1
|
Feng Y, Zhu Z, Xu J, Sun L, Zhang H, Xu H, Zhang F, Wang W, Han G, Jiang J, Liu Y, Zhou S, Zhang Y, Ji Y, Mao N, Xu W. Molecular Evolution of Human Parainfluenza Virus Type 2 Based on Hemagglutinin-Neuraminidase Gene. Microbiol Spectr 2023; 11:e0453722. [PMID: 37039701 PMCID: PMC10269610 DOI: 10.1128/spectrum.04537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
To understand the molecular evolution of human parainfluenza virus type 2 (HPIV2), 21 Hemagglutinin-Neuraminidase (HN) gene sequences covering seven Chinese provinces in 2011 and 2017 to 2021 were combined with 90 published HN sequences worldwide for phylogenetic analysis. The result showed that global HPIV2 could be classified into two distinct clusters (I and II), five lineages (IA to IIE), and four sublineages (IB1 and 2, and IIE1 and 2). The minimum genetic distances between different clusters and lineages were 0.049 and 0.014, respectively. In the last decade, one lineage (IID) and three sublineages (IB1, IB2, and IIE1) have been cocirculating in China, with the sublineages IB2 and IIE1 dominating, while sublineages IB1 and IIE1 are dominant globally. In addition, the spread of HPIV2 had relative spatial clustering, and sublineage IB2 has only been detected in China thus far. The overall evolution rate of HPIV2 was relatively low, on the order of 10-4 substitutions/site/year, except for sublineage IB2 at 10-3 substitutions/site/year. Furthermore, human-animal transmission was observed, suggesting that the HPIV2 might have jumped out of animal reservoirs in approximately 1922, the predicted time of a common ancestor. The entire HN protein was under purifying/negative selection, and the specific amino acid changes and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 were mostly located in the globular head region of the HN protein. In this study, preliminary evolutionary characteristics of HPIV2 based on the HN gene were obtained, increasing the recognition of the evolution and adaptation of HPIV2. IMPORTANCE The phylogenetic analysis showed that global HPIV2 could be classified into two distinct clusters (I and II) and five lineages (IA to IIE) with at least 0.049 and 0.014 genetic distances between clusters and lineages, respectively. Furthermore, lineages IB and IIE could be further divided into two sublineages (IB1-2 and IIE1-2). All China sequences belong to one lineage and three sublineages (IB1, IB2, IID, and IIE1), among which sublineages IB2 and IIE1 are predominant and cocirculating in China, while sublineages IB1 and IIE1 are dominant globally. The overall evolution rate of HPIV2 is on the order of 10-4 substitutions/site/year, with the highest rate of 2.18 × 10-3 for sublineage IB2. The entire HN protein is under purifying/negative selection, and the specific amino acid substitutions and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 are mostly located in the globular head region of the HN protein.
Collapse
Affiliation(s)
- Yi Feng
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Liwei Sun
- Changchun Children's Hospital, Changchun, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Hongmei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Zhang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Wenyang Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jie Jiang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Zhou
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Naiying Mao
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Kim HN, Yoon SY, Lim CS, Lee CK, Yoon J. Phylogenetic analysis of human parainfluenza type 3 virus strains responsible for the outbreak during the COVID-19 pandemic in Seoul, South Korea. J Clin Virol 2022; 153:105213. [DOI: 10.1016/j.jcv.2022.105213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
|
3
|
Oh DY, Biere B, Grenz M, Wolff T, Schweiger B, Dürrwald R, Reiche J. Virological Surveillance and Molecular Characterization of Human Parainfluenzavirus Infection in Children with Acute Respiratory Illness: Germany, 2015-2019. Microorganisms 2021; 9:1508. [PMID: 34361941 PMCID: PMC8307145 DOI: 10.3390/microorganisms9071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Human parainfluenza viruses (HPIVs) are important causes of respiratory illness, especially in young children. However, surveillance for HPIV is rarely performed continuously, and national-level epidemiologic and genetic data are scarce. Within the German sentinel system, to monitor acute respiratory infections (ARI), 4463 respiratory specimens collected from outpatients < 5 years of age between October 2015 and September 2019 were retrospectively screened for HPIV 1-4 using real-time PCR. HPIV was identified in 459 (10%) samples. HPIV-3 was the most common HPIV-type, with 234 detections, followed by HPIV-1 (113), HPIV-4 (61), and HPIV-2 (49). HPIV-3 was more frequently associated with age < 2 years, and HPIV-4 was more frequently associated with pneumonia compared to other HPIV types. HPIV circulation displayed distinct seasonal patterns, which appeared to vary by type. Phylogenetic characterization clustered HPIV-1 in Clades 2 and 3. Reclassification was performed for HPIV-2, provisionally assigning two distinct HPIV-2 groups and six clades, with German HPIV-2s clustering in Clade 2.4. HPIV-3 clustered in C1, C3, C5, and, interestingly, in A. HPIV-4 clustered in Clades 2.1 and 2.2. The results of this study may serve to inform future approaches to diagnose and prevent HPIV infections, which contribute substantially to ARI in young children in Germany.
Collapse
Affiliation(s)
- Djin-Ye Oh
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Barbara Biere
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Markus Grenz
- Consultant Laboratory for RSV, PIV and HMPV, Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Brunhilde Schweiger
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Ralf Dürrwald
- Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, National Influenza Centre, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| | - Janine Reiche
- Consultant Laboratory for RSV, PIV and HMPV, Unit 17, Department of Infectious Diseases, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestraße 10, D-13353 Berlin, Germany
| |
Collapse
|
4
|
Dynamics of nosocomial parainfluenza virus type 3 and influenza virus infections at a large German University Hospital between 2012 and 2019. Diagn Microbiol Infect Dis 2020; 99:115244. [PMID: 33253961 PMCID: PMC7568502 DOI: 10.1016/j.diagmicrobio.2020.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Nosocomial virus infections cause significant morbidity and mortality. Besides influenza viruses, the disease burden of parainfluenza virus type 3 (PIV-3) is comparatively high among hospitalized patients and severe disease courses can occur. PIV-3 showed the highest rates of nosocomial infections of a panel of respiratory viruses. Therefore, a retrospective observational study was conducted among patients with either PIV-3 or influenza viruses, which served as reference pathogen. The aim was to compare the seasonal dynamics and clinical characteristics of nosocomial infections with these highly transmittable viruses. Nosocomial infection occurred in 15.8% (n = 177) of all influenza cases, mainly in the first half of a season. About 24.3% (n = 104) of the PIV-3 cases were nosocomial and occurred mainly in the second half of a season. Both nosocomial rates of influenza and nosocomial rates of PIV-3 varied between the seasons. Community acquired and nosocomial cases differed in underlying medical conditions and immunosuppression. Knowledge of the baseline rates of nosocomial infections could contribute to the implementation of appropriate infection control measures.
Collapse
|
5
|
Elusah J, Bulimo WD, Opanda SM, Symekher SL, Wamunyokoli F. Genetic diversity and evolutionary analysis of human respirovirus type 3 strains isolated in Kenya using complete hemagglutinin-neuraminidase (HN) gene. PLoS One 2020; 15:e0229355. [PMID: 32155160 PMCID: PMC7064169 DOI: 10.1371/journal.pone.0229355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Human respirovirus type 3 (HRV3) is a leading etiology of lower respiratory tract infections in young children and ranks only second to the human respiratory syncytial virus (HRSV). Despite the public health importance of HRV3, there is limited information about the genetic characteristics and diversity of these viruses in Kenya. To begin to address this gap, we analyzed 35 complete hemagglutinin-neuraminidase (HN) sequences of HRV3 strains isolated in Kenya between 2010 and 2013. Viral RNA was extracted from the isolates, and the entire HN gene amplified by RT-PCR followed by nucleotide sequencing. Phylogenetic analyses of the sequences revealed that all the Kenyan isolates grouped into genetic Cluster C; sub-clusters C1a, C2, and C3a. The majority (54%) of isolates belonged to sub-cluster C3a, followed by C2 (43%) and C1a (2.9%). Sequence analysis revealed high identities between the Kenyan isolates and the HRV3 prototype strain both at the amino acid (96.5-97.9%) and nucleotide (94.3-95.6%) levels. No amino acid variations affecting the catalytic/active sites of the HN glycoprotein were observed among the Kenyan isolates. Selection pressure analyses showed that the HN glycoprotein was evolving under positive selection. Evolutionary analyses revealed that the mean TMRCA for the HN sequence dataset was 1942 (95% HPD: 1928-1957), while the mean evolutionary rate was 4.65x10-4 nucleotide substitutions/site/year (95% HPD: 2.99x10-4 to 6.35x10-4). Overall, our results demonstrate the co-circulation of strains of cluster C HRV3 variants in Kenya during the study period. This is the first study to describe the genetic and molecular evolutionary aspects of HRV3 in Kenya using the complete HN gene.
Collapse
Affiliation(s)
- Juliet Elusah
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Wallace Dimbuson Bulimo
- Department of Emerging infections, US Army Medical Directorate–Africa, Nairobi, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
- * E-mail:
| | | | | | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| |
Collapse
|
6
|
Aso J, Kimura H, Ishii H, Saraya T, Kurai D, Matsushima Y, Nagasawa K, Ryo A, Takizawa H. Molecular Evolution of the Fusion Protein ( F) Gene in Human Respirovirus 3. Front Microbiol 2020; 10:3054. [PMID: 32010105 PMCID: PMC6974460 DOI: 10.3389/fmicb.2019.03054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
To elucidate the evolution of human respirovirus 3 (HRV3), we performed detailed genetic analyses of the F gene (full-length) detected from hundreds of HRV3 strains obtained from various geographic regions. First, we performed time-scaled evolutionary analyses using the Bayesian Markov chain Monte Carlo method. Then, we performed analyses of phylodynamics, similarity, phylogenetic distance, selective pressure, and conformational B-cell epitope with the F-protein structural analyses. Time-scaled phylogenetic tree showed that the common ancestor of HRV3 and bovine respirovirus 3 diverged over 300 years ago and subdivided it into three major clusters and four subclusters during the most recent 100 years. The overall evolutionary rate was approximately 10-3 substitutions/site/year. Indigenous similarity was seen in the present strains, and the mean phylogenetic distance were 0.033. Many negative selection sites were seen in the ectodomain. The conformational epitopes did not correspond to the neutralizing antibody binding sites. These results suggest that the HRV3 F gene is relatively conserved and restricted in this diversity to preserve the protein function, although these strains form many branches on the phylogenetic tree. Furthermore, HRV3 reinfection may be responsible for discordances between the conformational epitopes and the neutralizing antibody binding sites of the F protein. These findings contribute to a better understanding of HRV3 virology.
Collapse
Affiliation(s)
- Jumpei Aso
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan.,Department of Microbiology, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Daisuke Kurai
- Department of General Medicine, Division of Infectious Diseases, School of Medicine, Kyorin University, Tokyo, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kanagawa, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihide Ryo
- Department of Microbiology, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
7
|
Aso J, Kimura H, Ishii H, Saraya T, Kurai D, Nagasawa K, Matsushima Y, Ryo A, Takizawa H. Molecular evolution of the hemagglutinin-neuraminidase (HN) gene in human respirovirus 3. Virus Res 2019; 277:197824. [PMID: 31783038 DOI: 10.1016/j.virusres.2019.197824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Human respirovirus 3 (HRV3) is a major causative agent of acute respiratory infections in humans. HRV3 can manifest as a recurrent infection, although exactly how is not known. In the present study, we conducted detailed molecular evolutionary analyses of the major antigen-coding hemagglutinin-neuraminidase (HN) gene of this virus detected/isolated in various countries. We performed analyses of time-scaled evolution, similarity, selective pressure, phylodynamics, and conformational epitope prediction by mapping to HN protein models. In this way, we estimated that a common ancestor of the HN gene of HRV3 and bovine respirovirus 3 diverged around 1815 and formed many lineages in the phylogenetic tree. The evolutionary rates of the HN gene were 1.1 × 10-3 substitutions/site/year, although the majority of these substitutions were synonymous. Some positive and many negative selection sites were predicted in the HN protein. Phylodynamic fluctuations of the gene were observed, and these were different in each lineage. Furthermore, most of the predicted B cell epitopes did not correspond to the neutralization-related mouse monoclonal antibody binding sites. The lack of a link between the conformational epitopes and neutralization sites may explain the naturally occurring HRV3 reinfection.
Collapse
Affiliation(s)
- Jumpei Aso
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Science, Gunma, Japan; Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan.
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Kurai
- Department of General Medicine, Division of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kanagawa, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Civljak R, Kosutic-Gulija T, Slovic A, Huljev E, Turcic N, Mestrovic T, Vranes J, Ljubin-Sternak S. An Outbreak of Human Parainfluenza Virus 3 (Phylogenetic Subcluster C5) Infection among Adults at a Residential Care Facility for the Disabled in Croatia, 2018. Intervirology 2019; 62:174-181. [PMID: 31661701 DOI: 10.1159/000503630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Although highly pertinent for children, outbreaks of human parainfluenza virus (HPIV) may cause up to 15% of all respiratory illnesses in adults and predispose them to serious adverse outcomes, with HPIV serotype 3 (HPIV3) being the most common. This study represents the first report of an HPIV3 outbreak among adults at a long-term health-care facility in Croatia. METHODS A retrospective study was conducted to investigate an outbreak of acute respiratory infection (ARI) at a single residential care facility for the disabled in Croatia. Demographic, epidemiological, and clinical data were collected for all residents, while hospitalized patients were appraised in detail by laboratory/radiological methods. Multiplex PCR for respiratory viruses and sequencing was performed. Partial HPIV3 HN 581 nt sequences were aligned with HPIV3 sequences from the GenBank database to conduct a phylogenetic analysis, where different bioinformatic approaches were employed. RESULTS In late June 2018, 5 of the 10 units at the facility were affected by the outbreak. Among the 106 residents, 23 (21.7%) developed ARI, and 6 (26.1%) of them were hospitalized. HPIV3 was identified in 18 (73%) of the residents and 5 (83%) of the hospitalized individuals. Isolated HPIV3 strains were classified within the phylogenetic subcluster C5 but grouped on 2 separate branches of the phylogenetic tree. During the entire outbreak period, none of the institution's employees reported symptoms of ARI. CONCLUSIONS Our study has shown that this health care-associated outbreak of HPIV3 infection could have been linked to multiple importation events. Preventive measures in curbing such incidents should be enforced vigorously.
Collapse
Affiliation(s)
- Rok Civljak
- Department of Respiratory Tract Infections,Dr. Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tanja Kosutic-Gulija
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slovic
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Eva Huljev
- Department of Respiratory Tract Infections,Dr. Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikolina Turcic
- Department of Epidemiology, Zagreb County Institute of Public Health, Dugo Selo Branch, Dugo Selo, Croatia
| | - Tomislav Mestrovic
- Clinical Microbiology and Parasitology Unit, Dr. Zora Profozic Polyclinic, Zagreb, Croatia.,University Centre Varaždin, University North, Varaždin, Croatia
| | - Jasmina Vranes
- Clinical Microbiology Department, Dr. Andrija Stampar Teaching Institute of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Suncanica Ljubin-Sternak
- Clinical Microbiology Department, Dr. Andrija Stampar Teaching Institute of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia,
| |
Collapse
|
9
|
Smielewska A, Emmott E, Ranellou K, Popay A, Goodfellow I, Jalal H. UK circulating strains of human parainfluenza 3: an amplicon based next generation sequencing method and phylogenetic analysis. Wellcome Open Res 2018; 3:118. [PMID: 30569021 PMCID: PMC6281019 DOI: 10.12688/wellcomeopenres.14730.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Background: Human parainfluenza viruses type 3 (HPIV3) are a prominent cause of respiratory infection with a significant impact in both pediatric and transplant patient cohorts. Currently there is a paucity of whole genome sequence data that would allow for detailed epidemiological and phylogenetic analysis of circulating strains in the UK. Although it is known that HPIV3 peaks annually in the UK, to date there are no whole genome sequences of HPIV3 UK strains available. Methods: Clinical strains were obtained from HPIV3 positive respiratory patient samples collected between 2011 and 2015. These were then amplified using an amplicon based method, sequenced on the Illumina platform and assembled using a new robust bioinformatics pipeline. Phylogenetic analysis was carried out in the context of other epidemiological studies and whole genome sequence data currently available with stringent exclusion of significantly culture-adapted strains of HPIV3. Results: In the current paper we have presented twenty full genome sequences of UK circulating strains of HPIV3 and a detailed phylogenetic analysis thereof. We have analysed the variability along the HPIV3 genome and identified a short hypervariable region in the non-coding segment between the M (matrix) and F (fusion) genes. The epidemiological classifications obtained by using this region and whole genome data were then compared and found to be identical. Conclusions: The majority of HPIV3 strains were observed at different geographical locations and with a wide temporal spread, reflecting the global distribution of HPIV3. Consistent with previous data, a particular subcluster or strain was not identified as specific to the UK, suggesting that a number of genetically diverse strains circulate at any one time. A small hypervariable region in the HPIV3 genome was identified and it was shown that, in the absence of full genome data, this region could be used for epidemiological surveillance of HPIV3.
Collapse
Affiliation(s)
- Anna Smielewska
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
- Cambridge University Hospitals NHS Foundation Trust Laboratory, Public Health England, Cambridge, Cambridgeshire, CB20QQ, UK
| | - Edward Emmott
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
- Department of Bioengineering, Northeastern University, Boston, MA, 02115-5000, USA
| | - Kyriaki Ranellou
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
- Cambridge University Hospitals NHS Foundation Trust Laboratory, Public Health England, Cambridge, Cambridgeshire, CB20QQ, UK
| | - Ashley Popay
- Eastern Field Epidemiology Unit, Institute of Public Health, Public Health England, Cambridge, Cambridgeshire, CB20SR, UK
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
| | - Hamid Jalal
- Cambridge University Hospitals NHS Foundation Trust Laboratory, Public Health England, Cambridge, Cambridgeshire, CB20QQ, UK
| |
Collapse
|
10
|
Smielewska A, Emmott E, Ranellou K, Popay A, Goodfellow I, Jalal H. UK circulating strains of human parainfluenza 3: an amplicon based next generation sequencing method and phylogenetic analysis. Wellcome Open Res 2018; 3:118. [PMID: 30569021 PMCID: PMC6281019 DOI: 10.12688/wellcomeopenres.14730.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 10/05/2023] Open
Abstract
Background: Human parainfluenza viruses type 3 (HPIV3) are a prominent cause of respiratory infection with a significant impact in both pediatric and transplant patient cohorts. Currently there is a paucity of whole genome sequence data that would allow for detailed epidemiological and phylogenetic analysis of circulating strains in the UK. Although it is known that HPIV3 peaks annually in the UK, to date there are no whole genome sequences of HPIV3 UK strains available. Methods: Clinical strains were obtained from HPIV3 positive respiratory patient samples collected between 2011 and 2015. These were then amplified using an amplicon based method, sequenced on the Illumina platform and assembled using a new robust bioinformatics pipeline. Phylogenetic analysis was carried out in the context of other epidemiological studies and whole genome sequence data currently available with stringent exclusion of significantly culture-adapted strains of HPIV3. Results: In the current paper we have presented twenty full genome sequences of UK circulating strains of HPIV3 and a detailed phylogenetic analysis thereof. We have analysed the variability along the HPIV3 genome and identified a short hypervariable region in the non-coding segment between the M (matrix) and F (fusion) genes. The epidemiological classifications obtained by using this region and whole genome data were then compared and found to be identical. Conclusions: The majority of HPIV3 strains were observed at different geographical locations and with a wide temporal spread, reflecting the global distribution of HPIV3. Consistent with previous data, a particular subcluster or strain was not identified as specific to the UK, suggesting that a number of genetically diverse strains circulate at any one time. A small hypervariable region in the HPIV3 genome was identified and it was shown that, in the absence of full genome data, this region could be used for epidemiological surveillance of HPIV3.
Collapse
Affiliation(s)
- Anna Smielewska
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
- Cambridge University Hospitals NHS Foundation Trust Laboratory, Public Health England, Cambridge, Cambridgeshire, CB20QQ, UK
| | - Edward Emmott
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
- Department of Bioengineering, Northeastern University, Boston, MA, 02115-5000, USA
| | - Kyriaki Ranellou
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
- Cambridge University Hospitals NHS Foundation Trust Laboratory, Public Health England, Cambridge, Cambridgeshire, CB20QQ, UK
| | - Ashley Popay
- Eastern Field Epidemiology Unit, Institute of Public Health, Public Health England, Cambridge, Cambridgeshire, CB20SR, UK
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, Cambridgeshire, CB20QQ, UK
| | - Hamid Jalal
- Cambridge University Hospitals NHS Foundation Trust Laboratory, Public Health England, Cambridge, Cambridgeshire, CB20QQ, UK
| |
Collapse
|
11
|
Jornist I, Muhsen K, Ram D, Lustig Y, Levy V, Orzitser S, Azar R, Weil M, Indenbaum V, Sofer D, Mendelson E, Mandelboim M, Hindiyeh M. Characterization of human parainfluenza virus-3 circulating in Israel, 2012-2015. J Clin Virol 2018; 107:19-24. [PMID: 30114677 DOI: 10.1016/j.jcv.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Human parainfluenza virus 3 (hPIV-3) causes respiratory tract infection. OBJECTIVES The objective of this study was to describe the epidemiology of hPIV-3 infection among hospitalized patients and characterize the circulating strains. STUDY DESIGN A cross-sectional study was conducted using respiratory samples of 15,946 hospitalized patients with respiratory symptoms in 2012-2015 in Israel. All samples were subjected to q-PCR and q-RT-PCR to determine the presence of hPIV-3 and other respiratory viruses. Samples positive for hPIV-3 were subjected to molecular typing and phylogenetic analysis. RESULTS Overall, 547 samples 3.4% (95% CI 3.2-3.7) were positive for hPIV-3. Of these 87 (15.9%) were mixed infections; 41.4% with adenovirus, 40.2% with RSV (40.2%) and 19.5% influenza A viruses. The prevalence of hPIV-3 was highest (5.1%) in children aged 0-4 years. Hospitalization in oncology department was associated with increased likelihood of hPIV-3 infection: adjusted odds ratio [aOR] 2.29 (95% confidence intervals [CI] 1.78-2.96), as well as hospitalization in organ transplantation department: aOR 3.65 (95% CI 2.80-4.76). The predominant lineages were C3c (62.3%) and C1b (24.6%), followed by sub-lineages C5 (8.7%) and C3b (2.9%). A new sub-lineage emerged in our analysis, named C1d, which was 17 (1.5%) nucleotide different from C1a, 25 (2.2%) nucleotide different from C1b and 24 (2.1%) nucleotide different from C1c. DISCUSSION Young children and immunocompromised patients are likely the risk groups for severe respiratory infections with hPIV-3. Strains belonging to lineages C3c and C1b, which are present worldwide, should be targeted in vaccine development. The emergence of new lineage might have public health implications and on vaccine development.
Collapse
Affiliation(s)
- Irina Jornist
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Microbiology and Immunology, Tel-Aviv University, Tel-Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniela Ram
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Virginia Levy
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Sara Orzitser
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Roberto Azar
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Merav Weil
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Viki Indenbaum
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Musa Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
12
|
Pan Y, Zhang Y, Shi W, Peng X, Cui S, Zhang D, Lu G, Liu Y, Wu S, Yang P, Wang Q. Human parainfluenza virus infection in severe acute respiratory infection cases in Beijing, 2014-2016: A molecular epidemiological study. Influenza Other Respir Viruses 2018; 11:564-568. [PMID: 29054112 PMCID: PMC5705688 DOI: 10.1111/irv.12514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 11/27/2022] Open
Abstract
Background Severe acute respiratory infection (SARI) threatens human health and even survival, causing a huge number of hospitalized patients every year. However, as one of the most common respiratory viruses circulated worldwide, the epidemiological and phylogenetic characteristics of human parainfluenza virus (HPIV) in these cases were not well known. Objectives To reveal the epidemiological features of HPIV infection in SARIs in Beijing area from September 2014 to August 2016. Methods A total of 1229 SARI cases in Beijing area were enrolled, investigated, sampled, and tested by multiplex real‐time PCR to identify HPIVs and other common respiratory viruses. Eighteen HPIV‐3 viruses isolated from all HPIV‐positive samples in these SARI cases were sequenced and analyzed. Results Among all enrolled cases, 0.81%, 0.73%, 4.48%, and 0.57% were positive for HPIV‐1 to HPIV‐4, respectively. The highest yield rate of HPIV infection occurred in children under 5 years old (9.07%), followed by the patients over 60 years old (6.02%). The phylogenetic information of HPIV‐3 showed that all viruses belonged to Cluster C3a. Conclusions Besides the young children, the elders older than 60 years also showed a relatively high infection rate of HPIVs, which should be given comparable attentions. Moreover, the HPIV‐3 circulating in China undergoes continued evolution, suggesting the potential risk of evolved HPIV infection should not be overlooked.
Collapse
Affiliation(s)
- Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China.,Capital Medical University School of Public Health, Beijing, China
| | - Yi Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Weixian Shi
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Xiaomin Peng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Shujuan Cui
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Guilan Lu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Yimeng Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Shuangsheng Wu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Peng Yang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China.,Capital Medical University School of Public Health, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control (CDC), Beijing, China.,Research Centre for Preventive Medicine of Beijing, Beijing, China
| |
Collapse
|
13
|
Functional analysis of amino acids at stalk/head interface of human parainfluenza virus type 3 hemagglutinin-neuraminidase protein in the membrane fusion process. Virus Genes 2018. [PMID: 29516315 DOI: 10.1007/s11262-018-1546-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human parainfluenza virus type 3 (hPIV3) is an important respiratory pathogen that causes the majority of viral pneumonia of infants and young children. hPIV3 can infect host cells through the synergistic action of hemagglutinin-neuraminidase (HN) protein and the homotypic fusion (F) protein on the viral surface. HN protein plays a variety of roles during the virus invasion process, such as promoting viral particles to bind to receptors, cleaving sialic acid, and activating the F protein. Crystal structure research shows that HN tetramer adopted a "heads-down" conformation, at least two heads dimmer on flank of the four-helix bundle stalk, which forms a symmetrical interaction interface. The stalk region determines interactions and activation of F protein in specificity, and the heads in down position statically shield these residues. In order to make further research on the function of these amino acids at the hPIV3 HN stalk/head interface, fifteen mutations (8 sites from stalk and 7 sites from head) were engineered into this interface by site-directed mutagenesis in this study. Alanine substitution in this region of hPIV3 HN had various effects on cell fusion promotion, receptor binding, and neuraminidase activity. Besides, L151A also affected surface protein expression efficiency. Moreover, I112A, D120A, and R122A mutations of the stalk region that were masked by global head in down position had influence on the interaction between F and HN proteins.
Collapse
|
14
|
Slovic A, Kosutic-Gulija T, Santak M, Ivancic-Jelecki J, Jagusic M, Ljubin-Sternak S, Mlinarić-Galinović G, Vilibić-Čavlek T, Tabain I, Forcic D. Genetic Variability and Sequence Relatedness of Matrix Protein in Viruses of the Families Paramyxoviridae and Pneumoviridae. Intervirology 2018; 60:181-189. [PMID: 29510403 DOI: 10.1159/000487049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The families Paramyxoviridae and Pneumoviridae comprise a broad spectrum of viral pathogens that affect human health. The matrix (M) protein of these viruses has a central role in their life cycle. In line with this, molecular characteristics of the M proteins from variable viruses that circulated in Croatia were investigated. METHODS Sequences of the M proteins of human parainfluenza virus (HPIV) 1-3 within the family Paramyxoviridae, human metapneumovirus (HMPV), and human respiratory syncytial virus from the family Pneumoviridae were obtained and analyzed. RESULTS M proteins were very diverse among HPIVs, but highly conserved within each virus. More variability was seen in nucleotide sequences of M proteins from the Pneumoviridae family. An insertion of 8 nucleotides in the 3' untranslated region in 1 HMPV M gene sequence was discovered (HR347-12). As there are no samples with such an insertion in the database, this insertion is of interest and requires further research. CONCLUSION While we have confirmed that M proteins were conserved among individual viruses, any changes that are observed should be given attention and further researched. Of special interest is inclusion of HPIV2 M proteins in this analysis, as these proteins have not been studied to the same extent as other paramyxoviruses.
Collapse
Affiliation(s)
- Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Tanja Kosutic-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Maja Santak
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Jelena Ivancic-Jelecki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Maja Jagusic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Teaching Institute of Public Health "Dr. Andrija Štampar", Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Tatjana Vilibić-Čavlek
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Croatian National Institute of Public Health, Zagreb, Croatia
| | - Irena Tabain
- Croatian National Institute of Public Health, Zagreb, Croatia
| | - Dubravko Forcic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| |
Collapse
|
15
|
Detailed genetic analyses of the HN gene in human respirovirus 3 detected in children with acute respiratory illness in the Iwate Prefecture, Japan. INFECTION GENETICS AND EVOLUTION 2018; 59:155-162. [PMID: 29408530 DOI: 10.1016/j.meegid.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
We performed detailed genetic analyses of the partial hemagglutinin-neuraminidase (HN) gene in 34 human respirovirus 3 (HRV3) strains from children with acute respiratory illness during 2013-2015 in Iwate Prefecture, Japan. In addition, we performed analyses of the evolutionary timescale of the gene using the Bayesian Markov chain Monte Carlo (MCMC) method. Furthermore, we analyzed pairwise distances and performed selective pressure analyses followed by linear B-cell epitope mapping and N-glycosylation and phylodynamic analyses. A phylogenetic tree showed that the strains diversified at around 1939, and the rate of molecular evolution was 7.6 × 10-4 substitutions/site/year. Although the pairwise distances were relatively short (0.03 ± 0.018 [mean ± standard deviation, SD]), two positive selection sites (Cys544Trp and Leu555Ser) and no amino acid substitutions were found in the active/catalytic sites. Six epitopes were estimated in this study, and three mouse monoclonal antibody binding sites (amino acid positions 278, 281, and 461) overlapped with two epitopes belonging to subcluster C3 strains. Bayesian skyline plot analyses indicated that subcluster C3 strains have been increasing from 2004, whereas subcluster C1 strains have declined from 2004. Based on these results, Iwate strains were divided into two subclusters and each subcluster evolved independently. Moreover, our results suggested that some predicted linear epitopes (epitopes 3 and 5) are candidates for an HRV3 vaccine motif. To better understand the details of the molecular evolution of HRV, further studies are needed.
Collapse
|
16
|
Košutić-Gulija T, Slovic A, Ljubin-Sternak S, Mlinarić-Galinović G, Forčić D. Genetic analysis of human parainfluenza virus type 3 obtained in Croatia, 2011-2015. J Med Microbiol 2017; 66:502-510. [PMID: 28463659 DOI: 10.1099/jmm.0.000459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE This study investigated the HPIV3 circulating strains in Croatia and whether the other parts of HPIV3 genome (F gene and HN 582 nucleotides fragment) could be equally suitable for genetic and phylogenetic analysis. METHODOLOGY Clinical materials were collected in period 2011-2015 from children suffering from respiratory illnesses. In positive HPIV3 samples viral genome was partially amplified and sequenced for HN and F genes. Obtained sequences were analysed by phylogenetic analysis and genetic characterization was performed. RESULTS All samples from this study belonged to subcluster C and over a short period of time, genetic lineage C3a gained prevalence over the other C genetic lineages, from 39 % in 2011 to more than 90 % in 2013 and 2014. Phylogenetic classifications of HPIV3 based on the entire HN gene, HN 582 nt fragment and entire fusion (F) gene showed identical classification results for Croatian strains and the reference strains. Molecular analysis of the F and HN glycoproteins, showed their similar nucleotide diversity (Fcds P=0.0244 and HNcds P=0.0231) and similar Ka/Ks ratios (F Ka/Ks=0.0553 and HN Ka/Ks=0.0428). Potential N-glycosylation sites, cysteine residues and antigenic sites are generally strongly conserved in HPIV3 glycoproteins from both our and the reference samples. CONCLUSION The HPIV3 subclaster C3 (genetic lineage C3a) became the most detected circulating HPIV3 strain in Croatia. The results indicated that the HN 582 nt and the entire F gene sequences were as good for phylogenetic analysis as the entire HN gene sequence.
Collapse
Affiliation(s)
- Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Andrija Stampar Teaching Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Mlinarić-Galinović
- Department of Virology, Croatian National Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Zagreb, Croatia
| |
Collapse
|
17
|
Tsutsui R, Tsukagoshi H, Nagasawa K, Takahashi M, Matsushima Y, Ryo A, Kuroda M, Takami H, Kimura H. Genetic analyses of the fusion protein genes in human parainfluenza virus types 1 and 3 among patients with acute respiratory infections in Eastern Japan from 2011 to 2015. J Med Microbiol 2017; 66:160-168. [PMID: 28266286 DOI: 10.1099/jmm.0.000431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To genetically explore the fusion protein gene (F) in human parainfluenza virus type 1 (HPIV1) and type 3 (HPIV3) strains, we analysed them in patients with acute respiratory infections in Eastern Japan from 2011 to 2015. METHODOLOGY We constructed phylogenetic trees based on the HPIV and HPIV3 F gene using the maximum likelihood method and conducted P-distance and selective pressure analyses. We also predicted the linear epitopes of the protein in the prototype strains. Furthermore, we mapped the amino acid substitutions of the proteins. RESULTS Nineteen strains of HPIV1 and 53 strains of HPIV3 were detected among the clinical acute respiratory infection cases. The phylogenetic trees indicated that the HPIV1 and HPIV3 strains were classified into clusters II and III and cluster C, respectively. The P-distance values of the HPIV1 and HPIV3 F genes were <0.03. Two positive selection sites were inferred in the HPIV1 (aa 8 and aa 10), and one positive selection site was inferred in the HPIV3 (aa 108), but over 10 negative selection sites were inferred. Four epitopes were predicted for the HPIV1 prototype strains, while five epitopes were predicted for the HPIV3 prototype strain. A positive selection site (aa 108) or the HPIV3 F protein was involved in the predicted epitope. Additionally, we found that an amino acid substitution (R73K) in the LC76627 HPIV3 strain presumably may affect the resistance to neutralization by antibodies. CONCLUSION The F gene of HPIV1 and HPIV3 was relatively well conserved in the eastern part of Japan during the investigation period.
Collapse
Affiliation(s)
- Rika Tsutsui
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan.,Aomori Prefecture Public Health and Environment Center, 1-1-1, Higashitsukurimichi, Aomori-shi, Aomori 030-8566, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Masaki Takahashi
- Research Institute for Environmental Sciences and Public Health of Iwate Prefecture, 1-11-16, Kitaiioka, Morioka-shi, Iwate 020-0857, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, 3-25-13, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hideki Takami
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.,Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|