1
|
Wang Z, Huang Y, Liu X, Cao W, Ma Q, Qi Y, Wang M, Chen X, Hang J, Tao L, Yu H, Li Y. Development of a model to predict the risk of multi-drug resistant organism infections in ruptured intracranial aneurysms patients with hospital-acquired pneumonia in the neurological intensive care unit. Clin Neurol Neurosurg 2024; 246:108568. [PMID: 39321575 DOI: 10.1016/j.clineuro.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE This study was developed to explore the incidence of multi-drug resistant organism (MDRO) infections among ruptured intracranial aneurysms(RIA) patient with hospital-acquired pneumonia(HAP) in the neurological intensive care unit (NICU), and to establish risk factors related to the development of these infections. METHODS We collected clinical and laboratory data from 328 eligible patients from January 2018 to December 2022. Bacterial culture results were used to assess MDRO strain distributions, and risk factors related to MDRO infection incidence were identified through logistic regression analyses. These risk factors were further used to establish a predictive model for the incidence of MDRO infections, after which this model underwent internal validation. RESULTS In this study cohort, 26.5 % of RIA patients with HAP developed MDRO infections (87/328). The most common MDRO pathogens in these patients included Multidrug-resistant Klebsiella pneumoniae (34.31 %) and Multidrug-resistant Acinetobacter baumannii (27.45 %). Six MDRO risk factors, namely, diabetes (P = 0.032), tracheotomy (P = 0.004), history of mechanical ventilation (P = 0.033), lower albumin levels (P < 0.001), hydrocephalus (P < 0.001) and Glasgow Coma Scale (GCS) score ≤8 (P = 0.032) were all independently correlated with MDRO infection incidence. The prediction model exhibited satisfactory discrimination (area under the curve [AUC], 0.842) and calibration (slope, 1.000), with a decision curve analysis further supporting the clinical utility of this model. CONCLUSIONS In summary, risk factors and bacterial distributions associated with MDRO infections among RIA patients with HAP in the NICU were herein assessed. The developed predictive model can aid clinicians to identify and screen high-risk patients for preventing MDRO infections.
Collapse
Affiliation(s)
- Zhiyao Wang
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China; Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yujia Huang
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaoguang Liu
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wenyan Cao
- Department of electrophysiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Qiang Ma
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yajie Qi
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Mengmeng Wang
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xin Chen
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jing Hang
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Luhang Tao
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hailong Yu
- Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yuping Li
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China; Department of Neuro-Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
2
|
Capsoni N, Azin GM, Scarnera M, Bettina M, Breviario R, Ferrari L, Ferrari C, Privitera D, Vismara C, Bielli A, Galbiati F, Bernasconi DP, Merli M, Bombelli M. Bloodstream infections due to multi-drug resistant bacteria in the emergency department: prevalence, risk factors and outcomes-a retrospective observational study. Intern Emerg Med 2024:10.1007/s11739-024-03692-7. [PMID: 39001978 DOI: 10.1007/s11739-024-03692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Multidrug-resistant organisms (MDROs) are prevalent in patients admitted to the Emergency Department (ED) and increase the risk of inappropriate empirical antibiotic therapy. Risk stratification for MDRO infection is essential to early identify patients requiring empirical broad-spectrum antibiotic therapy, but it remains challenging for emergency physicians. This study aimed to evaluate prevalence, risk factors, and outcomes of patients admitted to the ED with a bloodstream infection (BSI) caused by MDROs. A retrospective observational study enrolling all consecutive adult patients admitted with a BSI to the ED of Niguarda Hospital, Italy, from January 2019 to December 2021 was performed. 757 patients were enrolled, 14.1% with septic shock. 156 (20%) patients had a BSI caused by MDRO: extended-spectrum beta-lactamase (ESBL) producing Enterobacterales were the most prevalent followed by methicillin-resistant Staphylococcus aureus (MRSA). Risk factors for BSI due to MDRO and specifically for ESBL were chronic renal failure (OR 2.2; 95%CI 1.4-3.6), nursing home residency (OR 4.4; 95%CI 1.9-10.2) and antibiotic therapy in the last 90-days (OR 2.6; 95%CI 1.7-4), whereas for MRSA were dialysis (OR 12.3; 95%CI 1.8-83), antibiotic therapy and/or hospital admission in the past 90-days (OR 3.6; 95%CI 1.2-10.6) and ureteral stent or nephrostomy (OR 7.8; 95%CI 1.5-40.9). Patients with BSI due to MDRO had a higher rate of inappropriate empirical antibiotic therapy (50%) and longer length of stay, but no higher in-hospital mortality. Among patients admitted to the ED with a BSI, MDROs are frequent and often associated with inappropriate empirical antibiotic therapy. Specific updated risk factors for MDRO may help clinicians to better identify patients requiring a broader antibiotic therapy in the ED, while awaiting microbiological results.
Collapse
Affiliation(s)
- Nicolò Capsoni
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | - Giulia Maria Azin
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marida Scarnera
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Marco Bettina
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Riccardo Breviario
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Laura Ferrari
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Camilla Ferrari
- Department of Medicine and Surgery, University of Milan, Milan, Italy
| | - Daniele Privitera
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Chiara Vismara
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandra Bielli
- Division of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Filippo Galbiati
- Department of Emergency Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Davide Paolo Bernasconi
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
- Department of Clinical Research and Innovation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marco Merli
- Chemico-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michele Bombelli
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
- Internal Medicine, Pio XI Hospital, ASST Brianza, Desio, Italy
| |
Collapse
|
3
|
Godijk NG, McDonald SA, Altorf-van der Kuil W, Schoffelen AF, Franz E, Bootsma MCJ. New methodology to assess the excess burden of antibiotic resistance using country-specific parameters: a case study regarding E. coli urinary tract infections. BMJ Open 2023; 13:e064335. [PMID: 38110375 DOI: 10.1136/bmjopen-2022-064335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVES Antimicrobial resistant (AMR) infections are a major public health problem and the burden on population level is not yet clear. We developed a method to calculate the excess burden of resistance which uses country-specific parameter estimates and surveillance data to compare the mortality and morbidity due to resistant infection against a counterfactual (the expected burden if infection was antimicrobial susceptible). We illustrate this approach by estimating the excess burden for AMR (defined as having tested positive for extended-spectrum beta-lactamases) urinary tract infections (UTIs) caused by E. coli in the Netherlands in 2018, which has a relatively low prevalence of AMR E. coli, and in Italy in 2016, which has a relatively high prevalence. DESIGN Excess burden was estimated using the incidence-based disability-adjusted life-years (DALYs) measure. Incidence of AMR E. coli UTI in the Netherlands was derived from ISIS-AR, a national surveillance system that includes tested healthcare and community isolates, and the incidence in Italy was estimated using data reported in the literature. A systematic literature review was conducted to find country-specific parameter estimates for disability duration, risks of progression to bacteraemia and mortality. RESULTS The annual excess burden of AMR E. coli UTI was estimated at 3.89 and 99.27 DALY/100 0000 population and 39 and 2786 excess deaths for the Netherlands and Italy, respectively. CONCLUSIONS For the first time, we use country-specific and pathogen-specific parameters to estimate the excess burden of resistant infections. Given the large difference in excess burden due to resistance estimated for Italy and for the Netherlands, we emphasise the importance of using country-specific parameters describing the incidence and disease progression following AMR and susceptible infections that are pathogen specific, and unfortunately currently difficult to locate.
Collapse
Affiliation(s)
- Noortje Grejanne Godijk
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Scott A McDonald
- Centre for Infectious Disease Control, National Institute for Public Health & the Environment, Bilthoven, The Netherlands
| | - Wieke Altorf-van der Kuil
- Centre for Infectious Disease Control, National Institute for Public Health & the Environment, Bilthoven, The Netherlands
| | - Annelot F Schoffelen
- Centre for Infectious Disease Control, National Institute for Public Health & the Environment, Bilthoven, The Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health & the Environment, Bilthoven, The Netherlands
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Kao PHN, Ch'ng JH, Chong KKL, Stocks CJ, Wong SL, Kline KA. Enterococcus faecalis suppresses Staphylococcus aureus-induced NETosis and promotes bacterial survival in polymicrobial infections. FEMS MICROBES 2023; 4:xtad019. [PMID: 37900578 PMCID: PMC10608956 DOI: 10.1093/femsmc/xtad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that is frequently co-isolated with other microbes in wound infections. While E. faecalis can subvert the host immune response and promote the survival of other microbes via interbacterial synergy, little is known about the impact of E. faecalis-mediated immune suppression on co-infecting microbes. We hypothesized that E. faecalis can attenuate neutrophil-mediated responses in mixed-species infection to promote survival of the co-infecting species. We found that neutrophils control E. faecalis infection via phagocytosis, ROS production, and degranulation of azurophilic granules, but it does not trigger neutrophil extracellular trap formation (NETosis). However, E. faecalis attenuates Staphylococcus aureus-induced NETosis in polymicrobial infection by interfering with citrullination of histone, suggesting E. faecalis can actively suppress NETosis in neutrophils. Residual S. aureus-induced NETs that remain during co-infection do not impact E. faecalis, further suggesting that E. faecalis possess mechanisms to evade or survive NET-associated killing mechanisms. E. faecalis-driven reduction of NETosis corresponds with higher S. aureus survival, indicating that this immunomodulating effect could be a risk factor in promoting the virulence polymicrobial infection. These findings highlight the complexity of the immune response to polymicrobial infections and suggest that attenuated pathogen-specific immune responses contribute to pathogenesis in the mammalian host.
Collapse
Affiliation(s)
- Patrick Hsien-Neng Kao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Jun-Hong Ch'ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Infectious Disease Translational Research Program, National University Health System, Singapore 117545
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Claudia J Stocks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Tan Tock Seng Hospital, National Healthcare Group, Singapore 308433
| | - Kimberly A Kline
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland 1211
| |
Collapse
|
5
|
Corona A, De Santis V, Agarossi A, Prete A, Cattaneo D, Tomasini G, Bonetti G, Patroni A, Latronico N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics (Basel) 2023; 12:1262. [PMID: 37627683 PMCID: PMC10451333 DOI: 10.3390/antibiotics12081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Not enough data exist to inform the optimal duration and type of antimicrobial therapy against GN infections in critically ill patients. METHODS Narrative review based on a literature search through PubMed and Cochrane using the following keywords: "multi-drug resistant (MDR)", "extensively drug resistant (XDR)", "pan-drug-resistant (PDR)", "difficult-to-treat (DTR) Gram-negative infection," "antibiotic duration therapy", "antibiotic combination therapy" "antibiotic monotherapy" "Gram-negative bacteremia", "Gram-negative pneumonia", and "Gram-negative intra-abdominal infection". RESULTS Current literature data suggest adopting longer (≥10-14 days) courses of synergistic combination therapy due to the high global prevalence of ESBL-producing (45-50%), MDR (35%), XDR (15-20%), PDR (5.9-6.2%), and carbapenemases (CP)/metallo-β-lactamases (MBL)-producing (12.5-20%) Gram-negative (GN) microorganisms (i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumanii). On the other hand, shorter courses (≤5-7 days) of monotherapy should be limited to treating infections caused by GN with higher (≥3 antibiotic classes) antibiotic susceptibility. A general approach should be based on (i) third or further generation cephalosporins ± quinolones/aminoglycosides in the case of MDR-GN; (ii) carbapenems ± fosfomycin/aminoglycosides for extended-spectrum β-lactamases (ESBLs); and (iii) the association of old drugs with new expanded-spectrum β-lactamase inhibitors for XDR, PDR, and CP microorganisms. Therapeutic drug monitoring (TDM) in combination with minimum inhibitory concentration (MIC), bactericidal vs. bacteriostatic antibiotics, and the presence of resistance risk predictors (linked to patient, antibiotic, and microorganism) should represent variables affecting the antimicrobial strategies for treating GN infections. CONCLUSIONS Despite the strategies of therapy described in the results, clinicians must remember that all treatment decisions are dynamic, requiring frequent reassessments depending on both the clinical and microbiological responses of the patient.
Collapse
Affiliation(s)
- Alberto Corona
- Accident, Emergency and ICU Department and Surgical Theatre, ASST Valcamonica, University of Brescia, 25043 Breno, Italy
| | | | - Andrea Agarossi
- Accident, Emergency and ICU Department, ASST Santi Paolo Carlo, 20142 Milan, Italy
| | - Anna Prete
- AUSL Romagna, Umberto I Hospital, 48022 Lugo, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Via GB Grassi 74, 20157 Milan, Italy
| | - Giacomina Tomasini
- Urgency and Emergency Surgery and Medicine Division ASST Valcamonica, 25123 Brescia, Italy
| | - Graziella Bonetti
- Clinical Pathology and Microbiology Laboratory, ASST Valcamonica, 25123 Brescia, Italy
| | - Andrea Patroni
- Medical Directorate, Infection Control Unit, ASST Valcamonica, 25123 Brescia, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
6
|
El-Beeli M, Al-Farsi Y, Balkhair A, Al-Muharrmi Z, Al-Jabri M, Al-Adawi S. Estimation of Prevalence of Hospital-Acquired Blood Infections among Patients Admitted at a Tertiary Hospital in Oman over a Period of Five Years: A Cross-Sectional Study. Interdiscip Perspect Infect Dis 2023; 2023:5853779. [PMID: 37197198 PMCID: PMC10185416 DOI: 10.1155/2023/5853779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 05/19/2023] Open
Abstract
Background Data from developed/developed countries have shown that hospital-acquired blood infections (HA-BSIs) are one of the most severe nosocomial infections and constitute 20%-60% of hospitalization-related deaths. Despite the high morbidity and mortality rates and the enormous burden of health care costs associated with HA-BSIs, to our knowledge, there are few published reports on HA-BSI prevalence estimates in Arab countries, including Oman. Objectives This study aims to explore the HA-BSI prevalence estimates over selected sociodemographic characteristics among admitted patients at a tertiary hospital in Oman over five years of follow-up. The regional variations in Oman were also examined in this study. Methods This hospital-based cross-sectional study reviewed reports of hospital admissions over 5 years of retrospective follow-ups at a tertiary hospital in Oman. HA-BSI prevalence estimates were calculated over age, gender, governorate, and follow-up time. Results In total, 1,246 HA-BSI cases were enumerated among a total of 139,683 admissions, yielding an overall HA-BSI prevalence estimate of 8.9 cases per 1000 admissions (95% CI: 8.4, 9.4). HA-BSI prevalence was higher among males compared to females (9.3 vs. 8.5). HA-BSI prevalence started as relatively high in the group aged 15 years or less (10.0; 95% CI 9.0, 11.2) and then declined as age increased from 36 to 45 years (7.0; 95% CI 5.9, 8.3) when it started to increase steadily with increasing age in the group aged 76 or more (9.9; 95% CI 8.1, 12.1). The governorate-specific estimate of HA-BSI prevalence was the highest among admitted patients who resided in Dhofar governorate, while the lowest estimate was reported from the Buraimi governorate (5.3). Conclusion The study provides supportive evidence for a steady increase in HA-BSI prevalence over age categories and years of follow-up. The study calls for the timely formulation and adoption of national HA-BSI screening and management programs centered on surveillance systems based on real-time analytics and machine learning.
Collapse
Affiliation(s)
- Marah El-Beeli
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Yahya Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Abdullah Balkhair
- Department of Infection Control, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Zakariya Al-Muharrmi
- Department of Infection Control, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Mansoor Al-Jabri
- Department of Infection Control, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - Samir Al-Adawi
- Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Maia MDO, da Silveira CDG, Gomes M, Fernandes SES, Bezerra de Santana R, de Oliveira DQ, Amorim FFP, Neves FDAR, Amorim FF. Multidrug-Resistant Bacteria on Critically Ill Patients with Sepsis at Hospital Admission: Risk Factors and Effects on Hospital Mortality. Infect Drug Resist 2023; 16:1693-1704. [PMID: 36992963 PMCID: PMC10042244 DOI: 10.2147/idr.s401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose To evaluate the effect of MDRO infection on hospital mortality and the risk factors among critically ill patients with sepsis at hospital admission. Patients and Methods A cross-sectional study was performed between April 2019 and May 2020, followed by a cohort to evaluate hospital mortality that prospectively included all consecutive patients 18 years or older with sepsis admitted within 48 hours of hospital admission to an adult ICU in Brazil. Patients' characteristics, blood samples within one hour of ICU admission, and microbiological results within 48h of hospital admission were collected. In addition, descriptive statistics, binary logistic regression, and propensity score matching were performed. Results At least one MDRO was isolated in 85 patients (9.8%). The extended-spectrum beta-lactamase-producing Enterobacterales are the most frequent organism (56.1%). Hypoxemic acute respiratory failure (OR 1.87, 95% CI 1.02-3.40, p = 0.04), Glasgow Coma Score below 15 (OR 2.57, 95% CI 1.38-4.80, p < 0.01), neoplasm (OR 2.66, 95% CI 1.04-6.82, p = 0.04) and hemoglobin below 10.0 g/dL (OR 1.82, 95% CI 1.05-3.16, p = 0.03) were associated with increased MDRO. Admission from the Emergency Department (OR 0.25, 95% CI 0.14-0.43, p < 0.01) was associated with decreased MDRO. In the multivariate analysis, MDRO at hospital admission increased hospital mortality (OR 2.80, 95% CI 1.05-7.42, p = 0.04). After propensity score-matching adjusted to age, APACHE II, SOFA, and dementia, MDRO at hospital admission was associated with significantly high hospital mortality (OR 2.80, 95% CI 1.05-7.42, p = 0.04). The E-value of adjusted OR for the effect of MDRO infection on hospital mortality was 3.41, with a 95% CI of 1.31, suggesting that unmeasured confounders were unlikely to explain the entirety of the effect. Conclusion MDRO infection increased hospital mortality, and MDRO risk factors should be accessed even in patients admitted to ICU within 48 hours of hospital admission.
Collapse
Affiliation(s)
- Marcelo de Oliveira Maia
- Graduation Program in Health Sciences of School Health Sciences, Escola Superior de Ciências da Saúde (ESCS), Brasília, Federal District, Brazil
- Graduation Program in Health Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
- Marcelo de Oliveira Maia, Programa de Pós-Graduação em Ciências da Saúde - Escola Superior de Ciências da Saúde, SMHN Quadra 03, conjunto A, Bloco 1 - Edifício FEPECS, Brasília, Federal District, 70701-907, Brazil, Email
| | - Carlos Darwin Gomes da Silveira
- Graduation Program in Health Sciences of School Health Sciences, Escola Superior de Ciências da Saúde (ESCS), Brasília, Federal District, Brazil
- Medical School, Escola Superior de Ciências da Saúde (ESCS), Brasília, Federal District, Brazil
- Medical School, Centro Universitário do Planalto Central (UNICEPLAC), Brasília, Federal District, Brazil
| | - Maura Gomes
- Intensive Care Unit, Hospital Santa Luzia Rede D’Or São Luiz, Brasília, Federal District, Brazil
| | | | | | | | | | | | - Fábio Ferreira Amorim
- Graduation Program in Health Sciences of School Health Sciences, Escola Superior de Ciências da Saúde (ESCS), Brasília, Federal District, Brazil
- Graduation Program in Health Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
- Correspondence: Fábio Ferreira Amorim, Coordenação de Pesquisa e Comunicação Científica - Escola Superior de Ciências da Saúde, SMHN Quadra 03, conjunto A, Bloco 1 - Edifício FEPECS, Brasília, Federal District, 70701-907, Brazil, Email
| |
Collapse
|
8
|
Lupia T, Roberto G, Scaglione L, Shbaklo N, De Benedetto I, Scabini S, Mornese Pinna S, Curtoni A, Cavallo R, De Rosa FG, Corcione S. Clinical and microbiological characteristics of bloodstream infections caused by Enterococcus spp. within internal medicine wards: a two-year single-centre experience. Intern Emerg Med 2022; 17:1129-1137. [PMID: 35092582 PMCID: PMC8799962 DOI: 10.1007/s11739-022-02926-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Enterococcal bloodstream infections (E-BSI) constitute the second cause of Gram-positive bacterial BSI in Europe with a high rate of in-hospital mortality. Furthermore, E-BSI treatment is still challenging because of intrinsic and acquired antibiotic resistances. We conducted a retrospective, 2-year, observational, single-centre study to evaluate clinical outcome and risk factors for E-BSI mortality in internal medicine wards. 201patients with E-BSI were included in the analysis. Infection rate was 2.4/1000 days of hospital admission. Most E-BSI were hospital acquired (78.1%). The median age was 68 years. Charlson Comorbidity Index, adjusted for age, was 5 (range 4-6). Patients with E-BSI frequently had at least one invasive device, predominantly a central venous (73%) or a bladder catheter (61.7%). Enterococcus faecium accounted for 47.94% of E-BSI (resistance rate to ampicillin or vancomycin was 22.2 and 23.3%, respectively) and Enterococcus faecalis for 52.08% (resistance rate to ampicillin or vancomycin was 3.1 and 2.2%, respectively). Among all E-BSI, 25% of patients received appropriate therapy. In total, 59% of E-BSI underwent echocardiography. At the multivariate analysis, resistance to vancomycin (OR 2.09, p = 0.025), sepsis (OR 2.57, p = 0.003) and septic shock (OR 3.82, p = 0.004) was a predictor of mortality. No difference in 28-day survival was observed between appropriate or inappropriate treatment, except for endocarditis. However, E-BSI sources in clinical practices are not always properly investigated, including the rule-out of intracardiac vegetations. We did not demonstrate a difference in mortality for inappropriate therapy in the absence of endocarditis in comorbid patients with a long history of medicalization.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia Hospital, Asti, Italy.
| | - Gianmario Roberto
- Unit of Internal Medicine, Department of Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Luca Scaglione
- Unit of Internal Medicine, Department of Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Nour Shbaklo
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Ilaria De Benedetto
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Silvia Scabini
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Antonio Curtoni
- Microbiology and Virology Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, Cardinal Massaia Hospital, Asti, Italy
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Silvia Corcione
- Unit of Infectious Diseases, Cardinal Massaia Hospital, Asti, Italy
- Tufts University School of Medicine, Boston, USA
| |
Collapse
|
9
|
Catalase Activity is Critical for Proteus mirabilis Biofilm Development, EPS Composition, and Dissemination During Catheter-Associated Urinary Tract Infection. Infect Immun 2021; 89:e0017721. [PMID: 34280035 DOI: 10.1128/iai.00177-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a leading uropathogen of catheter-associated urinary tract infections (CAUTIs), which are among the most common healthcare-associated infections worldwide. A key factor that contributes to P. mirabilis pathogenesis and persistence during CAUTI is the formation of catheter biofilms, which provide increased resistance to antibiotic treatment and host defense mechanisms. Another factor that is important for bacterial persistence during CAUTI is the ability to resist reactive oxygen species (ROS), such as through the action of the catalase enzyme. Potent catalase activity is one of the defining biochemical characteristics of P. mirabilis, and the single catalase gene (katA) encoded in strain HI4320 was recently identified as a candidate fitness factor for UTI, CAUTI, and bacteremia. Here we show that disruption of katA results in increased ROS levels, increased sensitivity to peroxide, and decreased biofilm biomass. The biomass defect was due to a decrease in extracellular polymeric substances (EPS) production by the ΔkatA mutant, and specifically due to reduced carbohydrate content. Importantly, the biofilm defect resulted in decreased antibiotic resistance in vitro and a colonization defect during experimental CAUTI. The ΔkatA mutant also exhibited decreased fitness in a bacteremia model, supporting a dual role for catalase in P. mirabilis biofilm development and immune evasion.
Collapse
|
10
|
Multidrug-resistant organisms (MDROs) in patients with subarachnoid hemorrhage (SAH). Sci Rep 2021; 11:8309. [PMID: 33859304 PMCID: PMC8050277 DOI: 10.1038/s41598-021-87863-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
Patient care in a neurointensive care unit (neuro-ICU) is challenging. Multidrug-resistant organisms (MDROs) are increasingly common in the routine clinical practice. We evaluated the impact of infection with MDROs on outcomes in patients with subarachnoid hemorrhage (SAH). A single-center retrospective analysis of SAH cases involving patients treated in the neuro-ICU was performed. The outcome was assessed 6 months after SAH using the modified Rankin Scale [mRS, favorable (0–2) and unfavorable (3–6)]. Data were compared by matched-pair analysis. Patient characteristics were well matched in the MDRO (n = 61) and control (n = 61) groups. In this center, one nurse was assigned to a two-bed room. If a MDRO was detected, the patient was isolated, and the nurse was assigned to the patient infected with the MDRO. In the MDRO group, 29 patients (48%) had a favorable outcome, while 25 patients (41%) in the control group had a favorable outcome; the difference was not significant (p > 0.05). Independent prognostic factors for unfavorable outcomes were worse status at admission (OR = 3.1), concomitant intracerebral hematoma (ICH) (OR = 3.7), and delayed cerebral ischemia (DCI) (OR = 6.8). Infection with MRDOs did not have a negative impact on the outcome in SAH patients. Slightly better outcomes were observed in SAH patients infected with MDROs, suggesting the benefit of individual care.
Collapse
|
11
|
Gaston JR, Andersen MJ, Johnson AO, Bair KL, Sullivan CM, Guterman LB, White AN, Brauer AL, Learman BS, Flores-Mireles AL, Armbruster CE. Enterococcus faecalis Polymicrobial Interactions Facilitate Biofilm Formation, Antibiotic Recalcitrance, and Persistent Colonization of the Catheterized Urinary Tract. Pathogens 2020; 9:E835. [PMID: 33066191 PMCID: PMC7602121 DOI: 10.3390/pathogens9100835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Indwelling urinary catheters are common in health care settings and can lead to catheter-associated urinary tract infection (CAUTI). Long-term catheterization causes polymicrobial colonization of the catheter and urine, for which the clinical significance is poorly understood. Through prospective assessment of catheter urine colonization, we identified Enterococcus faecalis and Proteus mirabilis as the most prevalent and persistent co-colonizers. Clinical isolates of both species successfully co-colonized in a murine model of CAUTI, and they were observed to co-localize on catheter biofilms during infection. We further demonstrate that P. mirabilis preferentially adheres to E. faecalis during biofilm formation, and that contact-dependent interactions between E. faecalis and P. mirabilis facilitate establishment of a robust biofilm architecture that enhances antimicrobial resistance for both species. E. faecalis may therefore act as a pioneer species on urinary catheters, establishing an ideal surface for persistent colonization by more traditional pathogens such as P. mirabilis.
Collapse
Affiliation(s)
- Jordan R. Gaston
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (J.R.G.); (C.M.S.); (L.B.G.)
| | - Marissa J. Andersen
- Department of Biological Sciences, College of Science, Notre Dame University, IN 15701, USA;
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Kirsten L. Bair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Christopher M. Sullivan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (J.R.G.); (C.M.S.); (L.B.G.)
| | - L. Beryl Guterman
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (J.R.G.); (C.M.S.); (L.B.G.)
| | - Ashely N. White
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, College of Science, Notre Dame University, IN 15701, USA;
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14203, USA; (A.O.J.); (K.L.B.); (A.N.W.); (A.L.B.); (B.S.L.)
| |
Collapse
|
12
|
Lass-Flörl C, Krause R, Willinger B, Starzengruber P, Decristoforo P, Neururer S, Kreidl P, Aigner M. Clinical Usefulness of Susceptibility Breakpoints for Yeasts in the Treatment of Candidemia: A Noninterventional Study. J Fungi (Basel) 2020; 6:jof6020076. [PMID: 32498436 PMCID: PMC7345773 DOI: 10.3390/jof6020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
This prospective noninterventional study evaluated whether antifungal susceptibility data (MIC) provided for Candida clinical isolates on the basis of recently established breakpoints are taken into account by clinicians to guide their treatment decision making process, and assessed the response in MIC- and non-MIC-based treatment groups. During a six month period, the usage of systemic antifungals was recorded in detail and compared with mycological data (Candida species and MICs) in candidemia patients. Patients were assigned to a susceptible or resistant infection group based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints; treatment decisions were under the professional discretion of the treating physicians. 123 patients were evaluated with Candida albicans accounting for 59%, Candida glabrata for 19%, Candida parapsilosis for 15%, Candida tropicalis for 4% and Candida krusei for 3%. Antifungal treatment correlated with species and MICs in 80% (n = 99 patients), high MICs and species-dependent guideline recommendations were ignored in 20% (n = 24 patients); the overall outcome of candidemia cases in our study population was excellent, as by day 14, all patients were cleared from fungal blood stream infection (mean 5.6 days, range 2–12). The current variability in antifungal usage and the delay in initiating appropriate therapy indicate a need for antifungal stewardship to improve the management of invasive fungal infections.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.D.); (P.K.); (M.A.)
- Correspondence: ; Tel.: +43-512-900370703; Fax: +43-512-900373700
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (B.W.); (P.S.)
| | - Peter Starzengruber
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (B.W.); (P.S.)
| | - Petra Decristoforo
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.D.); (P.K.); (M.A.)
| | - Sabrina Neururer
- Department of Medical Statistics, Informatics and Health Economy, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Peter Kreidl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.D.); (P.K.); (M.A.)
| | - Maria Aigner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (P.D.); (P.K.); (M.A.)
| |
Collapse
|
13
|
Bacterial and fungal pathogens isolated from patients with bloodstream infection: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (2012–2017). Diagn Microbiol Infect Dis 2020; 97:115016. [DOI: 10.1016/j.diagmicrobio.2020.115016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 11/19/2022]
|
14
|
Peetermans M, Meyers S, Liesenborghs L, Vanhoorelbeke K, De Meyer SF, Vandenbriele C, Lox M, Hoylaerts MF, Martinod K, Jacquemin M, Vanassche T, Verhamme P. Von Willebrand factor and ADAMTS13 impact on the outcome of Staphylococcus aureus sepsis. J Thromb Haemost 2020; 18:722-731. [PMID: 31758651 DOI: 10.1111/jth.14686] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Previous clinical evidence correlates levels of von Willebrand factor (VWF) and its cleaving protease ADAMTS13 with outcome in septic patients. No previous studies addressed if VWF and ADAMTS13 affected the outcome of Staphylococcus aureus sepsis. OBJECTIVES We studied the role of VWF and ADAMTS13 in S. aureus sepsis both in patients and in mice. METHODS VWF levels and ADAMTS13 activity levels were measured in plasma samples from 89 S. aureus bacteremia patients by chemiluminescent assays and were correlated with clinical sepsis outcome parameters. In wild-type mice and mice deficient in VWF and ADAMTS13, we investigated the outcome of S. aureus sepsis and quantified bacterial clearance and organ microthrombi. RESULTS In patients with S. aureus bloodstream infections, high VWF levels and low ADAMTS13 activity levels correlated with disease severity and with parameters of inflammation and disseminated intravascular coagulation. In septic mice, VWF deficiency attenuated mortality, whereas ADAMTS13 deficiency increased mortality. Bacterial clearance was enhanced in VWF-deficient mice. The differences in mortality for the studied genotypes were associated with differential loads of organ microthrombi in both liver and kidneys. CONCLUSIONS In conclusion, this study reports the consistent relation of VWF, ADAMTS13 and their ratio to disease severity in patients and mice with S. aureus sepsis. Targeting VWF multimers and/or the relative ADAMTS13 deficiency that occurs in sepsis should be explored as a potential new therapeutic target in S. aureus endovascular infections.
Collapse
Affiliation(s)
- Marijke Peetermans
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Laurens Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, University of Leuven campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, University of Leuven campus Kulak Kortrijk, Kortrijk, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marleen Lox
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marc Jacquemin
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Learman BS, Brauer AL, Eaton KA, Armbruster CE. A Rare Opportunist, Morganella morganii, Decreases Severity of Polymicrobial Catheter-Associated Urinary Tract Infection. Infect Immun 2019; 88:e00691-19. [PMID: 31611275 PMCID: PMC6921659 DOI: 10.1128/iai.00691-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are common hospital-acquired infections and frequently polymicrobial, which complicates effective treatment. However, few studies experimentally address the consequences of polymicrobial interactions within the urinary tract, and the clinical significance of polymicrobial bacteriuria is not fully understood. Proteus mirabilis is one of the most common causes of monomicrobial and polymicrobial CAUTI and frequently cocolonizes with Enterococcus faecalis, Escherichia coli, Providencia stuartii, and Morganella morganiiP. mirabilis infections are particularly challenging due to its potent urease enzyme, which facilitates formation of struvite crystals, catheter encrustation, blockage, and formation of urinary stones. We previously determined that interactions between P. mirabilis and other uropathogens can enhance P. mirabilis urease activity, resulting in greater disease severity during experimental polymicrobial infection. Our present work reveals that M. morganii acts on P. mirabilis in a contact-independent manner to decrease urease activity. Furthermore, M. morganii actively prevents urease enhancement by E. faecalis, P. stuartii, and E. coli Importantly, these interactions translate to modulation of disease severity during experimental CAUTI, predominantly through a urease-dependent mechanism. Thus, products secreted by multiple bacterial species in the milieu of the catheterized urinary tract can directly impact prognosis.
Collapse
Affiliation(s)
- Brian S Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aimee L Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Kathryn A Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
16
|
Capsoni N, Bellone P, Aliberti S, Sotgiu G, Pavanello D, Visintin B, Callisto E, Saderi L, Soldini D, Lardera L, Monzani V, Brambilla AM. Prevalence, risk factors and outcomes of patients coming from the community with sepsis due to multidrug resistant bacteria. Multidiscip Respir Med 2019; 14:23. [PMID: 31312449 PMCID: PMC6610920 DOI: 10.1186/s40248-019-0185-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/29/2019] [Indexed: 01/16/2023] Open
Abstract
Background Although previous studies showed an increasing prevalence of infections due to multi-drug resistant (MDR) bacteria in the community, specific data on sepsis are lacking. We aimed to assess prevalence, risk factors and outcomes of patients with sepsis due to MDR bacteria. Methods An observational, retrospective study was conducted on consecutive adult patients coming from the community and admitted to the Policlinico Hospital, Milan, Italy, with a diagnosis of sepsis between January 2011 and December 2015. Primary study outcome was in-hospital mortality. Results Among 518 patients, at least one MDR bacteria was isolated in 88 (17%). ESBL+ Enterobacteriaceae were the most prevalent MDR bacteria (9.7%) followed by MRSA (3.9%). Independent risk factors for sepsis due to MDR bacteria were septic shock (OR: 2.2; p = 0.002) and hospitalization in the previous 90 days (OR: 2.3; p = 0.003). Independent risk factors for sepsis due to ESBL+ bacteria were hospitalization in the previous 90 days (OR: 2.1; p = 0.02) and stroke (OR: 2.1; p = 0.04). A significantly higher mortality was detected among patients with vs. without MDR bacteria (40.2% vs. 23.1% respectively, p = 0.001). Independent risk factors for mortality among patients with sepsis were coagulation dysfunction (OR: 3.2; p = 0.03), septic shock (OR: 3.2; p = 0.003), and isolation of a MDR bacteria (OR: 4.6; p < 0.001). Conclusion In light of the prevalence and impact of MDR bacteria causing sepsis in patients coming from the community, physicians should consider ESBL coverage when starting an empiric antibiotic therapy in patients with specific risk factors, especially in the presence of septic shock.
Collapse
Affiliation(s)
- Nicolò Capsoni
- 1Department of Emergency Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Bellone
- 1Department of Emergency Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Via Francesco Sforza 35, 20122 Milan, Italy.,3Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Sotgiu
- 4Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, Medical Education and Professional Development Unit, AOU Sassari, University of Sassari - Research, Sassari, Italy
| | | | - Benedetto Visintin
- 6Acute Internal Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Callisto
- 1Department of Emergency Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Saderi
- 4Clinical Epidemiology and Medical Statistics Unit, Department of Biomedical Sciences, Medical Education and Professional Development Unit, AOU Sassari, University of Sassari - Research, Sassari, Italy
| | - Davide Soldini
- 6Acute Internal Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Lardera
- 6Acute Internal Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valter Monzani
- 6Acute Internal Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Maria Brambilla
- 1Department of Emergency Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
Ryu BH, Hong J, Jung J, Kim MJ, Sung H, Kim MN, Chong YP, Kim SH, Lee SO, Kim YS, Woo JH, Choi SH. Clinical characteristics and treatment outcomes of Enterococcus durans bacteremia: a 20-year experience in a tertiary care hospital. Eur J Clin Microbiol Infect Dis 2019; 38:1743-1751. [PMID: 31243595 DOI: 10.1007/s10096-019-03605-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
While the clinical characteristics and treatment outcomes of Enterococcus faecalis and E. faecium bacteremia are well known, those of E. durans bacteremia are still largely unclear. We retrospectively identified 80 adult E. durans bacteremia cases treated at our 2700-bed tertiary care hospital between January 1997 and December 2016. We compared the clinical characteristics and treatment outcomes of the adult patients with E. durans bacteremia (case group) with those of E. faecalis and E. faecium bacteremia cases (two control groups). The case and control groups were matched for sex, age, and date of onset of bacteremia. E. durans was responsible for 1.2% of all enterococcal bacteremia cases at our hospital. Of 80 cases, 39 (48.8%) had biliary tract infection and 18 (22.5%) had urinary tract infection. Community-onset bacteremia was more frequent in the case group than in the control groups (56.2% vs. 35.0% vs. 21.2%, p < 0.01). Infective endocarditis tended to be more common in the E. durans group (7.5% vs. 1.2% vs. 1.2%, p = 0.05). The majority of E. durans isolates were susceptible to penicillin (66/76, 86.8%), ampicillin (67/76, 88.2%), and vancomycin (75/76, 98.7%). The case group had significantly lower all-cause mortality (20.0% vs. 31.2% vs. 42.5%, p < 0.01) and bacteremia-related mortality (2.5% vs. 16.2% vs. 18.8%, p < 0.01) than the control groups. E. durans bacteremia mainly originates from the biliary or urinary tract and is associated with a lower risk of mortality.
Collapse
Affiliation(s)
- Byung-Han Ryu
- Department of Infectious Diseases, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Jeongmin Hong
- Department of Infectious Diseases, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Lorenz B, Rösch P, Popp J. Isolation matters-processing blood for Raman microspectroscopic identification of bacteria. Anal Bioanal Chem 2019; 411:5445-5454. [PMID: 31152224 DOI: 10.1007/s00216-019-01918-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022]
Abstract
Bacteremia with its high mortality is a frequent case in clinical health care. Further, bacteremia includes the considerable risk of progressing to a sepsis. Even in case of survival, sepsis still entails diminished quality of life for the survivors and high indirect cost for the society. The crucial factor in sepsis is time. Therefore, timely description of adequate antibiotics is vital to reduce mortality and improve quality of life after survival. Despite that, the current gold standard of clinical bacteria diagnostic is based on cultivation of bacteria, which requires an average of 13-h cultivation. Consequently, there is a necessity for culture free identification methods without sacrificing the range of bacteria strains which can be identified. Raman microspectroscopy in general requires only single bacteria cells and has proven to offer high identification accuracies. However, the prerequisite for Raman microspectroscopy is a suitable isolation strategy to obtain single unharmed bacteria cells free from matrix. Moreover, in blood, bacteria are outnumbered by billions of blood cells. In this study, we present an isolation strategy to recover single bacteria cells from blood and evaluate their suitability for Raman microspectroscopic identification. Graphical abstract.
Collapse
Affiliation(s)
- Björn Lorenz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany. .,InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743, Jena, Germany.
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
19
|
Armbruster CE, Forsyth VS, Johnson AO, Smith SN, White AN, Brauer AL, Learman BS, Zhao L, Wu W, Anderson MT, Bachman MA, Mobley HLT. Twin arginine translocation, ammonia incorporation, and polyamine biosynthesis are crucial for Proteus mirabilis fitness during bloodstream infection. PLoS Pathog 2019; 15:e1007653. [PMID: 31009518 PMCID: PMC6497324 DOI: 10.1371/journal.ppat.1007653] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/02/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream. This study identifies the genes that are important for survival in the bloodstream using a whole-genome transposon insertion-site sequencing (Tn-Seq) approach. A library of 50,000 transposon mutants was utilized to assess the relative contribution of each non-essential gene in the P. mirabilis HI4320 genome to fitness in the livers and spleens of mice at 24 hours following tail vein inoculation compared to growth in RPMI, heat-inactivated (HI) naïve serum, and HI acute phase serum. 138 genes were identified as ex vivo fitness factors in serum, which were primarily involved in amino acid transport and metabolism, and 143 genes were identified as infection-specific in vivo fitness factors for both spleen and liver colonization. Infection-specific fitness factors included genes involved in twin arginine translocation, ammonia incorporation, and polyamine biosynthesis. Mutants in sixteen genes were constructed to validate both the ex vivo and in vivo results of the transposon screen, and 12/16 (75%) exhibited the predicted phenotype. Our studies indicate a role for the twin arginine translocation (tatAC) system in motility, translocation of potential virulence factors, and fitness within the bloodstream. We also demonstrate the interplay between two nitrogen assimilation pathways in the bloodstream, providing evidence that the GS-GOGAT system may be preferentially utilized. Furthermore, we show that a dual-function arginine decarboxylase (speA) is important for fitness within the bloodstream due to its role in putrescine biosynthesis rather than its contribution to maintenance of membrane potential. This study therefore provides insight into pathways needed for fitness within the bloodstream, which may guide strategies to reduce bacteremia-associated mortality.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Valerie S. Forsyth
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Ashley N. White
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Aimee L. Brauer
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Brian S. Learman
- Department of Microbiology and Immunology; Jacobs School of Medicine and Biomedical Sciences; State University of New York at Buffalo; Buffalo, NY, United States of America
| | - Lili Zhao
- Department of Biostatistics; University of Michigan School of Public Health; Ann Arbor, MI, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Mark T. Anderson
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Michael A. Bachman
- Department of Pathology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI, United States of America
| |
Collapse
|
20
|
d-Serine Degradation by Proteus mirabilis Contributes to Fitness during Single-Species and Polymicrobial Catheter-Associated Urinary Tract Infection. mSphere 2019; 4:4/1/e00020-19. [PMID: 30814316 PMCID: PMC6393727 DOI: 10.1128/msphere.00020-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Urinary tract infections are among the most common health care-associated infections worldwide, the majority of which involve a urinary catheter (CAUTI). Our recent investigation of CAUTIs in nursing home residents identified Proteus mirabilis, Enterococcus species, and Escherichia coli as the three most common organisms. These infections are also often polymicrobial, and we identified Morganella morganii, Enterococcus species, and Providencia stuartii as being more prevalent during polymicrobial CAUTI than single-species infection. Our research therefore focuses on identifying “core” fitness factors that are highly conserved in P. mirabilis and that contribute to infection regardless of the presence of these other organisms. In this study, we determined that the ability to degrade d-serine, the most abundant d-amino acid in urine and serum, strongly contributes to P. mirabilis fitness within the urinary tract, even when competing for nutrients with another organism. d-Serine uptake and degradation therefore represent potential targets for disruption of P. mirabilis infections. Proteus mirabilis is a common cause of catheter-associated urinary tract infection (CAUTI) and secondary bacteremia, which are frequently polymicrobial. We previously utilized transposon insertion-site sequencing (Tn-Seq) to identify novel fitness factors for colonization of the catheterized urinary tract during single-species and polymicrobial infection, revealing numerous metabolic pathways that may contribute to P. mirabilis fitness regardless of the presence of other cocolonizing organisms. One such “core” fitness factor was d-serine utilization. In this study, we generated isogenic mutants in d-serine dehydratase (dsdA), d-serine permease (dsdX), and the divergently transcribed activator of the operon (dsdC) to characterize d-serine utilization in P. mirabilis and explore the contribution of this pathway to fitness during single-species and polymicrobial infection. P. mirabilis was capable of utilizing either d- or l-serine as a sole carbon or nitrogen source, and dsdA, dsdX, and dsdC were each specifically required for d-serine degradation. This capability was highly conserved among P. mirabilis isolates, although not universal among uropathogens: Escherichia coli and Morganella morganii utilized d-serine, while Providencia stuartii and Enterococcus faecalis did not. d-Serine utilization did not contribute to P. mirabilis growth in urine ex vivo during a 6-h time course but significantly contributed to fitness during single-species and polymicrobial CAUTI during a 96-h time course, regardless of d-serine utilization by the coinfecting isolate. d-Serine utilization also contributed to secondary bacteremia during CAUTI as well as survival in a direct bacteremia model. Thus, we propose d-serine utilization as a core fitness factor in P. mirabilis and a possible target for disruption of infection. IMPORTANCE Urinary tract infections are among the most common health care-associated infections worldwide, the majority of which involve a urinary catheter (CAUTI). Our recent investigation of CAUTIs in nursing home residents identified Proteus mirabilis, Enterococcus species, and Escherichia coli as the three most common organisms. These infections are also often polymicrobial, and we identified Morganella morganii, Enterococcus species, and Providencia stuartii as being more prevalent during polymicrobial CAUTI than single-species infection. Our research therefore focuses on identifying “core” fitness factors that are highly conserved in P. mirabilis and that contribute to infection regardless of the presence of these other organisms. In this study, we determined that the ability to degrade d-serine, the most abundant d-amino acid in urine and serum, strongly contributes to P. mirabilis fitness within the urinary tract, even when competing for nutrients with another organism. d-Serine uptake and degradation therefore represent potential targets for disruption of P. mirabilis infections.
Collapse
|
21
|
Zellweger RM, Basnyat B, Shrestha P, Prajapati KG, Dongol S, Sharma PK, Koirala S, Darton TC, Boinett C, Thompson CN, Thwaites GE, Baker S, Karkey A. Changing Antimicrobial Resistance Trends in Kathmandu, Nepal: A 23-Year Retrospective Analysis of Bacteraemia. Front Med (Lausanne) 2018; 5:262. [PMID: 30283784 PMCID: PMC6156253 DOI: 10.3389/fmed.2018.00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 11/23/2022] Open
Abstract
A comprehensive longitudinal understanding of the changing epidemiology of the agents causing bacteraemia and their AMR profiles in key locations is crucial for assessing the progression and magnitude of the global AMR crisis. We performed a retrospective analysis of routine microbiological data from April 1992 to December 2014, studying the time trends of non-Salmonella associated bacteraemia at a single Kathmandu healthcare facility. The distribution of aetiological agents, their antimicrobial susceptibility profiles, and the hospital ward of isolation were assessed. Two hundred twenty-four thousand seven hundred forty-one blood cultures were performed over the study period, of which, 30,353 (13.5%) exhibited growth for non-contaminant bacteria. We observed a significant increasing trend in the proportion of MDR non-Salmonella Enterobacteriaceae (p < 0.001), other Gram-negative organisms (p = 0.006), and Gram-positive organisms (p = 0.006) over time. Additionally, there was an annual increasing trend in the proportion of MDR organisms in bacteria-positive blood cultures originating from patients attending the emergency ward (p = 0.006) and the outpatient department (p = 0.006). This unique dataset demonstrates that community acquired non-Salmonella bacteraemia has become an increasingly important cause of hospital admission in Kathmandu. An increasing burden of bacteraemia associated with MDR organisms in the community underscores the need for preventing the circulation of MDR bacteria within the local population.
Collapse
Affiliation(s)
- Raphaël M Zellweger
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom.,Global Antibiotic Resistance Partnership, Centre for Disease Dynamics Economics and Policy, Washington, DC, United States
| | - Poojan Shrestha
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | | | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Paban K Sharma
- Patan Academy of Health Sciences, Patan Hospital, Kathmandu, Nepal
| | - Samir Koirala
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Thomas C Darton
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Sheffield teaching hospitals NHS trust foundation and the University of Sheffield, Sheffield, United Kingdom
| | - Christine Boinett
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Corinne N Thompson
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Stephen Baker
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom.,The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom.,Global Antibiotic Resistance Partnership, Centre for Disease Dynamics Economics and Policy, Washington, DC, United States
| |
Collapse
|
22
|
Scohy A, Noël A, Boeras A, Brassinne L, Laurent T, Rodriguez-Villalobos H, Verroken A. Evaluation of the Bruker® MBT Sepsityper IVD module for the identification of polymicrobial blood cultures with MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 2018; 37:2145-2152. [PMID: 30128666 DOI: 10.1007/s10096-018-3351-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) considerably reduces timeframe required from initial blood culture positivity towards complete bacterial identification. However, rapid identification of polymicrobial blood cultures remains challenging. We evaluated the performances of the Bruker® MBT Sepsityper IVD module on MALDI-TOF MS for the direct identification of polymicrobial blood culture bottles. This module has the ability to give a strong indication that a sample contains a mixture of organisms and to identify two of them. Blood culture bottles considered as polymicrobial using routine subculture were collected and processed using the Sepsityper kit. MALDI-TOF MS identification was performed using the MBT Compass IVD software including the Sepsityper module. From 143 polymicrobial blood culture bottles tested, 34.3% (49/143) were completely identified by the module. Both microorganisms were more easily detected by the module in samples containing two pathogens than in samples containing two contaminants (36.8% vs 29.4%). Additionally, in more than half of the samples, the module detected 1 of the different microorganisms contained in the same vial. In these cases, with a pathogen and contaminant in the same sample, the module detected the pathogen in more than 80%. The Sepsityper module identified 14 microorganisms which were not recovered by conventional culture methods. The Bruker® MBT Sepsityper IVD module contributed to a valuable identification of polymicrobial blood cultures in more than a third of all cases. Conventional culture methods are still required to complete the results and to carry on susceptibility testing.
Collapse
Affiliation(s)
- Anaïs Scohy
- Department of Microbiology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10, B-1200, Brussels, Belgium.
| | - Audrey Noël
- Department of Microbiology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Anca Boeras
- Department of Microbiology, Clinique Saint-Joseph - CHC, Rue de Hesbaye 75, B-4000, Liège, Belgium
| | - Laetitia Brassinne
- Department of Microbiology, Cliniques de l'Europe - Site Sainte-Elisabeth, Avenue de Fré 206, B-1160, Brussels, Belgium
| | - Terry Laurent
- Department of Microbiology, Clinique et maternité Sainte-Elisabeth, Place Louise Godin 15, B-5000, Namur, Belgium
| | - Hector Rodriguez-Villalobos
- Department of Microbiology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Alexia Verroken
- Department of Microbiology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| |
Collapse
|
23
|
De Angelis G, Fiori B, Menchinelli G, D’Inzeo T, Liotti FM, Morandotti GA, Sanguinetti M, Posteraro B, Spanu T. Incidence and antimicrobial resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007–2015). Eur J Clin Microbiol Infect Dis 2018; 37:1627-1636. [DOI: 10.1007/s10096-018-3292-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
24
|
Goto M, McDanel JS, Jones MM, Livorsi DJ, Ohl ME, Beck BF, Richardson KK, Alexander B, Perencevich EN. Antimicrobial Nonsusceptibility of Gram-Negative Bloodstream Isolates, Veterans Health Administration System, United States, 2003-2013 1. Emerg Infect Dis 2018; 23:1815-1825. [PMID: 29047423 PMCID: PMC5652419 DOI: 10.3201/eid2311.161214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacteremia caused by gram-negative bacteria is associated with serious illness and death, and emergence of antimicrobial drug resistance in these bacteria is a major concern. Using national microbiology and patient data for 2003–2013 from the US Veterans Health Administration, we characterized nonsusceptibility trends of community-acquired, community-onset; healthcare-associated, community-onset; and hospital-onset bacteremia for selected gram-negative bacteria (Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Acinetobacter spp.). For 47,746 episodes of bacteremia, the incidence rate was 6.37 episodes/10,000 person-years for community-onset bacteremia and 4.53 episodes/10,000 patient-days for hospital-onset bacteremia. For Klebsiella spp., P. aeruginosa, and Acinetobacter spp., we observed a decreasing proportion of nonsusceptibility across nearly all antimicrobial drug classes for patients with healthcare exposure; trends for community-acquired, community-onset isolates were stable or increasing. The role of infection control and antimicrobial stewardship efforts in inpatient settings in the decrease in drug resistance rates for hospital-onset isolates needs to be determined.
Collapse
|
25
|
Rees CA, Burklund A, Stefanuto PH, Schwartzman JD, Hill JE. Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J Breath Res 2018; 12:026001. [PMID: 28952968 PMCID: PMC5832594 DOI: 10.1088/1752-7163/aa8f7f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of pathogen-specific volatile metabolic 'fingerprints' could lead to the rapid identification of disease-causing organisms either directly from ex vivo patient bio-specimens or from in vitro cultures. In the present study, we have evaluated the volatile metabolites produced by 100 clinical isolates belonging to ten distinct pathogen groups that, in aggregate, account for 90% of bloodstream infections, 90% of urinary tract infections, and 80% of infections encountered in the intensive care unit setting. Headspace volatile metabolites produced in vitro were concentrated using headspace solid-phase microextraction and analyzed via two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). A total of 811 volatile metabolites were detected across all samples, of which 203 were: (1) detected in 9 or 10 (of 10) isolates belonging to one or more pathogen groups, and (2) significantly more abundant in cultures relative to sterile media. Network analysis revealed a distinct metabolic fingerprint associated with each pathogen group, and analysis via Random Forest using leave-one-out cross-validation resulted in a 95% accuracy for the differentiation between groups. The present findings support the results of prior studies that have reported on the differential production of volatile metabolites across pathogenic bacteria and fungi, and provide additional insight through the inclusion of pathogen groups that have seldom been studied previously, including Acinetobacter spp., coagulase-negative Staphylococcus, and Proteus mirabilis, as well as the utilization of HS-SPME-GC×GC-TOFMS for improved sensitivity and resolution relative to traditional gas chromatography-based techniques.
Collapse
Affiliation(s)
| | - Alison Burklund
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | | | - Joseph D Schwartzman
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Jane E Hill
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Shuping LL, Kuonza L, Musekiwa A, Iyaloo S, Perovic O. Hospital-associated methicillin-resistant Staphylococcus aureus: A cross-sectional analysis of risk factors in South African tertiary public hospitals. PLoS One 2017; 12:e0188216. [PMID: 29145465 PMCID: PMC5690649 DOI: 10.1371/journal.pone.0188216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
Introduction Hospital-associated methicillin-resistant S. aureus (HA-MRSA) remains a significant cause of morbidity and mortality worldwide. We conducted a study to determine risk factors for HA-MRSA in order to inform control strategies in South Africa. Methods We used surveillance data collected from five tertiary hospitals in Gauteng and Western Cape provinces during 2014 for analysis. A case of HA-MRSA was defined as isolation of MRSA from a blood culture 48 hours after admission and/or if the patient was hospitalised in the six months prior to the current culture. Multivariable logistic regression modelling was used to determine risk factors for HA-MRSA. Results Of the 9971 patients with positive blood cultures, 7.7% (772) had S. aureus bacteraemia (SAB). The overall prevalence of MRSA among those with SAB was 30.9% (231/747; 95% confidence interval [CI] 27.6%– 34.3%). HA-MRSA infections accounted for 28.3% of patients with SAB (207/731; 95% CI 25.1%– 31.7%). Burns (adjusted odds ratio [aOR] 12.7; 95% CI 4.7–34.4), age ≤1 month (aOR 8.7; 95% CI 3.0–24.6), residency at a long-term care facility (aOR 5.2; 95% CI, 1.5–17.4), antibiotic use within two months of the current SAB episode (aOR 5.1; 95% CI 2.8–9.1), hospital stay of 13 days or more (aOR 2.8; 95% CI 1.3–5.6) and mechanical ventilation (aOR 2.2; 95% CI 1.07–4.6), were independent risk factors for HA-MRSA infection. Conclusion The prevalence of MRSA remains high in South African tertiary public hospitals. Several identified risk factors of HA-MRSA infections should be considered when instituting infection and prevention strategies in public-sector hospitals, including intensifying the implementation of antimicrobial stewardship programmes. There is an urgent need to strengthen infection prevention and control in burn wards, neonatal wards, and intensive care units which house mechanically ventilated patients.
Collapse
Affiliation(s)
- Liliwe L. Shuping
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- South African Field Epidemiology Training Programme, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lazarus Kuonza
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- South African Field Epidemiology Training Programme, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Alfred Musekiwa
- Centers for Disease Control and Prevention, Pretoria, South Africa
| | - Samantha Iyaloo
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
| | - Olga Perovic
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, University of Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
27
|
Opintan JA, Newman MJ. Prevalence of antimicrobial resistant pathogens from blood cultures: results from a laboratory based nationwide surveillance in Ghana. Antimicrob Resist Infect Control 2017. [PMID: 28630688 PMCID: PMC5470323 DOI: 10.1186/s13756-017-0221-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Blood stream infections (BSI) are critical medical conditions with high morbidity and mortality. There is paucity of information on BSI from surveillance studies in Ghana. Aim This study sought to demonstrate how useful BSI data can be gleaned from population-based surveillance, especially from resource-limited settings. Methods Data from a nationwide surveillance of antimicrobial drug resistance (AMR) in Ghana were extracted and analyzed. Secondly, we revived archived Staphylococcus aureus isolates from blood cultures that were cefoxitin resistant (CRSA), and screened these for protein A (spa) and mec A genes. Results Overall blood culture positivity was 11.2% (714/6351). All together, participating laboratories submitted 100 multidrug resistant blood culture isolates (Gram-negative = 49 and Gram-positive = 51). Prevalence of some Gram-negative isolates was as follows; Escherichia coli (20.4%), Pseudomonas aeruginosa (16.3%), Enterobacter spp. (14.3%), Salmonella serotype Typhi (8.2%) and Non-typhoidal Salmonella [NTS] (8.2%). Gram-positive pathogens included Staphylococcus aureus (66.7%), coagulase negative S. aureus [CoNS] (17.6%) and Streptococcus pneumoniae (11.8%). No methicillin resistance was confirmed in our CRSA isolates. Most blood stream associated infections were from inpatients (75%) and cultured bacteria were resistant to common and cheaper antimicrobials. Conclusion E. coli and S. aureus are common pathogens associated with BSI in Ghana and they are resistant to several antimicrobials. Active and continuous AMR surveillance can serve multiple purposes, including data generation for BSI.
Collapse
Affiliation(s)
- Japheth Awuletey Opintan
- Medical Microbiology Department, School of Biomedical and Allied Health Sciences, Korle-Bu, P. O. Box KB 4236, Accra, Ghana
| | - Mercy Jemima Newman
- Medical Microbiology Department, School of Biomedical and Allied Health Sciences, Korle-Bu, P. O. Box KB 4236, Accra, Ghana
| |
Collapse
|
28
|
The impact of production of extended-spectrum β-lactamases on the 28-day mortality rate of patients with Proteus mirabilis bacteremia in Korea. BMC Infect Dis 2017; 17:327. [PMID: 28468622 PMCID: PMC5415711 DOI: 10.1186/s12879-017-2431-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/28/2017] [Indexed: 12/26/2022] Open
Abstract
Background The incidence of Proteus mirabilis antimicrobial resistance, especially that mediated by extended-spectrum β-lactamases (ESBLs), has increased. We investigated the impact of ESBL production on the mortality of patients with P. mirabilis bacteremia in Korea. Methods Patients diagnosed with P. mirabilis bacteremia between November 2005 and December 2013 at a 2000-bed tertiary care center in South Korea were included in this study. Phenotypic and molecular analyses were performed to assess ESBL expression. Characteristics and treatment outcomes were investigated among ESBL-producing and non-ESBL-producing P. mirabilis bacteremia groups. A multivariate analysis of 28-day mortality rates was performed to evaluate the independent impact of ESBLs. Results Among 62 P. mirabilis isolates from 62 patients, 14 expressed ESBLs (CTX-M, 2; TEM, 5; both, 6; other, 1), and the 28-day mortality rate of the 62 patients was 17.74%. No clinical factor was significantly associated with ESBL production. The 28-day mortality rate in the ESBL-producing group was significantly higher than that in the non-ESBL-producing group (50% vs. 8.3%, p = 0.001). A multivariate analysis showed that ESBL production (odds ratio [OR], 11.53, 95% confidence interval [CI], 2.11–63.05, p = 0.005) was independently associated with the 28-day mortality rate in patients with P. mirabilis bacteremia. Conclusions ESBL production is significantly associated with mortality in patients with bacteremia caused by P. mirabilis. Rapid detection of ESBL expression and prompt appropriate antimicrobial therapy are required to reduce mortality caused by P. mirabilis bacteremia.
Collapse
|
29
|
Si D, Runnegar N, Marquess J, Rajmokan M, Playford EG. Characterising health care-associated bloodstream infections in public hospitals in Queensland, 2008-2012. Med J Aust 2016; 204:276. [PMID: 27078605 DOI: 10.5694/mja15.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To describe the epidemiology and rates of all health care-associated bloodstream infections (HA-BSIs) and of specific HA-BSI subsets in public hospitals in Queensland. DESIGN AND SETTING Standardised HA-BSI surveillance data were collected in 23 Queensland public hospitals, 2008-2012. MAIN OUTCOME MEASURES HA-BSIs were prospectively classified in terms of place of acquisition (inpatient, non-inpatient); focus of infection (intravascular catheter-associated, organ site focus, neutropenic sepsis, or unknown focus); and causative organisms. Inpatient HA-BSI rates (per 10,000 patient-days) were calculated. RESULTS There were 8092 HA-BSIs and 9418 causative organisms reported. Inpatient HA-BSIs accounted for 79% of all cases. The focus of infection in 2792 cases (35%) was an organ site, intravascular catheters in 2755 (34%; including 2240 central line catheters), neutropenic sepsis in 1063 (13%), and unknown in 1482 (18%). Five per cent (117 of 2240) of central line-associated BSIs (CLABSIs) were attributable to intensive care units (ICUs). Eight groups of organisms provided 79% of causative agents: coagulase-negative staphylococci (18%), Staphylococcus aureus (15%), Escherichia coli (11%), Pseudomonas species (9%), Klebsiella pneumoniae/oxytoca (8%), Enterococcus species (7%), Enterobacter species (6%), and Candida species (5%). The overall inpatient HA-BSI rate was 6.0 per 10,000 patient-days. The rates for important BSI subsets included: intravascular catheter-associated BSIs, 1.9 per 10,000 patient-days; S. aureus BSIs, 1.0 per 10,000 patient-days; and methicillin-resistant S. aureus BSIs, 0.3 per 10,000 patient-days. CONCLUSIONS The rate of HA-BSIs in Queensland public hospitals is lower than reported by similar studies elsewhere. About one-third of HA-BSIs are attributable to intravascular catheters, predominantly central venous lines, but the vast majority of CLABSIs are contracted outside ICUs. Different sources of HA-BSIs require different prevention strategies.
Collapse
Affiliation(s)
- Damin Si
- Communicable Diseases Branch, Queensland Health, Brisbane, QLD
| | - Naomi Runnegar
- Infection Management Services, Princess Alexandra Hospital, Brisbane, QLD
| | - John Marquess
- Communicable Diseases Branch, Queensland Health, Brisbane, QLD
| | - Mohana Rajmokan
- Communicable Diseases Branch, Queensland Health, Brisbane, QLD
| | - Elliott G Playford
- Infection Management Services, Princess Alexandra Hospital, Brisbane, QLD
| |
Collapse
|
30
|
National Bloodstream Infection Surveillance in Switzerland 2008-2014: Different Patterns and Trends for University and Community Hospitals. Infect Control Hosp Epidemiol 2016; 37:1060-7. [PMID: 27350313 DOI: 10.1017/ice.2016.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To characterize the epidemiology of bloodstream infections in Switzerland, comparing selected pathogens in community and university hospitals. DESIGN Observational, retrospective, multicenter laboratory surveillance study. METHODS Data on bloodstream infections from 2008 through 2014 were obtained from the Swiss infection surveillance system, which is part of the Swiss Centre for Antibiotic Resistance (ANRESIS). We compared pathogen prevalences across 26 acute care hospitals. A subanalysis for community-acquired and hospital-acquired bloodstream infections in community and university hospitals was performed. RESULTS A total of 42,802 bloodstream infection episodes were analyzed. The most common etiologies were Escherichia coli (28.3%), Staphylococcus aureus (12.4%), and polymicrobial bloodstream infections (11.4%). The proportion of E. coli increased from 27.5% in 2008 to 29.6% in 2014 (P = .04). E. coli and S. aureus were more commonly reported in community than university hospitals (34.3% vs 22.7%, P<.001 and 13.9% vs 11.1%, P<.001, respectively). Fifty percent of episodes were community-acquired, with E. coli again being more common in community hospitals (41.0% vs 32.4%, P<.001). The proportion of E. coli in community-acquired bloodstream infections increased in community hospitals only. Community-acquired polymicrobial infections (9.9% vs 5.6%, P<.001) and community-acquired coagulase-negative staphylococci (6.7% vs 3.4%, P<0.001) were more prevalent in university hospitals. CONCLUSIONS The role of E. coli as predominant pathogen in bloodstream infections has become more pronounced. There are distinct patterns in community and university hospitals, potentially influencing empirical antibiotic treatment. Infect Control Hosp Epidemiol 2016;37:1060-1067.
Collapse
|
31
|
Dahl A, Lauridsen TK, Arpi M, Sørensen LL, Østergaard C, Sogaard P, Bruun NE. Risk Factors of Endocarditis in Patients WithEnterococcus faecalisBacteremia: External Validation of the NOVA Score. Clin Infect Dis 2016; 63:771-5. [DOI: 10.1093/cid/ciw383] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/02/2016] [Indexed: 01/09/2023] Open
|
32
|
Aydın Teke T, Tanır G, Bayhan Gİ, Öz FN, Metin Ö, Özkan Ş. Clinical and microbiological features of resistant gram-negative bloodstream infections in children. J Infect Public Health 2016; 10:211-218. [PMID: 27185275 DOI: 10.1016/j.jiph.2016.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/18/2016] [Accepted: 04/03/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Bloodstream infections (BSIs) caused by Gram-negative (GN) bacteria cause significant morbidity and mortality. There is a worldwide increase in the reported incidence of resistant microorganisms; therefore, surveillance programs are important to define resistance patterns of GN microorganisms causing BSIs. The objective of this study was to describe the clinical and microbiological features of resistant GN BSIs in a tertiary pediatric hospital in Turkey. METHODS Patients between 1 month and 18 years of age hospitalized between January 2005 and December 2012 were included in this study. The presence of ESBL and AmpC type beta-lactamase activity were evaluated using the Clinical and Laboratory Standards Institute (CLSI) disk diffusion and double-disk synergy tests. RESULTS A total of 209 resistant GN bacterial BSI episodes were identified in 192 patients. Of 192 children, 133 (69.2%) were aged ≤48 months of age. Sixty-six (31.6%) of the BSIs were considered community-acquired and 143 (68.4%) were hospital-acquired infections. The most common isolates were non-fermenting GN bacteria (n=117, 55.9%). The major causative pathogens were Pseudomonas spp. in non-fermenting GN bacteria. The resistance rates to imipenem for Pseudomonas spp. and Acinetobacter spp. were 40.5% and 41.6%, respectively. The most common isolates in fatal patients were Pseudomonas spp. followed by Escherichia coli. The overall 28-day mortality rate was 16.3%. CONCLUSIONS Although our study was performed at a single center and represents a local population, based on this study, it is concluded that surveillance programs and studies of novel antibiotics for resistant GN bacteria focusing on pediatric patients are required.
Collapse
Affiliation(s)
- Türkan Aydın Teke
- Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Pediatric Infectious Diseases, Turkey.
| | - Gönül Tanır
- Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Pediatric Infectious Diseases, Turkey
| | - Gülsüm İclal Bayhan
- Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Pediatric Infectious Diseases, Turkey
| | - Fatma Nur Öz
- Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Pediatric Infectious Diseases, Turkey
| | - Özge Metin
- Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Pediatric Infectious Diseases, Turkey
| | - Şengül Özkan
- Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Microbiology, Turkey
| |
Collapse
|
33
|
Gustavsen A, Nymo S, Landsem A, Christiansen D, Ryan L, Husebye H, Lau C, Pischke SE, Lambris JD, Espevik T, Mollnes TE. Combined Inhibition of Complement and CD14 Attenuates Bacteria-Induced Inflammation in Human Whole Blood More Efficiently Than Antagonizing the Toll-like Receptor 4-MD2 Complex. J Infect Dis 2016; 214:140-50. [PMID: 26977050 PMCID: PMC4907417 DOI: 10.1093/infdis/jiw100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
Background. Single inhibition of the Toll-like receptor 4 (TLR4)–MD2 complex failed in treatment of sepsis. CD14 is a coreceptor for several TLRs, including TLR4 and TLR2. The aim of this study was to investigate the effect of single TLR4-MD2 inhibition by using eritoran, compared with the effect of CD14 inhibition alone and combined with the C3 complement inhibitor compstatin (Cp40), on the bacteria-induced inflammatory response in human whole blood. Methods. Cytokines were measured by multiplex technology, and leukocyte activation markers CD11b and CD35 were measured by flow cytometry. Results. Lipopolysaccharide (LPS)–induced inflammatory markers were efficiently abolished by both anti-CD14 and eritoran. Anti-CD14 was significantly more effective than eritoran in inhibiting LPS-binding to HEK-293E cells transfected with CD14 and Escherichia coli–induced upregulation of monocyte activation markers (P < .01). Combining Cp40 with anti-CD14 was significantly more effective than combining Cp40 with eritoran in reducing E. coli–induced interleukin 6 (P < .05) and monocyte activation markers induced by both E. coli (P < .001) and Staphylococcus aureus (P < .01). Combining CP40 with anti-CD14 was more efficient than eritoran alone for 18 of 20 bacteria-induced inflammatory responses (mean P < .0001). Conclusions. Whole bacteria–induced inflammation was inhibited more efficiently by anti-CD14 than by eritoran, particularly when combined with complement inhibition. Combined CD14 and complement inhibition may prove a promising treatment strategy for bacterial sepsis.
Collapse
Affiliation(s)
- Alice Gustavsen
- Department of Immunology K. G. Jebsen IRC, University of Oslo
| | - Stig Nymo
- Department of Immunology K. G. Jebsen IRC, University of Oslo Research Laboratory, Nordland Hospital Bodø Faculty of Health Sciences K. G. Jebsen TREC, University of Tromsø
| | - Anne Landsem
- Research Laboratory, Nordland Hospital Bodø Faculty of Health Sciences K. G. Jebsen TREC, University of Tromsø
| | | | - Liv Ryan
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Harald Husebye
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Søren E Pischke
- Department of Immunology Intervention Center and Clinic for Emergencies and Critical Care, Oslo University Hospital K. G. Jebsen IRC, University of Oslo
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Terje Espevik
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom E Mollnes
- Department of Immunology K. G. Jebsen IRC, University of Oslo Research Laboratory, Nordland Hospital Bodø Faculty of Health Sciences K. G. Jebsen TREC, University of Tromsø Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Guo Y, Yang JX, Liang GW. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples. Mycopathologia 2015; 181:405-13. [PMID: 26687075 DOI: 10.1007/s11046-015-9977-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022]
Abstract
The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia.
Collapse
Affiliation(s)
- Yi Guo
- Department of Clinical Laboratory, Peking University Aerospace School of Clinical Medicine, No. 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Jing-Xian Yang
- Department of Clinical Laboratory, Peking University Aerospace School of Clinical Medicine, No. 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Guo-Wei Liang
- Department of Clinical Laboratory, Peking University Aerospace School of Clinical Medicine, No. 15 Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
35
|
Biehle LR, Cottreau JM, Thompson DJ, Filipek RL, O’Donnell JN, Lasco TM, Mahoney MV, Hirsch EB. Outcomes and Risk Factors for Mortality among Patients Treated with Carbapenems for Klebsiella spp. Bacteremia. PLoS One 2015; 10:e0143845. [PMID: 26618357 PMCID: PMC4664260 DOI: 10.1371/journal.pone.0143845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023] Open
Abstract
Background Extensive dissemination of carbapenemase-producing Enterobacteriaceae has led to increased resistance among Klebsiella species. Carbapenems are used as a last resort against resistant pathogens, but carbapenemase production can lead to therapy failure. Identification of risk factors for mortality and assessment of current susceptibility breakpoints are valuable for improving patient outcomes. Aim The objective of this study was to evaluate outcomes and risk factors for mortality among patients treated with carbapenems for Klebsiella spp. bacteremia. Methods Patients hospitalized between 2006 and 2012 with blood cultures positive for Klebsiella spp. who received ≥ 48 hours of carbapenem treatment within 72 hours of positive culture were included in this retrospective study. Patient data were retrieved from electronic medical records. Multivariate logistic regression was used to identify risk factors for 30-day hospital mortality. Results One hundred seven patients were included. The mean patient age was 61.5 years and the median APACHE II score was 13 ± 6.2. Overall, 30-day hospital mortality was 9.3%. After adjusting for confounding variables, 30-day mortality was associated with baseline APACHE II score (OR, 1.17; 95% CI, 1.01–1.35; P = 0.03), length of stay prior to index culture (OR, 1.03; 95% CI, 1.00–1.06; P = 0.04), and carbapenem non-susceptible (imipenem or meropenem MIC > 1 mg/L) infection (OR, 9.08; 95% CI, 1.17–70.51; P = 0.04). Conclusions Baseline severity of illness and length of stay prior to culture were associated with 30-day mortality and should be considered when treating patients with Klebsiella bacteremia. These data support the change in carbapenem breakpoints for Klebsiella species.
Collapse
Affiliation(s)
- Lauren R. Biehle
- University of Houston, Houston, Texas, United States of America
- Catholic Health Initiatives St. Luke’s Health Baylor St. Luke’s Medical Center, Houston, Texas, United States of America
| | - Jessica M. Cottreau
- University of Houston, Houston, Texas, United States of America
- Catholic Health Initiatives St. Luke’s Health Baylor St. Luke’s Medical Center, Houston, Texas, United States of America
| | - David J. Thompson
- Northeastern University, Boston, Massachusetts, United States of America
| | - Rachel L. Filipek
- Northeastern University, Boston, Massachusetts, United States of America
| | - J. Nicholas O’Donnell
- Northeastern University, Boston, Massachusetts, United States of America
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Todd M. Lasco
- Catholic Health Initiatives St. Luke’s Health Baylor St. Luke’s Medical Center, Houston, Texas, United States of America
| | - Monica V. Mahoney
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Elizabeth B. Hirsch
- Northeastern University, Boston, Massachusetts, United States of America
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
In Vitro Activity of the Novel Antimicrobial Peptide Dendrimer G3KL against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:7915-8. [PMID: 26459893 DOI: 10.1128/aac.01853-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/03/2015] [Indexed: 01/28/2023] Open
Abstract
The in vitro activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 Acinetobacter baumannii (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 Pseudomonas aeruginosa (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90 values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistant A. baumannii and P. aeruginosa isolates.
Collapse
|
37
|
Feng X, Maze M, Koch LG, Britton SL, Hellman J. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome. PLoS One 2015; 10:e0126906. [PMID: 25978669 PMCID: PMC4433232 DOI: 10.1371/journal.pone.0126906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/09/2015] [Indexed: 12/16/2022] Open
Abstract
Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.
Collapse
Affiliation(s)
- Xiaomei Feng
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
38
|
Loftus RW, Brown JR, Patel HM, Koff MD, Jensen JT, Reddy S, Ruoff KL, Heard SO, Dodds TM, Beach ML, Yeager MP. Transmission Dynamics of Gram-Negative Bacterial Pathogens in the Anesthesia Work Area. Anesth Analg 2015; 120:819-26. [PMID: 25790209 DOI: 10.1213/ane.0000000000000626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Procalcitonin levels in gram-positive, gram-negative, and fungal bloodstream infections. DISEASE MARKERS 2015; 2015:701480. [PMID: 25852221 PMCID: PMC4380090 DOI: 10.1155/2015/701480] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/17/2022]
Abstract
Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4–44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6–7.6) or fungal (0.5 ng/mL, IQR 0.4–1) infections (P < 0.0001). Receiver operating characteristic analysis showed an area under the curve (AUC) for PCT of 0.765 (95% CI 0.725–0.805, P < 0.0001) in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P < 0.0001) in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9–48.5 versus 3.5 ng/mL, IQR 0.8–21.5; P < 0.0001). This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.
Collapse
|
40
|
Melo LDR, Sillankorva S, Ackermann HW, Kropinski AM, Azeredo J, Cerca N. Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 - a unique member of the Siphoviridae family. Res Microbiol 2014; 165:679-85. [PMID: 25303835 DOI: 10.1016/j.resmic.2014.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/22/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022]
Abstract
Relatively few phages (<10) of coagulase negative staphylococci (CoNS) have been described. Staphylococcus epidermidis phage vB_SepS_SEP9 is a siphovirus with a unique morphology as a staphylococcal phage, possessing a very long tail. Its genome is unique and unrelated to any phage genomes deposited in public databases. It appears to encode a nonfunctional integrase. Due to the not having a recognizable lysogeny module, the phage is unable lysogenize. The genome comprises 129 coding sequences (CDS), 46 of which have an assigned function and 59 are unique. Its unique morphology and genome led to the proposal of the establishment of a new Siphoviridae genus named "Sep9likevirus".
Collapse
Affiliation(s)
- Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sanna Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Hans-Wolfgang Ackermann
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Laval University, Québec, QC G1X 4C6, Canada
| | - Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON N1G 3W4, Canada; Department of Molecular and Cellular Biology, University of Guelph, ON N1G 2W1, Canada
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno Cerca
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
41
|
Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems. J Clin Microbiol 2014; 52:3558-67. [PMID: 25031441 DOI: 10.1128/jcm.01171-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We compared the clinical performances of the BacT/Alert Plus (bioMérieux) and Bactec Plus (Becton Dickinson) aerobic and anaerobic blood culture (BC) media with adsorbent polymeric beads. Patients ≥ 16 years old with suspected bloodstream infections (BSIs) were enrolled in intensive care units and infectious disease wards. A single 40-ml blood sample was collected from each and used to inoculate (10 ml/bottle) one set of BacT/Alert Plus cultures and one set of Bactec Plus cultures, each set consisting of one aerobic and one anaerobic bottle. Cultures were incubated ≤ 5 days in the BacT/Alert 3D and Bactec FX instruments, respectively. A total of 128 unique BSI episodes were identified based on the recovery of clinically significant growth in 212 aerobic cultures (106 BacT/Alert and 106 Bactec) and 151 anaerobic cultures (82 BacT/Alert and 69 Bactec). The BacT/Alert aerobic medium had higher recovery rates for Gram-positive cocci (P = 0.024), whereas the Bactec aerobic medium was superior for recovery of Gram-negative bacilli (P = 0.006). BacT/Alert anaerobic medium recovery rates exceeded those of the Bactec anaerobic medium for total organisms (P = 0.003), Gram-positive cocci (P = 0.013), and Escherichia coli (P = 0.030). In terms of capacity for diagnosing the 128 septic episodes, the BacT/Alert and Bactec sets were comparable, although the former sets diagnosed more BSIs caused by Gram-positive cocci (P = 0.008). They also allowed earlier identification of coagulase-negative staphylococcal growth (mean, 2.8 h; P = 0.003) and growth in samples from patients not on antimicrobial therapy that yielded positive results (mean, 1.3 h; P < 0.001). Similarly high percentages of microorganisms in BacT/Alert and Bactec cultures (93.8% and 93.3%, respectively) were identified by direct matrix-assisted laser desorption ionization-time of flight mass spectrometry assay of BC broths. The BacT/Alert Plus media line appears to be a reliable, timesaving tool for routine detection of BSIs in the population we studied, although further studies are needed to evaluate their performance in other settings.
Collapse
|
42
|
Bousquet A, Malfuson JV, Sanmartin N, Konopacki J, MacNab C, Souleau B, de Revel T, Elouennass M, Samson T, Soler C, Foissaud V, Martinaud C. An 8-year survey of strains identified in blood cultures in a clinical haematology unit. Clin Microbiol Infect 2014; 20:O7-12. [DOI: 10.1111/1469-0691.12294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
|
43
|
Huttunen R, Syrjänen J, Vuento R, Aittoniemi J. Current concepts in the diagnosis of blood stream infections. Are novel molecular methods useful in clinical practice? Int J Infect Dis 2013; 17:e934-8. [PMID: 23871281 DOI: 10.1016/j.ijid.2013.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/21/2022] Open
Abstract
The decision on the right empirical treatment in bacteremia places particular demands on the clinician. As long as no microbiological diagnosis can be immediately drawn, the clinical diagnosis together with knowledge of local antimicrobial resistance must determine the antimicrobial choice. The use of several amplification, hybridization, and mass spectrometry methods has been studied in patient cohorts in comparison with blood culture-based conventional techniques. However, no clinical outcome trials have been conducted in which the use of these novel methods would guide antimicrobial therapy. Local differences in bacterial antimicrobial resistance cause differences in the regional need for molecular methods for the early detection of resistance mechanisms. The implementation of novel methods in clinical use requires active discussion between laboratory experts and clinicians. Providing rapid susceptibility results using conventional methods can lead to timely changes to appropriate antimicrobial therapy and the costs are lower than with the molecular methods. Gram-stain information in combination with clinical data is an underestimated, underused, rapid, and economical means of assessing the etiology of blood stream infection.
Collapse
Affiliation(s)
- Reetta Huttunen
- Department of Internal Medicine, Tampere University Hospital, Box 2000, FI-33521 Tampere, Finland; University of Tampere Medical School, University of Tampere, Tampere, Finland.
| | | | | | | |
Collapse
|
44
|
Differing lifestyles of Staphylococcus epidermidis as revealed through Bayesian clustering of multilocus sequence types. INFECTION GENETICS AND EVOLUTION 2013; 22:257-64. [PMID: 23816539 DOI: 10.1016/j.meegid.2013.06.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/23/2022]
Abstract
Staphylococcus epidermidis is part of the normal bacterial flora of human skin and a leading cause of infections associated with indwelling medical devices. Previous phylogenetic analyses of subgenomic data have been unable to distinguish between S. epidermidis strains with nosocomial or commensal lifestyles, despite the identification of specific phenotypes and accessory genes that may contribute to such lifestyles. To attempt to better define the population structure of this species, the international S. epidermidis multilocus sequence typing database was analyzed with the Bayesian clustering programs STRUCTURE and BAPS. A total of six genetic clusters (GCs) were identified. A local population of S. epidermidis from clinical specimens was classified according to these six GCs, and further characterized for antibiotic susceptibilities, biofilm, and various genetic markers. GC5 was abundant and significantly enriched for isolates that were resistant to four classes of antibiotics, high biofilm production, and positive for the virulence markers icaA, IS256, and sesD/bhp, indicating its potential clinical relevance. In contrast, GC2 was rare and contained the only isolates positive for the putative commensal marker, fdh. GC1 and GC6 were abundant but not significantly associated with any of the examined characteristics, except for sesF/aap and GC6. GC3 was rare and identified as a potential genetic sink that received, but did not donate, core genetic material from other GCs. In conclusion, population genetics analyses were essential for identifying clusters of strains that may differ in their adaptation to nosocomial or commensal lifestyles. These results provide a new, population genetics framework for studying S. epidermidis.
Collapse
|
45
|
Pinholt M, Ostergaard C, Arpi M, Bruun NE, Schønheyder HC, Gradel KO, Søgaard M, Knudsen JD. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect 2013; 20:145-51. [PMID: 23647880 DOI: 10.1111/1469-0691.12236] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/10/2013] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
Abstract
Enterococci currently account for approximately 10% of all bacteraemias, reflecting remarkable changes in their epidemiology. However, population-based data of enterococcal bacteraemia are scarce. A population-based cohort study comprised all patients with a first episode of Enterococcus faecalis or Enterococcus faecium bacteraemia in two Danish regions during 2006-2009. We used data collected prospectively during clinical microbiological counselling and hospital registry data. We determined the incidence of mono- and polymicrobial bacteraemia and assessed clinical and microbiological characteristics as predictors of 30-day mortality in monomicrobial bacteraemia by logistic regression analysis. We identified 1145 bacteraemic patients, 700 (61%) of whom had monomicrobial bacteraemia. The incidence was 19.6/100 000 person-years (13.0/100 000 person-years for E. faecalis and 6.6/100 000 person-years for E. faecium). The majority of bacteraemias were hospital-acquired (E. faecalis, 45.7%; E. faecium, 85.2%). Urinary tract and intra-abdominal infections were the predominant foci for the two species, respectively. Infective endocarditis (IE) accounted for 25% of patients with community-acquired E. faecalis bacteraemia. Thirty-day mortality was 21.4% in patients with E. faecalis and 34.6% in patients with E. faecium. Predictors of 30-day mortality included age, co-morbidity and hospital-acquired bacteraemia. In addition, intra-abdominal infection, unknown focus and high-level gentamicin resistance were predictors of mortality in E. faecalis patients. E. faecium was associated with increased risk of mortality compared with E. faecalis. The study emphasizes the importance of enterococci both in terms of incidence and prognosis. The frequency of IE in patients with E. faecalis bacteraemia emphasizes the importance of echocardiography, especially in community-acquired cases.
Collapse
Affiliation(s)
- M Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
García-Vázquez E, Moral-Escudero E, Hernández-Torres A, Canteras M, Gómez J, Ruiz J. What is the impact of a rapid diagnostic E-test in the treatment of patients with Gram-negative bacteraemia? ACTA ACUST UNITED AC 2013; 45:623-8. [PMID: 23596976 DOI: 10.3109/00365548.2013.782102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the influence of a rapid diagnostic test (RDT) in antibiotic therapeutic decisions in non-paediatric patients with Gram-negative bacteraemia (GNB). PATIENTS AND METHODS A RDT consisting of a direct antibiogram was used on blood isolates of GNB. GNB were also identified and sensitivity tests were performed according to standard criteria. Information on empirical treatment was registered (T1), as well as the antibiotic administered once the results of the RDT were available (T2). Finally, we noted the ideal antibiotic that the infectious diseases specialist (IDS) would have prescribed (T3). The decision regarding T2 was always taken by the patient's physician or the physician on duty. RESULTS A RDT was performed for 248 patients. The most frequently isolated bacterium was Escherichia coli (13% producing extended-spectrum beta-lactamase). T1 was considered appropriate in 74% and appropriate but optimizable in 43%. T2 was considered appropriate in 95%, appropriate but optimizable in 36%, and inappropriate in 5%. The cost of the optimizable treatment (T2) was € 2210, while the cost of the ideal treatment would have been € 416; the saving in antibiotic cost of 1 day of treatment would have been € 1694. CONCLUSIONS Treatment prescribed by a non-IDS after a RDT was inappropriate in 5% and optimizable in 36%. It is our recommendation that information provided by a RDT should be interpreted by an IDS to make the information more beneficial both economically and 'ecologically'.
Collapse
Affiliation(s)
- Elisa García-Vázquez
- From the Infectious Diseases - Internal Medicine Service, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Wang LX, Hu ZD, Hu YM, Tian B, Li J, Wang FX, Yang H, Xu HR, Li YC, Li J. Molecular analysis and frequency of Staphylococcus aureus virulence genes isolated from bloodstream infections in a teaching hospital in Tianjin, China. GENETICS AND MOLECULAR RESEARCH 2013; 12:646-54. [PMID: 23546946 DOI: 10.4238/2013.march.11.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is an important cause of bloodstream infections worldwide. We examined the prevalence of genes that encode erythromycin ribosome methylase and bacterial toxins in S. aureus collected from bloodstream infections. Sixty different S. aureus isolates were obtained from blood cultures of patients who were admitted to a Teaching Hospital in Tianjin from January 2006 to August 2011. The susceptibility of the isolates to 16 antibiotics was tested. Methicillin-resistant S. aureus (MRSA) was identified using the disk diffusion method with cefoxitin. PCR was used to detect genes that encode the staphylococcal enterotoxins, Panton-Valentine leukocidin, toxic shock syndrome toxin 1 and erythromycin ribosome methylase. Molecular analysis of the MRSA strains was done using pulsed-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome mec (SCCmec) typing. The positivity rates of mecA, ermA, ermB, and ermC in the isolates were 13/60, 10/60, 18/60, and 18/60, respectively. Among the 60 isolates, 30 harbored enterotoxin genes, with sea as the most frequent toxin gene (33%), followed by sec (15%), sed (12%), and seb (5%). The see and tst genes were not found in any of the isolates. The pvl gene was detected in four strains. Eleven MRSA isolates were of the SCCmec type III; two MRSA isolates could not be determined through SCCmec typing. PFGE analysis of the 13 MRSA isolates produced 8 distinct pulsotypes. Virulence genes and erythromycin ribosome methylase genes were highly prevalent in these isolates. The PFGE results demonstrated that the MRSA spread through cloning, mainly involving SCCmec type III.
Collapse
Affiliation(s)
- L X Wang
- Department of Clinical Laboratory, General Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Migliavacca R, Espinal P, Principe L, Drago M, Fugazza G, Roca I, Nucleo E, Bracco S, Vila J, Pagani L, Luzzaro F. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy. Diagn Microbiol Infect Dis 2012; 75:180-6. [PMID: 23265293 DOI: 10.1016/j.diagmicrobio.2012.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to characterize the resistance mechanisms and genetic relatedness of 21 carbapenem-resistant Acinetobacter baumannii blood isolates collected in Italy during a 1-year multicenter prospective surveillance study. Genes coding for carbapenemase production were identified by polymerase chain reaction (PCR) and sequencing. Pulsed-field gel electrophoresis (PFGE), multiplex PCRs for group identification, and multilocus sequence typing (MLST) were used to determine genetic relationships. Carbapenem resistance was consistently related to the production of oxacillinases, mostly the plasmid-mediated OXA-58 enzyme. Strains producing the OXA-23 enzyme (chromosomally mediated) were also detected. Seven PFGE clones were identified, some of which being related to international (ICL- I and ICL-II) or national clonal lineages. Multiplex PCRs identified 4 different groups (group 2 being dominant), further distinguishable in 6 sequence types by MLST. The heterogeneity of profiles highlights the diffusion of international and national clonal lineages in Italy. Continuous surveillance is needed for monitoring the spread of these worrisome strains equipped with multiple drug resistance mechanisms.
Collapse
Affiliation(s)
- Roberta Migliavacca
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, Section of Microbiology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Orsini J, Mainardi C, Muzylo E, Karki N, Cohen N, Sakoulas G. Microbiological profile of organisms causing bloodstream infection in critically ill patients. J Clin Med Res 2012; 4:371-7. [PMID: 23226169 PMCID: PMC3513418 DOI: 10.4021/jocmr1099w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2012] [Indexed: 01/08/2023] Open
Abstract
Background Bloodstream infection (BSI) is the most frequent infection in critically ill patients. As BSI’s among patients in intensive care units (ICU’s) are usually secondary to intravascular catheters, they can be caused by both Gram-positive and Gram-negative microorganisms as well as fungi. Infection with multidrug-resistant (MDR) organisms is becoming more common, making the choice of empirical antimicrobial therapy challenging. The objective of this study is to evaluate the spectrum of microorganisms causing BSI’s in a Medical-Surgical Intensive Care Unit (MSICU) and their antimicrobial resistance patterns. Methods A prospective observational study among all adult patients with clinical signs of sepsis was conducted in a MSICU of an inner-city hospital in New York City between May 1, 2010 and May 30, 2011. Results A total of 722 adult patients with clinical signs of systemic inflammatory response syndrome (SIRS) and/or sepsis were admitted to the MSICU between May 1, 2010 and May 30, 2011. From those patients, 91 (12.6%) had one or more positive blood culture. A 122 isolates were identified: 72 (59%) were Gram-positive bacteria, 38 (31.1%) were Gram-negative organisms, and 12 (9.8%) were fungi. Thirteen (34.2%) Gram-negative organisms and 14 (19.4%) Gram-positive bacteria were classified as MDR. Conclusions Antimicrobial resistance, particularly among Gram-negative organisms, continues to increase at a rapid rate, especially in the ICU’s. Coordinated infection control interventions and antimicrobial stewardship policies are warranted in order to slow the emergence of resistance.
Collapse
Affiliation(s)
- Jose Orsini
- Department of Medicine, New York University School of Medicine at Woodhull Medical and Mental Health Center, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The widespread use of intravascular devices, such as central venous and hemodialysis catheters, in the past 2 decades has paralleled the increasing incidence of catheter-related bloodstream infections (CR-BSIs). Candida albicans is the fourth leading cause of hospital-associated BSIs. The propensity of C. albicans to form biofilms on these catheters has made these infections difficult to treat due to multiple factors, including increased resistance to antifungal agents. Thus, curing CR-BSIs caused by Candida species usually requires catheter removal in addition to systemic antifungal therapy. Alternatively, antimicrobial lock therapy has received significant interest and shown promise as a strategy to treat CR-BSIs due to Candida species. The existing in vitro, animal, and patient data for treatment of Candida-related CR-BSIs are reviewed. The most promising antifungal lock therapy (AfLT) strategies include use of amphotericin, ethanol, or echinocandins. Clinical trials are needed to further define the safety and efficacy of AfLT.
Collapse
|