1
|
Leeson HC, Aguado J, Gómez-Inclán C, Chaggar HK, Fard AT, Hunter Z, Lavin MF, Mackay-Sim A, Wolvetang EJ. Ataxia Telangiectasia patient-derived neuronal and brain organoid models reveal mitochondrial dysfunction and oxidative stress. Neurobiol Dis 2024; 199:106562. [PMID: 38876322 DOI: 10.1016/j.nbd.2024.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.
Collapse
Affiliation(s)
- Hannah C Leeson
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia.
| | - Julio Aguado
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Cecilia Gómez-Inclán
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Harman Kaur Chaggar
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Atefah Taherian Fard
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Zoe Hunter
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia
| | - Martin F Lavin
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, Brisbane, QLD 4006, Australia
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Ernst J Wolvetang
- The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Covino DA, Desimio MG, Giovinazzo A, de Oliveira BSP, Merolle M, Marazziti D, Pellegrini M, Doria M. Absence of ATM leads to altered NK cell function in mice. Clin Immunol 2024; 263:110233. [PMID: 38697554 DOI: 10.1016/j.clim.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Daniela Angela Covino
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Giovinazzo
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | | | - Matilde Merolle
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo Scalo, 00015 Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Deacon S, Dalleywater W, Peat C, Paine SML, Dineen RA. Disproportionate Expression of ATM in Cerebellar Cortex During Human Neurodevelopment. CEREBELLUM (LONDON, ENGLAND) 2024; 23:502-511. [PMID: 37120494 PMCID: PMC10951037 DOI: 10.1007/s12311-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.
Collapse
Affiliation(s)
- Simon Deacon
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - William Dalleywater
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Charles Peat
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Simon M L Paine
- Department of Neuropathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rob A Dineen
- Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
4
|
Paull TT, Woolley PR. A-T neurodegeneration and DNA damage-induced transcriptional stress. DNA Repair (Amst) 2024; 135:103647. [PMID: 38377644 DOI: 10.1016/j.dnarep.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| | - Phillip R Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
5
|
Lai J, Demirbas D, Kim J, Jeffries AM, Tolles A, Park J, Chittenden TW, Buckley PG, Yu TW, Lodato MA, Lee EA. ATM-deficiency-induced microglial activation promotes neurodegeneration in ataxia-telangiectasia. Cell Rep 2024; 43:113622. [PMID: 38159274 PMCID: PMC10908398 DOI: 10.1016/j.celrep.2023.113622] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Neuroscience, Harvard University, Boston, MA 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Junho Kim
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Allie Tolles
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junseok Park
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas W Chittenden
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Computational Statistics and Bioinformatics Group, Genuity AI Research Institute, Genuity Science, Boston, MA 02114, USA
| | | | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael A Lodato
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Viner-Breuer R, Golan-Lev T, Benvenisty N, Goldberg M. Genome-Wide Screening in Human Embryonic Stem Cells Highlights the Hippo Signaling Pathway as Granting Synthetic Viability in ATM Deficiency. Cells 2023; 12:1503. [PMID: 37296624 PMCID: PMC10253227 DOI: 10.3390/cells12111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
ATM depletion is associated with the multisystemic neurodegenerative syndrome ataxia-telangiectasia (A-T). The exact linkage between neurodegeneration and ATM deficiency has not been established yet, and no treatment is currently available. In this study, we aimed to identify synthetic viable genes in ATM deficiency to highlight potential targets for the treatment of neurodegeneration in A-T. We inhibited ATM kinase activity using the background of a genome-wide haploid pluripotent CRISPR/Cas9 loss-of-function library and examined which mutations confer a growth advantage on ATM-deficient cells specifically. Pathway enrichment analysis of the results revealed the Hippo signaling pathway as a major negative regulator of cellular growth upon ATM inhibition. Indeed, genetic perturbation of the Hippo pathway genes SAV1 and NF2, as well as chemical inhibition of this pathway, specifically promoted the growth of ATM-knockout cells. This effect was demonstrated in both human embryonic stem cells and neural progenitor cells. Therefore, we suggest the Hippo pathway as a candidate target for the treatment of the devastating cerebellar atrophy associated with A-T. In addition to the Hippo pathway, our work points out additional genes, such as the apoptotic regulator BAG6, as synthetic viable with ATM-deficiency. These genes may help to develop drugs for the treatment of A-T patients as well as to define biomarkers for resistance to ATM inhibition-based chemotherapies and to gain new insights into the ATM genetic network.
Collapse
Affiliation(s)
- Ruth Viner-Breuer
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Michal Goldberg
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| |
Collapse
|
7
|
Tomaszowski KH, Roy S, Guerrero C, Shukla P, Keshvani C, Chen Y, Ott M, Wu X, Zhang J, DiNardo CD, Schindler D, Schlacher K. Hypomorphic Brca2 and Rad51c double mutant mice display Fanconi anemia, cancer and polygenic replication stress. Nat Commun 2023; 14:1333. [PMID: 36906610 PMCID: PMC10008622 DOI: 10.1038/s41467-023-36933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
The prototypic cancer-predisposition disease Fanconi Anemia (FA) is identified by biallelic mutations in any one of twenty-three FANC genes. Puzzlingly, inactivation of one Fanc gene alone in mice fails to faithfully model the pleiotropic human disease without additional external stress. Here we find that FA patients frequently display FANC co-mutations. Combining exemplary homozygous hypomorphic Brca2/Fancd1 and Rad51c/Fanco mutations in mice phenocopies human FA with bone marrow failure, rapid death by cancer, cellular cancer-drug hypersensitivity and severe replication instability. These grave phenotypes contrast the unremarkable phenotypes seen in mice with single gene-function inactivation, revealing an unexpected synergism between Fanc mutations. Beyond FA, breast cancer-genome analysis confirms that polygenic FANC tumor-mutations correlate with lower survival, expanding our understanding of FANC genes beyond an epistatic FA-pathway. Collectively, the data establish a polygenic replication stress concept as a testable principle, whereby co-occurrence of a distinct second gene mutation amplifies and drives endogenous replication stress, genome instability and disease.
Collapse
Affiliation(s)
- Karl-Heinz Tomaszowski
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Sunetra Roy
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Carolina Guerrero
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Poojan Shukla
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Caezaan Keshvani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Yue Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Detlev Schindler
- Institut fuer Humangenetik, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
8
|
Bushart DD, Shakkottai VG. Vulnerability of Human Cerebellar Neurons to Degeneration in Ataxia-Causing Channelopathies. Front Syst Neurosci 2022; 16:908569. [PMID: 35757096 PMCID: PMC9219590 DOI: 10.3389/fnsys.2022.908569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- David D. Bushart
- Ohio State University College of Medicine, Columbus, OH, United States
| | - Vikram G. Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: Vikram G. Shakkottai,
| |
Collapse
|
9
|
Edara VV, Manning KE, Ellis M, Lai L, Moore KM, Foster SL, Floyd K, Davis-Gardner ME, Mantus G, Nyhoff LE, Bechnak S, Alaaeddine G, Naji A, Samaha H, Lee M, Bristow L, Hussaini L, Ciric CR, Nguyen PV, Gagne M, Roberts-Torres J, Henry AR, Godbole S, Grakoui A, Sexton M, Piantadosi A, Waggoner JJ, Douek DC, Anderson EJ, Rouphael N, Wrammert J, Suthar MS. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 Omicron variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981056 DOI: 10.1101/2021.09.09.459619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naïve vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.
Collapse
|
10
|
Perez H, Abdallah MF, Chavira JI, Norris AS, Egeland MT, Vo KL, Buechsenschuetz CL, Sanghez V, Kim JL, Pind M, Nakamura K, Hicks GG, Gatti RA, Madrenas J, Iacovino M, McKinnon PJ, Mathews PJ. A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. eLife 2021; 10:e64695. [PMID: 34723800 PMCID: PMC8601662 DOI: 10.7554/elife.64695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders are severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons (PNs) are significantly perturbed (e.g., reduced membrane capacitance, lower action potential [AP] thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter PN neural activity, including a progressive reduction in spontaneous AP firing frequency that correlates with both cerebellar atrophy and ataxia over the animal's first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Finally, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.
Collapse
Affiliation(s)
- Harvey Perez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - May F Abdallah
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jose I Chavira
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Angelina S Norris
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Martin T Egeland
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen L Vo
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Callan L Buechsenschuetz
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Valentina Sanghez
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Jeannie L Kim
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Molly Pind
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Kotoka Nakamura
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Geoffrey G Hicks
- Department of Biochemistry and Medical Genetics,Max Rady College of Medicine, University of ManitobaManitobaCanada
| | - Richard A Gatti
- Department of Pathology & Laboratory Medicine, David Geffen School of MedicineLos AngelesUnited States
| | - Joaquin Madrenas
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, Harbor-UCLA Medical CenterTorranceUnited States
| | - Michelina Iacovino
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Pediatrics, Harbor-UCLA Medical CenterTorranceUnited States
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, St. Jude Children’s Research HospitalMemphisUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| |
Collapse
|
11
|
Aguado J, Chaggar HK, Gómez‐Inclán C, Shaker MR, Leeson HC, Mackay‐Sim A, Wolvetang EJ. Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids. Aging Cell 2021; 20:e13468. [PMID: 34459078 PMCID: PMC8441292 DOI: 10.1111/acel.13468] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive. Here, we utilize human pluripotent stem cell-derived cortical brain organoids to study A-T neuropathology. Mechanistically, we show that the cGAS-STING pathway is required for the recognition of micronuclei and induction of a senescence-associated secretory phenotype (SASP) in A-T olfactory neurosphere-derived cells and brain organoids. We further demonstrate that cGAS and STING inhibition effectively suppresses self-DNA-triggered SASP expression in A-T brain organoids, inhibits astrocyte senescence and neurodegeneration, and ameliorates A-T brain organoid neuropathology. Our study thus reveals that increased cGAS and STING activity is an important contributor to chronic inflammation and premature senescence in the central nervous system of A-T and constitutes a novel therapeutic target for treating neuropathology in A-T patients.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Harman K. Chaggar
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
- Present address:
Cellesce Ltd, Cardiff MedicentreHeath ParkCardiffUK
| | - Cecilia Gómez‐Inclán
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Mohammed R. Shaker
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Hannah C. Leeson
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| | - Alan Mackay‐Sim
- Department of NeurogeneticsKolling InstituteSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSaint LuciaQueenslandAustralia
| |
Collapse
|
12
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
13
|
Saunders RA, Michniacki TF, Hames C, Moale HA, Wilke C, Kuo ME, Nguyen J, Hartlerode AJ, Moore BB, Sekiguchi JM. Elevated inflammatory responses and targeted therapeutic intervention in a preclinical mouse model of ataxia-telangiectasia lung disease. Sci Rep 2021; 11:4268. [PMID: 33608602 PMCID: PMC7895952 DOI: 10.1038/s41598-021-83531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. A major cause of mortality in A-T patients is severe pulmonary disease; however, the underlying causes of the lung complications are poorly understood, and there are currently no curative therapeutic interventions. In this study, we examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. In response to acute lung injury, ATM-deficiency causes decreased survival, reduced blood oxygen saturation, elevated neutrophil recruitment, exaggerated and prolonged inflammatory responses and excessive lung injury compared to controls. We found that ATM null bone marrow adoptively transferred to WT recipients induces similar phenotypes that culminate in impaired lung function. Moreover, we demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/CXCR2 chemokine receptor antagonist. We demonstrated that reparixin treatment reduces neutrophil recruitment, edema and tissue damage in ATM mutant lungs. Thus, our findings indicate that targeted inhibition of CXCR1/CXCR2 attenuates pulmonary phenotypes caused by ATM-deficiency and suggest that this treatment approach represents a viable therapeutic strategy for A-T lung disease.
Collapse
Affiliation(s)
- Rudel A Saunders
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
| | - Thomas F Michniacki
- Department of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Courtney Hames
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hilary A Moale
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
| | - Carol Wilke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Molly E Kuo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Johnathan Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - JoAnn M Sekiguchi
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, 2063 BSRB, Box 2200, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Zagnoli-Vieira G, Caldecott KW. Untangling trapped topoisomerases with tyrosyl-DNA phosphodiesterases. DNA Repair (Amst) 2020; 94:102900. [PMID: 32653827 DOI: 10.1016/j.dnarep.2020.102900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases alleviate the torsional stress that is generated by processes that are central to genome metabolism such as transcription and DNA replication. To do so, these enzymes generate an enzyme intermediate known as the cleavage complex in which the topoisomerase is covalently linked to the termini of a DNA single- or double-strand break. Whilst cleavage complexes are normally transient they can occasionally become abortive, creating protein-linked DNA breaks that threaten genome stability and cell survival; a process promoted and exploited in the cancer clinic by the use of topoisomerase 'poisons'. Here, we review the consequences to genome stability and human health of abortive topoisomerase-induced DNA breakage and the cellular pathways that cells have adopted to mitigate them, with particular focus on an important class of enzymes known as tyrosyl-DNA phosphodiesterases.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Keith W Caldecott
- Genome Damage Stability Centre, University of Sussex, Falmer Road, Brighton, BN1 9RQ, UK.
| |
Collapse
|
15
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
16
|
Kim J, Kim K, Mo JS, Lee Y. Atm deficiency in the DNA polymerase β null cerebellum results in cerebellar ataxia and Itpr1 reduction associated with alteration of cytosine methylation. Nucleic Acids Res 2020; 48:3678-3691. [PMID: 32123907 PMCID: PMC7144915 DOI: 10.1093/nar/gkaa140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Genomic instability resulting from defective DNA damage responses or repair causes several abnormalities, including progressive cerebellar ataxia, for which the molecular mechanisms are not well understood. Here, we report a new murine model of cerebellar ataxia resulting from concomitant inactivation of POLB and ATM. POLB is one of key enzymes for the repair of damaged or chemically modified bases, including methylated cytosine, but selective inactivation of Polb during neurogenesis affects only a subpopulation of cortical interneurons despite the accumulation of DNA damage throughout the brain. However, dual inactivation of Polb and Atm resulted in ataxia without significant neuropathological defects in the cerebellum. ATM is a protein kinase that responds to DNA strand breaks, and mutations in ATM are responsible for Ataxia Telangiectasia, which is characterized by progressive cerebellar ataxia. In the cerebella of mice deficient for both Polb and Atm, the most downregulated gene was Itpr1, likely because of misregulated DNA methylation cycle. ITPR1 is known to mediate calcium homeostasis, and ITPR1 mutations result in genetic diseases with cerebellar ataxia. Our data suggest that dysregulation of ITPR1 in the cerebellum could be one of contributing factors to progressive ataxia observed in human genomic instability syndromes.
Collapse
Affiliation(s)
- Jusik Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499, Korea
| | - Keeeun Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499, Korea
| | - Jung-Soon Mo
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499, Korea
| | - Youngsoo Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
17
|
Ho U, Luff J, James A, Lee CS, Quek H, Lai HC, Apte S, Lim YC, Lavin MF, Roberts TL. SMG1 heterozygosity exacerbates haematopoietic cancer development in Atm null mice by increasing persistent DNA damage and oxidative stress. J Cell Mol Med 2019; 23:8151-8160. [PMID: 31565865 PMCID: PMC6850945 DOI: 10.1111/jcmm.14685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3‐kinase like–kinase (PIKK) family of proteins. ATM is a well‐established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm−/−Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm−/−Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild‐type animals indicating the development of low‐level inflammation and a pro‐tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.
Collapse
Affiliation(s)
- Uda Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Qld, Australia
| | - John Luff
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Alexander James
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Cheok Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia.,Department of Anatomical Pathology, Molecular Pathology Laboratory, Liverpool Hospital, Liverpool, NSW, Australia
| | - Hazel Quek
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Hui-Chi Lai
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| | - Simon Apte
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Martin F Lavin
- UQCCR, University of Queensland, Brisbane, Qld, Australia
| | - Tara L Roberts
- UQCCR, University of Queensland, Brisbane, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia.,South West Sydney Clinical School, UNSW Sydney, Liverpool, NSW, Australia
| |
Collapse
|
18
|
Affiliation(s)
- Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza University of Rome Foundation, Rome, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
19
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
20
|
Xu X, Stoyanova EI, Lemiesz AE, Xing J, Mash DC, Heintz N. Species and cell-type properties of classically defined human and rodent neurons and glia. eLife 2018; 7:e37551. [PMID: 30320555 PMCID: PMC6188473 DOI: 10.7554/elife.37551] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression and epigenetic events in specific cell types in a range of species, including postmortem human brain. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping and immunofluorescence localization. Studies of sixteen human postmortem brains revealed gender specific transcriptional differences, cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event evident in three donor samples. Our data establish a comprehensive approach for analysis of molecular events associated with specific circuits and cell types in a wide variety of human conditions.
Collapse
Affiliation(s)
- Xiao Xu
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elitsa I Stoyanova
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Agata E Lemiesz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Jie Xing
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Deborah C Mash
- Miller School of MedicineUniversity of MiamiMiamiUnited States
| | - Nathaniel Heintz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
21
|
Di Siena S, Campolo F, Gimmelli R, Di Pietro C, Marazziti D, Dolci S, Lenzi A, Nussenzweig A, Pellegrini M. Atm reactivation reverses ataxia telangiectasia phenotypes in vivo. Cell Death Dis 2018; 9:314. [PMID: 29472706 PMCID: PMC5833483 DOI: 10.1038/s41419-018-0357-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease.
Collapse
Affiliation(s)
- Sara Di Siena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Roberto Gimmelli
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20893, USA
| | - Manuela Pellegrini
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University, Rome, Italy. .,Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy. .,Department of Medicine and Health Science 'V. Tiberio', University of Molise, Campobasso, Italy.
| |
Collapse
|
22
|
A Patient-Specific Stem Cell Model to Investigate the Neurological Phenotype Observed in Ataxia-Telangiectasia. Methods Mol Biol 2018; 1599:391-400. [PMID: 28477134 DOI: 10.1007/978-1-4939-6955-5_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The molecular pathogenesis of ataxia-telangiectasia (A-T) is not yet fully understood, and a versatile cellular model is required for in vitro studies. The occurrence of continuous neurogenesis and easy access make the multipotent adult stem cells from the olfactory mucosa within the nasal cavity a potential cellular model. We describe an efficient method to establish neuron-like cells from olfactory mucosa biopsies derived from A-T patients for the purpose of studying the cellular and molecular aspects of this debilitating disease.
Collapse
|
23
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
24
|
Nayler SP, Powell JE, Vanichkina DP, Korn O, Wells CA, Kanjhan R, Sun J, Taft RJ, Lavin MF, Wolvetang EJ. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks. Front Cell Neurosci 2017; 11:321. [PMID: 29081736 PMCID: PMC5645492 DOI: 10.3389/fncel.2017.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.
Collapse
Affiliation(s)
- Sam P Nayler
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| | - Joseph E Powell
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD, Australia
| | - Darya P Vanichkina
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| | - Christine A Wells
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Refik Kanjhan
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Jian Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| | - Ryan J Taft
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia.,Department of Integrated Systems Biology and Department of Pediatrics, School of Medicine and Health Services, George Washington University, Washington, DC, United States.,Illumina, Inc.,, San Diego, CA, United States
| | - Martin F Lavin
- UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
25
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Nayler S, Kozlov SV, Lavin MF, Wolvetang E. Lentiviral Reprogramming of A-T Patient Fibroblasts to Induced Pluripotent Stem Cells. Methods Mol Biol 2017; 1599:401-418. [PMID: 28477135 DOI: 10.1007/978-1-4939-6955-5_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reprogramming of cells enables generation of pluripotent stem cells and resulting progeny through directed differentiation, making this technology an invaluable tool for the study of human development and disease. Reprogramming occurs with a wide range of efficiency, a culmination of intrinsic and extrinsic factors including the tissue of origin, the passage number and culture history of the target cells. Another major factor affecting reprogramming is the methodology used and the quality of the reprogramming process itself, including for conventional viral-based approaches viral titer and subsequent viral transduction efficiency, including downstream transgene insertion and stoichiometry. Genetic background is an important parameter affecting the efficiency of the reprogramming process with reports that cells from individuals harboring specific mutations are more difficult to reprogram than control counterparts.Ataxia-Telangiectasia (A-T) fibroblasts underwent reprogramming at reduced efficiency in contrast to their controls. To optimize reprogramming of fibroblasts from patients with A-T, we examined the response of A-T cells to various cell culture conditions after lentiviral transduction with reprogramming factors Oc4/Sox2 (pSIN4-EF2-O2S) and Klf4/c-Myc (pSIN4-CMV-K2M). Parameters included media type (KSR or serum-containing DMEM), treatment with a p53 inhibitor (small-molecule cyclic pifithrin-α), and either a low or high concentration of bFGF. Post-transduction, equivalent numbers of cells from heterozygote and homozygote patients were plated and assessed at regular intervals for survival and proliferation. Our findings indicate that A-T cells responded favorably to the addition of FCS and gradual weaning away from their native media into KSR-containing stem cell media that produced suitable conditions for their reprogramming. We examined a range of properties to identify and isolate good quality iPSCs including the expression status of important stem cell transcription factors/surface proteins, methylation levels at stem cell associated regulatory loci, persistence of transgenes, karyotype status, and teratoma-forming ability.
Collapse
Affiliation(s)
- Sam Nayler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Sergei V Kozlov
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, Brisbane, QLD, 4029, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Herston, Brisbane, QLD, 4029, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, Lu H, Shamanna RA, Kalyanasundaram S, Bollineni RC, Wilson MA, Iser WB, Wollman BN, Morevati M, Li J, Kerr JS, Lu Q, Waltz TB, Tian J, Sinclair DA, Mattson MP, Nilsen H, Bohr VA. NAD + Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell Metab 2016; 24:566-581. [PMID: 27732836 PMCID: PMC5777858 DOI: 10.1016/j.cmet.2016.09.004] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/15/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD+, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD+ reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD+ also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.
Collapse
Affiliation(s)
- Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Henok Kassahun
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Huiming Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sumana Kalyanasundaram
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; Bioinformatics Core Facility, Department of Core Facilities, Institute of Cancer Research, Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Mark A Wilson
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Wendy B Iser
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Bradley N Wollman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Marya Morevati
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark
| | - Jun Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jesse S Kerr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Qiping Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Tyler B Waltz
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jane Tian
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hilde Nilsen
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Copenhagen, Blegdamsvej 3B 2200, Denmark.
| |
Collapse
|
28
|
Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells. Stem Cell Res 2016; 17:296-305. [DOI: 10.1016/j.scr.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022] Open
|
29
|
Holm IE, Alstrup AKO, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol 2015; 238:267-87. [DOI: 10.1002/path.4654] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ida E Holm
- Department of Pathology; Randers Hospital; 8930 Randers Denmark
- Department of Clinical Medicine; Aarhus University; 8000 Aarhus C Denmark
| | | | - Yonglun Luo
- Department of Biomedicine; Aarhus University; 8000 Aarhus C Denmark
| |
Collapse
|
30
|
Becherel OJ, Sun J, Yeo AJ, Nayler S, Fogel BL, Gao F, Coppola G, Criscuolo C, De Michele G, Wolvetang E, Lavin MF. A new model to study neurodegeneration in ataxia oculomotor apraxia type 2. Hum Mol Genet 2015; 24:5759-74. [PMID: 26231220 PMCID: PMC4581605 DOI: 10.1093/hmg/ddv296] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/12/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022] Open
Abstract
Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome.
Collapse
Affiliation(s)
- Olivier J Becherel
- UQ Centre for Clinical Research (UQCCR), School of Chemistry and Molecular Biosciences and
| | - Jane Sun
- Australian Institute for Bioengineering and Nanotechnology
| | - Abrey J Yeo
- UQ Centre for Clinical Research (UQCCR), School of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Sam Nayler
- Australian Institute for Bioengineering and Nanotechnology
| | | | - Fuying Gao
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA and
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA and
| | - Chiara Criscuolo
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Giuseppe De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | | | | |
Collapse
|
31
|
Campbell A, Bushman J, Munger J, Noble M, Pröschel C, Mayer-Pröschel M. Mutation of ataxia-telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia. Glia 2015; 64:227-39. [PMID: 26469940 DOI: 10.1002/glia.22925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/11/2022]
Abstract
Astroglial dysfunction plays an important role in neurodegenerative diseases otherwise attributed to neuronal loss of function. Here we focus on the role of astroglia in ataxia-telangiectasia (A-T), a disease caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. A hallmark of A-T pathology is progressive loss of cerebellar neurons, but the mechanisms that impact neuronal survival are unclear. We now provide a possible mechanism by which A-T astroglia affect the survival of cerebellar neurons. As astroglial functions are difficult to study in an in vivo setting, particularly in the cerebellum where these cells are intertwined with the far more numerous neurons, we conducted in vitro coculture experiments that allow for the generation and pharmacological manipulation of purified cell populations. Our analyses revealed that cerebellar astroglia isolated from Atm mutant mice show decreased expression of the cystine/glutamate exchanger subunit xCT, glutathione (GSH) reductase, and glutathione-S-transferase. We also found decreased levels of intercellular and secreted GSH in A-T astroglia. Metabolic labeling of l-cystine, the major precursor for GSH, revealed that a key component of the defect in A-T astroglia is an impaired ability to import this rate-limiting precursor for the production of GSH. This impairment resulted in suboptimal extracellular GSH supply, which in turn impaired survival of cerebellar neurons. We show that by circumventing the xCT-dependent import of L-cystine through addition of N-acetyl-L-cysteine (NAC) as an alternative cysteine source, we were able to restore GSH levels in A-T mutant astroglia providing a possible future avenue for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642.,Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, 14642
| | - Jared Bushman
- School of Pharmacy Health Sciences Center, University of Wyoming, Laramie, Wyoming, 82071
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, 14642
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642
| |
Collapse
|
32
|
Senataxin controls meiotic silencing through ATR activation and chromatin remodeling. Cell Discov 2015; 1:15025. [PMID: 27462424 PMCID: PMC4860845 DOI: 10.1038/celldisc.2015.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/17/2015] [Indexed: 12/13/2022] Open
Abstract
Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.
Collapse
|
33
|
Campbell A, Krupp B, Bushman J, Noble M, Pröschel C, Mayer-Pröschel M. A novel mouse model for ataxia-telangiectasia with a N-terminal mutation displays a behavioral defect and a low incidence of lymphoma but no increased oxidative burden. Hum Mol Genet 2015; 24:6331-49. [PMID: 26310626 DOI: 10.1093/hmg/ddv342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA, Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA and
| | - Brittany Krupp
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Jared Bushman
- Division of Pharmaceutical Sciences, University of Wyoming School of Pharmacy, 1000 East University Ave., Dept. 3375, Laramie, WY 82071, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA,
| |
Collapse
|
34
|
Fasullo M, Endres L. Nucleotide salvage deficiencies, DNA damage and neurodegeneration. Int J Mol Sci 2015; 16:9431-49. [PMID: 25923076 PMCID: PMC4463597 DOI: 10.3390/ijms16059431] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022] Open
Abstract
Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.
Collapse
Affiliation(s)
- Michael Fasullo
- Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic University, Albany, NY 12203, USA.
| | - Lauren Endres
- Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic University, Albany, NY 12203, USA.
| |
Collapse
|
35
|
|
36
|
Tepsuporn S, Hu J, Gostissa M, Alt FW. Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol Res 2014; 2:857-66. [PMID: 24913718 PMCID: PMC4156541 DOI: 10.1158/2326-6066.cir-14-0090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ataxia Telangiectasia-mutated (ATM) kinase senses DNA double-strand breaks (DSB) and facilitates their repair. In humans, ATM deficiency predisposes to B- and T-cell lymphomas, but in mice it leads only to thymic lymphomas. We tested the hypothesis that increased DSB frequency at a cellular oncogene could promote B-cell lymphoma by generating ATM-deficient mice with a V(D)J recombination target (DJβ cassette) within c-myc intron 1 ("DA" mice). We also generated ATM-deficient mice carrying an Eμ-Bcl-2 transgene (AB mice) to test whether enhanced cellular survival could promote B-cell lymphomas. About 30% of DA or AB mice and nearly 100% of mice harboring the combined genotypes (DAB mice) developed mature B-cell lymphomas. In all genotypes, B-cell tumors harbored oncogenic c-myc amplification generated by breakage-fusion-bridge (BFB) from dicentric chromosomes formed through fusion of IgH V(D)J recombination-associated DSBs on chromosome 12 to sequences downstream of c-myc on chromosome 15. AB tumors demonstrate that B lineage cells harboring spontaneous DSBs leading to IgH/c-myc dicentrics are blocked from progressing to B-cell lymphomas by cellular apoptotic responses. DA and DAB tumor translocations were strictly linked to the cassette, but occurred downstream, frequently in a 6-kb region adjacent to c-myc that harbors multiple cryptic V(D)J recombination targets, suggesting that bona fide V(D)J target sequences may activate linked cryptic targets. Our findings indicate that ATM deficiency allows IgH V(D)J recombination DSBs in developing B cells to generate dicentric translocations that, via BFB cycles, lead to c-myc-activating oncogenic translocations and amplifications in mature B cells.
Collapse
Affiliation(s)
- Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital; and Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics 2014; 15:217-28. [PMID: 25038946 DOI: 10.1007/s10048-014-0415-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
Since identification of mutations in the ATM gene leading to ataxia-telangiectasia, enormous efforts have been devoted to discovering the roles this protein plays in DNA repair as well as other cellular functions. Even before the identification of ATM mutations, it was clear that other diseases with different genomic loci had very similar neurological symptoms. There has been significant progress in understanding why cancer and immunodeficiency occur in ataxia-telangiectasia even though many details remain to be determined, but the field is no closer to determining why the nervous system requires ATM and other DNA repair genes. Even though rodent disease models have similar DNA repair abnormalities as the human diseases, they have no consistent, robust neuropathological phenotype making it difficult to understand the neurological underpinnings of disease. Therefore, it may be useful to reassess the neurological and neuropathological characteristics of ataxia-telangiectasia in human patients to look for potential commonalities in DNA repair diseases that result in ataxia. In doing so, it is clear that ataxia-telangiectasia and similar diseases share neurological features other than merely ataxia, such as length-dependent motor and sensory neuropathies, and that the neuroanatomical localization for these symptoms is understood. Cells affected in ataxia-telangiectasia and similar diseases are some of the largest single nucleated cells in the body. In addition, a subset of these diseases also has extrapyramidal movements and oculomotor apraxia. These neurological and neuropathological similarities may indicate a common DNA repair related pathogenesis with very large cell size as a critical risk factor.
Collapse
|
38
|
Carlessi L, Poli EF, Bechi G, Mantegazza M, Pascucci B, Narciso L, Dogliotti E, Sala C, Verpelli C, Lecis D, Delia D. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis 2014; 5:e1342. [PMID: 25032865 PMCID: PMC4123100 DOI: 10.1038/cddis.2014.310] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022]
Abstract
Loss of ataxia telangiectasia mutated (ATM) kinase, a key factor of the DNA damage response (DDR) pathway, causes the cancer predisposing and neurodegenerative syndrome ataxia-telangiectasia (A-T). To investigate the mechanisms of neurodegeneration, we have reprogrammed fibroblasts from ATM-null A-T patients and normal controls to pluripotency (human-induced pluripotent stem cells), and derived from these neural precursor cells able to terminally differentiate into post-mitotic neurons positive to >90% for β-tubulin III+/microtubule-associated protein 2+. We show that A-T neurons display similar voltage-gated potassium and sodium currents and discharges of action potentials as control neurons, but defective expression of the maturation and synaptic markers SCG10, SYP and PSD95 (postsynaptic density protein 95). A-T neurons exhibited defective repair of DNA double-strand breaks (DSBs) and repressed phosphorylation of ATM substrates (e.g., γH2AX, Smc1-S966, Kap1-S824, Chk2-T68, p53-S15), but normal repair of single-strand breaks, and normal short- and long-patch base excision repair activities. Moreover, A-T neurons were resistant to apoptosis induced by the genotoxic agents camptothecin and trabectedin, but as sensitive as controls to the oxidative agents. Most notably, A-T neurons exhibited abnormal accumulation of topoisomerase 1-DNA covalent complexes (Top1-ccs). These findings reveal that ATM deficiency impairs neuronal maturation, suppresses the response and repair of DNA DSBs, and enhances Top1-cc accumulation. Top1-cc could be a risk factor for neurodegeneration as they may interfere with transcription elongation and promote transcriptional decline.
Collapse
Affiliation(s)
- L Carlessi
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - E Fusar Poli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - G Bechi
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milano, Italy
| | - M Mantegazza
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milano, Italy
- Institute of Molecular and Cellular Pharmacology (IPMC) CNRS UMR7275 and University of Nice-Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
| | - B Pascucci
- CNR Institute of Crystallography, Via Salaria, Km. 29.300, 00016 Monterotondo Scalo, Roma, Italy
| | - L Narciso
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - E Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - C Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - C Verpelli
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - D Lecis
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - D Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| |
Collapse
|
39
|
Hu J, Tepsuporn S, Meyers RM, Gostissa M, Alt FW. Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci U S A 2014; 111:10269-74. [PMID: 24982162 PMCID: PMC4104897 DOI: 10.1073/pnas.1410112111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mature IgM(+) B-cell lymphomas that arise in certain ataxia telangiectasia-mutated (ATM)-deficient compound mutant mice harbor translocations that fuse V(D)J recombination-initiated IgH double-strand breaks (DSBs) on chromosome 12 to sequences downstream of c-myc on chromosome 15, generating dicentric chromosomes and c-myc amplification via a breakage-fusion-bridge mechanism. As V(D)J recombination DSBs occur in developing progenitor B cells in the bone marrow, we sought to elucidate a mechanism by which such DSBs contribute to oncogenic translocations/amplifications in mature B cells. For this purpose, we applied high-throughput genome-wide translocation sequencing to study the fate of introduced c-myc DSBs in splenic IgM(+) B cells stimulated for activation-induced cytidine deaminase (AID)-dependent IgH class switch recombination (CSR). We found frequent translocations of c-myc DSBs to AID-initiated DSBs in IgH switch regions in wild-type and ATM-deficient B cells. However, c-myc also translocated frequently to newly generated DSBs within a 35-Mb region downstream of IgH in ATM-deficient, but not wild-type, CSR-activated B cells. Moreover, we found such DSBs and translocations in activated B cells that did not express AID or undergo CSR. Our findings indicate that ATM deficiency leads to formation of chromosome 12 dicentrics via recombination-activating gene-initiated IgH DSBs in progenitor B cells and that these dicentrics can be propagated developmentally into mature B cells where they generate new DSBs downstream of IgH via breakage-fusion-bridge cycles. We propose that dicentrics formed by joining V(D)J recombination-associated IgH DSBs to DSBs downstream of c-myc in ATM-deficient B lineage cells similarly contribute to c-myc amplification and mature B-cell lymphomas.
Collapse
Affiliation(s)
- Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Suprawee Tepsuporn
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Monica Gostissa
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Kumar V, Alt FW, Oksenych V. Reprint of "Functional overlaps between XLF and the ATM-dependent DNA double strand break response". DNA Repair (Amst) 2014; 17:52-63. [PMID: 24767946 DOI: 10.1016/j.dnarep.2014.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
Abstract
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.
Collapse
Affiliation(s)
- Vipul Kumar
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
41
|
Yeo AJ, Becherel OJ, Luff JE, Cullen JK, Wongsurawat T, Jenjaroenpoon P, Kuznetsov VA, McKinnon PJ, Lavin MF. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS One 2014; 9:e90219. [PMID: 24637776 PMCID: PMC3956458 DOI: 10.1371/journal.pone.0090219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Disruption of the Setx gene, defective in ataxia oculomotor apraxia type 2 (AOA2) leads to the accumulation of DNA/RNA hybrids (R-loops), failure of meiotic recombination and infertility in mice. We report here the presence of R-loops in the testes from other autosomal recessive ataxia mouse models, which correlate with fertility in these disorders. R-loops were coincident in cells showing high basal levels of DNA double strand breaks and in those cells undergoing apoptosis. Depletion of Setx led to high basal levels of R-loops and these were enhanced further by DNA damage both in vitro and in vivo in tissues with proliferating cells. There was no evidence for accumulation of R-loops in the brains of mice where Setx, Atm, Tdp1 or Aptx genes were disrupted. These data provide further evidence for genome destabilization as a consequence of disrupted transcription in the presence of DNA double strand breaks arising during DNA replication or recombination. They also suggest that R-loop accumulation does not contribute to the neurodegenerative phenotype in these autosomal recessive ataxias.
Collapse
Affiliation(s)
- Abrey J. Yeo
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Olivier J. Becherel
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia, Queensland, Australia
| | - John E. Luff
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
| | - Jason K. Cullen
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
| | - Thidathip Wongsurawat
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore, Singapore
- School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
| | - Piroon Jenjaroenpoon
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore, Singapore
- School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
| | - Peter J. McKinnon
- Department of Genetics and Tumour Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Martin F. Lavin
- QIMR Berghofer Medical Research Institute, Radiation Biology and Oncology Laboratory, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
42
|
Kumar V, Alt FW, Oksenych V. Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair (Amst) 2014; 16:11-22. [PMID: 24674624 DOI: 10.1016/j.dnarep.2014.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 11/27/2022]
Abstract
Developing B and T lymphocytes generate programmed DNA double strand breaks (DSBs) during the V(D)J recombination process that assembles exons that encode the antigen-binding variable regions of antibodies. In addition, mature B lymphocytes generate programmed DSBs during the immunoglobulin heavy chain (IgH) class switch recombination (CSR) process that allows expression of different antibody heavy chain constant regions that provide different effector functions. During both V(D)J recombination and CSR, DSB intermediates are sensed by the ATM-dependent DSB response (DSBR) pathway, which also contributes to their joining via classical non-homologous end-joining (C-NHEJ). The precise nature of the interplay between the DSBR and C-NHEJ pathways in the context of DSB repair via C-NHEJ remains under investigation. Recent studies have shown that the XLF C-NHEJ factor has functional redundancy with several members of the ATM-dependent DSBR pathway in C-NHEJ, highlighting unappreciated major roles for both XLF as well as the DSBR in V(D)J recombination, CSR and C-NHEJ in general. In this review, we discuss current knowledge of the mechanisms that contribute to the repair of DSBs generated during B lymphocyte development and activation with a focus on potential functionally redundant roles of XLF and ATM-dependent DSBR factors.
Collapse
Affiliation(s)
- Vipul Kumar
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
43
|
Lavin MF. Generating SM(a)RTer compounds for translation termination suppression in A-T and other genetic disorders. Mol Ther 2013; 21:1650-2. [PMID: 24008619 PMCID: PMC3776641 DOI: 10.1038/mt.2013.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research, Radiation Biology and Oncology, Brisbane, Australia.
| |
Collapse
|
44
|
Lavin MF, Yeo AJ, Becherel OJ. Senataxin protects the genome: Implications for neurodegeneration and other abnormalities. Rare Dis 2013; 1:e25230. [PMID: 25003001 PMCID: PMC3927485 DOI: 10.4161/rdis.25230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 11/29/2022] Open
Abstract
Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive disorder characterized by cerebellar atrophy, peripheral neuropathy, loss of Purkinje cells and elevated α-fetoprotein. AOA2 is caused by mutations in the SETX gene that codes for the high molecular weight protein senataxin. Mutations in this gene also cause dominant neurodegenerative disorders. Similar to that observed for other autosomal recessive ataxias, this protein protects the integrity of the genome against oxidative and other forms of DNA damage to reduce the risk of neurodegeneration. Senataxin functions in transcription termination and RNA splicing and it has been shown to resolve RNA/DNA hybrids (R-loops) that arise at transcription pause sites or when transcription is blocked. Recent data suggest that this protein functions at the interface between transcription and DNA replication to minimise the risk of collision and maintain genome stability. Our recent data using SETX gene-disrupted mice revealed that male mice were defective in spermatogenesis and were infertile. DNA double strand-breaks persisted throughout meiosis and crossing-over failed in SETX mutant mice. These changes can be explained by the accumulation of R-loops, which interfere with Holiday junctions and crossing-over. We also showed that senataxin was localized to the XY body in pachytene cells and was involved in transcriptional silencing of these chromosomes. While the defect in meiotic recombination was striking in these animals, there was no evidence of neurodegeneration as observed in AOA2 patients. We discuss here potentially different roles for senataxin in proliferating and post-mitotic cells.
Collapse
Affiliation(s)
- Martin F Lavin
- Queensland Institute of Medical Research; Radiation Biology and Oncology; Brisbane, QLD, Australia ; University of Queensland Centre for Clinical Research; Herston, QLD, Australia
| | - Abrey J Yeo
- Queensland Institute of Medical Research; Radiation Biology and Oncology; Brisbane, QLD, Australia ; School of Medicine; University of Queensland; Herston, QLD, Australia
| | - Olivier J Becherel
- Queensland Institute of Medical Research; Radiation Biology and Oncology; Brisbane, QLD, Australia ; School of Chemistry & Molecular Biosciences; University of Queensland; St. Lucia, QLD, Australia
| |
Collapse
|