were isolated by hot water and ethanol precipitation. The medium molecular weight SPS of 100 to 1000 kDa accounted for over half of the SPS mixture. Fucose, galactose, glucose, and mannose were the major monosaccharides in SPS and PS. The amount of sulfate in SPS was 1.09 mmol/g. SPS showed inhibition of tumor necrosis factor-α (TNF-α) release and reversed IκB degradation in LPS-induced RAW264.7 macrophages. The suppression of TNF-α secretion by SPS was through inhibiting the phosphorylation of AKT/extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK). A purified SPS, named SPS-3, was proven to inhibit the LPS-induced phosphorylation of AKT, ERK, and p-38 in RAW264.7 cells. The suppression of interleukin 6 (IL-6) and transforming growth factor beta (TGFβ) secretion by PS was through inhibiting LPS-induced phosphorylation of p-38 and TGF-β receptor II (TGFRII) signaling pathways. This study demonstrates that the isolated SPS and PS from L. sulphureus possessed good anti-inflammatory activity for dietary supplements and functional food.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan.
| | - Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
40
|
Ren LL, Li XJ, Duan TT, Li ZH, Yang JZ, Zhang YM, Zou L, Miao H, Zhao YY. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities. Chem Biol Interact 2023; 369:110289. [PMID: 36455676 DOI: 10.1016/j.cbi.2022.110289] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Fibrosis refers to the excessive deposition of extracellular matrix components in the processes of wound repair or tissue regeneration after tissue damage. Fibrosis occurs in various organs such as lung, heart, liver, and kidney tissues, resulting in the failure of organ structural integrity and its functional impairment. It has long been thought to be relentlessly progressive and irreversible process, but both preclinical models and clinical trials in multiorgans have shown that fibrosis is a highly dynamic process. Transforming growth factor-beta (TGF-β) is a superfamily of related growth factors. Many studies have described that activation of profibrotic TGF-β signaling promotes infiltration and/or proliferation of preexisting fibroblasts, generation of myofibroblasts, extracellular matrix deposition, and inhibition of collagenolysis, which leads to fibrosis in the pathological milieu. This review describes the effect of TGF-β signaling in fibrotic-associate lung, heart, liver, and kidney tissues, followed by a detailed discussion of canonical and non-canonical TGF-β signaling pathway. In addition, this review also discusses therapeutic options by using natural products and chemical agents, for targeting tissue fibrosis via modulating TGF-β signaling to provide a more specific concept-driven therapy strategy for multiorgan fibrosis.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xiao-Jun Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Street, Guangzhou, 510315, China
| | - Ting-Ting Duan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Zheng-Hai Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82 the Second Section of North 2nd Ring Road, Chengdu, Sichuan, 610081, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan, 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China; Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82 the Second Section of North 2nd Ring Road, Chengdu, Sichuan, 610081, China.
| |
Collapse
|
41
|
Fathieh S, Grieve SM, Negishi K, Figtree GA. Potential Biological Mediators of Myocardial and Vascular Complications of Air Pollution-A State-of-the-Art Review. Heart Lung Circ 2023; 32:26-42. [PMID: 36585310 DOI: 10.1016/j.hlc.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Ambient air pollution is recognised globally as a significant contributor to the burden of cardiovascular diseases. The evidence from both human and animal studies supporting the cardiovascular impact of exposure to air pollution has grown substantially, implicating numerous pathophysiological pathways and related signalling mediators. In this review, we summarise the list of activated mediators for each pathway that lead to myocardial and vascular injury in response to air pollutants. We performed a systematic search of multiple databases, including articles between 1990 and Jan 2022, summarising the evidence for activated pathways in response to each significant air pollutant. Particulate matter <2.5 μm (PM2.5) was the most studied pollutant, followed by particulate matter between 2.5 μm-10 μm (PM10), nitrogen dioxide (NO2) and ozone (O3). Key pathogenic pathways that emerged included activation of systemic and local inflammation, oxidative stress, endothelial dysfunction, and autonomic dysfunction. We looked at how potential mediators of each of these pathways were linked to both cardiovascular disease and air pollution and included the overlapping mediators. This review illustrates the complex relationship between air pollution and cardiovascular diseases, and discusses challenges in moving beyond associations, towards understanding causal contributions of specific pathways and markers that may inform us regarding an individual's exposure, response, and likely risk.
Collapse
Affiliation(s)
- Sina Fathieh
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Stuart M Grieve
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia; Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan; Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, Sydney, NSW, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
43
|
Liu J, Lu J, Zhang L, Liu Y, Zhang Y, Gao Y, Yuan X, Xiang M, Tang Q. The combination of exercise and metformin inhibits TGF-β1/Smad pathway to attenuate myocardial fibrosis in db/db mice by reducing NF-κB-mediated inflammatory response. Biomed Pharmacother 2023; 157:114080. [PMID: 36481406 DOI: 10.1016/j.biopha.2022.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Persistent hyperglycemia increases inflammation response, promoting the development of myocardial fibrosis. Based on our previous research that exercise and metformin alone or their combination intervention could attenuate myocardial fibrosis in db/db mice, this study aimed to further explore the underlying mechanisms by which these interventions attenuate myocardial fibrosis in early diabetic cardiomyopathy. Forty BKS db/db mice were randomly divided into four groups. Diabetic db/db mice without intervention were in the C group. Aerobic exercise (7-12 m/min, 30-40 min/day, 5 days/week) was performed in the E group. Metformin (300 mg·kg-1·day-1) was administered in the M group. Exercise combined with metformin was performed in the EM group. Ten wild-type mice were in the WT group. All interventions were administered for 8 weeks. Results showed that the expression levels of α-SMA, Collagen I, and Collagen III were increased in 16-week-old db/db mice, which were reversed by exercise and metformin alone or their combination intervention. All interventions attenuated the level of TGF-β1/Smad2/3 pathway-related proteins and reduced the expression of inflammatory signaling pathway-regulated proteins TNF-α, p-IκBα/IκBα, and p-NF-κB p65/NF-κB p65 in db/db mice. Furthermore, metformin intervention inhibited HNF4α expression via AMPK activation, whereas exercise intervention increased the expression of IL-6 instead of activating AMPK. In conclusion, exercise and metformin alone or their combination intervention inhibited the TGF-β1/Smad pathway to attenuate myocardial fibrosis by reducing NF-κB-mediated inflammatory response. The anti-fibrotic effects were regulated by metformin-activated AMPK or exercise-induced elevation of IL-6, whereas their combination intervention showed no synergistic effects.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing 210014, China.
| | - Liumei Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yuting Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yaran Gao
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Xinmeng Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Mengqi Xiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing 210014, China.
| |
Collapse
|
44
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
45
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
46
|
Cianci R, Franza L, Borriello R, Pagliari D, Gasbarrini A, Gambassi G. The Role of Gut Microbiota in Heart Failure: When Friends Become Enemies. Biomedicines 2022; 10:2712. [PMID: 36359233 PMCID: PMC9687270 DOI: 10.3390/biomedicines10112712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 10/29/2023] Open
Abstract
Heart failure is a complex health issue, with important consequences on the overall wellbeing of patients. It can occur both in acute and chronic forms and, in the latter, the immune system appears to play an important role in the pathogenesis of the disease. In particular, in the forms with preserved ejection fraction or with only mildly reduced ejection fraction, some specific associations with chronic inflammatory diseases have been observed. Another interesting aspect that is worth considering is the role of microbiota modulation, in this context: given the importance of microbiota in the modulation of immune responses, it is possible that changes in its composition may somewhat influence the progression and even the pathogenesis of heart failure. In this narrative review, we aim to examine the relationship between immunity and heart failure, with a special focus on the role of microbiota in this pathological condition.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Laura Franza
- Emergency Medicine Unit, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Danilo Pagliari
- Medical Officer of the Carabinieri Corps, Health Service of the Carabinieri General Headquarters, 00197 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
47
|
Cheng J, Xue F, Cheng C, Sui W, Zhang M, Qiao L, Ma J, Ji X, Chen W, Yu X, Xi B, Xu F, Su G, Zhao Y, Hao P, Zhang Y, Zhang C. ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis and dysfunction via regulating ACE2 shedding and myofibroblast transformation. Front Pharmacol 2022; 13:997916. [PMID: 36313337 PMCID: PMC9613967 DOI: 10.3389/fphar.2022.997916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
A disintegrin and metalloprotease domain family protein 17 (ADAM17) is a new member of renin-angiotensin system (RAS) but its role in the pathogenesis of diabetic cardiomyopathy (DCM) is obscure. To test the hypothesis that ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation in diabetic mice, ADAM17 gene was knocked down and overexpressed by means of adenovirus-mediated short-hairpin RNA (shRNA) and adenovirus vector carrying ADAM17 cDNA, respectively, in a mouse model of DCM. Two-dimensional and Doppler echocardiography, histopathology and immunohistochemistry were performed in all mice and in vitro experiments conducted in primary cardiofibroblasts. The results showed that ADAM17 knockdown ameliorated while ADAM17 overexpression worsened cardiac dysfunction and cardiac fibrosis in diabetic mice. In addition, ADAM17 knockdown increased ACE2 while reduced AT1R expression in diabetic hearts. Mechanistically, ADAM17 knockdown decreased while ADAM17 overexpression increased cardiac fibroblast-to-myofibroblast transformation through regulation of TGF-β1/Smad3 signaling pathway. In conclusion, ADAM17 knockdown attenuates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation through TGF-β1/Smad3 signaling pathway in diabetic mice. Targeting ADAM17 may provide a promising approach to the prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
- Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Guohai Su
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuxia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Panpan Hao, ; Yun Zhang, ; Cheng Zhang,
| |
Collapse
|
48
|
Ramli FF, Hashim SAS, Raman B, Mahmod M, Kamisah Y. Role of Trientine in Hypertrophic Cardiomyopathy: A Review of Mechanistic Aspects. Pharmaceuticals (Basel) 2022; 15:1145. [PMID: 36145368 PMCID: PMC9505553 DOI: 10.3390/ph15091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormality in myocardial copper homeostasis is believed to contribute to the development of cardiomyopathy. Trientine, a copper-chelating drug used in the management of patients with Wilson's disease, demonstrates beneficial effects in patients with hypertrophic cardiomyopathy. This review aims to present the updated development of the roles of trientine in hypertrophic cardiomyopathy. The drug has been demonstrated in animal studies to restore myocardial intracellular copper content. However, its mechanisms for improving the medical condition remain unclear. Thus, comprehending its mechanistic aspects in cardiomyopathy is crucial and could help to expedite future research.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
49
|
Sharma U, Chakraborty M, Chutia D, Bhuyan NR. Cellular and molecular mechanisms, genetic predisposition and treatment of diabetes-induced cardiomyopathy. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100126. [PMID: 36568261 PMCID: PMC9780063 DOI: 10.1016/j.crphar.2022.100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a common disease affecting millions of people worldwide. This disease is not limited to metabolic disorders but also affects several vital organs in the body and can lead to major complications. People with diabetes mellitus are subjected to cardiovascular complications, such as cardiac myopathy, which can further result in major complications such as diabetes-induced cardiac failure. The mechanism underlying diabetes-induced cardiac failure requires further research; however, several contributing factors have been identified to function in tandem, such as reactive oxygen species production, inflammation, formation of advanced glycation end-products, altered substrate utilisation by mitochondria, activation of the renin-angiotensin-aldosterone system and lipotoxicity. Genetic factors such as microRNAs, long noncoding RNAs and circular RNAs, as well as epigenetic processes such as DNA methylation and histone modifications, also contribute to complications. These factors are potential targets for developing effective new therapies. This review article aims to facilitate in depth understanding of these contributing factors and provide insights into the correlation between diabetes mellitus and cardiovascular complications. Some alternative targets with therapeutic potential are discussed to indicate favourable targets for the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Urvashi Sharma
- Himalayan Pharmacy Institute Majhitar, Rangpo, Sikkim, 737132, India
| | | | - Devid Chutia
- Himalayan Pharmacy Institute Majhitar, Rangpo, Sikkim, 737132, India
| | | |
Collapse
|
50
|
Byrne SE, Vishwakarma N, Sriramula S, Katwa LC. Dopamine receptor 3: A mystery at the heart of cardiac fibrosis. Life Sci 2022; 308:120918. [PMID: 36041503 DOI: 10.1016/j.lfs.2022.120918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
Dopamine receptors have been extensively studied in the mammalian brain and spinal cord, as dopamine is a vital determinant of bodily movement, cognition, and overall behavior. Thus, dopamine receptor antagonist antipsychotic drugs are commonly used to treat multiple psychiatric disorders. Although less discussed, these receptors are also expressed in other peripheral organ systems, such as the kidneys, eyes, gastrointestinal tract, and cardiac tissue. Consequently, therapies for certain psychiatric disorders which target dopamine receptors could have unidentified consequences on certain functions of these peripheral tissues. The existence of an intrinsic dopaminergic system in the human heart remains controversial and debated within the literature. Therefore, this review focuses on literature related to dopamine receptors within cardiac tissue, specifically dopamine receptor 3 (D3R), and summarizes the current state of knowledge while highlighting areas of research which may be lacking. Additionally, recent findings regarding crosstalk between D3R and dopamine receptor 1 (D1R) are examined. This review discusses the novel concept of understanding the role of the loss of function of D3R may play in collagen accumulation and cardiac fibrosis, eventually leading to heart failure.
Collapse
Affiliation(s)
- Shannon E Byrne
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Nandini Vishwakarma
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|