1
|
Ding B, Lu L, Hu J, Zhang R, Wang F, Zhou Z, Lin Y, Pan C, Zhou Y, Yang B, Zhu CL, Zhou C, Cao J. Identification and validation of WDR5 WIN-site ligands via DNA-encoded chemical library screening. Bioorg Chem 2025; 154:107948. [PMID: 39616835 DOI: 10.1016/j.bioorg.2024.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025]
Abstract
WD repeat-containing protein 5 (WDR5) is a scaffolding protein involved in critical protein-protein interactions and a promising target for therapeutic development. Novel small-molecule ligands targeting WDR5 were identified using the DELopen platform, a free-access DNA-encoded chemical library (DEL) for academic research. Through off-DNA structure-activity relationship studies and photoaffinity labeling, two promising initial leads, DBL-6-13 and DBL-6-33, were identified as new binders of WDR5. These compounds exhibited moderate to good binding affinities and were confirmed to bind the WIN-site through co-crystal structure analysis. Our findings demonstrate the utility of DEL technology in identifying ligands for challenging targets like WDR5, particularly within an academic research setting using the DELopen platform. The identified WDR5 ligands offer a foundation for further optimization and exploration as chemical probes for WDR5 research.
Collapse
Affiliation(s)
- Baoli Ding
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li Lu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiawen Hu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Rongtian Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Feifan Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Zhesheng Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yushen Lin
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chenghao Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China
| | - Yihui Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, PR China; School of Medicine, Hangzhou City University, Hangzhou 310015, PR China
| | - Cheng-Liang Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China; Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, PR China.
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Ryzhikh D, Seo H, Lee J, Lee J, Nam MH, Song M, Hwang GT. On-DNA Mannich Reaction for DNA-Encoded Library Synthesis. J Org Chem 2024; 89:16957-16963. [PMID: 39482967 DOI: 10.1021/acs.joc.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The β-amino ketones produced through the Mannich reaction hold significant potential as candidates for various drugs. In this study, we optimized on-DNA Mannich reaction conditions and applied them to investigate the reactions of DNA-conjugated aldehydes with various amine and ketone building blocks. The developed on-DNA Mannich reaction preserved the DNA integrity and established viable routes for library production. These results underscore the potential of the Mannich reaction in DNA-encoded library (DEL) synthesis.
Collapse
Affiliation(s)
- Danila Ryzhikh
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jihoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Myung Hee Nam
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Suo Y, Li K, Ling X, Yan K, Lu W, Yue J, Chen X, Duan Z, Lu X. Discovery Small-Molecule p300 Inhibitors Derived from a Newly Developed Indazolone-Focused DNA-Encoded Library. Bioconjug Chem 2024; 35:1251-1257. [PMID: 39116103 DOI: 10.1021/acs.bioconjchem.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The DNA-encoded library (DEL) is a robust tool for chemical biology and drug discovery. In this study, we developed a DNA-compatible light-promoted reaction that is highly efficient and plate-compatible for DEL construction based on the formation of the indazolone scaffold. Employing this high-efficiency approach, we constructed a DEL featuring an indazolone core, which enabled the identification of a novel series of ligands specifically targeting E1A-binding protein (p300) after DEL selection. Taken together, our findings underscore the feasibility of light-promoted reactions in DEL synthesis and unveil promising avenues for developing p300-targeting inhibitors.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kaige Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road ,Nanjing 210023, China
| | - Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kenian Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiaohua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road ,Nanjing 210023, China
| |
Collapse
|
4
|
Chheda PR, Simmons N, Shi Z. Oxoammonium Salt-Mediated On-DNA Alcohol Oxidation for DEL Synthesis. Org Lett 2024; 26:6754-6759. [PMID: 39077878 DOI: 10.1021/acs.orglett.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
On-DNA carboxylic acids are important synthetic intermediates in the synthesis of DNA-encoded library (DEL) structures. Herein, we report an oxoammonium salt-mediated, room temperature, solution-phase oxidation of DNA-linked primary alcohols into carboxylic acids. This method exhibits a wide substrate scope, encompassing aliphatic, benzylic, and heterobenzylic alcohols, and is compatible with DEL encoding strategies. This advancement facilitates a DEL strategy to utilize unprotected alcohols as inert, masked carboxylic acids and enables access to noncommercial bifunctional carboxyl intermediates to enhance the accessible chemical diversity within DELs.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
5
|
Yu T, Ren Z, Gao X, Li G, Han R. Generating barcodes for nanopore sequencing data with PRO. FUNDAMENTAL RESEARCH 2024; 4:785-794. [PMID: 39660352 PMCID: PMC11630701 DOI: 10.1016/j.fmre.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 04/09/2024] [Indexed: 12/12/2024] Open
Abstract
DNA barcodes, short and unique DNA sequences, play a crucial role in sample identification when processing many samples simultaneously, which helps reduce experimental costs. Nevertheless, the low quality of long-read sequencing makes it difficult to identify barcodes accurately, which poses significant challenges for the design of barcodes for large numbers of samples in a single sequencing run. Here, we present a comprehensive study of the generation of barcodes and develop a tool, PRO, that can be used for selecting optimal barcode sets and demultiplexing. We formulate the barcode design problem as a combinatorial problem and prove that finding the optimal largest barcode set in a given DNA sequence space in which all sequences have the same length is theoretically NP-complete. For practical applications, we developed the novel method PRO by introducing the probability divergence between two DNA sequences to expand the capacity of barcode kits while ensuring demultiplexing accuracy. Specifically, the maximum size of the barcode kits designed by PRO is 2,292, which keeps the length of barcodes the same as that of the official ones used by Oxford Nanopore Technologies (ONT). We validated the performance of PRO on a simulated nanopore dataset with high error rates. The demultiplexing accuracy of PRO reached 98.29% for a barcode kit of size 2,922, 4.31% higher than that of Guppy, the official demultiplexing tool. When the size of the barcode kit generated by PRO is the same as the official size provided by ONT, both tools show superior and comparable demultiplexing accuracy.
Collapse
Affiliation(s)
- Ting Yu
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Shandong 266000, China
| | - Zitong Ren
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Shandong 266000, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division & Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Guojun Li
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Shandong 266000, China
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Shandong 266000, China
| |
Collapse
|
6
|
Qin S, Feng L, Zhao Q, Yan Z, Lyu X, Li K, Mu B, Chen Y, Lu W, Wang C, Suo Y, Yue J, Cui M, Li Y, Zhao Y, Duan Z, Zhu J, Lu X. Discovery and Optimization of WDR5 Inhibitors via Cascade Deoxyribonucleic Acid-Encoded Library Selection Approach. J Med Chem 2024; 67:1079-1092. [PMID: 38166388 DOI: 10.1021/acs.jmedchem.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The DNA-encoded library (DEL) is a powerful hit generation tool for chemical biology and drug discovery; however, the optimization of DEL hits remained a daunting challenge for the medicinal chemistry community. In this study, hit compounds targeting the WIN binding domain of WDR5 were discovered by the initial three-cycle linear DEL selection, and their potency was further enhanced by a cascade DEL selection from the focused DEL designed based on the original first run DEL hits. As expected, these new compounds from the second run of focused DEL were more potent WDR5 inhibitors in the protein binding assay confirmed by the off-DNA synthesis. Interestingly, selected inhibitors exhibited good antiproliferative activity in two human acute leukemia cell lines. Taken together, this new cascade DEL selection strategy may have tremendous potential for finding high-affinity leads against WDR5 and provide opportunities to explore and optimize inhibitors for other targets.
Collapse
Affiliation(s)
- Shaozhao Qin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Lijian Feng
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Qingyi Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Kaige Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yujie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yingjie Li
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jidong Zhu
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Xiaojie Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
7
|
Day EC, Chittari SS, Bogen MP, Knight AS. Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows. ACS POLYMERS AU 2023; 3:406-427. [PMID: 38107416 PMCID: PMC10722570 DOI: 10.1021/acspolymersau.3c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
Synthetic polymers are highly customizable with tailored structures and functionality, yet this versatility generates challenges in the design of advanced materials due to the size and complexity of the design space. Thus, exploration and optimization of polymer properties using combinatorial libraries has become increasingly common, which requires careful selection of synthetic strategies, characterization techniques, and rapid processing workflows to obtain fundamental principles from these large data sets. Herein, we provide guidelines for strategic design of macromolecule libraries and workflows to efficiently navigate these high-dimensional design spaces. We describe synthetic methods for multiple library sizes and structures as well as characterization methods to rapidly generate data sets, including tools that can be adapted from biological workflows. We further highlight relevant insights from statistics and machine learning to aid in data featurization, representation, and analysis. This Perspective acts as a "user guide" for researchers interested in leveraging high-throughput screening toward the design of multifunctional polymers and predictive modeling of structure-property relationships in soft materials.
Collapse
Affiliation(s)
| | | | - Matthew P. Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Schneider L, Sauter B, Dagher K, Gillingham D. Recording Binding Information Directly into DNA-Encoded Libraries Using Terminal Deoxynucleotidyl Transferase. J Am Chem Soc 2023; 145:20874-20882. [PMID: 37704585 PMCID: PMC10540198 DOI: 10.1021/jacs.3c05961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/15/2023]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is an unusual DNA polymerase that adds untemplated dNTPs to 3'-ends of DNA. If a target protein is expressed as a TdT fusion and incubated with a DNA-encoded library (DEL) in the presence of dATP, the binders of the target induce proximity between TdT and the DNA, promoting the synthesis of a poly-adenine (polyA) tail. The polyA tail length is proportional to the binding affinity, effectively serving as a stable molecular record of binding events. The polyA tail is also a convenient handle to enrich binders with magnetic poly(dT)25 beads before sequencing. In a benchmarking system, we show that ligands spanning nanomolar to double-digit micromolar binding can be cleanly identified by TdT extension, whereas only the tightest binding ligands are identified by classical affinity selection. The method is simple to implement and can function on any DEL that bears a free 3'-end.
Collapse
Affiliation(s)
| | - Basilius Sauter
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| | - Koder Dagher
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University
of Basel, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Wen X, Zhang M, Duan Z, Suo Y, Lu W, Jin R, Mu B, Li K, Zhang X, Meng L, Hong Y, Wang X, Hu H, Zhu J, Song W, Shen A, Lu X. Discovery, SAR Study of GST Inhibitors from a Novel Quinazolin-4(1 H)-one Focused DNA-Encoded Library. J Med Chem 2023; 66:11118-11132. [PMID: 37552553 DOI: 10.1021/acs.jmedchem.2c02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The DNA-encoded library (DEL) is a powerful hit-generation tool in drug discovery. This study describes a new DEL with a privileged scaffold quinazolin-4(3H)-one developed by a robust DNA-compatible multicomponent reaction and a series of novel glutathione S-transferase (GST) inhibitors that were identified through affinity-mediated DEL selection. A novel inhibitor 16 was subsequently verified with an inhibitory potency value of 1.55 ± 0.02 μM against SjGST and 2.02 ± 0.20 μM against hGSTM2. Further optimization was carried out via various structure-activity relationship studies. And especially, the co-crystal structure of the compound 16 with the SjGST was unveiled, which clearly demonstrated its binding mode was quite different from the known GSH-like compounds. This new type of probe is likely to play a different role compared with the GSH, which may provide new opportunities to discover more potent GST inhibitors.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Minmin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kaige Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linghua Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jian Zhu
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Weixiao Song
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Aijun Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
An Y, Lee J, Seo H, Bae S, Kang J, Lee J, Kim J, Nam MH, Song M, Hwang GT. Groebke-Blackburn-Bienaymé Reaction for DNA-Encoded Library Technology. Org Lett 2023; 25:4445-4450. [PMID: 37310879 DOI: 10.1021/acs.orglett.3c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents a DNA-compatible synthesis of diverse 5-arylimidazo[1,2-a]pyridin-3-amine derivatives using the Suzuki-Miyaura reaction, followed by a Groebke-Blackburn-Bienaymé (GBB) reaction. The GBB reaction demonstrates a wide substrate scope, mild one-pot reaction conditions, and compatibility with subsequent enzymatic ligation, highlighting its potential in DNA-encoded library technology.
Collapse
Affiliation(s)
- Yujin An
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Seri Bae
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jihee Kang
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jieon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu 41061, Republic of Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Sharma K, Sharma KK, Sharma A, Jain R. Peptide-based drug discovery: Current status and recent advances. Drug Discov Today 2023; 28:103464. [PMID: 36481586 DOI: 10.1016/j.drudis.2022.103464] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The progressive development of peptides from reaction vessels to life-saving drugs via rigorous preclinical and clinical assessments is fascinating. Peptide therapeutics have gained momentum with the evolution of techniques in peptide chemistry, such as microwave irradiation in solid- and solution-phase synthesis, ligation chemistry, recombinant synthesis, and amalgamation with synthetic tools, including metal catalysis. Diverse emerging technologies, such as DNA-encoded libraries (DELs) and display techniques, are changing the status quo in the discovery of peptide therapeutics. In this review, we analyzed US Food and Drug Administration (FDA)-approved peptide drugs and those in clinical trials, highlighting recent advances in peptide-based drug discovery.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
12
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
13
|
Press WH. Fast trimer statistics facilitate accurate decoding of large random DNA barcode sets even at large sequencing error rates. PNAS NEXUS 2022; 1:pgac252. [PMID: 36712375 PMCID: PMC9802387 DOI: 10.1093/pnasnexus/pgac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Predefined sets of short DNA sequences are commonly used as barcodes to identify individual biomolecules in pooled populations. Such use requires either sufficiently small DNA error rates, or else an error-correction methodology. Most existing DNA error-correcting codes (ECCs) correct only one or two errors per barcode in sets of typically ≲104 barcodes. We here consider the use of random barcodes of sufficient length that they remain accurately decodable even with ≳6 errors and even at [Formula: see text] or 20% nucleotide error rates. We show that length ∼34 nt is sufficient even with ≳106 barcodes. The obvious objection to this scheme is that it requires comparing every read to every possible barcode by a slow Levenshtein or Needleman-Wunsch comparison. We show that several orders of magnitude speedup can be achieved by (i) a fast triage method that compares only trimer (three consecutive nucleotide) occurence statistics, precomputed in linear time for both reads and barcodes, and (ii) the massive parallelism available on today's even commodity-grade Graphics Processing Units (GPUs). With 106 barcodes of length 34 and 10% DNA errors (substitutions and indels), we achieve in simulation 99.9% precision (decode accuracy) with 98.8% recall (read acceptance rate). Similarly high precision with somewhat smaller recall is achievable even with 20% DNA errors. The amortized computation cost on a commodity workstation with two GPUs (2022 capability and price) is estimated as between US$ 0.15 and US$ 0.60 per million decoded reads.
Collapse
|
14
|
Blay V, Li X, Gerlach J, Urbina F, Ekins S. Combining DELs and machine learning for toxicology prediction. Drug Discov Today 2022; 27:103351. [PMID: 36096360 PMCID: PMC9995617 DOI: 10.1016/j.drudis.2022.103351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
DNA-encoded libraries (DELs) allow starting chemical matter to be identified in drug discovery. The volume of experimental data generated also makes DELs an attractive resource for machine learning (ML). ML allows modeling complex relationships between compounds and numerical endpoints, such as the binding to a target measured by DELs. DELs could also empower other areas of drug discovery. Here, we propose that DELs and ML could be combined to model binding to off-targets, enabling better predictive toxicology. With enough data, ML models can make accurate predictions across a vast chemical space, and they can be reused and expanded across projects. Although there are limitations, more general toxicology models could be applied earlier during drug discovery, illuminating safety liabilities at a lower cost.
Collapse
Affiliation(s)
- Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA.
| |
Collapse
|
15
|
Tian X, Suarez D, Thomson D, Li W, King EA, LaFrance L, Boehm J, Barton L, Di Marco C, Martyr C, Thalji R, Medina J, Knight S, Heerding D, Gao E, Nartey E, Cecconie T, Nixon C, Zhang G, Berrodin TJ, Phelps C, Patel A, Bai X, Lind K, Prabhu N, Messer J, Zhu Z, Shewchuk L, Reid R, Graves AP, McHugh C, Mangatt B. Discovery of Proline-Based p300/CBP Inhibitors Using DNA-Encoded Library Technology in Combination with High-Throughput Screening. J Med Chem 2022; 65:14391-14408. [DOI: 10.1021/acs.jmedchem.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xinrong Tian
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dominic Suarez
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Douglas Thomson
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - William Li
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Elizabeth A. King
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Louis LaFrance
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jeffrey Boehm
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Linda Barton
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christina Di Marco
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Cuthbert Martyr
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Reema Thalji
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jesus Medina
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Steven Knight
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dirk Heerding
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Enoch Gao
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Eldridge Nartey
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ted Cecconie
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Nixon
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Guofeng Zhang
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Thomas J. Berrodin
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Phelps
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Amish Patel
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaopeng Bai
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Ken Lind
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Ninad Prabhu
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jeffrey Messer
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Zhengrong Zhu
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Lisa Shewchuk
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rob Reid
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Alan P. Graves
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Charles McHugh
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Biju Mangatt
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
16
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
17
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
18
|
Eom S, Kwon T, Lee DY, Park CH, Kim HJ. Copper-Mediated Three-Component Reaction for the Synthesis of N-Acylsulfonamide on DNA. Org Lett 2022; 24:4881-4885. [PMID: 35775977 DOI: 10.1021/acs.orglett.2c01675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded library (DEL) technology is a new method for discovering hit compounds for target proteins in the pharmaceutical industry. The N-acylsulfonamide functional group has been reported to exhibit various pharmacological activities, and based on this, the demand for a method that allows its introduction into the DEL platform has increased. In this report, a procedure for synthesizing N-acylsulfonamide functional groups applicable to DEL construction was developed in the presence of a copper reagent and water as a nucleophile from simple alkynes or sulfonyl azides, which are widely commercially available. Furthermore, we prove that a new alternative procedure can be used to construct a DNA-encoded library.
Collapse
Affiliation(s)
- Solji Eom
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Taeyeon Kwon
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Da Yeon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Chi Hoon Park
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Hyun Jin Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea.,Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| |
Collapse
|
19
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Palladium-Mediated C–N Coupling of DNA-Conjugated (Hetero)aryl Halides with Aliphatic and (Hetero)aromatic Amines. Org Lett 2022; 24:3401-3406. [DOI: 10.1021/acs.orglett.2c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pratik R. Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P. Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
20
|
Shen Y, Yang G, Huang W, Shaginian A, Lin Q, Wan J, Li J, Deng Y, Liu G. Photoredox Deaminative Alkylation in DNA-Encoded Library Synthesis. Org Lett 2022; 24:2650-2654. [PMID: 35362987 DOI: 10.1021/acs.orglett.2c00697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report an on-DNA photoredox-mediated deaminative alkylation method for diversifying DNA-tagged acrylamide substrate with amine-derived radicals. The radicals can be conveniently generated from sterically hindered primary amines, and the deaminative alkylation can tolerate a broad array of radical precursors. Furthermore, the methodology is applicable to Boc-protected diamines, free amino acids, and aryl halides, which bear functional groups enabling additional rounds of diversification. The method is believed to offer a high potential for constructing DNA-encoded libraries, as was demonstrated by the production of a mock library in a 2 × 3 matrix format and confirmation of DNA stability by UPLC-MS and qPCR experiments.
Collapse
Affiliation(s)
- Yurong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Wei Huang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Qian Lin
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P.R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan, P.R. China
| |
Collapse
|
21
|
Fu X, Tang J, Hua R, Li X, Kang Z, Qiu H, Hu W. Functionalization of DNA-Tagged Alkenes with Diazo Compounds via Photocatalysis. Org Lett 2022; 24:2208-2213. [PMID: 35289626 DOI: 10.1021/acs.orglett.2c00516] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To explore potential chemical space using DNA-encoded library (DEL) technology, the development of various types of robust DNA-compatible reactions is urgently needed. Diazo compounds, which serve as valuable building blocks and important synthons in synthetic chemistry, have been rarely applied in DEL synthesis, probably because of their potential modifications of the bases and phosphate backbone of DNA. Herein we report two cases of DNA-compatible reactions with alkenes and diazo compounds, providing corresponding hydroalkylation and cyclopropanation products in moderate to excellent yields. Notably, these transformations not only provide new access to C(sp3)-C(sp3) bond formation in DELs with excellent functional group tolerance but also represent practical ligation methods to introduce functionalized molecules into DNA.
Collapse
Affiliation(s)
- Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruyu Hua
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Dragovich PS, Haap W, Mulvihill MM, Plancher JM, Stepan AF. Small-Molecule Lead-Finding Trends across the Roche and Genentech Research Organizations. J Med Chem 2022; 65:3606-3615. [PMID: 35138850 DOI: 10.1021/acs.jmedchem.1c02106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The origin of small-molecule leads that were pursued across the independent research organizations Roche and Genentech from 2009 to 2020 is described. The identified chemical series are derived from a variety of lead-finding methods, which include public information, high-throughput screening (both full file and focused), fragment-based design, DNA-encoded library technology, use of legacy internal data, in-licensing, and de novo design (often structure-based). The translation of the lead series into in vivo tool compounds and development candidates is discussed as are the associated biological target classes and corresponding therapeutic areas. These analyses identify important trends regarding the various lead-finding approaches, which will likely impact their future application in the Roche and Genentech research groups. They also highlight commonalities and differences across the two independent research organizations. Several caveats associated with the employed data collection and analysis methodologies are included to enhance the interpretation of the presented information.
Collapse
Affiliation(s)
- Peter S Dragovich
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Melinda M Mulvihill
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jean-Marc Plancher
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Antonia F Stepan
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| |
Collapse
|
23
|
Gao Y, Sun Y, Fang X, Zhao G, Li X, Zhang G, Li Y, Li Y. Development of on-DNA vinyl sulfone synthesis for DNA-encoded chemical libraries. Org Chem Front 2022. [DOI: 10.1039/d2qo00881e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the development of an efficient synthetic route to generate a DNA-compatible vinyl sulfone functional group, and the subsequent chemical transformations demonstrated the feasibility of our method in DEL construction.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xufeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
24
|
Davoine C, Pardo A, Pochet L, Fillet M. Fragment Hit Discovery and Binding Site Characterization by Indirect Affinity Capillary Electrophoresis: Application to Factor XIIa. Anal Chem 2021; 93:14802-14809. [PMID: 34694784 DOI: 10.1021/acs.analchem.1c03611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fragment-based lead discovery is a usual strategy in drug discovery to identify innovative lead compounds. The success of this approach strongly relies on the capacity to detect weak binders and characterize their binding site. NMR and X-ray crystallography are the conventional technologies used to tackle this challenge. However, their large protein consumption and the cost of equipment reduce their accessibility. Here, an affinity capillary electrophoresis methodology was developed that enables the detection of mM binders, the determination of dissociation constants, and the characterization of the fragment binding site. On the basis of multiple equilibrium theory, dissociation constants in the μM-mM range were determined, and a new methodology is proposed to establish graphically if two fragments bind the same protein pocket. The applicability of this methodology was demonstrated experimentally on coagulation factor XIIa by evaluating pairs of fragments with expected behavior. This study reinforces the significance of using affinity capillary electrophoresis to gather valuable information for medicinal chemistry projects.
Collapse
Affiliation(s)
- Clara Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC─NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.,Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Alissia Pardo
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC─NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| |
Collapse
|
25
|
Ratnayake AS, Flanagan ME, Foley TL, Hultgren SL, Bellenger J, Montgomery JI, Lall MS, Liu B, Ryder T, Kölmel DK, Shavnya A, Feng X, Lefker B, Byrnes LJ, Sahasrabudhe PV, Farley KA, Chen S, Wan J. Toward the assembly and characterization of an encoded library hit confirmation platform: Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS). Bioorg Med Chem 2021; 41:116205. [PMID: 34000509 DOI: 10.1016/j.bmc.2021.116205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures. However, hits followed-up in this manner often fail to translate to confirmed ligands. To address this low conversion rate of DEL hits to off-DNA ligands, we have developed an approach that eliminates the reliance on chemical structure prediction from DNA sequence. Here we describe our method of combining non-combinatorial resynthesis on-DNA following library procedures as a rapid means to assess the probable molecules attached to the DNA barcode. Furthermore, we apply our Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS) technique to identify the true binders found within the mixtures of on-DNA synthesis products. Finally, we describe a Normalized Enrichment (NE) metric that allows for the quantitative assessment of affinity selection in these studies. We exemplify how this combined approach enables the identification of putative hit matter against a clinically relevant therapeutic target bisphosphoglycerate mutase, BPGM.
Collapse
Affiliation(s)
- Anokha S Ratnayake
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Mark E Flanagan
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Timothy L Foley
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Scott L Hultgren
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Justin Bellenger
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Justin I Montgomery
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Manjinder S Lall
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Bo Liu
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Tim Ryder
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Dominik K Kölmel
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Andre Shavnya
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Xidong Feng
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Bruce Lefker
- Lefker Biopharma Consulting LLC, Arlington, MA 02474 United States.
| | - Laura J Byrnes
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Parag V Sahasrabudhe
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Kathleen A Farley
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, United States.
| | - Shi Chen
- HitGen Inc., Shuangliu District, Chengdu, China.
| | - Jinqiao Wan
- HitGen Inc., Shuangliu District, Chengdu, China.
| |
Collapse
|
26
|
Wu R, Du T, Sun W, Shaginian A, Gao S, Li J, Wan J, Liu G. Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C–H Activation of N-Aryl Tertiary Amines. Org Lett 2021; 23:3486-3490. [DOI: 10.1021/acs.orglett.1c00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongfeng Wu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Wenbo Sun
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
27
|
Ji Y, Dai D, Luo H, Shen S, Fan J, Wang Z, Chen M, Wan J, Li J, Ma H, Liu G. C-S Coupling of DNA-Conjugated Aryl Iodides for DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2021; 32:685-689. [PMID: 33720689 DOI: 10.1021/acs.bioconjchem.1c00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioethers have been widely found in biologically active compounds, including pharmaceuticals. In this report, a highly efficient approach to on-DNA construction of thioethers via Cu-promoted Ullmann cross-coupling between DNA-conjugated aryl iodides and thiols is developed. This methodology was demonstrated with medium to high yields, without obvious DNA damage. This reported reaction has strong potential for application in DNA-encoded chemical library synthesis.
Collapse
Affiliation(s)
- Yue Ji
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Dongliang Dai
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Huadong Luo
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Simin Shen
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jing Fan
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zhao Wang
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Min Chen
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Huiyong Ma
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
28
|
Mi W, Chen H, Zhu DA, Zhang T, Qian F. Melting point prediction of organic molecules by deciphering the chemical structure into a natural language. Chem Commun (Camb) 2021; 57:2633-2636. [PMID: 33587048 DOI: 10.1039/d0cc07384a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Establishing quantitative structure-property relationships for the rational design of small molecule drugs at the early discovery stage is highly desirable. Using natural language processing (NLP), we proposed a machine learning model to process the line notation of small organic molecules, allowing the prediction of their melting points. The model prediction accuracy benefits from training upon different canonicalized SMILES forms of the same molecules and does not decrease with increasing size, complexity, and structural flexibility. When a combination of two different canonicalized SMILES forms is used to train the model, the prediction accuracy improves. Largely distinguished from the previous fragment-based or descriptor-based models, the prediction accuracy of this NLP-based model does not decrease with increasing size, complexity, and structural flexibility of molecules. By representing the chemical structure as a natural language, this NLP-based model offers a potential tool for quantitative structure-property prediction for drug discovery and development.
Collapse
Affiliation(s)
- Weiming Mi
- Department of Automation, Tsinghua University, Beijing National Research Center for Information Science and Technology, Beijing 100084, P. R. China.
| | | | | | | | | |
Collapse
|
29
|
Yang G, He D, Zhu Y, Zhu W, Tan Y, Long X, Wan J, Shi Z, Schuman D, Chheda P, Simmons N, Liu G. Cholesterol-Modified Oligonucleotides as Internal Reaction Controls during DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2021; 32:667-671. [PMID: 33689295 DOI: 10.1021/acs.bioconjchem.1c00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report two cholesterol-modified oligonucleotides for use as internal controls for on-DNA reactions during the pooled stages of a DNA-encoded chemical library (DECL) synthesis. As these cholesterol-tagged oligonucleotides are chromatographically separable from normal DECL intermediates, they can be directly monitored by mass spectrometry to track reaction progression within a complex pool of DNA. We observed similar product conversions for reactions on substrates linked to a standard DECL DNA headpiece, to the cholesterol-modified oligonucleotides, and to the cholesterol-modified oligonucleotides while in the presence of pooled DECL synthetic intermediates-validating their use as a representative control. We also highlight an example from a DECL production in which the use of the cholesterol-modified oligonucleotides provided quality control information that guided synthetic decisions. We conclude that the use of cholesterol-modified oligonucleotides as a regular control will significantly improve the quality of DECL productions.
Collapse
Affiliation(s)
- Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Dou He
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yijun Zhu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Weiwei Zhu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yang Tan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Xingwen Long
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research and Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - David Schuman
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pratik Chheda
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
30
|
González-Muñiz R, Bonache MÁ, Pérez de Vega MJ. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021; 26:445. [PMID: 33467010 PMCID: PMC7830901 DOI: 10.3390/molecules26020445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic and macrocyclic peptides constitute advanced molecules for modulating protein-protein interactions (PPIs). Although still peptide derivatives, they are metabolically more stable than linear counterparts, and should have a lower degree of flexibility, with more defined secondary structure conformations that can be adapted to imitate protein interfaces. In this review, we analyze recent progress on the main methods to access cyclic/macrocyclic peptide derivatives, with emphasis in a few selected examples designed to interfere within PPIs. These types of peptides can be from natural origin, or prepared by biochemical or synthetic methodologies, and their design could be aided by computational approaches. Some advances to facilitate the permeability of these quite big molecules by conjugation with cell penetrating peptides, and the incorporation of β-amino acid and peptoid structures to improve metabolic stability, are also commented. It is predicted that this field of research could have an important future mission, running in parallel to the discovery of new, relevant PPIs involved in pathological processes.
Collapse
Affiliation(s)
- Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.Á.B.); (M.J.P.d.V.)
| | | | | |
Collapse
|
31
|
Chen K, Chen W, Chen F, Zhang H, Xu H, Zhou Z, Yi W. Synthesis of 2-aminobenzofurans via base-mediated [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00709b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient metal-free [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes has been realized for the assembly of 2-aminobenzofuran derivatives with potent cytotoxicity against cancer cell lines and application potential for DELs.
Collapse
Affiliation(s)
- Kaifeng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Haiman Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Huiying Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
32
|
Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. gem
‐Difluoromethylene Alkyne‐Enabled Diverse C−H Functionalization and Application to the on‐DNA Synthesis of Difluorinated Isocoumarins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
33
|
Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. gem
‐Difluoromethylene Alkyne‐Enabled Diverse C−H Functionalization and Application to the on‐DNA Synthesis of Difluorinated Isocoumarins. Angew Chem Int Ed Engl 2020; 60:1959-1966. [DOI: 10.1002/anie.202013052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
34
|
Wu R, Gao S, Du T, Cai K, Cheng X, Fan J, Feng J, Shaginian A, Li J, Wan J, Liu G. Exploring Aldol Reactions on DNA and Applications to Produce Diverse Structures: An Example of Expanding Chemical Space of DNA-Encoded Compounds by Diversity-Oriented Synthesis. Chem Asian J 2020; 15:4033-4037. [PMID: 33119184 DOI: 10.1002/asia.202001105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Indexed: 12/27/2022]
Abstract
A DNA-encoded chemical library (DECL) is built with combinatorial chemistry, which works by bringing chemical fragments together to generate diverse structures. However, chemical diversity of DNA-encoded chemical libraries is often limited by DNA compatible synthetic reactions. This report shows a conceptual strategy to expand chemical space of DNA-encoded chemical libraries by incorporation of diversity-oriented synthesis in DECL synthesis. We developed Aldol reactions on DNA in a combinatorial way. After obtaining DNA-tagged α, β-unsaturated ketones which represent important chemical intermediates, many distinct structures with skeletal diversities are achieved by diversity-oriented synthesis.
Collapse
Affiliation(s)
- Rongfeng Wu
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Kunliang Cai
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Xuemin Cheng
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jing Fan
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jing Feng
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| |
Collapse
|
35
|
Paul Greengard: A persistent desire to comprehend the brain, and also to fix it. ADVANCES IN PHARMACOLOGY 2020; 90:1-18. [PMID: 33706929 DOI: 10.1016/bs.apha.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard's name is and will remain profoundly associated with Neuroscience, with brain signaling and chemical transmission, with Parkinson's and Alzheimer's diseases, with fundamental discoveries and solving paradoxes, but much less perhaps with drug discovery. This should not be mistaken as disdain. Paul in fact did contemplate developing therapeutic avenues to actually treat brain diseases much more than it is known, perhaps during his entire career, and certainly over the last two decades. As a matter of fact, he did more than contemplate it, he directly and indirectly contributed in the development of treatments for neurological diseases and disorders. Paul's impact on fundamental aspects of the brain has been so gargantuan that any other aspect of Paul's life will have difficulty to shine. It is precisely this less known aspect of Paul's career that will be covered in this review. We will discover how Paul very early on moved away from biophysics to avoid working on nuclear weapons and instead started his career in the pharmacological spheres of a large pharmaceutical company.
Collapse
|
36
|
Álvarez-Coiradas E, Munteanu CR, Díaz-Sáez L, Pazos A, Huber KVM, Loza MI, Domínguez E. Discovery of novel immunopharmacological ligands targeting the IL-17 inflammatory pathway. Int Immunopharmacol 2020; 89:107026. [PMID: 33045560 DOI: 10.1016/j.intimp.2020.107026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023]
Abstract
Interleukin 17 (IL-17) is a proinflammatory cytokine that acts as an immune checkpoint for several autoimmune diseases. Therapeutic neutralizing antibodies that target this cytokine have demonstrated clinical efficacy in psoriasis. However, biologics have limitations such as their high cost and their lack of oral bioavailability. Thus, it is necessary to expand the therapeutic options for this IL-17A/IL-17RA pathway, applying novel drug discovery methods to find effective small molecules. In this work, we combined biophysical and cell-based assays with structure-based docking to find novel ligands that target this pathway. First, a virtual screening of our chemical library of 60000 compounds was used to identify 67 potential ligands of IL-17A and IL-17RA. We developed a biophysical label-free binding assay to determine interactions with the extracellular domain of IL-17RA. Two molecules (CBG040591 and CBG060392) with quinazolinone and pyrrolidinedione chemical scaffolds, respectively, were confirmed as ligands of IL-17RA with micromolar affinity. The anti-inflammatory activity of these ligands as cytokine-release inhibitors was evaluated in human keratinocytes. Both ligands inhibited the release of chemokines mediated by IL-17A, with an IC50 of 20.9 ± 12.6 μM and 23.6 ± 11.8 μM for CCL20 and an IC50 of 26.7 ± 13.1 μM and 45.3 ± 13.0 μM for CXCL8. Hence, they blocked IL-17A proinflammatory activity, which is consistent with the inhibition of the signalling of the IL-17A receptor by ligand CBG060392. Therefore, we identified two novel immunopharmacological ligands targeting the IL-17A/IL-17RA pathway with antiinflammatory efficacy that can be promising tools for a drug discovery program for psoriasis.
Collapse
Affiliation(s)
- Elia Álvarez-Coiradas
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, CITIC, Universidade da Coruña, A Coruña, 15007, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
| | - Laura Díaz-Sáez
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Old Road Campus, Oxford OX3 7DQ & OX3 7FZ, UK
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, CITIC, Universidade da Coruña, A Coruña, 15007, Spain; Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
| | - Kilian V M Huber
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, Nuffield Department of Medicine, Old Road Campus, Oxford OX3 7DQ & OX3 7FZ, UK
| | - María Isabel Loza
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain.
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avenida de Barcelona s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
37
|
Fan Z, Zhao S, Liu T, Shen PX, Cui ZN, Zhuang Z, Shao Q, Chen JS, Ratnayake AS, Flanagan ME, Kölmel DK, Piotrowski DW, Richardson P, Yu JQ. Merging C(sp 3)-H activation with DNA-encoding. Chem Sci 2020; 11:12282-12288. [PMID: 34094436 PMCID: PMC8162953 DOI: 10.1039/d0sc03935g] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA-encoded library (DEL) technology has the potential to dramatically expedite hit identification in drug discovery owing to its ability to perform protein affinity selection with millions or billions of molecules in a few experiments. To expand the molecular diversity of DEL, it is critical to develop different types of DNA-encoded transformations that produce billions of molecules with distinct molecular scaffolds. Sequential functionalization of multiple C–H bonds provides a unique avenue for creating diversity and complexity from simple starting materials. However, the use of water as solvent, the presence of DNA, and the extremely low concentration of DNA-encoded coupling partners (0.001 M) have hampered the development of DNA-encoded C(sp3)–H activation reactions. Herein, we report the realization of palladium-catalyzed C(sp3)–H arylation of aliphatic carboxylic acids, amides and ketones with DNA-encoded aryl iodides in water. Notably, the present method enables the use of alternative sets of monofunctional building blocks, providing a linchpin to facilitate further setup for DELs. Furthermore, the C–H arylation chemistry enabled the on-DNA synthesis of structurally-diverse scaffolds containing enriched C(sp3) character, chiral centers, cyclopropane, cyclobutane, and heterocycles. DNA-compatible C(sp3)–H activation reactions of aliphatic carboxylic acids, amides, and ketones were developed for efficient access to DEL synthesis.![]()
Collapse
Affiliation(s)
- Zhoulong Fan
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Shuai Zhao
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Tao Liu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Peng-Xiang Shen
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Zi-Ning Cui
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Qian Shao
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| | - Anokha S Ratnayake
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - Mark E Flanagan
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - Dominik K Kölmel
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - David W Piotrowski
- Pfizer Medicinal Chemistry Eastern Point Road, Groton Connecticut 06340 USA
| | - Paul Richardson
- Pfizer Medicinal Chemistry, 10578 Science Center Drive San Diego CA 09121 USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| |
Collapse
|
38
|
Bao Y, Deng Z, Feng J, Zhu W, Li J, Wan J, Liu G. A B 2(OH) 4-Mediated Synthesis of 2-Substituted Indazolone and Its Application in a DNA-Encoded Library. Org Lett 2020; 22:6277-6282. [PMID: 32806212 DOI: 10.1021/acs.orglett.0c02032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Indazolone cores are among the most common structural components in medicinal chemistry and can be found in many biologically active molecules. In this report, a mild and efficient approach to 2-substituted indazolones via B2(OH)4-mediated reductive N-N bond formation is developed. This strategy features mild conditions, no request for a metal catalyst, and a wide scope for both aliphatic and aromatic amines. Meanwhile, this method was further successfully applied on DNA to construct indazolone cores for a DNA-encoded library. This will enable the production of a very attractive indazolone-cored library from simple amines and scaffolds, which will provide considerable diversity.
Collapse
Affiliation(s)
- Yapeng Bao
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zongfa Deng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jing Feng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Weiwei Zhu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
39
|
Cuozzo JW, Clark MA, Keefe AD, Kohlmann A, Mulvihill M, Ni H, Renzetti LM, Resnicow DI, Ruebsam F, Sigel EA, Thomson HA, Wang C, Xie Z, Zhang Y. Novel Autotaxin Inhibitor for the Treatment of Idiopathic Pulmonary Fibrosis: A Clinical Candidate Discovered Using DNA-Encoded Chemistry. J Med Chem 2020; 63:7840-7856. [PMID: 32584034 DOI: 10.1021/acs.jmedchem.0c00688] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The activity of the secreted phosphodiesterase autotaxin produces the inflammatory signaling molecule LPA and has been associated with a number of human diseases including idiopathic pulmonary fibrosis (IPF). We screened a single DNA-encoded chemical library (DECL) of 225 million compounds and identified a series of potent inhibitors. Optimization of this series led to the discovery of compound 1 (X-165), a highly potent, selective, and bioavailable small molecule. Cocrystallization of compound 1 with human autotaxin demonstrated that it has a novel binding mode occupying both the hydrophobic pocket and a channel near the autotaxin active site. Compound 1 inhibited the production of LPA in human and mouse plasma at nanomolar levels and showed efficacy in a mouse model of human lung fibrosis. After successfully completing IND-enabling studies, compound 1 was approved by the FDA for a Phase I clinical trial. These results demonstrate that DECL hits can be readily optimized into clinical candidates.
Collapse
Affiliation(s)
- John W Cuozzo
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Matthew A Clark
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Anthony D Keefe
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Anna Kohlmann
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Mark Mulvihill
- X-Rx, Inc., 430 East 29th Street, Suite 1060, New York, New York 10016, United States
| | - Haihong Ni
- BioDuro, LLC, Building E, No. 29 Life Science Park Road, Changping District, Beijing 102206, China
| | - Louis M Renzetti
- X-Rx, Inc., 430 East 29th Street, Suite 1060, New York, New York 10016, United States
| | - Daniel I Resnicow
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Frank Ruebsam
- BioDuro, LLC, Building E, No. 29 Life Science Park Road, Changping District, Beijing 102206, China
| | - Eric A Sigel
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Heather A Thomson
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| | - Ce Wang
- BioDuro, LLC, Building E, No. 29 Life Science Park Road, Changping District, Beijing 102206, China
| | - Zhifeng Xie
- BioDuro, LLC, Building E, No. 29 Life Science Park Road, Changping District, Beijing 102206, China
| | - Ying Zhang
- X-Chem, Inc., 100 Beaver Street, Suite 101, Waltham, Massachusetts 02543, United States
| |
Collapse
|
40
|
Xie J, Wang S, Ma P, Ma F, Li J, Wang W, Lu F, Xiong H, Gu Y, Zhang S, Xu H, Yang G, Lerner RA. Selection of Small Molecules that Bind to and Activate the Insulin Receptor from a DNA-Encoded Library of Natural Products. iScience 2020; 23:101197. [PMID: 32544667 PMCID: PMC7298650 DOI: 10.1016/j.isci.2020.101197] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Although insulin is a life-saving medicine, administration by daily injection remains problematic. Our goal was to exploit the power of DNA-encoded libraries to identify molecules with insulin-like activity but with the potential to be developed as oral drugs. Our strategy involved using a 104-member DNA-encoded library containing 160 Traditional Chinese Medicines (nDEL) to identify molecules that bind to and activate the insulin receptor. Importantly, we used the natural ligand, insulin, to liberate bound molecules. Using this selection method on our relatively small, but highly diverse, nDEL yielded a molecule capable of both binding to and activating the insulin receptor. Chemical analysis showed this molecule to be a polycyclic analog of the guanidine metformin, a known drug used to treat diabetes. By using our protocol with other, even larger, DELs we can expect to identify additional organic molecules capable of binding to and activating the insulin receptor. Annotation of natural products via complementary bifunctional linkers Function-guided DEL selection using the natural ligand for competitive elution Identification of Rutaecarpine as a binder and activator of insulin receptor
Collapse
Affiliation(s)
- Jia Xie
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fei Ma
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Qu Y, Wen H, Ge R, Xu Y, Gao H, Shi X, Wang J, Cui W, Su W, Yang H, Kuai L, Satz AL, Peng X. Copper-Mediated DNA-Compatible One-Pot Click Reactions of Alkynes with Aryl Borates and TMS-N3. Org Lett 2020; 22:4146-4150. [DOI: 10.1021/acs.orglett.0c01219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Qu
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Huanan Wen
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Ge
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yanfen Xu
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hong Gao
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiangong Wang
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L. Satz
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xuanjia Peng
- HitS Business Unit, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
42
|
Bassi G, Favalli N, Oehler S, Martinelli A, Catalano M, Scheuermann J, Neri D. Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochem Biophys Res Commun 2020; 533:223-229. [PMID: 32386812 DOI: 10.1016/j.bbrc.2020.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
DNA-encoded chemical libraries (DEL) are increasingly being used for the discovery and optimization of small organic ligands to proteins of biological or pharmaceutical interest. The DNA fragments, that serve as amplifiable identification barcodes for individual compounds in the library, are typically used in double-stranded DNA format. To the best of our knowledge, a direct comparison of DEL selections featuring DNA in either single- or double-stranded DNA format has not yet been reported. In this article, we describe a comparative evaluation of selections with two DEL libraries (named GB-DEL and NF-DEL), based on different chemical designs and produced in both single- and double-stranded DNA format. The libraries were selected in identical conditions against multiple protein targets, revealing comparable and reproducible fingerprints for both types of DNA formats. Surprisingly, selections performed with single-stranded DNA barcodes exhibited improved enrichment factors compared to double-stranded DNA. Using high-affinity ligands to carbonic anhydrase IX as benchmarks for selection performance, we observed an improved selectivity for the NF-DEL library (on average 2-fold higher enrichment factors) in favor of single-stranded DNA. The enrichment factors were even higher for the GB-DEL selections (approximately 5-fold), compared to the same library in double-stranded DNA format. Collectively, these results indicate that DEL libraries can conveniently be synthesized and screened in both single- and double-stranded DNA format, but single-stranded DNA barcodes typically yield enhanced enrichment factors.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
43
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020; 59:13273-13280. [DOI: 10.1002/anie.202003595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
44
|
Xu H, Gu Y, Zhang S, Xiong H, Ma F, Lu F, Ji Q, Liu L, Ma P, Hou W, Yang G, Lerner RA. A Chemistry for Incorporation of Selenium into DNA‐Encoded Libraries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
- School of Life Science and Technology ShanghaiTech University 201210 Shanghai China
- Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200031 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Wei Hou
- College of Pharmaceutical Science Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University 201210 Shanghai China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
45
|
Wu W, Sun Z, Wang X, Lu X, Dai D. Construction of Thiazole-Fused Dihydropyrans via Formal [4 + 2] Cycloaddition Reaction on DNA. Org Lett 2020; 22:3239-3244. [PMID: 32243186 DOI: 10.1021/acs.orglett.0c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and facile formal [4 + 2] cycloaddition reaction was developed to synthesize diverse thiazole-fused dihydropyrans (TFDP) on DNA. Mild reaction conditions, broad substrate scope, and compatibility with subsequent enzymatic ligation demonstrated the utility of this methodology in DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Zhen Sun
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Xuan Wang
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| |
Collapse
|
46
|
Gerry CJ, Schreiber SL. Unifying principles of bifunctional, proximity-inducing small molecules. Nat Chem Biol 2020; 16:369-378. [PMID: 32198490 PMCID: PMC7312755 DOI: 10.1038/s41589-020-0469-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/07/2020] [Indexed: 01/14/2023]
Abstract
Nature uses a variety of tools to mediate the flow of information in cells, many of which control distances between key biomacromolecules. Researchers have thus generated compounds whose activities stem from interactions with two (or more) proteins simultaneously. In this Perspective, we describe how these 'bifunctional' small molecules facilitate the study of an increasingly wide range of complex biological phenomena and enable the drugging of otherwise challenging therapeutic targets and processes. Despite their structural and functional differences, all bifunctional molecules employ Nature's strategy of altering interactomes and inducing proximity to modulate biology. They therefore exhibit a shared set of chemical and biophysical principles that have not yet been appreciated fully. By highlighting these commonalities-and their wide-ranging consequences-we hope to chip away at the artificial barriers that threaten to constrain this interdisciplinary field. Doing so promises to yield remarkable benefits for biological research and therapeutics discovery.
Collapse
Affiliation(s)
- Christopher J Gerry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
47
|
Tellechea-Luzardo J, Winterhalter C, Widera P, Kozyra J, de Lorenzo V, Krasnogor N. Linking Engineered Cells to Their Digital Twins: A Version Control System for Strain Engineering. ACS Synth Biol 2020; 9:536-545. [PMID: 32078768 DOI: 10.1021/acssynbio.9b00400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As DNA sequencing and synthesis become cheaper and more easily accessible, the scale and complexity of biological engineering projects is set to grow. Yet, although there is an accelerating convergence between biotechnology and digital technology, a deficit in software and laboratory techniques diminishes the ability to make biotechnology more agile, reproducible, and transparent while, at the same time, limiting the security and safety of synthetic biology constructs. To partially address some of these problems, this paper presents an approach for physically linking engineered cells to their digital footprint-we called it digital twinning. This enables the tracking of the entire engineering history of a cell line in a specialized version control system for collaborative strain engineering via simple barcoding protocols.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K
| | - Charles Winterhalter
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K
| | - Paweł Widera
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K
| | - Jerzy Kozyra
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne NE4 5TG, U.K
| |
Collapse
|
48
|
Flood DT, Zhang X, Fu X, Zhao Z, Asai S, Sanchez BB, Sturgell EJ, Vantourout JC, Richardson P, Flanagan ME, Piotrowski DW, Kölmel DK, Wan J, Tsai MH, Chen JS, Baran PS, Dawson PE. RASS-Enabled S/P-C and S-N Bond Formation for DEL Synthesis. Angew Chem Int Ed Engl 2020; 59:7377-7383. [PMID: 32050046 DOI: 10.1002/anie.201915493] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Indexed: 01/28/2023]
Abstract
DNA encoded libraries (DEL) have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently reversible adsorption to solid support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C-S, C-P and N-S linkages into DELs, which are underrepresented in the canonical methods.
Collapse
Affiliation(s)
- Dillon T Flood
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xuejing Zhang
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiang Fu
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhenxiang Zhao
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shota Asai
- Department of Chemistry and Biological Sciences, Faculty of and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Brittany B Sanchez
- Automated Synthesis Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Emily J Sturgell
- Automated Synthesis Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Julien C Vantourout
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Paul Richardson
- Pfizer Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Mark E Flanagan
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Dominik K Kölmel
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT, 06340, USA
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Mei-Hsuan Tsai
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip E Dawson
- Department of Chemistry, Scripps Research, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
49
|
Flood DT, Zhang X, Fu X, Zhao Z, Asai S, Sanchez BB, Sturgell EJ, Vantourout JC, Richardson P, Flanagan ME, Piotrowski DW, Kölmel DK, Wan J, Tsai M, Chen JS, Baran PS, Dawson PE. RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dillon T. Flood
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Xuejing Zhang
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Xiang Fu
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Zhenxiang Zhao
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Shota Asai
- Department of Chemistry and Biological SciencesFaculty of and EngineeringIwate University 4-3-5 Ueda Morioka 020-8551 Japan
| | - Brittany B. Sanchez
- Automated Synthesis FacilityThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Emily J. Sturgell
- Automated Synthesis FacilityThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Julien C. Vantourout
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Paul Richardson
- Pfizer Medicinal Chemistry 10770 Science Center Drive San Diego CA 92121 USA
| | - Mark E. Flanagan
- Pfizer Medicinal Chemistry Eastern Point Road Groton CT 06340 USA
| | | | | | - Jinqiao Wan
- HitGen Inc. Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu 610200 Sichuan China
| | - Mei‐Hsuan Tsai
- HitGen Inc. Building 6, No. 8 Huigu 1st East Road Tianfu International Bio-Town, Shuangliu District, Chengdu 610200 Sichuan China
| | - Jason S. Chen
- Automated Synthesis FacilityThe Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Phil S. Baran
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Philip E. Dawson
- Department of ChemistryScripps Research 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
50
|
Ruff Y, Martinez R, Pellé X, Nimsgern P, Fille P, Ratnikov M, Berst F. An Amphiphilic Polymer-Supported Strategy Enables Chemical Transformations under Anhydrous Conditions for DNA-Encoded Library Synthesis. ACS COMBINATORIAL SCIENCE 2020; 22:120-128. [PMID: 32040908 DOI: 10.1021/acscombsci.9b00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of DNA-encoded libraries has emerged as a powerful hit generation technology. Combining the power of combinatorial chemistry to enumerate large compound collections with the efficiency of affinity selection in pools, the methodology makes it possible to interrogate vast chemical space against biological targets of pharmaceutical relevance. Thus, the chemical transformations employed for the synthesis of encoded libraries play a crucial role in the identification of diverse and drug-like starting points. Currently established transformations have mostly been limited to water-compatible reactions to accommodate the growing oligonucleotide tag. Herein, we describe the development of a practical catch-and-release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (amphiphilic polymer-facilitated transformations under anhydrous conditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane, and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.
Collapse
Affiliation(s)
- Yves Ruff
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Roberto Martinez
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Xavier Pellé
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Pierre Nimsgern
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Pascale Fille
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Maxim Ratnikov
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Frédéric Berst
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| |
Collapse
|