1
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
3
|
Alam MJ, Uppulapu SK, Tiwari V, Varghese B, Mohammed SA, Adela R, Arava SK, Banerjee SK. Pregestational diabetes alters cardiac structure and function of neonatal rats through developmental plasticity. Front Cardiovasc Med 2022; 9:919293. [PMID: 36176990 PMCID: PMC9514058 DOI: 10.3389/fcvm.2022.919293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Pregestational diabetes (PGDM) leads to developmental impairment, especially cardiac dysfunction, in their offspring. The hyperglycemic microenvironment inside the uterus alters the cardiac plasticity characterized by electrical and structural remodeling of the heart. The altered expression of several transcription factors due to hyperglycemia during fetal development might be responsible for molecular defects and phenotypic changes in the heart. The molecular mechanism of the developmental defects in the heart due to PGDM remains unclear. To understand the molecular defects in the 2-days old neonatal rats, streptozotocin-induced diabetic female rats were bred with healthy male rats. We collected 2-day-old hearts from the neonates and identified the molecular basis for phenotypic changes. Neonates from diabetic mothers showed altered electrocardiography and echocardiography parameters. Transcriptomic profiling of the RNA-seq data revealed that several altered genes were associated with heart development, myocardial fibrosis, cardiac conduction, and cell proliferation. Histopathology data showed the presence of focal cardiac fibrosis and increased cell proliferation in neonates from diabetic mothers. Thus, our results provide a comprehensive map of the cellular events and molecular pathways perturbed in the neonatal heart during PGDM. All of the molecular and structural changes lead to developmental plasticity in neonatal rat hearts and develop cardiac anomalies in their early life.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Soheb Anwar Mohammed
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
- *Correspondence: Sanjay K. Banerjee,
| |
Collapse
|
4
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
5
|
Revuelta JM, Alconero-Camarero AR. Corazón de mujer. CIRUGIA CARDIOVASCULAR 2020. [DOI: 10.1016/j.circv.2020.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Partially Penetrant Cardiac Neural Crest Defects in Hand1 Phosphomutant Mice: Dimer Choice That Is Not So Critical. Pediatr Cardiol 2019; 40:1339-1344. [PMID: 31338559 PMCID: PMC6786956 DOI: 10.1007/s00246-019-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Hand1 is a basic Helix-loop-Helix transcription factor that exhibits post-translationally regulated dimer partner choice that allows for a diverse set of Hand1 transcriptional complexes. Indeed, when Hand1 phosphoregulation is altered, conditionally activated hypophorylation (Hand1PO4-) and phosphorylation mimic (Hand1PO4+) Hand1 alleles disrupt both craniofacial and limb morphogenesis with 100% penetrance. Interestingly, activation of conditional Hand1 Phosphomutant alleles within post-migratory neural crest cells produce heart defects that include ventricular septal defects, double-outlet right ventricle, persistent truncus arteriosus with partial penetrance. Single versus double-lobed thymus is a distinguishing feature between Wnt1-Cre;Hand1PO4-/+ and Wnt1-Cre;Hand1PO4+/+ mice. These data show that although Hand1 dimer regulation plays critical and consistent roles in disrupting craniofacial and limb morphogenesis, Hand1 dimer regulation during cardiac outflow track formation is less critical for normal morphogenesis. This review will present the OFT phenotypes observed in Hand1 Phosphomutant mice, and discuss possible mechanisms of how penetrance differences within the same tissues within the same embryos could be variable.
Collapse
|
7
|
Han X, Zhang J, Liu Y, Fan X, Ai S, Luo Y, Li X, Jin H, Luo S, Zheng H, Yue Y, Chang Z, Yang Z, Tang F, He A, Shen X. The lncRNA Hand2os1/ Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development 2019; 146:146/13/dev176198. [PMID: 31273086 DOI: 10.1242/dev.176198] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Exploration and dissection of potential actions and effects of long noncoding RNA (lncRNA) in animals remain challenging. Here, using multiple knockout mouse models and single cell RNA sequencing, we demonstrate that the divergent lncRNA Hand2os1/Uph has a key complex modulatory effect on the expression of its neighboring gene HAND2 and subsequently on heart development and function. Short deletion of the Hand2os1 promoter in mouse diminishes Hand2os1 transcription to ∼8-32%, but fails to affect HAND2 expression and yields no discernable heart phenotypes. Interestingly, full-length deletion of Hand2os1 in mouse causes moderate yet prevalent upregulation of HAND2 in hundreds of cardiac cells, leading to profound biological consequences, including dysregulated cardiac gene programs, congenital heart defects and perinatal lethality. We propose that the Hand2os1 locus dampens HAND2 expression to restrain cardiomyocyte proliferation, thereby orchestrating a balanced development of cardiac cell lineages. This study highlights the regulatory complexity of the lncRNA Hand2os1 on HAND2 expression, emphasizing the need for complementary genetic and single cell approaches to delineate the function and primary molecular effects of an lncRNA in animals.
Collapse
Affiliation(s)
- Xue Han
- Tsinghua Center for Life Sciences, School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiejie Zhang
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yaxi Liu
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaoying Fan
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shanshan Ai
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yingjie Luo
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xin Li
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Hengwei Jin
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Sai Luo
- Tsinghua Center for Life Sciences, School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zheng
- Tsinghua Center for Life Sciences, School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanzhu Yue
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Zai Chang
- Tsinghua Center for Life Sciences, School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongzhou Yang
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing 100871, China
| | - Aibin He
- Peking Center for Life Sciences, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Medicine, and School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
9
|
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW. A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 2019; 20:386. [PMID: 31101013 PMCID: PMC6525467 DOI: 10.1186/s12864-019-5773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. Results We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. Conclusions We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Bertke
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Laura Cronin
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: Division of Biostatistics and Computational Biology, Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
10
|
Wang M, Ling W, Xiong C, Xie D, Chu X, Li Y, Qiu X, Li Y, Xiao X. Potential Strategies for Cardiac Diseases: Lineage Reprogramming of Somatic Cells into Induced Cardiomyocytes. Cell Reprogram 2019; 21:63-77. [DOI: 10.1089/cell.2018.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mingyu Wang
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chunxia Xiong
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuemin Li
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Animal Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Identification of a multipotent Twist2-expressing cell population in the adult heart. Proc Natl Acad Sci U S A 2018; 115:E8430-E8439. [PMID: 30127033 DOI: 10.1073/pnas.1800526115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Twist transcription factors function as ancestral regulators of mesodermal cell fates in organisms ranging from Drosophila to mammals. Through lineage tracing of Twist2 (Tw2)-expressing cells with tamoxifen-inducible Tw2-CreERT2 and tdTomato (tdTO) reporter mice, we discovered a unique cell population that progressively contributes to cardiomyocytes (CMs), endothelial cells, and fibroblasts in the adult heart. Clonal analysis confirmed the ability of Tw2-derived tdTO+ (Tw2-tdTO+) cells to form CMs in vitro. Within the adult heart, Tw2-tdTO+ CMs accounted for ∼13% of total CMs, the majority of which resulted from fusion of Tw2-tdTO+ cells with existing CMs. Tw2-tdTO+ cells also contribute to cardiac remodeling after injury. We conclude that Tw2-tdTO+ cells participate in lifelong maintenance of cardiac function, at least in part through de novo formation of CMs and fusion with preexisting CMs, as well as in the genesis of other cellular components of the adult heart.
Collapse
|
12
|
HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development. Cell Rep 2018; 19:1602-1613. [PMID: 28538179 DOI: 10.1016/j.celrep.2017.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023] Open
Abstract
The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.
Collapse
|
13
|
Desjardins CA, Naya FJ. Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors. J Biol Chem 2017; 292:10613-10629. [PMID: 28473466 DOI: 10.1074/jbc.m117.776153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Indexed: 12/30/2022] Open
Abstract
Cardiomyocytes acquire their primary specialized function (contraction) before exiting the cell cycle. In this regard, proliferation and differentiation must be precisely coordinated for proper cardiac morphogenesis. Here, we have investigated the complex transcriptional mechanisms employed by cardiomyocytes to coordinate antagonistic cell-cycle and differentiation gene programs through the molecular dissection of the core cardiac transcription factor, MEF2. Knockdown of individual MEF2 proteins, MEF2A, -C, and -D, in primary neonatal cardiomyocytes resulted in radically distinct and opposite effects on cellular homeostasis and gene regulation. MEF2A and MEF2D were absolutely required for cardiomyocyte survival, whereas MEF2C, despite its major role in cardiac morphogenesis and direct reprogramming, was dispensable for this process. Inhibition of MEF2A or -D also resulted in the activation of cell-cycle genes and down-regulation of markers of terminal differentiation. In striking contrast, the regulation of cell-cycle and differentiation gene programs by MEF2C was antagonistic to that of MEF2A and -D. Computational analysis of regulatory regions from MEF2 isoform-dependent gene sets identified the Notch and Hedgehog signaling pathways as key determinants in coordinating MEF2 isoform-specific control of antagonistic gene programs. These results reveal that mammalian MEF2 family members have distinct transcriptional functions in cardiomyocytes and suggest that these differences are critical for proper development and maturation of the heart. Analysis of MEF2 isoform-specific function in neonatal cardiomyocytes has yielded insight into an unexpected transcriptional regulatory mechanism by which these specialized cells utilize homologous members of a core cardiac transcription factor to coordinate cell-cycle and differentiation gene programs.
Collapse
Affiliation(s)
- Cody A Desjardins
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
14
|
Mishra S, Tripathi R, Singh S. Crosstalk of proteins, miRNAs involved in metastatic and epithelial–mesenchymal transition pathways. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1256843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Tarnawski L, Xian X, Monnerat G, Macaulay IC, Malan D, Borgman A, Wu SM, Fleischmann BK, Jovinge S. Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes. PLoS One 2015; 10:e0135880. [PMID: 26323090 PMCID: PMC4556377 DOI: 10.1371/journal.pone.0135880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022] Open
Abstract
In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes.
Collapse
Affiliation(s)
- Laura Tarnawski
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Xiaojie Xian
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Gustavo Monnerat
- Institute of Physiology I, Life and Brain Center, Department of Cardiac Surgery, University of Bonn, Bonn, Germany; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iain C Macaulay
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England
| | - Daniela Malan
- Institute of Physiology I, Life and Brain Center, Department of Cardiac Surgery, University of Bonn, Bonn, Germany
| | - Andrew Borgman
- Spectrum Health Fredrik Meijer Heart and Vascular Institute, Grand Rapids, Michigan, United States of America
| | - Sean M Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California, United States of America; Stanford Cardiovascular Institute, Stanford, California, United States of America; Dept of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Department of Cardiac Surgery, University of Bonn, Bonn, Germany; Pharma Center Bonn, University of Bonn, Bonn, Germany
| | - Stefan Jovinge
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden; Van Andel Research Institute, Grand Rapids, Michigan, United States of America; Spectrum Health Fredrik Meijer Heart and Vascular Institute, Grand Rapids, Michigan, United States of America
| |
Collapse
|
16
|
Ottewell PD, O'Donnell L, Holen I. Molecular alterations that drive breast cancer metastasis to bone. BONEKEY REPORTS 2015; 4:643. [PMID: 25848532 DOI: 10.1038/bonekey.2015.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
Abstract
Epithelial cancers including breast and prostate commonly progress to form incurable bone metastases. For this to occur, cancer cells must adapt their phenotype and behaviour to enable detachment from the primary tumour, invasion into the vasculature, and homing to and subsequent colonisation of bone. It is widely accepted that the metastatic process is driven by the transformation of cancer cells from a sessile epithelial to a motile mesenchymal phenotype through epithelial-mesenchymal transition (EMT). Dissemination of these motile cells into the circulation provides the conduit for cells to metastasise to distant organs. However, accumulating evidence suggests that EMT is not sufficient for metastasis to occur and that specific tissue-homing factors are required for tumour cells to lodge and grow in bone. Once tumour cells are disseminated in the bone environment, they can revert into an epithelial phenotype through the reverse process of mesenchymal-epithelial transition (MET) and form secondary tumours. In this review, we describe the molecular alterations undertaken by breast cancer cells at each stage of the metastatic cascade and discuss how these changes facilitate bone metastasis.
Collapse
Affiliation(s)
- Penelope D Ottewell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| | - Liam O'Donnell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| | - Ingunn Holen
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| |
Collapse
|
17
|
Weaver DD, Norby AR, Rosenfeld JA, Proud VK, Spangler BE, Ming JE, Chisholm E, Zackai EH, Lee BH, Edelmann L, Desnick RJ. Chromosome 1p36.22p36.21 duplications/triplication causes Setleis syndrome (focal facial dermal dysplasia type III). Am J Med Genet A 2015; 167A:1061-70. [PMID: 25728400 DOI: 10.1002/ajmg.a.36973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/07/2014] [Indexed: 11/10/2022]
Abstract
Focal facial dermal dysplasias (FFDD) are characterized by congenital bitemporal or preauricular atrophic skin lesions, and either autosomal dominant or autosomal recessive inheritance. Setleis syndrome (SS), FFDD type III, is a severe form of FFDD with the ectodermal lesions plus other striking facial features. Autosomal recessive nonsense and frameshift mutations in TWIST2 have been found to cause SS in some but not all individuals. Here, we report on four unrelated individuals, one with an unclassified FFDD and the other three with classic SS. Chromosomal microarray analyses revealed unique copy number variants of 1p36 in two individuals with duplications at 1p36.22p36.21 and one with a triplication at 1p36.22p36.21. The fourth patient had normal chromosomes by microarray analysis. All four patients had normal TWIST2 exonic sequences. We propose that a dosage effect of one or more of the 30 genes in the 1.3 Mb 1p36.22p36.21 region of overlap is responsible for FFDD/SS manifestations in some individuals, and this mechanism would be inherited as an autosomal dominant trait. In patients with no duplication/triplication of the 1p36.22p36.21 region and no mutations in TWIST2, there are mutation(s) in one of the 30 genes in this region or mutations in other as yet unidentified genes at different locations that may affect the expressions of genes in this region or act independently to cause this developmental disease phenotype.
Collapse
Affiliation(s)
- David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Loss of Hand2 in a population of Periostin lineage cells results in pronounced bradycardia and neonatal death. Dev Biol 2014; 388:149-58. [PMID: 24565998 DOI: 10.1016/j.ydbio.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/26/2014] [Accepted: 02/08/2014] [Indexed: 11/21/2022]
Abstract
The Periostin Cre (Postn-Cre) lineage includes endocardial and neural crest derived mesenchymal cells of the cardiac cushions, neural crest-derived components of the sympathetic and enteric nervous systems, and cardiac fibroblasts. In this study, we use the Postn-Cre transgenic allele to conditionally ablate Hand2 (H2CKO). We find that Postn-Cre H2CKOs die shortly after birth despite a lack of obvious cardiac structural defects. To ascertain the cause of death, we performed a detailed comparison of the Postn-Cre lineage and Hand2 expression at mid and late stages of embryonic development. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla as well as the sphenopalatine ganglia of the head. In both cases, Hand2 loss-of-function dramatically reduces expression of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Expression of the genes Tyrosine Hydroxylase (Th) and Phenylethanolamine N-methyltransferase (Pnmt), which also encode essential catecholaminergic enzymes, were severely reduced in postnatal adrenal glands. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit sinus bradycardia. In conjunction with the aforementioned gene expression analyses, these results strongly suggest that the observed postnatal lethality occurs due to a catecholamine deficiency and subsequent heart failure.
Collapse
|
19
|
Qian J, Luo Y, Gu X, Zhan W, Wang X. Twist1 promotes gastric cancer cell proliferation through up-regulation of FoxM1. PLoS One 2013; 8:e77625. [PMID: 24204899 PMCID: PMC3812021 DOI: 10.1371/journal.pone.0077625] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/11/2023] Open
Abstract
Twist-related protein 1 (Twist1), also known as class A basic helix-loop-helix protein 38 (bHLHa38), has been implicated in cell lineage determination and differentiation. Previous studies demonstrate that Twist1 expression is up-regulated in gastric cancer with poor clinical outcomes. Besides, Twist1 is suggested to be involved in progression of human gastric cancer. However, its biological functions remain largely unexplored. In the present study, we show that Twist 1 overexpression leads to a significant up-regulation of FoxM1, which plays a key role in cell cycle progression in gastric cancer cells. In contrast, knockdown of Twist 1 reduces FoxM1 expression, suggesting that FoxM1 might be a direct transcriptional target of Twist 1. At the molecular level, we further reveal that Twist 1 could bind to the promoter region of FoxM1, and subsequently recruit p300 to induce FoxM1 mRNA transcription. Therefore, our results uncover a previous unknown Twist 1/FoxM1 regulatory pathway, which may help to understand the mechanisms of gastric cancer proliferation.
Collapse
Affiliation(s)
- Jianxin Qian
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
- * E-mail:
| | - Yizhou Luo
- Department of Oncology & Hematology, the 454th Hospital of PLA, Nanjing, China
| | - Xiaoqiang Gu
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
| | - Wang Zhan
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
| | - Xi Wang
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
| |
Collapse
|
20
|
Schlueter J, Brand T. Subpopulation of proepicardial cells is derived from the somatic mesoderm in the chick embryo. Circ Res 2013; 113:1128-37. [PMID: 24019406 DOI: 10.1161/circresaha.113.301347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RATIONALE The proepicardium (PE) is a transient structure forming at the venous pole of the heart and gives rise to the epicardium, fibroblasts, and smooth muscle cells. The embryological origin of the PE is presently unclear. Asymmetrical formation of the PE on the right inflow tract is a conserved feature of many vertebrate embryos, and in the chicken is under the control of fibroblast growth factor 8 and snail homolog 1. OBJECTIVE To gain further insight into the process of asymmetrical PE formation, we studied the role of TWIST1 during PE formation in the chick embryo. METHODS AND RESULTS TWIST1 is asymmetrically expressed on the right side in the somatic mesoderm under the control of snail homolog 1. Fate mapping experiments revealed a contribution of the somatic mesoderm to the PE. After colonization of the heart, this cell lineage gives rise to the epicardium, smooth muscle cells, and potentially fibroblast. Suppression of TWIST1 function in the right coelomic cavity caused a severe disruption of the villous protrusions of the PE and Wilms tumor 1 and transcription factor 21 expression. Rescue with the corresponding mouse cDNA normalized gene expression and PE morphology. Forced expression of TWIST1 on the left side induced ectopic expression domains of Wilms tumor 1 and transcription factor 21. CONCLUSIONS A significant proportion of the PE has its origin outside of the currently proposed domain in the splanchnic layer of the lateral plate mesoderm. The phenotype in embryos subjected to TWIST1 loss- or gain-of-function suggests an important contribution of somatic mesoderm to the mesothelial cell layer of the PE.
Collapse
Affiliation(s)
- Jan Schlueter
- From the Heart Science Centre, National Heart and Lung Institute, Imperial College London, United Kingdom
| | | |
Collapse
|
21
|
|