1
|
Francini E, Badillo Pazmay GV, Fumarola S, Procopio AD, Olivieri F, Marchegiani F. Bi-Directional Relationship Between Bile Acids (BAs) and Gut Microbiota (GM): UDCA/TUDCA, Probiotics, and Dietary Interventions in Elderly People. Int J Mol Sci 2025; 26:1759. [PMID: 40004221 PMCID: PMC11855466 DOI: 10.3390/ijms26041759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota (GM), the set of microorganisms that colonizes our intestinal tract, can undergo many changes, some of which are age related. Several studies have shown the importance of maintaining a healthy GM for a good quality of life. In the elderly, maintaining a good GM may become a real defense against infection by pathogens, such as C. difficile. In addition to the GM, bile acids (BAs) have been shown to provide an additional defense mechanism against the proliferation of pathogenic bacteria and to regulate bacterial colonization of the gut. BAs are molecules produced in the host liver and secreted with the bile into the digestive tract, and they are necessary for the digestion of dietary lipids. In the gut, host-produced BAs are metabolized by commensal bacteria to secondary BAs. In general GM and host organisms interact in many ways. This review examines the relationship between GM, BAs, aging, and possible new approaches such as dietary interventions, administration of ursodesoxycholic acid/tauroursodesoxycholic acid (UDCA/TUDCA), and probiotics to enrich the microbial consortia of the GM in the elderly and achieve a eubiotic state necessary for maintaining good health. The presence of Firmicutes and Actinobacteria together with adequate levels of secondary BAs would provide protection and improve the frailty state in the elderly. In fact, an increase in secondary BAs has been observed in centenarians who have reached old age without serious health issues, which may justify their active role in achieving longevity.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| | - Gretta V. Badillo Pazmay
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Stefania Fumarola
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| |
Collapse
|
2
|
Brea R, Casanova N, Alvarez-Lucena C, Fuertes-Agudo M, Luque-Tevar M, Cucarella C, Capitani MC, Marinochi MV, Fusini ME, Lahoz A, Nogueroles ML, Fraile J, Ronco MT, Boscá L, González-Rodríguez Á, García-Monzón C, Martín-Sanz P, Casado M, Francés DE. Beneficial effects of hepatic cyclooxygenase-2 expression against cholestatic injury after common bile duct ligation in mice. Liver Int 2024; 44:2409-2423. [PMID: 38847511 DOI: 10.1111/liv.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. METHODS We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. RESULTS After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E2 against BA toxicity. CONCLUSIONS Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.
Collapse
Affiliation(s)
- Rocío Brea
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Natalia Casanova
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María Luque-Tevar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María C Capitani
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - María V Marinochi
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Matías E Fusini
- Cátedra de Histología y Embriología Humana-Fac. Cs. Médicas-UNR, Rosario, Argentina
| | | | | | - Juan Fraile
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - María T Ronco
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmelo García-Monzón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| |
Collapse
|
3
|
Francini E, Orlandoni P, Sparvoli D, Jukic Peladic N, Cardelli M, Recchioni R, Silvi S, Stocchi V, Donati Zeppa S, Procopio AD, Capalbo M, Lattanzio F, Olivieri F, Marchegiani F. Possible Role of Tauroursodeoxycholic Acid (TUDCA) and Antibiotic Administration in Modulating Human Gut Microbiota in Home Enteral Nutrition Therapy for the Elderly: A Case Report. Int J Mol Sci 2024; 25:7115. [PMID: 39000220 PMCID: PMC11240908 DOI: 10.3390/ijms25137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) increases the influx of primary bile acids into the gut. Results obtained on animal models suggested that Firmicutes and Proteobacteria phyla are more resistant to bile acids in rats. As part of a pilot study investigating the role of probiotics supplementation in elderly people with home enteral nutrition (HEN), a case of a 92-year-old woman with HEN is reported in the present study. She lives in a nursing home and suffers from Alzheimer's disease (AD); the patient had been prescribed TUDCA for lithiasis cholangitis. The aim of this case report is therefore to investigate whether long-term TUDCA administration may play a role in altering the patient's gut microbiota (GM) and the impact of an antibiotic therapy on the diversity of microbial species. Using next generation sequencing (NGS) analysis of the bacterial 16S ribosomal RNA (rRNA) gene a dominant shift toward Firmicutes and a remodeling in Proteobacteria abundance was observed in the woman's gut microbiota. Considering the patient's age, health status and type of diet, we would have expected to find a GM with a prevalence of Bacteroidetes phylum. This represents the first study investigating the possible TUDCA's effect on human GM.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
| | - Paolo Orlandoni
- Clinical Nutrition, IRCCS INRCA, 60127 Ancona, Italy; (P.O.); (D.S.); (N.J.P.)
| | - Debora Sparvoli
- Clinical Nutrition, IRCCS INRCA, 60127 Ancona, Italy; (P.O.); (D.S.); (N.J.P.)
| | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (M.C.); (F.O.)
| | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Vilberto Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, 00166 Rome, Italy;
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Maria Capalbo
- General Direction, IRCCS INRCA, 60124 Ancona, Italy;
| | | | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (M.C.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (R.R.); (A.D.P.); (F.M.)
| |
Collapse
|
4
|
Huang C, Xu S, Chen R, Ding Y, Fu Q, He B, Jiang T, Zeng B, Bao M, Li S. Assessing causal associations of bile acids with obesity indicators: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38610. [PMID: 38905395 PMCID: PMC11191951 DOI: 10.1097/md.0000000000038610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Maintaining a balanced bile acids (BAs) metabolism is essential for lipid and cholesterol metabolism, as well as fat intake and absorption. The development of obesity may be intricately linked to BAs and their conjugated compounds. Our study aims to assess how BAs influence the obesity indicators by Mendelian randomization (MR) analysis. Instrumental variables of 5 BAs were obtained from public genome-wide association study databases, and 8 genome-wide association studies related to obesity indicators were used as outcomes. Causal inference analysis utilized inverse-variance weighted (IVW), weighted median, and MR-Egger methods. Sensitivity analysis involved MR-PRESSO and leave-one-out techniques to detect pleiotropy and outliers. Horizontal pleiotropy and heterogeneity were assessed using the MR-Egger intercept and Cochran Q statistic, respectively. The IVW analysis revealed an odds ratio of 0.94 (95% confidence interval: 0.88, 1.00; P = .05) for the association between glycolithocholate (GLCA) and obesity, indicating a marginal negative causal association. Consistent direction of the estimates obtained from the weighted median and MR-Egger methods was observed in the analysis of the association between GLCA and obesity. Furthermore, the IVW analysis demonstrated a suggestive association between GLCA and trunk fat percentage, with a beta value of -0.014 (95% confidence interval: -0.027, -0.0004; P = .04). Our findings suggest a potential negative causal relationship between GLCA and both obesity and trunk fat percentage, although no association survived corrections for multiple comparisons. These results indicate a trend towards a possible association between BAs and obesity, emphasizing the need for future studies.
Collapse
Affiliation(s)
- Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qingming Fu
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Ting Jiang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Hintermann E, Tondello C, Fuchs S, Bayer M, Pfeilschifter JM, Taubert R, Mollenhauer M, Elferink RPJO, Manns MP, Christen U. Blockade of neutrophil extracellular trap components ameliorates cholestatic liver disease in Mdr2 (Abcb4) knockout mice. J Autoimmun 2024; 146:103229. [PMID: 38653165 DOI: 10.1016/j.jaut.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.
Collapse
Affiliation(s)
- Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Camilla Tondello
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sina Fuchs
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Dekker SEI, Bierau J, Giera M, Blomberg N, Drenth JPH, Mayboroda OA, de Fijter JW, Soonawala D. Serum bile acids associate with liver volume in polycystic liver disease and decrease upon treatment with lanreotide. Eur J Clin Invest 2024; 54:e14147. [PMID: 38071418 DOI: 10.1111/eci.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. METHODS With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. RESULTS Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. CONCLUSION In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.
Collapse
Affiliation(s)
- Shosha E I Dekker
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Darius Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, the Netherlands
| |
Collapse
|
7
|
Lan H, Zhang Y, Fan M, Wu B, Wang C. Pregnane X receptor as a therapeutic target for cholestatic liver injury. Drug Metab Rev 2023; 55:371-387. [PMID: 37593784 DOI: 10.1080/03602532.2023.2248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Cholestatic liver injury (CLI) is caused by toxic bile acids (BAs) accumulation in the liver and can lead to inflammation and liver fibrosis. The mechanisms underlying CLI development remain unclear, and this disease has no effective cure. However, regulating BA synthesis and homeostasis represents a promising therapeutic strategy for CLI treatment. Pregnane X receptor (PXR) plays an essential role in the metabolism of endobiotics and xenobiotics via the transcription of metabolic enzymes and transporters, which can ultimately modulate BA homeostasis and exert anticholestatic effects. Furthermore, recent studies have demonstrated that PXR exhibits antifibrotic and anti-inflammatory properties, providing novel insights into treating CLI. Meanwhile, several drugs have been identified as PXR agonists that improve CLI. Nevertheless, the precise role of PXR in CLI still needs to be fully understood. This review summarizes how PXR improves CLI by ameliorating cholestasis, inhibiting inflammation, and reducing fibrosis and discusses the progress of promising PXR agonists for treating CLI.
Collapse
Affiliation(s)
- Huan Lan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Bingxin Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
8
|
Li J, Liu X, Shi Y, Xie Y, Yang J, Du Y, Zhang A, Wu J. Differentiation in TCM patterns of chronic obstructive pulmonary disease by comprehensive metabolomic and lipidomic characterization. Front Immunol 2023; 14:1208480. [PMID: 37492573 PMCID: PMC10363632 DOI: 10.3389/fimmu.2023.1208480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a complex disease involving inflammation, cell senescence, and autoimmunity. Dialectical treatment for COPD with traditional Chinese medicine (TCM) has the advantage of fewer side effects, more effective suppression of inflammation, and improved immune function. However, the biological base of TCM pattern differentiation in COPD remains unclear. Methods Liquid Chromatography-Quadrupole-Orbitrap mass spectrometry (LC-Q-Orbitrap MS/MS) based metabolomics and lipidomics were used to analyze the serum samples from COPD patients of three TCM patterns in Lung Qi Deficiency (n=65), Lung-Kidney Qi Deficiency (n=54), Lung-Spleen Qi Deficiency (n=52), and healthy subjects (n=41). Three cross-comparisons were performed to characterize metabolic markers for different TCM patterns of COPD vs healthy subjects. Results We identified 28, 8, and 16 metabolites with differential abundance between three TCM patterns of COPD vs healthy subjects, respectively, the metabolic markers included cortisol, hypoxanthine, fatty acids, alkyl-/alkenyl-substituted phosphatidylethanolamine, and phosphatidylcholine, etc. Three panels of metabolic biomarkers specific to the above three TCM patterns yielded areas under the receiver operating characteristic curve of 0.992, 0.881, and 0.928, respectively, with sensitivity of 97.1%, 88.6%, and 91.4%, respectively, and specificity of 96.4%, 81.8%, and 83.9%, respectively. Discussion Combining metabolomics and lipidomics can more comprehensively and accurately trace metabolic markers. As a result, the differences in metabolism were proven to underlie different TCM patterns of COPD, which provided evidence to aid our understanding of the biological basis of dialectical treatment, and can also serve as biomarkers for more accurate diagnosis.
Collapse
Affiliation(s)
- Jiansheng Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinguang Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanmin Shi
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Xie
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianya Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Du
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ang Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinyan Wu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Rini SS, Wibawa IDN. Evaluation and Management of Chronic Cholestatic Liver Diseases. Middle East J Dig Dis 2023; 15:148-155. [PMID: 38023462 PMCID: PMC10660321 DOI: 10.34172/mejdd.2023.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/07/2023] [Indexed: 12/01/2023] Open
Abstract
Cholestasis is defined as stagnation or a marked reduction in bile secretion and flow. Cholestatic jaundice can thus be classified as intrahepatic or extrahepatic cholestatic, depending on the level of obstruction to bile flow. It is important to recognize the complications of cholestatic in patients with chronic cholestatic liver disease. The two most common complications of cholestasis are pruritus and fatigue, with the former being the most responsive to treatment. Cholestyramine is the first-line treatment for cholestatic pruritus. Rifampicin and oral opioid antagonist naltrexone are extremely effective second-line treatments. To date, there are no specific treatments for chronic cholestatic fatigue management. Osteoporosis is a complication that can arise in chronic cholestatic conditions. It appears to be more prominent in individuals with cholestatic liver disease than in patients with other chronic liver diseases with an increased risk of fracture. The evaluation of osteoporosis in individuals with chronic cholestasis is similar to that in the general population. Antiresorptive agents such as bisphosphonates are the first-line treatment choice for osteoporosis in patients with chronic cholestasis. Other less common complications include dyslipidemia, fat-soluble vitamin deficiency, and steatorrhea. Understanding and treating these conditions can have a significant impact on the morbidity and quality of life in this group of patients. This review aimed to provide further information about the complications of chronic cholestasis and to highlight evidence-based test practices for the evaluation and effective management of these complications.
Collapse
Affiliation(s)
- Sandra Surya Rini
- Department of Internal Medicine, Bali Jimbaran Hospital, Badung, Bali, Indonesia
| | - I Dewa Nyoman Wibawa
- Department of Internal Medicine and Endoscopic Unit, BaliMed Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
10
|
Xi L, Shi A, Shen T, Wang G, Wei Y, Guo J. Licraside as novel potent FXR agonist for relieving cholestasis: structure-based drug discovery and biological evaluation studies. Front Pharmacol 2023; 14:1197856. [PMID: 37397498 PMCID: PMC10309033 DOI: 10.3389/fphar.2023.1197856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Cholestasis is a common clinical disease caused by a disorder in bile acids (BAs) homeostasis, which promotes its development. The Farnesoid X receptor (FXR) plays a critical role in regulating BAs homeostasis, making it an essential target for cholestasis treatment. Although several active FXR agonists have been identified, effective drugs for cholestasis are still lacking. To address this, a molecular docking-based virtual screening method was used to identify potential FXR agonists. A hierarchical screening strategy was employed to improve the screening accuracy, and six compounds were selected for further evaluation. Dual-luciferase reporter gene assay was used to demonstrate FXR activation by the screened compounds, and their cytotoxicity was then evaluated. Among the compounds, licraside showed the best performance and was selected for in vivo evaluation using an ANIT-induced cholestasis animal model. Results demonstrated that licraside significantly reduced biliary TBA, serum ALT, AST, GGT, ALP, TBIL, and TBA levels. Liver histopathological analysis showed that licraside also had a therapeutic effect on ANIT-induced liver injury. Overall, these findings suggest that licraside is an FXR agonist with potential therapeutic effects on cholestasis. This study provides valuable insights into the development of novel lead compounds from traditional Chinese medicine for cholestasis treatment.
Collapse
Affiliation(s)
- Lili Xi
- Office of Institution of Drug Clinical Trial, The First Hospital of Lanzhou University, Lanzhou, China
| | - Axi Shi
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tiantian Shen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Guoxu Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| |
Collapse
|
11
|
Wang G, Zhang X, Zhou Z, Song C, Jin W, Zhang H, Wu W, Yi Y, Cui H, Zhang P, Liu X, Xu W, Shen X, Shen W, Wang X. Sphingosine 1-phosphate receptor 2 promotes the onset and progression of non-alcoholic fatty liver disease-related hepatocellular carcinoma through the PI3K/AKT/mTOR pathway. Discov Oncol 2023; 14:4. [PMID: 36631680 PMCID: PMC9834486 DOI: 10.1007/s12672-023-00611-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Recent studies have revealed an increase in the incidence rate of non-alcoholic fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC). Furthermore, the association of Sphingosine 1-phosphate receptor 2 (S1PR2) with various types of tumours is identified, and the metabolism of conjugated bile acids (CBAs) performs an essential function in the onset and development of HCC. However, the association of CBA and S1PR2 with NAFLD-HCC is unclear. METHODS The relationship between the expression of S1PR2 and the prognosis of patients suffering from NAFLD-HCC was investigated by bioinformatics techniques. Subsequently, the relationship between S1PR2 and the biological behaviours of HCC cell lines Huh 7 and HepG2 was explored by conducting molecular biology assays. Additionally, several in vivo animal experiments were carried out for the elucidation of the biological impacts of S1PR2 inhibitors on HCC cells. Finally, We used Glycodeoxycholic acid (GCDA) of CBA to explore the biological effects of CBA on HCC cell and its potential mechanism. RESULTS High S1PR2 expression was linked to poor prognosis of the NAFLD-HCC patients. According to cellular assay results, S1PR2 expression could affect the proliferation, invasion, migration, and apoptosis of Huh 7 and HepG2 cells, and was closely associated with the G1/G2 phase of the cell cycle. The experiments conducted in the In vivo conditions revealed that the overexpression of S1PR2 accelerated the growth of subcutaneous tumours. In addition, JTE-013, an antagonist of S1PR2, effectively inhibited the migration and proliferation of HCC cells. Furthermore, the bioinformatics analysis highlighted a correlation between S1PR2 and the PI3K/AKT/mTOR pathway. GCDA administration further enhanced the expression levels of p-AKT, p-mTOR, VEGF, SGK1, and PKCα. Moreover, both the presence and absence of GCDA did not reveal any significant change in the levels of S1PR2, p-AKT, p-mTOR, VEGF, SGK1, and PKCα proteins under S1PR2 knockdown, indicating that CBA may regulates the PI3K/AKT/mTOR pathway by mediating S1PR2 expression. CONCLUSION S1PR2 is a potential prognostic biomarker in NAFLD-HCC. In addition, We used GCDA in CBAs to treat HCC cell and found that the expression of S1PR2 was significantly increased, and the expression of PI3K/AKT/mTOR signalling pathway-related signal molecules was also significantly enhanced, indicating that GCDA may activate PI3K/AKT/mTOR signalling pathway by up-regulating the expression of S1PR2, and finally affect the activity of hepatocellular carcinoma cells. S1PR2 can be a candidate therapeutic target for NAFLD-HCC. Collectively, the findings of this research offer novel perspectives on the prevention and treatment of NAFLD-HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Chao Song
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Weixin Wu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiqiang Xu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Shuwen H, Yangyanqiu W, Jian C, Boyang H, Gong C, Jing Z. Synergistic effect of sodium butyrate and oxaliplatin on colorectal cancer. Transl Oncol 2022; 27:101598. [PMID: 36512976 PMCID: PMC9763735 DOI: 10.1016/j.tranon.2022.101598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxaliplatin (OXA) is a chemotherapy agent commonly used in the treatment of colorectal cancer (CRC). Sodium butyrate (NaB) has an antitumor effect. METHODS In total, 30 patients in stage III who completed 8 cycles of chemotherapy regimens were recruited for this study. The patients were divided into good and bad groups based on the chemotherapy efficacy. Gas chromatography-mass spectrometry (GC/MS) was used to detect microbial metabolites in stool samples from CRC patients. Cell counting kit-8 (CCK-8), Annexin-V APC/7-AAD double staining, Transwell assays, scratch-wound assays, and EdU assays were used to detect cell proliferation, apoptosis, invasion and migration, respectively. Fluoroelectron microscopy was used to observe the cell structures. To verify the inhibitory effect of NaB and OXA at animal level, a subcutaneous transplanted tumor model was established. Finally, 16S sequencing technology was used to detect intestinal bacteria. GC-MS was used to detect metabolites in mouse stools. RESULTS NaB was a differential metabolite that affected the efficacy of OXA. NAB and oxaliplatin can synergically inhibit cell proliferation, migration and invasion, and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of oxaliplatin and sodium butyrate on tumor in mice. In addition, the intestinal microbe detection and microbial metabolite detection in fecal samples from mice showed significant differences between butyrate-producing bacteria and NaB. CONCLUSION NaB and OXA can synergistically inhibit the proliferation, invasion and metastasis of CRC cells and promote the apoptosis of CRC cells. NaB, as an OXA synergist, has the potential to become a new clinical adjuvant in CRC chemotherapy.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China,Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, PR China
| | - Wang Yangyanqiu
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, PR China
| | - Chu Jian
- Zhejiang Chinese Medical University, Zhejiang Province, PR China
| | - Hu Boyang
- Zhejiang Chinese Medical University, Zhejiang Province, PR China
| | - Chen Gong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China,Corresponding author at: No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, PR China.
| |
Collapse
|
13
|
Frisch K, Mortensen FV, Munk OL, Gormsen LC, Alstrup AKO. N-(4-[ 18F]fluorobenzyl)cholylglycine, a potential tracer for positron emission tomography of enterohepatic circulation and drug-induced inhibition of ileal bile acid transport. A proof-of-concept PET/CT study in pigs. Nucl Med Biol 2022; 114-115:49-57. [PMID: 36095922 DOI: 10.1016/j.nucmedbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for bile acids to function as detergents and signal carriers. Perturbation of the EHC by disease or drugs may lead to serious and life-threatening liver and gastrointestinal disorders. In this proof-of-concept study in pigs, we investigate the potential of N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly) as tracer for quantitative positron emission tomography (PET) of the EHC of conjugated bile acids. METHODS The biodistribution of [18F]FBCGly was investigated by PET/CT in domestic pigs following intravenous and intraileal administration of the tracer. Hepatic kinetics were estimated from PET and blood data using a 2-tissue compartmental model and dual-input of [18F]FBCGly. The ileal uptake of [18F]FBCGly was investigated with co-injection of nifedipine and endogenous cholyltaurine. Dosimetry was estimated from the PET data using the Olinda 2.0 software. Blood, bile and urine samples were analyzed for possible fluorine-18 labelled metabolites of [18F]FBCGly. RESULTS [18F]FBCGly was rapidly taken up by the liver and excreted into bile, and underwent EHC without being metabolized. Both nifedipine and endogenous cholyltaurine inhibited the ileal uptake of [18F]FBCGly. The flow-dependent hepatic uptake clearance was estimated to median 1.2 mL blood/min/mL liver tissue. The mean residence time of [18F]FBCGly in hepatocytes was 4.0 ± 1.1 min. Critical organs for [18F]FBCGly were the gallbladder wall (0.94 mGy/MBq) and the small intestine (0.50 mGy/MBq). The effective dose for [18F]FBCGly was 36 μSv/MBq. CONCLUSION We have shown that [18F]FBCGly undergoes EHC in pigs without being metabolized and that its ileal uptake is inhibited by nifedipine and endogenous bile acids. Combined with our previous findings in rats, we believe that [18F]FBCGly has potential as PET tracer for assessment of EHC of conjugated bile acids under physiological conditions as well as conditions with perturbed hepatic and ileal bile acid transport.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Frank Viborg Mortensen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
15
|
Han X, Wang J, Gu H, Guo H, Cai Y, Liao X, Jiang M. Predictive value of serum bile acids as metabolite biomarkers for liver cirrhosis: a systematic review and meta-analysis. Metabolomics 2022; 18:43. [PMID: 35759044 DOI: 10.1007/s11306-022-01890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION A large number of studies have explored the potential biomarkers for detecting liver cirrhosis in an early stage, yet consistent conclusions are still warranted. OBJECTIVES To conduct a review and a meta-analysis of the existing studies that test the serum level of bile acids in cirrhosis as the potential biomarkers to predict cirrhosis. METHODS Six databases had been searched from inception date to April 12, 2021. Screening and selection of the records were based on the inclusion criteria. The risk of bias was assessed with the Newcastle-Ottawa quality assessment scale (NOS). Mean difference (MD) and confidence intervals 95% (95% CI) were calculated by using the random effect model for the concentrations of bile acids in the meta-analysis, and I2 statistic was used to measure studies heterogeneity. This study was registered on PROSPERO. RESULTS A total of 1583 records were identified and 31 studies with 2679 participants (1263 in the cirrhosis group, 1416 in the healthy control group) were included. The quality of included studies was generally high, with 25 studies (80.6%) rated over 7 stars. A total of 45 bile acids or their ratios in included studies were extracted. 36 increased in the cirrhosis group compared with those of the healthy controls by a qualitative summary, 5 decreased and 4 presented with mixing results. The result of meta-analysis among 12 studies showed that 13 bile acids increased, among which four primary conjugated bile acids showed the most significant elevation in the cirrhosis group: GCDCA (MD = 11.38 μmol/L, 95% CI 8.21-14.55, P < 0.0001), GCA (MD = 5.72 μmol/L, 95% CI 3.47-7.97, P < 0.0001), TCDCA (MD = 3.57 μmol/L, 95% CI 2.64-4.49, P < 0.0001) and TCA (MD = 2.14 μmol/L, 95% CI 1.56-2.72, P < 0.0001). No significant differences were found between the two groups in terms of DCA (MD = - 0.1 μmol/L, 95% CI - 0.18 to - 0.01, P < 0.0001) and LCA (MD = - 0.01 μmol/L, 95% CI - 0.01 to - 0.02, P < 0.0001), UDCA (MD = - 0.14 μmol/L, 95% CI - 0.04 to - 0.32, P < 0.0001), and TLCA (MD = 0 μmol/L, 95% CI 0-0.01, P < 0.0001). Subgroup analysis in patients with hepatitis B cirrhosis showed similar results. CONCLUSION Altered serum bile acids profile seems to be associated with cirrhosis. Some specific bile acids (GCA, GCDCA, TCA, and TCDCA) may increase with the development of cirrhosis, which possibly underlay their potential role as predictive biomarkers for cirrhosis. Yet this predictive value still needs further investigation and validation in larger prospective cohort studies.
Collapse
Affiliation(s)
- Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hongtao Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yili Cai
- Ningbo First Hospital, Ningbo, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
16
|
Wang Q, Song GC, Weng FY, Zou B, Jin JY, Yan DM, Tan B, Zhao J, Li Y, Qiu FR. Hepatoprotective Effects of Glycyrrhetinic Acid on Lithocholic Acid-Induced Cholestatic Liver Injury Through Choleretic and Anti-Inflammatory Mechanisms. Front Pharmacol 2022; 13:881231. [PMID: 35712714 PMCID: PMC9194553 DOI: 10.3389/fphar.2022.881231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholestasis is a clinical syndrome triggered by the accumulation and aggregation of bile acids by subsequent inflammatory responses. The present study investigated the protective effect of glycyrrhetinic acid (GA) on the cholestatic liver injury induced by lithocholic acid (LCA) from both anti-inflammatory and choleretic mechanistic standpoints. Male C57BL/6 mice were treated with LCA twice daily for 4 days to induce intrahepatic cholestasis. GA (50 mg/kg) and pregnenolone 16α-carbonitrile (PCN, 45 mg/kg) were intraperitoneally injected 3 days before and throughout the administration of LCA, respectively. Plasma biochemical indexes were determined by assay kits, and hepatic bile acids were quantified by LC-MS/MS. Hematoxylin and eosin staining of liver sections was performed for pathological examination. Protein expression of the TLRs/NF-κB pathway and the mRNA levels of inflammatory cytokines and chemokines were examined by Western blotting and PCR, respectively. Finally, the hepatic expression of pregnane X receptor (PXR) and farnesoid X receptor (FXR) and their target genes encoding metabolic enzymes and transporters was evaluated. GA significantly reversed liver necrosis and decreased plasma ALT and ALP activity. Plasma total bile acids, total bilirubin, and hepatic bile acids were also remarkably preserved. More importantly, the recruitment of inflammatory cells to hepatic sinusoids was alleviated. Additionally, the protein expression of TLR2, TLR4, and p-NF-κBp65 and the mRNA expression of CCL2, CXCL2, IL-1β, IL-6, and TNF-α were significantly decreased. Moreover, GA significantly increased the expression of hepatic FXR and its target genes, including BSEP, MRP3, and MRP4. In conclusion, GA protects against LCA-induced cholestatic liver injury by inhibiting the TLR2/NF-κB pathway and upregulating hepatic FXR expression.
Collapse
Affiliation(s)
- Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Chao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng-Yi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong-Ming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
The Multi-Omics Analysis Revealed Microbiological Regulation of Rabbit Colon with Diarrhea Fed an Antibiotic-Free Diet. Animals (Basel) 2022; 12:ani12121497. [PMID: 35739834 PMCID: PMC9219479 DOI: 10.3390/ani12121497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Diarrhea symptoms appeared after antibiotics were banned from animal feed based on the law of the Chinese government in 2020. The colon and its contents were collected and analyzed from diarrheal and healthy rabbits using three omics analyses. The result of the microbial genomic analysis showed that the abundance of Bacteroidetes and Proteobacteria increased significantly (p-value < 0.01). Transcriptomes analysis showed that differentially expressed genes (DEGs) are abundant in the IL-17 signaling pathway and are highly expressed in the pro-inflammatory pathway. The metabolome analysis investigated differential metabolites (DMs) that were mainly enriched in tryptophan metabolism and bile secretion, which were closely related to the absorption and immune function of the colon. The results of correlation analysis showed that Bacteroidetes was positively correlated with 4-Morpholinobenzoic acid, and 4-Morpholinobenzoic acid could aggravate inflammation through its influence on the bile secretion pathway. The enriched DMs L-Tryptophan in the tryptophan metabolism pathway will lead to the functional disorder of inhibiting inflammation by affecting the protein digestion and absorption pathway. Thus, the colonic epithelial cells were damaged, affecting the function of the colon and leading to diarrhea in rabbits. Therefore, the study provided an idea for feed development and a theoretical basis for maintaining intestinal tract fitness in rabbits.
Collapse
|
18
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
19
|
Pugliese N, Arcari I, Aghemo A, Lania AG, Lleo A, Mazziotti G. Osteosarcopenia in autoimmune cholestatic liver diseases: Causes, management, and challenges. World J Gastroenterol 2022; 28:1430-1443. [PMID: 35582674 PMCID: PMC9048470 DOI: 10.3748/wjg.v28.i14.1430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cholangitis and primary sclerosing cholangitis (PSC) are the most common cholestatic liver diseases (CLD) in adults and are both characterized by an immune pathogenesis. While primary biliary cholangitis is a model autoimmune disease, with over 90% of patients presenting very specific autoantibodies against mitochondrial antigens, PSC is considered an immune mediated disease. Osteoporosis is the most common bone disease in CLD, resulting in frequent fractures and leading to significant morbidity. Further, sarcopenia is emerging as a frequent complication of chronic liver diseases with a significant prognostic impact and severe implications on the quality of life of patients. The mechanisms underlying osteoporosis and sarcopenia in CLD are still largely unknown and the association between these clinical conditions remains to be dissected. Although timely diagnosis, prevention, and management of osteosarcopenia are crucial to limit the consequences, there are no specific guidelines for management of osteoporosis and sarcopenia in patients with CLD. International guidelines recommend screening for bone disease at the time of diagnosis of CLD. However, the optimal monitoring strategies and treatments have not been defined yet and vary among centers. We herein aim to comprehensively outline the pathogenic mechanisms and clinical implications of osteosarcopenia in CLD, and to summarize expert recommendations for appropriate diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Nicola Pugliese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, MI, Italy
| | - Ivan Arcari
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, MI, Italy
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, MI, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano 20089, MI, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano 20089, MI, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano 20089, MI, Italy
| |
Collapse
|
20
|
Urinary BA Indices as Prognostic Biomarkers for Complications Associated with Liver Diseases. Int J Hepatol 2022; 2022:5473752. [PMID: 35402050 PMCID: PMC8986411 DOI: 10.1155/2022/5473752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatobiliary diseases and their complications cause the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues, which may exacerbate the underlying condition and lead to unfavorable prognosis. To develop and validate prognostic biomarkers for the prediction of complications of cholestatic liver disease based on urinary BA indices, liquid chromatography-tandem mass spectrometry was used to analyze urine samples from 257 patients with cholestatic liver diseases during a 7-year follow-up period. The urinary BA profile and non-BA parameters were monitored, and logistic regression models were used to predict the prognosis of hepatobiliary disease-related complications. Urinary BA indices were applied to quantify the composition, metabolism, hydrophilicity, and toxicity of the BA profile. We have developed and validated the bile-acid liver disease complication (BALDC) model based on BA indices using logistic regression model, to predict the prognosis of cholestatic liver disease complications including ascites. The mixed BA and non-BA model was the most accurate and provided higher area under the receiver operating characteristic (ROC) and smaller akaike information criterion (AIC) values compared to both non-BA and MELD (models for end stage liver disease) models. Therefore, the mixed BA and non-BA model could be used to predict the development of ascites in patients diagnosed with liver disease at early stages of intervention. This will help physicians to make a better decision when treating hepatobiliary disease-related ascites.
Collapse
|
21
|
Rauchbach E, Zeigerman H, Abu-Halaka D, Tirosh O. Cholesterol Induces Oxidative Stress, Mitochondrial Damage and Death in Hepatic Stellate Cells to Mitigate Liver Fibrosis in Mice Model of NASH. Antioxidants (Basel) 2022; 11:antiox11030536. [PMID: 35326188 PMCID: PMC8944482 DOI: 10.3390/antiox11030536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis and its end-stage disease cirrhosis are major world health problems arising from chronic injury of the liver. In recent years, the hypothesis that hepatic stellate cells’ (HSCs’) activation and fibrosis can be mitigated by HSC apoptosis and cell death has become of interest. In the current study, we evaluated the effect of cholesterol and bile acids on HSC apoptosis and liver fibrosis. Male C57BL/6J mice (wild type), aged four to five weeks, were fed an AIN-93G based diet (normal diet, ND), ND diet + 1% (w/w) cholesterol (CHOL group), ND diet + 0.5% (w/w) cholic acid (CA group) or ND diet + 1% (w/w) cholesterol + 0.5% (w/w) cholic acid (CHOL + CA group). Female Mdr2(-/-) mice were also treated with ND with and without 1% cholesterol. The effect of cholesterol on liver fibrosis and HSC clearance was evaluated. In addition, we studied the mechanism of cholesterol-induced apoptosis in HSC-T6 and AML-12 hepatocyte cell lines. In animals treated with cholic acids, increased lipid peroxidation and fibrosis were observed after six weeks of treatment. However, addition of cholesterol to the diet of C57BL/6J mice led to HSC-specific apoptosis and resolution of liver fibrosis, verified by double-staining with active caspase and α smooth muscle actin antibodies. In Mdr2 (-/-) mice, a diet supplemented with cholesterol corrected fibrosis and induced active hepatic stellate cells’ clearance. HSC-T6 were found to be much more sensitive to cholesterol-induced oxidative stress, mitochondrial damage and apoptosis compared to hepatocytes. These results indicate that cholesterol may be a trigger of HSC lipid peroxidation and death in the liver in a model of non-alcoholic steatohepatitis. A high cholesterol-to-bile acid ratio may determine the trajectory of the liver disease toward mitigation of fibrosis.
Collapse
|
22
|
Zhu QF, Wang YZ, An N, Hao JD, Mei PC, Bai YL, Hu YN, Bai PR, Feng YQ. Alternating Dual-Collision Energy Scanning Mass Spectrometry Approach: Discovery of Novel Microbial Bile-Acid Conjugates. Anal Chem 2022; 94:2655-2664. [PMID: 35085440 DOI: 10.1021/acs.analchem.1c05272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bile acids (BAs) are a type of gut microbiota-host cometabolites with abundant structural diversity, and they play critical roles in maintaining host-microbiota homeostasis. In this study, we developed a new N-(4-aminomethylphenyl) pyridinium (AMPP) derivatization-assisted alternating dual-collision energy scanning mass spectrometry (AMPP-dual-CE MS) method for the profiling of BAs derived from host-gut microbiota cometabolism in mice. Using the proposed method, we discovered two new types of amino acid conjugations (alanine conjugation and proline conjugation) and acetyl conjugation with host BAs, for the first time, from mouse intestine contents and feces. Additionally, we also determined and identified nine new leucine- and phenylalanine-conjugated BAs. These findings broaden our knowledge of the composition of the BA pool and provide insight into the mechanism of host-gut microbiota cometabolism of BAs.
Collapse
Affiliation(s)
- Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430072, China
| | - Yan-Zhen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun-Di Hao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Peng-Cheng Mei
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ya-Li Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Ning Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Pei-Rong Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Fang Y, Yan C, Zhao Q, Xu J, Liu Z, Gao J, Zhu H, Dai Z, Wang D, Tang D. The roles of microbial products in the development of colorectal cancer: a review. Bioengineered 2021; 12:720-735. [PMID: 33618627 PMCID: PMC8806273 DOI: 10.1080/21655979.2021.1889109] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A large number of microbes exist in the gut and they have the ability to process and utilize ingested food. It has been reported that their products are involved in colorectal cancer development. The molecular mechanisms which underlie the relationship between gut microbial products and CRC are still not fully understood. The role of some microbial products in CRC is particularly controversial. Elucidating the effects of gut microbiota products on CRC and their possible mechanisms is vital for CRC prevention and treatment. In this review, recent studies are examined in order to describe the contribution metabolites and toxicants which are produced by gut microbes make to CRC, primarily focusing on the involved molecular mechanisms.Abbreviations: CRC: colorectal cancer; SCFAs: short chain fatty acids; HDAC: histone deacetylase; TCA cycle: tricarboxylic acid cycle; CoA: cytosolic acyl coenzyme A; SCAD: short chain acyl CoA dehydrogenase; HDAC: histone deacetylase; MiR-92a: microRNA-92a; KLF4: kruppel-like factor; PTEN: phosphatase and tensin homolog; PI3K: phosphoinositide 3-kinase; PIP2: phosphatidylinositol 4, 5-biphosphate; PIP3: phosphatidylinositol-3,4,5-triphosphate; Akt1: protein kinase B subtype α; ERK1/2: extracellular signal-regulated kinases 1/2; EMT: epithelial-to-mesenchymal transition; NEDD9: neural precursor cell expressed developmentally down-regulated9; CAS: Crk-associated substrate; JNK: c-Jun N-terminal kinase; PRMT1: protein arginine methyltransferase 1; UDCA: ursodeoxycholic acid; BA: bile acids; CA: cholic acid; CDCA: chenodeoxycholic acid; DCA: deoxycholic acid; LCA: lithocholic acid; CSCs: cancer stem cells; MHC: major histocompatibility; NF-κB: NF-kappaB; GPR: G protein-coupled receptors; ROS: reactive oxygen species; RNS: reactive nitrogen substances; BER: base excision repair; DNA: deoxyribonucleic acid; EGFR: epidermal growth factor receptor; MAPK: mitogen activated protein kinase; ERKs: extracellular signal regulated kinases; AKT: protein kinase B; PA: phosphatidic acid; TMAO: trimethylamine n-oxide; TMA: trimethylamine; FMO3: flavin-containing monooxygenase 3; H2S: Hydrogen sulfide; SRB: sulfate-reducing bacteria; IBDs: inflammatory bowel diseases; NSAID: non-steroidal anti-inflammatory drugs; BFT: fragile bacteroides toxin; ETBF: enterotoxigenic fragile bacteroides; E-cadherin: extracellular domain of intercellular adhesive protein; CEC: colonic epithelial cells; SMOX: spermine oxidase; SMO: smoothened; Stat3: signal transducer and activator of transcription 3; Th17: T helper cell 17; IL17: interleukin 17; AA: amino acid; TCF: transcription factor; CDT: cytolethal distending toxin; PD-L1: programmed cell death 1 ligand 1.
Collapse
Affiliation(s)
- Yongkun Fang
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Cheng Yan
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Qi Zhao
- Department of Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Jiaming Xu
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhuangzhuang Liu
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jin Gao
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Hanjian Zhu
- Department of Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Zhujiang Dai
- Department of Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
- CONTACT Dong TangDepartment of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou225001, China
| |
Collapse
|
24
|
Simbrunner B, Trauner M, Reiberger T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 2021; 54:1243-1262. [PMID: 34555862 PMCID: PMC9290708 DOI: 10.1111/apt.16602] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bile acids are important endocrine modulators of intestinal and hepatic signalling cascades orchestrating critical pathophysiological processes in various liver diseases. Increasing knowledge on bile acid signalling has stimulated the development of synthetic ligands of nuclear bile acid receptors and other bile acid analogues. AIM This review summarises important aspects of bile acid-mediated crosstalk between the gut and the liver ("gut-liver axis") as well as recent findings from experimental and clinical studies. METHODS We performed a literature review on bile acid signalling, and therapeutic applications in chronic liver disease. RESULTS Intestinal and hepatic bile acid signalling pathways maintain bile acid homeostasis. Perturbations of bile acid-mediated gut-liver crosstalk dysregulate transcriptional networks involved in inflammation, fibrosis and endothelial dysfunction. Bile acids induce enterohepatic feedback signalling by the release of intestinal hormones, and regulate enterohepatic circulation. Importantly, bile acid signalling plays a central role in maintaining intestinal barrier integrity and antibacterial defense, which is particularly relevant in cirrhosis, where bacterial translocation has a profound impact on disease progression. The nuclear bile acid farnesoid X receptor (FXR) is a central intersection in bile acid signalling and has emerged as a relevant therapeutic target. CONCLUSIONS Experimental evidence suggests that bile acid signalling improves the intestinal barrier and protects against bacterial translocation in cirrhosis. FXR agonists have displayed efficacy for the treatment of cholestatic and metabolic liver disease in randomised controlled clinical trials. However, similar effects remain to be shown in advanced liver disease, particularly in patients with decompensated cirrhosis.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LabMedical University of ViennaViennaAustria,Christian‐Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria,Vienna Hepatic Hemodynamic LabMedical University of ViennaViennaAustria,Christian‐Doppler Laboratory for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| |
Collapse
|
25
|
Wang MF, Zhao SS, Thapa DM, Song YL, Xiang Z. Metabolomics of Fuzi-Gancao in CCl 4 induced acute liver injury and its regulatory effect on bile acid profile in rats. World J Gastroenterol 2021; 27:6888-6907. [PMID: 34790013 PMCID: PMC8567467 DOI: 10.3748/wjg.v27.i40.6888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fuzi (Radix aconiti lateralis)-Gancao (Radix glycyrrhizae) is one of the most classical drug pairs of traditional Chinese medicine. In clinical practice, decoctions containing Fuzi-Gancao (F-G) are often used in the treatment of liver diseases such as hepatitis and liver failure. AIM To investigate the metabolomics of F-G in CCl4 induced acute liver injury in rats and its regulatory effect on the bile acid profile. METHODS The pharmacodynamic effect of F-G on CCl4 induced acute liver injury in rats was evaluated, and an ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of 92 metabolites from multiple pathways was established to explore the protective metabolic mechanism of F-G in serum on the liver. RESULTS Twenty-four differential metabolites were identified in serum samples. The primary bile acid biosynthetic metabolic pathway was the major common pathway in the model group and F-G group. Subsequently, a UPLC-MS/MS method for simultaneous determination of 11 bile acids, including cholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, glycocholic acid, chenodeoxycholic acid, deoxycholic acid, taurochenodeoxycholic acid, taurocholic acid, and glycinic acid, was established to analyze the regulatory mechanism of F-G in serum. F-G decreased the contents of these 11 bile acids in serum in a dose-dependent manner compared with those in the model control group. CONCLUSION F-G could protect hepatocytes by promoting the binding of free bile acids to glycine and taurine, and reducing the accumulation of free bile acids in the liver. F-G could also regulate the compensatory degree of taurine, decreasing the content of taurine-conjugated bile acids to protect hepatocytes.
Collapse
Affiliation(s)
- Mo-Fei Wang
- The Second Department of General Surgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Song-Song Zhao
- Department of Educational Administration, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning Province, China
| | - Dil Momin Thapa
- The Second Department of General Surgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yu-Ling Song
- The Second Department of General Surgery, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
26
|
Zhai XR, Zou ZS, Wang JB, Xiao XH. Herb-Induced Liver Injury Related to Reynoutria multiflora (Thunb.) Moldenke: Risk Factors, Molecular and Mechanistic Specifics. Front Pharmacol 2021; 12:738577. [PMID: 34539416 PMCID: PMC8443768 DOI: 10.3389/fphar.2021.738577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal medicine is widely used in Asia as well as the west. Hepatotoxicity is one of the most severe side effects of herbal medicine which is an increasing concern around the world. Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb., PM) is the most common herb that can cause herb-induced liver injury (HILI). The recent scientific and technological advancements in clinical and basic research are paving the way for a better understanding of the molecular aspects of PM-related HILI (PM-HILI). This review provides an updated overview of the clinical characteristics, predisposing factors, hepatotoxic components, and molecular mechanisms of PM-HILI. It can also aid in a better understanding of HILI and help in further research on the same.
Collapse
Affiliation(s)
- Xing-Ran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Zheng-Sheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Lai JC, Tandon P, Bernal W, Tapper EB, Ekong U, Dasarathy S, Carey EJ. Malnutrition, Frailty, and Sarcopenia in Patients With Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 74:1611-1644. [PMID: 34233031 PMCID: PMC9134787 DOI: 10.1002/hep.32049] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Jennifer C Lai
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Puneeta Tandon
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Albert, Canada
| | - William Bernal
- Liver Intensive Therapy Unit, Institute of Liver Studies, Kings College Hospital, London, UK
| | - Elliot B Tapper
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Udeme Ekong
- Georgetown University School of Medicine, Medstar Georgetown Transplant Institute, Washington, DC
| | - Srinivasan Dasarathy
- Department of Gastroenterology and Hepatology, Inflammation and Immunity, Lerner Research Institute, Cleveland Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic in Arizona, Phoenix, AZ
| |
Collapse
|
28
|
Production and Purification of Novel Hypocholesterolemic Peptides from Lactic Fermented Spirulina platensis through High Hydrostatic Pressure-Assisted Protease Hydrolysis. Catalysts 2021. [DOI: 10.3390/catal11080873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This research focuses on the proteolytic capacity of Spirulina platensis and their hypocholesterolemic activity via the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) inhibitory activity. To select suitable proteases for releasing peptides with high HMGR-inhibiting activity from S. platensis, eight commonly used commercial proteases were used in protease hydrolysis under high hydrostatic pressure (HHP, 100 MPa or 0.1 MPa) at 50 °C for 24 h. The Peptidase R group had the highest inhibitory capacity (67%). First, S. platensis was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. This was followed by the addition of Peptidase R under high hydrostatic pressure (100 MPa at 50 °C) for 0–6 h of enzymatic hydrolysis (HHP-FH-PR6) to determine the hydrolytic capacity of S. platensis protein. As the hydrolysis time extended to 6 h, the peptide content increased from 96.8 mg/mL to 339.8 mg/mL, and the free amino acid content increased from 24 mg/mL to 115.2 mg/mL, while inhibition of HMGR increased from 67.0% to 78.4%. In an experimental simulation of in vitro gastrointestinal digestion, the IC50 of HHP-FH-PR6G on HMGR was 3.5 μg peptide/mL. Peptides with inhibitory activity on HMGR were purified, and their sequences were identified as Arg-Cys-Asp and Ser-Asn-Val (IC50: 6.9 and 20.1 μM, respectively).
Collapse
|
29
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases II: The bile acid score survival prognostic model. World J Hepatol 2021; 13:543-556. [PMID: 34131469 PMCID: PMC8173345 DOI: 10.4254/wjh.v13.i5.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholestatic liver diseases are characterized by an accumulation of toxic bile acids (BA) in the liver, blood and other tissues which lead to progressive liver injury and poor prognosis in patients.
AIM To discover and validate prognostic biomarkers of cholestatic liver diseases based on the urinary BA profile.
METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and investigated the use of the urinary BA profile to develop survival models that can predict the prognosis of hepatobiliary diseases. The urinary BA profile, a set of non-BA parameters, and the adverse events of liver transplant and/or death were monitored in 257 patients with cholestatic liver diseases for up to 7 years. The BA profile was characterized by calculating BA indices, which quantify the composition, metabolism, hydrophilicity, formation of secondary BA, and toxicity of the BA profile. We have developed and validated the bile-acid score (BAS) model (a survival model based on BA indices) to predict the prognosis of cholestatic liver diseases.
RESULTS We have developed and validated a survival model based on BA (the BAS model) indices to predict the prognosis of cholestatic liver diseases. Our results demonstrate that the BAS model is more accurate and results in higher true-positive and true-negative prediction of death compared to both non-BAS and model for end-stage liver disease (MELD) models. Both 5- and 3-year survival probabilities markedly decreased as a function of BAS. Moreover, patients with high BAS had a 4-fold higher rate of death and lived for an average of 11 mo shorter than subjects with low BAS. The increased risk of death with high vs low BAS was also 2-4-fold higher and the shortening of lifespan was 6-7-mo lower compared to MELD or non-BAS. Similarly, we have shown the use of BAS to predict the survival of patients with and without liver transplant (LT). Therefore, BAS could be used to define the most seriously ill patients, who need earlier intervention such as LT. This will help provide guidance for timely care for liver patients.
CONCLUSION The BAS model is more accurate than MELD and non-BAS models in predicting the prognosis of cholestatic liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
- Department of Pharmaceutical Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Marco Olivera
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Jane Meza
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198-4375, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States
| |
Collapse
|
30
|
Chen GW, Lin HTV, Huang LW, Lin CH, Lin YH. Purification and Identification of Cholesterol Micelle Formation Inhibitory Peptides of Hydrolysate from High Hydrostatic Pressure-Assisted Protease Hydrolysis of Fermented Seabass Byproduct. Int J Mol Sci 2021; 22:ijms22105295. [PMID: 34069880 PMCID: PMC8157361 DOI: 10.3390/ijms22105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
This research focuses on the proteolytic capacity of sea bass byproduct (SB) and their hypocholesterolemic activity via the cholesterol micelle formation (CMF) inhibition. SB was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. The lactic fermented SB was hydrolyzed with Protease N for 6 h under HHP to obtain the SB hydrolysates (HHP-assisted Protease N hydrolysis after fermentation, F-HHP-PN6). The supernatant was separated from the SB hydrolysate and freeze-dried. As the hydrolysis time extended to 6 h, soluble protein content increased from 187.1 to 565.8 mg/g, and peptide content increased from 112.8 to 421.9 mg/g, while inhibition of CMF increased from 75.0% to 88.4%. Decreasing the CMF inhibitory activity from 88.4% to 42.1% by simulated gastrointestinal digestion (FHHP-PN6 was further hydrolyzed by gastrointestinal enzymes, F-HHP-PN6-PP) reduced the CMF inhibitory activity of F-HHP-PN6. Using gel filtration chromatography, the F-HHP-PN6-PP was fractioned into six fractions. The molecular weight of the fifth fraction from F-HHP-PN6-PP was between 340 and 290 Da, and the highest inhibitory efficiency ratio (IER) on CMF was 238.9%/mg/mL. Further purification and identification of new peptides with CMF inhibitory activity presented the peptide sequences in Ser-Ala-Gln, Pro-Trp, and Val-Gly-Gly-Thr; the IERs were 361.7, 3230.0, and 302.9%/mg/mL, respectively.
Collapse
Affiliation(s)
- Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 202, Taiwan; (G.-W.C.); (H.-T.V.L.); (L.-W.H.)
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 202, Taiwan; (G.-W.C.); (H.-T.V.L.); (L.-W.H.)
| | - Li-Wen Huang
- Department of Food Science, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 202, Taiwan; (G.-W.C.); (H.-T.V.L.); (L.-W.H.)
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, No. 64, Wunhua Rd, Yunlin 632, Taiwan;
| | - Yu-Hsin Lin
- Department of Food Science and Technology, Taipei University of Marine Technology, No. 212, Section 9, Yan Ping North Road, Taipei 111, Taiwan
- Correspondence: ; Tel.: +886-228-109-999 (ext. 3405)
| |
Collapse
|
31
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
32
|
Gao Y, Li JT, Li X, Li X, Yang SW, Chen NH, Li L, Zhang L. Tetrahydroxy stilbene glycoside attenuates acetaminophen-induced hepatotoxicity by UHPLC-Q-TOF/MS-based metabolomics and multivariate data analysis. J Cell Physiol 2021; 236:3832-3862. [PMID: 33111343 DOI: 10.1002/jcp.30127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Tetrahydroxy stilbene glycoside (TSG) is a main active compound in Polygonum multiflorum. Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe within a therapeutic range, in case of acute intoxication hepatotoxicity occurs. This present study aims to observe TSG-provided alleviation on APAP-induced hepatoxicity in C57BL/6 mice. APAP performs extensive necrosis and dissolves nucleus suggesting liver damage from hepatic histopathology. Serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase analysis and liver histological evaluation showed that TSG reduced the hepatotoxicity induced by a toxic dose of APAP. Moreover, TSG alone had no hepatotoxicity. TSG eliminated hepatic glutathione depletion and cysteine adducts formation. It also reduced the expression of interleukin-10 and lowered the production of reactive oxygen species in liver tissues. Luminex was used to detect cytokine production in different groups. Herein, we used an untargeted metabolomics approach by performing ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry on treated mice to identify metabolic disruptions under APAP and TSG. Major alterations were observed for purine metabolism, amino acid metabolism, and fatty acid metabolism. These data provide metabolic evidence and biomarkers in the liver that the ABC transporters, Glycine serine and threonine metabolism, and Choline metabolism in cancer changed the most. These targets of metabolites have the potential to improve our understanding of homeostatic. Meanwhile, these metabolites revealed that TSG can alleviate inflammation caused by APAP and promote the activity of intrinsic antioxidants. In summary, TSG can regulate lipid metabolism, promote the production of antioxidant enzymes, and decrease the inflammatory response.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Song-Wei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
33
|
Luo L, Yao Y, Liao H, Huang J, Liao M, Wang J, Yuan K, Zeng Y. Cumulative damage effect of jaundice may be an effective predictor of complications in patients undergoing radical resection of Bismuth type II or above hilar cholangiocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:861. [PMID: 34164495 PMCID: PMC8184487 DOI: 10.21037/atm-21-1860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background There is currently no preoperative risk assessment system for predicting complications after radical resection of hilar cholangiocarcinoma. This study examined the association between the cumulative damage effect of jaundice (CDEJ) and the complications of radical resection of Bismuth II or above hilar cholangiocarcinoma. Methods Patients who underwent radical resection of hilar cholangiocarcinoma at the Department of Hepatobiliary Surgery, West China Hospital of Sichuan University, from April 2010 to January 2018 were retrospectively included. Results Of the 171 included patients, 115 (67.3%) patients experienced complications. Multivariate analysis found that CDEJ [odds ratio (OR) =1.0001, 95% confidence interval (95% CI) =1.000027–1.000239, P=0.014], cholangitis (OR =9.638, 95% CI =2.683–34.622, P=0.001), and preoperative bilirubin (OR =1.006, 95% CI =1.002–1.01, P=0.004) were independently associated with the incidence of complications. CDEJ (OR =1.0001, 95% CI =1.00001–1.00019, P=0.024), age (OR =1.083, 95% CI =1.029–1.14, P=0.002), preoperative bilirubin (OR =1.083, 95% CI =1.029–1.14, P=0.002), and future liver remnant (FLR) (OR =0.963, 95% CI =0.941–0.986, P=0.002) were independently associated with hepatic failure. To predict the incidence of complications, the following criteria were used. For the CDEJ cutoff of 2,151, the area under the receiver operating characteristic curve (AUC) was 0.69 (95% CI =0.615–0.759), the sensitivity was 66.09%, and the specificity was 69.64%. For the preoperative bilirubin cutoff of 111.7 µmol/L, the AUC was 0.65 (95% CI =0.573–0.721), the sensitivity was 84.35%, and the specificity was 42.86%. To predict hepatic failure, the following criteria were used. For the CDEJ cutoff of 3,931.95, the AUC was 0.605 (95% CI =0.582–0.679), the sensitivity was 51.28%, and the specificity was 70.45%. For the preoperative bilirubin cutoff of 115.9 µmol/L, the AUC was 0.638 (95% CI =0.561–0.71), the sensitivity was 92.31%, and the specificity was 32.58%. For the FLR cutoff of 50, the AUC was 0.638 (95% CI =0.515–0.667), the sensitivity was 48.72%, and the specificity was 78.79%. Conclusions CDEJ was independently associated with complications and can moderately predict complications after surgical resection of hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Le Luo
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiwei Huang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinju Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
34
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases I: Diagnostic markers. World J Hepatol 2021; 13:433-455. [PMID: 33959226 PMCID: PMC8080550 DOI: 10.4254/wjh.v13.i4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis.
AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile.
METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases.
RESULTS Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases.
CONCLUSION BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Marco Olivera
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, College of Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
35
|
Park JH, Kwak BJ, Choi HJ, Kim OH, Hong HE, Lee SC, Kim KH, You YK, Lee TY, Ahn J, Kim SJ. PGC-1α is downregulated in a mouse model of obstructive cholestasis but not in a model of liver fibrosis. FEBS Open Bio 2020; 11:61-74. [PMID: 32860664 PMCID: PMC7780111 DOI: 10.1002/2211-5463.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Several studies have indicated that cholestatic liver damage involves mitochondria dysfunction. However, the precise mechanism by which hydrophobic bile salts cause mitochondrial dysfunction is not clear. In this study, we intended to determine the pathogenesis of cholestatic liver injury associated with peroxisome proliferator‐activated receptor‐γ co‐activator 1α (PGC‐1α). A mouse model of cholestatic liver disease was generated by surgical ligation of the bile duct (BDL), and a mouse model of fibrosis was developed through serial administration of thioacetamide. After obtaining liver specimens on scheduled days, we compared the expression of the antioxidant enzymes (superoxide dismutase 2 [SOD2], catalase, and glutathione peroxidase‐1[GPx‐1]) and PGC‐1α in livers from mice with fibrosis and cholestasis using western blotting, immunohistochemistry, and immunofluorescence. We found that cholestatic livers exhibit lower expression of antioxidant enzymes, such as SOD2, catalase, and PGC‐1α. In contrast, fibrotic livers exhibit higher expression of antioxidant enzymes and PGC‐1α. In addition, cholestatic livers exhibited significantly lower expression of pro‐apoptotic markers (Bax) as compared to fibrotic livers. It is well known that overexpression of PGC‐1α increases mitochondrial antioxidant enzyme expression, and vice versa. Thus, we concluded that obstructive cholestasis decreases expression of PGC‐1α, which may lead to decreased expression of mitochondrial antioxidant enzymes, thereby rendering mice with cholestatic livers vulnerable to ROS‐induced cell death.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Surgery, College of Medicine, Eunpyeong St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Bong Jun Kwak
- Department of Surgery, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Ho Joong Choi
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Ok-Hee Kim
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ha-Eun Hong
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Sang Chul Lee
- Department of Surgery, College of Medicine, Daejeon St. Mary's Hospital, the Catholic University of Korea, Daejeon, Korea
| | - Kee-Hwan Kim
- Department of Surgery, College of Medicine, Uijeongbu St. Mary's Hospital, the Catholic University of Korea, Gyeonggi-do, Korea
| | - Young Kyoung You
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Tae Yun Lee
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Joseph Ahn
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea
| | - Say-June Kim
- Department of Surgery, College of Medicine, Seoul St. Mary's Hospital, the Catholic University of Korea, Seoul, Korea.,Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea
| |
Collapse
|
36
|
Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQH. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020; 12:E3709. [PMID: 33266235 PMCID: PMC7760347 DOI: 10.3390/nu12123709] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver from cholesterol. BA undergo continuous enterohepatic recycling through intestinal biotransformation by gut microbiome and reabsorption into the portal tract for uptake by hepatocytes. BA are detergent molecules aiding the digestion and absorption of dietary fat and fat-soluble vitamins, but also act as important signaling molecules via the nuclear receptor, farnesoid X receptor (FXR), and the membrane-associated G protein-coupled bile acid receptor 1 (GPBAR-1) in the distal intestine, liver and extra hepatic tissues. The hydrophilic-hydrophobic balance of the BA pool is finely regulated to prevent BA overload and liver injury. By contrast, hydrophilic BA can be hepatoprotective. The ultimate effects of BA-mediated activation of GPBAR-1 is poorly understood, but this receptor may play a role in protecting the remnant liver and in maintaining biliary homeostasis. In addition, GPBAR-1 acts on pathways involved in inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity, and sinusoidal blood flow. Recent evidence suggests that environmental factors influence GPBAR-1 gene expression. Thus, targeting GPBAR-1 might improve liver protection, facilitating beneficial metabolic effects through primary prevention measures. Here, we discuss the complex pathways linked to BA effects, signaling properties of the GPBAR-1, mechanisms of liver damage, gene-environment interactions, and therapeutic aspects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, Della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (M.V.); (M.D.A.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
37
|
Augmenter of Liver Regeneration (ALR) regulates bile acid synthesis and attenuates bile acid-induced apoptosis via glycogen synthase kinase-3β (GSK-3β) inhibition. Exp Cell Res 2020; 397:112343. [PMID: 33132196 DOI: 10.1016/j.yexcr.2020.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
Bile acid synthesis is restricted to hepatocytes and is rate-limited by CYP7A1 (cholesterol 7α hydroxylase). CYP7A1 expression undergoes tight regulation and is repressed after partial hepatectomy to prevent the accumulation of toxic bile acids. Augmenter of Liver Regeneration (ALR) is a hepatotrophic factor shown to support liver regeneration by augmenting cell proliferation and reducing apoptosis. Nevertheless, less is known about ALR's role in protecting hepatocytes from bile acid accumulation and bile acid-induced apoptosis. Therefore, HepG2 and Huh-7 cells were incubated with recombinant human ALR (rALR) and the expression of CYP7A1, bile acid-induced apoptosis as well as potential molecular mechanisms were analyzed. We found that rALR reduces CYP7A1 expression by increasing nuclear NFκB levels. Moreover, rALR reduced glycochenodeoxycholate (GCDC)-induced-apoptosis by decreased expression of pro-apoptotic Bax and enhanced expression of anti-apoptotic Mcl-1, which is regulated by phosphatidylinositol-3-kinase (PI3K)/Akt activation and glycogen synthase kinase-3β (GSK3β) phosphorylation. Inhibitors for PI3K/Akt (GSK690693) and GSK3β (SB415286) confirmed the specificity of rALR treatment for this pathway. In addition, rALR reduces pro-death signaling by decreasing GCDC-induced JNK phosphorylation. Taken all together, rALR might contribute to protecting hepatocytes from toxic concentrations of bile acids by down-regulating their denovo synthesis, attenuating apoptosis by activation of PI3K/Akt - GSK3β pathway and inhibition of JNK signaling. Thereby this suggests a new role of ALR in augmenting the process of liver regeneration.
Collapse
|
38
|
Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in Research on Colorectal Cancer-Related Microorganisms and Metabolites. Cancer Manag Res 2020; 12:8703-8720. [PMID: 33061569 PMCID: PMC7518784 DOI: 10.2147/cmar.s268943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora is an important component in the human body, which have been reported to be involved in the occurrence and development of colorectal cancer (CRC). Indeed, changes in the intestinal flora in CRC patients compared to those in control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. In this review, we summarize the current knowledge on the potential links between the intestinal microbiota and CRC. We illustrated the mechanisms by which intestinal flora imbalance affects CRC, mainly focusing on inflammation, microbial metabolites, and specific bacteria species. In addition, we discuss how a diet exhibits a strong impact on microbial composition and provides risks for developing CRC. Finally, we describe the potential future directions that are based on intestinal microbiota manipulation for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou 313000, People's Republic of China
| | - Yinhang Wu
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Xi Yang
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
39
|
Kurano M, Tsukamoto K, Hara M, Tsuneyama K, Nishikawa T, Ikeda H, Yatomi Y. Modulation of sphingosine 1-phosphate by hepatobiliary cholesterol handling. FASEB J 2020; 34:14655-14670. [PMID: 32918529 DOI: 10.1096/fj.202001397r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022]
Abstract
Hepatobiliary cholesterol handling, mediated by Niemann-Pick C1-like 1 protein (NPC1L1) and ABCG5/8, is well-known to contribute to the homeostasis of cholesterol. We attempted to elucidate the impact of hepatobiliary cholesterol handling on the homeostasis of sphingolipids and lysophospholipids, especially sphingosine 1-phosphate (S1P). We induced the overexpression of NPC1L1 or ABCG5/8 in the mouse liver. Hepatic NPC1L1 overexpression increased the plasma and hepatic S1P levels, while it decreased the biliary S1P levels, and all of these changes were inhibited by ezetimibe. The ability of HDL to activate Akt in the endothelial cells was augmented by hepatic NPC1L1 overexpression. NPC1L1-mediated S1P transport was confirmed by both in vitro and in vivo studies conducted using C17 S1P, an exogenous S1P analog. Upregulation of apolipoprotein M (apoM) was involved in these modulations, although apoM was not necessary for these modulations. Moreover, the increase in the plasma S1P levels also observed in ABCG5/8-overexpressing mice was dependent on the elevation of the plasma apoM levels. In regard to other sphingolipids and lysophospholipids, ceramides were similarly modulated by NPC1L1 to S1P, while other lipids were differently influenced by NPC1L1 or ABCG5/8 from S1P. Hepatobiliary cholesterol handling might also regulate the functional lipids, such as S1P.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masumi Hara
- Department of Medicine IV, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Pharmacol Ther 2020; 212:107539. [PMID: 32201314 DOI: 10.1016/j.pharmthera.2020.107539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
|
41
|
Merlen G, Bidault-Jourdainne V, Kahale N, Glenisson M, Ursic-Bedoya J, Doignon I, Garcin I, Humbert L, Rainteau D, Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver Int 2020; 40:1005-1015. [PMID: 32145703 DOI: 10.1111/liv.14427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/13/2023]
Abstract
During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.
Collapse
Affiliation(s)
- Grégory Merlen
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | | | - Nicolas Kahale
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Mathilde Glenisson
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - José Ursic-Bedoya
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Doignon
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Isabelle Garcin
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| | - Lydie Humbert
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Dominique Rainteau
- Centre de Recherche Saint Antoine, CRSA, Sorbonne Université, Paris, France
| | - Thierry Tordjmann
- INSERM U1193, Faculté des Sciences d'Orsay, Université Paris Saclay, Orsay, France
| |
Collapse
|
42
|
Fu X, Xiao Y, Golden J, Niu S, Gayer CP. Serum bile acids profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application on pediatric liver and intestinal diseases. ACTA ACUST UNITED AC 2020; 58:787-797. [DOI: 10.1515/cclm-2019-0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023]
Abstract
AbstractBackgroundA method for bile acid profiling measuring 21 primary and secondary bile acids in serum samples was developed and validated with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample preparation included spiking with internal standards followed by protein precipitation, centrifugation, drying under nitrogen gas and reconstitution. Extracted samples were injected onto a Phenomenex Kinetex C18 column (150 × 4.60 mm, 2.6 μm).MethodsData was collected with LC-MS/MS operated in negative ion mode with multiple reaction monitoring (MRM) and single reaction monitoring (SRM). The analytical run time was 12 min.ResultsThe method showed excellent linearity with high regression coefficients (>0.99) over a range of 0.05 and 25 μM for all analytes tested. The method also showed acceptable intra-day and inter-day accuracy and precision. As a proof of concept, the analytical method was applied to patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), biliary atresia (BA), and necrotizing enterocolitis (NEC), and distinct bile acids profiles were demonstrated.ConclusionsThe method could be poised to identify possible biomarkers for non-invasive early diagnosis of these disorders.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of Pathology and Laboratory Medicine, LeBonheur Children’s Hospital, University of Tennessee Health Science Center, 50 N Dunlap St, Memphis, TN 38103, USA, E-mail:
| | - Yi Xiao
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Jamie Golden
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sizhe Niu
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher P. Gayer
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
43
|
Gómez Aldana AJ, Tapias M, Lúquez Mindiola AJ. Colestasis en el adulto: enfoque diagnóstico y terapéutico. Revisión de tema. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2020; 35:76-86. [DOI: 10.22516/25007440.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
La colestasis es uno de los motivos de consulta más frecuentes en hepatología. Se genera por una alteración en la síntesis, la secreción o el flujo de la bilis, a través del tracto biliar. Esta se define por una elevación de enzimas como la fosfatasa alcalina (Alkaline Phosphatase, ALP) y la gamma-glutamil transferasa, y en estadios tardíos con la hiperbilirrubinemia, al igual que con otras manifestaciones clínicas, tales como el prurito y la ictericia. El enfoque diagnóstico implica establecer el origen de dicha elevación, determinando si es intrahepática o extrahepática. Si es intrahepática, se debe esclarecer si proviene de los hepatocitos o de la vía biliar de pequeño y de gran calibre. El tratamiento dependerá de la etiología, por lo cual es importante un diagnóstico preciso. En esta revisión se presenta la fisiopatología y un enfoque diagnóstico y terapéutico.
Collapse
|
44
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
45
|
Shiraya T, Araki F, Ueta T, Fukunaga H, Totsuka K, Arai T, Uemura A, Moriya K, Kato S. Ursodeoxycholic Acid Attenuates the Retinal Vascular Abnormalities in Anti-PDGFR-β Antibody-Induced Pericyte Depletion Mouse Models. Sci Rep 2020; 10:977. [PMID: 31969665 PMCID: PMC6976624 DOI: 10.1038/s41598-020-58039-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 01/12/2023] Open
Abstract
As a clinical manifestations of diabetic retinopathy (DR), pericytes (PCs) loss from the capillary walls is thought to be an initial pathological change responsible for the breakdown of the blood-retinal barrier (BRB). This study was performed to investigate the effects of ursodeoxycholic acid (UDCA) in PC depletion mice by injection of an antibody against platelet-derived growth factor reception-β (PDGFR-β clone APB5). To assess the integrity of the retinal vessels, their density, diameters, vessel branching points, and number of acellular capillaries were evaluated. While all types of retinal vessels became enlarged in APB5-induced mice, treatment with UDCA rescued the vasculature; the vessel density, diameter of the veins and capillaries, and vessel branching points were significantly lower in mice treated with UDCA. Although APB5-induced mice displayed progressive exacerbation of retinal edema, whole retinal thickness upon treatment with UDCA was significantly decreased. Additionally, UDCA reduced the expression of F4/80+ macrophages in the APB5-induced retina according to immunofluorescent labeling. UDCA also reduced the increased expression of angiogenic factors and inflammatory mediators (vascular endothelial growth factor, intercellular adhesion molecule-1, and monocyte chemotactic protein-1). These findings suggest that UDCA can be used to prevent the progression of and treat DR.
Collapse
Affiliation(s)
- Tomoyasu Shiraya
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Fumiyuki Araki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisako Fukunaga
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyohito Totsuka
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Arai
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoshi Kato
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Abstract
The co-occurrence of gut microbiota dysbiosis and bile acid (BA) metabolism alteration has been reported in several human liver diseases. However, the gut microbiota dysbiosis in infantile cholestatic jaundice (CJ) and the linkage between gut bacterial changes and alterations of BA metabolism have not been determined. To address this question, we performed 16S rRNA gene sequencing to determine the alterations in the gut microbiota of infants with CJ, and assessed their association with the fecal levels of primary and secondary BAs. Our data reveal that CJ infants show marked declines in the fecal levels of primary BAs and most secondary BAs. A decreased ratio of cholic acid (CA)/chenodeoxycholic acid (CDCA) in infants with CJ indicated a shift in BA synthesis from the primary pathway to the alternative BA synthesis pathway. The bacterial taxa enriched in infants with CJ corresponded to the genera Clostridium, Gemella, Streptococcus, and Veillonella and the family Enterobacteriaceae and were negatively correlated with the fecal BA level and the CDCA/CA ratio but positively correlated with the serological indexes of impaired liver function. An increased ratio of deoxycholic acid (DCA)/CA was observed in a proportion of infants with CJ. The bacteria depleted in infants with CJ, including Bifidobacterium and Faecalibacterium prausnitzii, were positively and negatively correlated with the fecal levels of BAs and the serological markers of impaired liver function, respectively. In conclusion, the reduced concentration of BAs in the gut of infants with CJ is correlated with gut microbiota dysbiosis. The altered gut microbiota of infants with CJ likely upregulates the conversion from primary to secondary BAs.IMPORTANCE Liver health, fecal bile acid (BA) concentrations, and gut microbiota composition are closely connected. BAs and the microbiome influence each other in the gut, where bacteria modify the BA profile, while intestinal BAs regulate the growth of commensal bacteria, maintain the barrier integrity, and modulate the immune system. Previous studies have found that the co-occurrence of gut microbiota dysbiosis and BA metabolism alteration is present in many human liver diseases. Our study is the first to assess the gut microbiota composition in infantile cholestatic jaundice (CJ) and elucidate the linkage between gut bacterial changes and alterations of BA metabolism. We observed reduced levels of primary BAs and most secondary BAs in infants with CJ. The reduced concentration of fecal BAs in infantile CJ was associated with the overgrowth of gut bacteria with a pathogenic potential and the depletion of those with a potential benefit. The altered gut microbiota of infants with CJ likely upregulates the conversion from primary to secondary BAs. Our study provides a new perspective on potential targets for gut microbiota intervention directed at the management of infantile CJ.
Collapse
|
47
|
Fuchs S, Bayer M, Taubert R, Manns MP, Pfeilschifter JM, Christen U, Hintermann E. Effects of adenovirus-induced hepatocyte damage on chronic bile duct inflammation in a sclerosing cholangitis mouse model. Liver Int 2019; 39:2330-2340. [PMID: 31225929 DOI: 10.1111/liv.14183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Four major autoimmune diseases target the liver. They develop because of bile duct destruction, leading to chronic cholestasis or result from hepatocyte damage like autoimmune hepatitis (AIH). Interestingly, some patients simultaneously show features of both cholangitis and AIH. Our goal was to mimic such concurrent characteristics in a mouse model that would help deciphering mechanisms possibly involved in an inflammatory crosstalk between cholestatic disease and hepatitis. METHODS Mdr2-/- mice, which spontaneously develop sclerosing cholangitis because of accumulation of toxic bile salts, were infected with adenovirus (Ad) encoding human Cytochrome P4502D6 (hCYP2D6), the major target autoantigen in type-2 AIH, to trigger hepatocyte injury. Wild type FVB mice were controls. RESULTS Resulting Ad-Mdr2-/- mice presented with cholangitis, fibrosis and cellular infiltrations that were higher than in Mdr2-/- or Ad-FVB mice. Increased levels of anti-neutrophil cytoplasmic antibodies but similar anti-hCYP2D6 antibody titres were detected in Ad-Mdr2-/- compared to Mdr2-/- and Ad-FVB mice respectively. IFNγ-expressing hCYP2D6-specific CD4 T cells declined, whereas hCYP2D6-specific CD8 T cells increased in Ad-Mdr2-/- compared to Ad-FVB mice. The overall T cell balance in Ad-Mdr2-/- mice was a combination of a type 17 T cell response typically found in Mdr2-/- mice with a type 1 dominated T cell response characteristic for Ad-FVB mice. Simultaneously, the type 2 T cell compartment was markedly reduced. CONCLUSIONS Experimental hepatitis induction in a mouse with sclerosing cholangitis results in a disorder which represents not simply the sum of the individual characteristics but depicts a more complex entity which urges on further analysis.
Collapse
Affiliation(s)
- Sina Fuchs
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Xie Y, Guo C, Liu Y, Shi L, Yu J. Dexmedetomidine activates the PI3K/Akt pathway to inhibit hepatocyte apoptosis in rats with obstructive jaundice. Exp Ther Med 2019; 18:4461-4466. [PMID: 31772637 DOI: 10.3892/etm.2019.8085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 03/28/2019] [Indexed: 01/14/2023] Open
Abstract
Obstructive jaundice (OJ) is a common disease in clinical surgery. The present study aimed to determine the effects of dexmedetomidine (Dex) on hepatocyte apoptosis in rats with OJ and also to explore the underlying mechanism. A total of 30 adult male Sprague Dawley rats were randomly divided into 3 groups: Sham group, bile duct ligation (BDL) group, and BDL+Dex group. The serum liver function index, expression levels of serum inflammatory factor interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and the liver pathological changes were compared amongst groups. The serum liver function index and expression levels of inflammatory factors in the BDL group and BDL+Dex group were higher compared with the sham group. The serum liver function index and expression levels of inflammatory factors were lower in the BDL+Dex group compared with the BDL group. The severity of hepatic injury was diminished in the BDL+Dex group compared with the BDL group. Compared with the sham group, the hepatocyte apoptosis rate increased significantly in the BDL group and BDL+Dex group. The present findings suggested that Dex improved the liver function of rats with OJ, reduced the production of inflammatory factors and inhibited the apoptosis of hepatocytes. Dex demonstrated a protective effect on liver damage potentially via activation of the phosphoinositide 3-kinase/protein kinase B signaling pathway.
Collapse
Affiliation(s)
- Yaying Xie
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Chunyan Guo
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Ye Liu
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Luanyuan Shi
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Jianshe Yu
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
49
|
Calcium-dependent kinases in the brain have site-specific associations with locomotion and rearing impairments in rats with bile duct ligation. Behav Brain Res 2019; 372:112009. [DOI: 10.1016/j.bbr.2019.112009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022]
|
50
|
Ikeda Y, Morita SY, Hatano R, Tsuji T, Terada T. Enhancing effect of taurohyodeoxycholate on ABCB4-mediated phospholipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1495-1502. [PMID: 31176036 DOI: 10.1016/j.bbalip.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/27/2022]
Abstract
Hydrophilic bile salts, ursodeoxycholate and hyodeoxycholate, have choleretic effects. ABCB4, a member of the ABC transporter family, is essential for the secretion of phospholipids from hepatocytes into bile. In this study, we assessed the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate and hyodeoxycholate on the ABCB4-mediated phosphatidylcholine (PC) efflux using Abcb4 knockout mice and HEK293 cells stably expressing ABCB4. To evaluate the effects of bile salts on bile formation in Abcb4+/+ or Abcb4-/- mice, the bile was collected during intravenous infusion of saline or bile salts. The biliary PC secretion in Abcb4+/+ mice was significantly increased by the infusions of all tested bile salts, especially taurohyodeoxycholate. On the other hand, Abcb4-/- mice exhibited extremely low secretion of PC into bile, which was not altered by bile salt infusions. We also showed that the PC efflux from ABCB4-expressing HEK293 cells was stimulated by taurohyodeoxycholate much more strongly than the other tested bile salts. However, taurohyodeoxycholate did not restore the activities of ABCB4 mutants. Furthermore, light scattering measurements demonstrated a remarkable ability of taurohyodeoxycholate to form mixed micelles with PC. Therefore, the enhancing effect of taurohyodeoxycholate on the ABCB4-mediated PC efflux may be due to the strong mixed micelle formation ability.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| |
Collapse
|