1
|
Franchini M, Focosi D. Clinical, Laboratory, and Molecular Aspects of Factor V Deficiency. Semin Thromb Hemost 2025; 51:111-115. [PMID: 39191405 DOI: 10.1055/s-0044-1789021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Factor V (FV) is a glycoprotein that plays a pivotal role in hemostasis, being involved in coagulant and anticoagulant pathways. Congenital FV deficiency is a rare bleeding disorder with an incidence of 1 per million live births, considering the most severe homozygous form. FV deficiency is diagnosed using routine coagulation tests and FV activity assays. Several mutations, including missense, nonsense, and frameshift, have been detected in the F5 gene. Clinical symptoms are variable, ranging from mild ecchymoses and mucosal bleeding to life-threatening intracranial hemorrhage. The mainstay of treatment includes fresh-frozen plasma, preferentially virus-inactivated. In this narrative review, we provide an update of the main laboratory, molecular, clinical, and therapeutic features of inherited FV deficiency.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
2
|
Braconi D, Nadwa H, Bernardini G, Santucci A. Omics and rare diseases: challenges, applications, and future perspectives. Expert Rev Proteomics 2025:1-16. [PMID: 39956998 DOI: 10.1080/14789450.2025.2468300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Rare diseases (RDs) are a heterogeneous group of diseases recognized as a relevant global health priority but posing aspects of complexity, such as geographical scattering of affected individuals, improper/late diagnosis, limited awareness, difficult surveillance and monitoring, limited understanding of natural history, and lack of treatment. Usually, RDs have a pediatric onset and are life-long, multisystemic, and associated with a poor prognosis. AREAS COVERED In this work, we review how high-throughput omics technologies such as genomics, transcriptomics, proteomics, metabolomics, epigenomics, and other well-established omics, which are increasingly more affordable and efficient, can be applied to the study of RDs promoting diagnosis, understanding of pathological mechanisms, biomarker discovery, and identification of treatments. EXPERT OPINION RDs, despite their challenges, offer a niche where collaborative efforts and personalized treatment strategies might be feasible using omics technologies. Specialized consortia fostering multidisciplinary collaboration, data sharing, and the development of biobanks and registries can be built; multi-omics approaches, including so far less exploited omics technologies, along with the implementation of AI tools can be undertaken to deepen our understanding of RDs, driving biomarker discovery and clinical interventions. Nevertheless, technical, ethical, legal, and societal issues must be clearly defined and addressed.
Collapse
Affiliation(s)
- Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Haidara Nadwa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
3
|
de Carvalho EA, Hopker RDC, Pedroso GH, de Almeida LS, Pacher JAT, Antônio ALM, de Souza J, Zeny MS, Santos MLSF, do Valle DA, Andrade FA. Characterization of patients treated at a rare disease referral service: a descriptive study, 2016-2021. EPIDEMIOLOGIA E SERVIÇOS DE SAÚDE 2024; 33:e20240204. [PMID: 39776132 PMCID: PMC11660309 DOI: 10.1590/s2237-96222024v33e20240204.en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE To analyze the first referral service for rare diseases accredited by the Brazilian Ministry of Health, focusing on referral from the primary healthcare network through to diagnosis. METHODS This is a descriptive study with patients treated between 2016 and 2021 at a referral hospital service located in Curitiba, Paraná, Brazil. Clinical and epidemiological data were obtained from medical records, as were the results of genetic tests at the hospital's clinical analysis laboratory. Qualitative data were expressed as absolute and relative frequencies, while quantitative data were expressed as medians and interquartile ranges and compared using the Kruskal-Wallis test. RESULTS The study included 1,751 cases, 34.1% were diagnosed with rare diseases, with average time until diagnosis being 3.0 years, whereby mucopolysaccharidosis type II (4.0%) and tuberous sclerosis (3.9%) were the most common. Greater length of time for obtaining diagnosis (p-value 0.004) and receiving specialized care (p-value<0.001) was found in patients from the interior region of Paraná state, compared to those residing in Curitiba city and its metropolitan region. CONCLUSION Diagnosis of rare diseases occurred in approximately one third of cases. The average time until diagnosis suggests a possible positive impact of implementing the referral service. The longer time until diagnosis and specialized care found among patients from the interior region of Paraná represent challenges regarding adequate referral to specialized services.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josiane de Souza
- Hospital Pequeno Príncipe, Ambulatório de Doenças Raras, Curitiba,
PR, Brazil
| | - Michelle Silva Zeny
- Hospital Pequeno Príncipe, Ambulatório de Doenças Raras, Curitiba,
PR, Brazil
| | | | | | | |
Collapse
|
4
|
Yang X, Forstner M, Rothenaigner I, Bullo M, Şismanlar TE, Aslan AT, Latzin P, Hadian K, Griese M. Cyclosporine A in children with ABCA3 deficiency. Pediatr Pulmonol 2024; 59:3221-3227. [PMID: 39041931 PMCID: PMC11600998 DOI: 10.1002/ppul.27178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Biallelic ATP-binding cassette subfamily A member 3 (ABCA3) variants can cause interstitial lung disease in children and adults, for which no proven treatments exist. Recent in vitro evidence suggested that cyclosporine A (CsA) could correct some ABCA3 variants, however for other variants this is unknown and no data in patients exist. METHODS We retrieved the clinical data of two children aged 2 and 4 years carrying homozygous ABCA3 variants (G210C and Q1045R, respectively) and empiric CsA treatment from the Kids Lung Register database. In vitro experiments functionally characterized the two variants and explored the effects of CsA alone or combined with hydroxychloroquine (HCQ) in a human alveolar epithelial cell line (A549) derived from adenocarcinoma cells. RESULTS Six weeks following the introduction of CsA, both children required a reduced O2 flow supply, which then remained stable on CsA. Later, when CsA was discontinued, the clinical status of the children remained unchanged. Of note, the children simultaneously received prednisolone, azithromycin, and HCQ. In vitro, both ABCA3 variants demonstrated defective lysosomal colocalization and impaired ABCA3+ vesicle size, with proteolytic cleavage impairment only in Q1045R. CsA alone corrected the trafficking impairment and ABCA3+ vesicle size of both variants with a variant-specific effect on phosphatidylcholine recycling in G210C. CsA combined with HCQ were additive for improving trafficking of ABCA3 in G210C, but not in Q1045R. CONCLUSIONS CsA treatment might be helpful for certain patients with ABCA3 deficiency, however, currently strong clinical supporting evidence is lacking. Appropriate trials are necessary to overcome this unmet need.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches KinderspitalUniversity of Munich, German Center for Lung Research (DZL)MunichGermany
| | - Maria_E. Forstner
- Dr. von Haunersches KinderspitalUniversity of Munich, German Center for Lung Research (DZL)MunichGermany
| | - Ina Rothenaigner
- Research Unit Signaling and TranslationHelmholtz Zentrum MünchenNeuherbergGermany
| | - Marina Bullo
- Pediatric Pneumology and AllergologyUniversity Children's Inselspital Bern, University of BernBernSwitzerland
| | - Tugba E. Şismanlar
- Department of Pediatric Pulmonology, Faculty of MedicineGazi UniversityAnkaraTurkey
| | - Ayse T. Aslan
- Department of Pediatric Pulmonology, Faculty of MedicineGazi UniversityAnkaraTurkey
| | - Philipp Latzin
- Pediatric Pneumology and AllergologyUniversity Children's Inselspital Bern, University of BernBernSwitzerland
| | - Kamyar Hadian
- Research Unit Signaling and TranslationHelmholtz Zentrum MünchenNeuherbergGermany
| | - Matthias Griese
- Dr. von Haunersches KinderspitalUniversity of Munich, German Center for Lung Research (DZL)MunichGermany
| |
Collapse
|
5
|
Javed S, Fersini M, Bernardini G. Unleashing the Power of Induced Pluripotent stem Cells in in vitro Modelling of Lesch-Nyhan Disease. Stem Cell Rev Rep 2024:10.1007/s12015-024-10821-4. [PMID: 39495466 DOI: 10.1007/s12015-024-10821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lesch-Nyhan disease (LND) is a monogenic rare neurodevelopmental disorder caused by a deficiency in hypoxanthine-guanine phosphoribosyltransferase (HPRT), the key enzyme of the purines salvage pathway. Beyond its well-documented metabolic consequences, HPRT deficiency leads to a distinctive neurobehavioral syndrome characterized by motor disabilities, cognitive deficits, and self-injurious behavior. Although various cell and animal models have been developed to investigate LND pathology, none have adequately elucidated the underlying mechanisms of its neurological alterations. Recent advances in human pluripotent stem cell research and in vitro differentiation techniques have ushered in a new era in rare neurodevelopmental disorders research. Pluripotent stem cells, with their ability to propagate indefinitely and to differentiate into virtually any cell type, offer a valuable alternative for modeling rare diseases, allowing for the detection of pathological events from the earliest stages of neuronal network development. Furthermore, the generation of patient-derived induced pluripotent stem cells using reprogramming technology provides an opportunity to develop a disease-relevant model within the context of a patient-specific genome. In this review, we examine current stem cell-based models of LND and assess their potential as optimal models for exploring key pathological molecular events during neurogenesis and for the discovering novel treatment options. We also address the limitations, challenges, and future prospects for improving the use of iPSCs in LND research.
Collapse
Affiliation(s)
- Sundas Javed
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Marco Fersini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy.
| |
Collapse
|
6
|
Sebastiano MR, Hadano S, Cesca F, Ermondi G. Preclinical alternative drug discovery programs for monogenic rare diseases. Should small molecules or gene therapy be used? The case of hereditary spastic paraplegias. Drug Discov Today 2024; 29:104138. [PMID: 39154774 DOI: 10.1016/j.drudis.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Patients diagnosed with rare diseases and their and families search desperately to organize drug discovery campaigns. Alternative models that differ from default paradigms offer real opportunities. There are, however, no clear guidelines for the development of such models, which reduces success rates and raises costs. We address the main challenges in making the discovery of new preclinical treatments more accessible, using rare hereditary paraplegia as a paradigmatic case. First, we discuss the necessary expertise, and the patients' clinical and genetic data. Then, we revisit gene therapy, de novo drug development, and drug repurposing, discussing their applicability. Moreover, we explore a pool of recommended in silico tools for pathogenic variant and protein structure prediction, virtual screening, and experimental validation methods, discussing their strengths and weaknesses. Finally, we focus on successful case applications.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy.
| |
Collapse
|
7
|
do Nascimento RRNR, Piotto DGP, Freire EAM, de Souza Neves F, Sztajnbok FR, Bica BERG, Pinheiro FAG, Kozu KT, Pereira IA, Azevedo VF, Cordeiro RA, Giardini HAM, Franco MTM, de Fátima Fernandes Carvalho M, Rosa-Neto NS, Perazzio SF. Rare diseases: What rheumatologists need to know? Adv Rheumatol 2024; 64:74. [PMID: 39334496 DOI: 10.1186/s42358-024-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Although the terms "rare diseases" (RD) and "orphan diseases" (OD) are often used interchangeably, specific nuances in definitions should be noted to avoid misconception. RD are characterized by a low prevalence within the population, whereas OD are those inadequately recognized or even neglected by the medical community and drug companies. Despite their rarity, as our ability on discovering novel clinical phenotypes and improving diagnostic tools expand, RD will continue posing a real challenge for rheumatologists. Over the last decade, there has been a growing interest on elucidating mechanisms of rare autoimmune and autoinflammatory rheumatic diseases, allowing a better understanding of the role played by immune dysregulation on granulomatous, histiocytic, and hypereosinophilic disorders, just to name a few. This initiative enabled the rise of innovative targeted therapies for rheumatic RD. In this review, we explore the state-of-the art of rare RD and the critical role played by rheumatologists in healthcare. We also describe the challenges rheumatologists may face in the coming decades.
Collapse
Affiliation(s)
| | - Daniela Gerent Petry Piotto
- Universidade Federal de Sao Paulo - Escola Paulista de Medicina, Rua Botucatu, 740, 3º andar, São Paulo, SP, 04023-062, Brazil
| | | | - Fabricio de Souza Neves
- Federal University of Santa Catarina (Universidade Federal de Santa Catarina), Florianópolis, Brazil
| | - Flavio Roberto Sztajnbok
- Federal University of Rio de Janeiro (Universidade Federal do Rio de Janeiro), Rio de Janeiro, Brazil
| | | | | | - Katia Tomie Kozu
- USP FM (Universidade de Sao Paulo Faculdade de Medicina), Pacaembu, Brazil
| | | | | | | | | | | | | | | | - Sandro Félix Perazzio
- Universidade Federal de Sao Paulo - Escola Paulista de Medicina, Rua Botucatu, 740, 3º andar, São Paulo, SP, 04023-062, Brazil.
- USP FM (Universidade de Sao Paulo Faculdade de Medicina), Pacaembu, Brazil.
- Fleury Laboratories, Av. Morumbi, 8860, Sao Paulo, SP, 04580-060, Brazil.
| |
Collapse
|
8
|
Han M, Shi W, Chen X, Wu D, Sun Y, Wang W, Zhan C, Hu L, Yuan T. Genetic Manifestations and Phenotype Spectrum in Infants With Feeding Difficulty. Mol Genet Genomic Med 2024; 12:e70001. [PMID: 39194158 DOI: 10.1002/mgg3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Feeding difficulties frequently co-occur with multisystem disorders attributed to rare genetic diseases. In this study, we aimed to describe the genetic manifestations and phenotype spectrum in infants experiencing feeding difficulties. METHODS This case series included infants under 6 months old with feeding difficulties admitted to the neonatal department of Children's Hospital, Zhejiang University School of Medicine from October 2018 to May 2022. All infants underwent whole-exome sequencing (WES) during hospitalisation, and their clinical phenotypes and genetic results were analyzed. RESULTS Among 28 infants studied, nine were preterm and 19 were full-term. Median admission age was 13.5 days (IQR 6.5, 35), with a median hospital stay of 16 days (IQR 10.5, 30). Overall, 12 (42.9%) cases were complicated with multiple malformations. Abnormal muscle tone (53.6%) and neurological issues (42.9%) were notable prevalent in these infants. Cranial MR abnormalities were noted in 96.2% of cases. Based on the combined analysis of WES results and clinical phenotypes, a total of 22 (78.3%) patients displayed disease-related genetic variation identified through WES; among them, 15 (53.6%) patients received genetic diagnoses, while 7 (25%) patients were suspected diagnoses. Positive findings were more frequent in full-term (89.5%) than preterm infants (55.6%). Ultimately, 24 (85.7%) patients were discharged alive, with 75% requiring post-discharge tube feeding. Following discharge, five patients developed new symptoms linked to genetic variants, and two patients died. CONCLUSIONS Feeding difficulty may constitute a facet of the phenotypic spectrum of rare genetic diseases. Whole-exome sequencing can enhance molecular diagnosis accuracy for infants with feeding difficulties.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Shi
- National Clinical Research Center for Child Health, Hangzhou, China
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangxiang Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Dingwen Wu
- National Clinical Research Center for Child Health, Hangzhou, China
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiyan Wang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Canyang Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingling Hu
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
9
|
Mizoguchi H, Fleischmann T, Komuro M, Hirai T, Ikeda A, Saito K, Watahiki T, Tajima G. Comparative analysis of GMO regulatory requirements for AAV vectors in the EU and Japan focusing on the shedding data and containment measures. Expert Opin Biol Ther 2024; 24:529-542. [PMID: 38919146 DOI: 10.1080/14712598.2024.2371042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Recombinant viral-based gene therapy products, such as those incorporating adeno-associated viruses (AAVs), fall under the category of genetically modified organisms (GMOs). The European Union (EU) countries and Japan must obtain environmental risk assessment (ERA) approval for the use of GMOs before starting any clinical trials. It has been reported that the development of GMO-containing products in these two regions encounters several regulatory obstacles due to the longer regulatory procedures and document preparation for ERA. AREAS COVERED In this article, we comparatively analyzed the ERA document requirements in the EU and Japan for AAV-based recombinant medicinal products to highlight the differences in the context of potential future attempts of convergence. Additionally, we analyzed non-clinical and clinical shedding data requirements, which are key components of ERA reviews in the EU and Japan. Lastly, we compared the containment measures to minimize the spread of GMOs in the environment in the EU and Japan. EXPERT OPINION Based on our comparative analysis, we present several policy recommendations of standardizing and simplifying the application materials and procedures for the ERA regulations on GMOs in the EU and Japan in the mid-, and long-term timeframe to achieve global regulatory convergence.
Collapse
Affiliation(s)
- Hirokuni Mizoguchi
- Astellas Pharma Inc., Regulatory Affairs, Chuo-ku, Tokyo, Japan
- Forum for Innovative Regenerative Medicine, Chuo-ku, Tokyo, Japan
| | - Tobias Fleischmann
- Pfizer Pharma, GmbH, Biotransformation and Environmental Sciences, Berlin, Germany
| | - Masato Komuro
- Sanofi K.K., Regulatory Affairs, Shinjuku-ku, Tokyo, Japan
- Japan Pharmaceutical Manufacturers Association, Chuo-ku, Tokyo, Japan
| | - Takahiro Hirai
- GlaxoSmithKline K.K., Akasaka Intercity AIR, Minato-ku, Tokyo, Japan
- EFPIA Japan (European Federation of Pharmaceutical Industries and Associations, Japan), Shinjuku-ku, Tokyo, Japan
| | - Akiko Ikeda
- Janssen Japan K.K., Regulatory Affairs, Chiyoda-ku, Tokyo, Japan
| | - Kojiro Saito
- EFPIA Japan (European Federation of Pharmaceutical Industries and Associations, Japan), Shinjuku-ku, Tokyo, Japan
- Chugai Pharmaceutical Co. Ltd., Regulatory Affairs, Chuo-ku, Tokyo, Japan
| | | | - Gentaro Tajima
- Pfizer R&D Japan G.K., Regulatory Sciences, Shibuya-ku, Tokyo, Japan
| |
Collapse
|
10
|
Steyaert W, Sagath L, Demidov G, Yépez VA, Esteve-Codina A, Gagneur J, Ellwanger K, Derks R, Weiss M, den Ouden A, van den Heuvel S, Swinkels H, Zomer N, Steehouwer M, O'Gorman L, Astuti G, Neveling K, Schüle R, Xu J, Synofzik M, Beijer D, Hengel H, Schöls L, Claeys KG, Baets J, Van de Vondel L, Ferlini A, Selvatici R, Morsy H, Saeed Abd Elmaksoud M, Straub V, Müller J, Pini V, Perry L, Sarkozy A, Zaharieva I, Muntoni F, Bugiardini E, Polavarapu K, Horvath R, Reid E, Lochmüller H, Spinazzi M, Savarese M, Matalonga L, Laurie S, Brunner HG, Graessner H, Beltran S, Ossowski S, Vissers LELM, Gilissen C, Hoischen A. Unravelling undiagnosed rare disease cases by HiFi long-read genome sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.03.24305331. [PMID: 38746462 PMCID: PMC11092722 DOI: 10.1101/2024.05.03.24305331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.
Collapse
|
11
|
Ülgü M, Yilmaz S, Öztaş D, Göktaş B, Akünal A. Prevalence of the hematopoietic rare genetic diseases in Türkiye: A retrospective study. Transfus Clin Biol 2024; 31:81-86. [PMID: 38218341 DOI: 10.1016/j.tracli.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Rare genetic diseases are an important global public health problem. At present there are defined approximately 8120 genetic diseases in 15,465 epidemiological datasets and 70% of them start in childhood. Hematopoiesis is the production of all cellular components of blood and continues throughout life. OBJECTIVE This study aims to present prevalence of hematopoietic rare genetic diseases recorden in Turkey. METHODS The population of study consist of 84.680.273 people who received healthcare from the Turkish National Health Service (49.9% female, 50.1% male). TNHS collects and records electronic data which relates with illness or health information of Turkish population since 2018. All healthcare facilities utilize the Personal Electronic Health Record System (PHR), aligning with standards outlined in the Turkish National Health Data Dictionary and the Health Coding Reference Server (HCRS) established by the Ministry of Health in 2007. The data dictionary comprises essential packages such as patient application and examination records. RESULTS Diagnosed female population (53.04%) were higher than male (46.96%). Data shows that most of the people with rare genetic diseases were diagnosed in Marmara Region. The overall prevalence of Hematopoietic Rare Genetic Diseases higher in the years of 2021 and 2022. CONCLUSION The prevalence increased gradually from 2018 to 2022. The consanguinity marriage seems to be the main problem which resulted higher rate of rare genetic diseases in Türkiye.
Collapse
Affiliation(s)
- Mahir Ülgü
- Turkish Ministry of Health, Ankara, Türkiye
| | - Serkan Yilmaz
- Ankara University Faculty of Nursing, Ankara, Türkiye.
| | - Duygu Öztaş
- Ankara University Faculty of Nursing, Ankara, Türkiye
| | - Bayram Göktaş
- Ankara University Faculty of Health Sciences, Ankara, Türkiye
| | | |
Collapse
|
12
|
Wang C, Shi P, Liang H, Cram DS, Leigh DA, Kong X. Next-generation variant exon screening: Moving forward in routine genetic disease investigations. GENETICS IN MEDICINE OPEN 2024; 2:101816. [PMID: 39669605 PMCID: PMC11613558 DOI: 10.1016/j.gimo.2024.101816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 12/14/2024]
Abstract
Purpose Patients with genetic diseases often seek testing to reach a firm diagnosis. Based on clinical phenotypes, exome sequencing for small-nucleotide variations or array-based methods for copy-number variations (CNVs) are commonly offered to identify the underlying causative genetic variants. In this study, we investigated whether data from a standard ES test could be used to additionally identify pathogenic CNVs and increase diagnostic yield. Methods Prospectively, 134 patients presenting with a skin condition suspected of being genetic in origin were offered the next-generation variant exon screening (ngVES) test. Sequencing data were analyzed for both single-nucleotide variants and CNVs using established algorithms. Results The positive detection rate for skin diseases using ngVES was 66% (88/134) with the most common diagnoses being neurofibromatosis type1 (n = 48) and tuberous sclerosis type2 (n = 12). The diagnostic increased yield from 58% to 66% was the result of additional detection of pathogenic CNVs. Each of the 9 CNVs were verified by independent genetic tests. Conclusion The advances in the ngVES bioinformatics pipeline are proofs of concept, which improved identification of genetic variants associated with skin disease. Simultaneous single-nucleotide variants/INDEL and CNV detection by this approach demonstrates ngVES potential as a first-tier screen for any suspected genetic disease.
Collapse
Affiliation(s)
- Conghui Wang
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Panlai Shi
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongbin Liang
- Genetics and Precision Medicine Centre, The First People's Hospital of Kunming, Kunming, Yunnan, China
| | - David S. Cram
- Genetics and Precision Medicine Centre, The First People's Hospital of Kunming, Kunming, Yunnan, China
| | - Donald A. Leigh
- Genetics and Precision Medicine Centre, The First People's Hospital of Kunming, Kunming, Yunnan, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Durairaj C, Bhattacharya I. Challenges, approaches and enablers: effectively triangulating towards dose selection in pediatric rare diseases. J Pharmacokinet Pharmacodyn 2023; 50:445-459. [PMID: 37296230 DOI: 10.1007/s10928-023-09868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Dose selection is an integral part of a molecule's journey to become medicine. On top of typical challenges faced in dose selection for more common diseases, pediatric rare disease has additional unique challenges due to the combination of 'rare' and 'pediatric' populations. Using the central theme of maximizing 'relevant' information to overcome information paucity, dose selection strategy in pediatric rare diseases is discussed using a triangulation concept involving challenges, approaches and very importantly, enablers. Using actual examples, unique scenarios are discussed where specific enablers allowed certain approaches to be used to overcome the challenges. The continued need for model-informed drug development is also discussed using examples of where modeling and simulation tools have been successfully used in bridging available information to select pediatric doses in rare disease. Additionally, challenges with translation and associated dose selection of new modalities such as gene therapy in rare diseases are examined with the lens of continuous learning and knowledge development that will enable pediatric dose selection of these modalities with confidence.
Collapse
|
14
|
Ng FYC, Tan PL, Sundar G. Improving visual outcomes in patients with rare paediatric eye diseases. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:625-634. [PMID: 38920150 DOI: 10.47102/annals-acadmedsg.202323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Rare paediatric eye diseases (RPEDs) threaten both vision and life. Recently, rare diseases were recognised as a global public health agenda, with children specified as a priority in the World Health Organization's VISION 2020 against avoidable visual loss. Method We conducted a review through a query of online databases (PubMed, Embase and Cochrane Library). Articles related to RPEDs were selected based on relevance by 2 authors, with any disagreements adjudicated by the third author. Results We synthesise the current state of knowledge regarding RPEDs, barriers to their care, and recommendations for the future. RPEDs often result in significant visual loss, profoundly impacting the way children comprehend and participate in the world. These diseases may also reduce life expectancy and even be life-threatening. Barriers to the care of RPEDs include an unclear definition of "rare diseases", missed or delayed diagnosis, inadequate knowledge and expertise in management, and challenging research environments. Conclusion Our findings provide an update on the diagnosis and management of RPEDs, which is of relevance to ophthalmologists, paediatricians, healthcare policymakers and social workers. We propose supportive policies and adequate resource allocation to these diseases, comprehensive and patient-centred care, alongside improved education and training, enhanced research capabilities and continued collaboration across institutions.
Collapse
Affiliation(s)
- Faye Yu Ci Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh Lin Tan
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gangadhara Sundar
- Orbit & Oculofacial Surgery Service, Department of Ophthalmology, National University Hospital, Singapore
| |
Collapse
|
15
|
Kaldunski ML, Smith JR, Brodie KC, De Pons JL, Demos WM, Gibson AC, Hayman GT, Lamers L, Laulederkind SJF, Thorat K, Thota J, Tutaj MA, Tutaj M, Vedi M, Wang SJ, Zacher S, Dwinell MR, Kwitek AE. Rare disease research resources at the Rat Genome Database. Genetics 2023; 224:iyad078. [PMID: 37119810 PMCID: PMC10411567 DOI: 10.1093/genetics/iyad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023] Open
Abstract
Rare diseases individually affect relatively few people, but as a group they impact considerable numbers of people. The Rat Genome Database (https://rgd.mcw.edu) is a knowledgebase that offers resources for rare disease research. This includes disease definitions, genes, quantitative trail loci (QTLs), genetic variants, annotations to published literature, links to external resources, and more. One important resource is identifying relevant cell lines and rat strains that serve as models for disease research. Diseases, genes, and strains have report pages with consolidated data, and links to analysis tools. Utilizing these globally accessible resources for rare disease research, potentiating discovery of mechanisms and new treatments, can point researchers toward solutions to alleviate the suffering of those afflicted with these diseases.
Collapse
Affiliation(s)
- Mary L Kaldunski
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer R Smith
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kent C Brodie
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey L De Pons
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy M Demos
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam C Gibson
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - G Thomas Hayman
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Logan Lamers
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stanley J F Laulederkind
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ketaki Thorat
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jyothi Thota
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marek A Tutaj
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monika Tutaj
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mahima Vedi
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shur-Jen Wang
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stacy Zacher
- Finance and Administration, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Melinda R Dwinell
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anne E Kwitek
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Joint Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Liu X, Chen H, Zhong Y, Lee TY, Han W, Yu D, Liu H, Ji J. Diet therapy in patients with rare diseases: a scoping review. J Hum Nutr Diet 2023; 36:742-753. [PMID: 36448617 DOI: 10.1111/jhn.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND This scoping review presents existing research evidence regarding diet therapy in patients with rare diseases (RDs). METHODS Using the five-stage scoping review framework proposed by Arksey, O'Malley and Levac, we searched the published literature in PubMed, Web of Science, Royal Society of Chemistry, China National Knowledge Infrastructure, VIP Database and Wan Fang Database from January 2010 to November 2022. We selected diet therapy studies on 121 RDs, as categorised by the National Health Commission of China in 2018. Charts for research analysis were developed and used to categorise the data. RESULTS We ultimately included 34 diet therapy studies from 19 countries and territories for 10 RDs and 3 RD groups. RD diet therapy studies have mainly focused on inborn errors of metabolism (92.3%) and are common in Western countries. Most studies focused on diet therapy methods for RDs (44%). In addition, 29% of studies included diet therapy management, 15% included guidelines for diet therapy and 12% included the impact of diet therapy on patients. CONCLUSIONS Current diet therapies for RDs lack specificity and present with limited characteristics. Therefore, it is necessary to expand the scope and depth of future research and explore evidence-based recommendations and new diet therapies focused on patient needs and family support to provide a reference for improving the efficacy and safety of diet therapies for RDs.
Collapse
Affiliation(s)
- Xuehua Liu
- College of Nursing, Guangzhou Medical University, Guangzhou, China
| | - Huifang Chen
- College of Nursing, Guangzhou Medical University, Guangzhou, China
| | - Yaping Zhong
- College of Nursing and Midwifery, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Tsorng-Yeh Lee
- College of Nursing, York University, Toronto, Ontario, Canada
| | - Wenxuan Han
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dafang Yu
- Department of Nursing, Jinan Maternal and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huaxia Liu
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Ji
- College of Nursing, Guangzhou Medical University, Guangzhou, China
- Department of Nursing, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Licata L, Via A, Turina P, Babbi G, Benevenuta S, Carta C, Casadio R, Cicconardi A, Facchiano A, Fariselli P, Giordano D, Isidori F, Marabotti A, Martelli PL, Pascarella S, Pinelli M, Pippucci T, Russo R, Savojardo C, Scafuri B, Valeriani L, Capriotti E. Resources and tools for rare disease variant interpretation. Front Mol Biosci 2023; 10:1169109. [PMID: 37234922 PMCID: PMC10206239 DOI: 10.3389/fmolb.2023.1169109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.
Collapse
Affiliation(s)
- Luana Licata
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Allegra Via
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Claudio Carta
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Cicconardi
- Department of Physics, University of Genova, Genova, Italy
- Italiano di Tecnologia—IIT, Genova, Italy
| | - Angelo Facchiano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Deborah Giordano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Federica Isidori
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | | | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Fu L, Lu K, Jiao Q, Chen X, Jia F. The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells 2023; 12:cells12081161. [PMID: 37190070 DOI: 10.3390/cells12081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Qian Jiao
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Fengju Jia
- School of Nursing, Qingdao University, Qingdao 266072, China
| |
Collapse
|
19
|
De Pablo-Moreno JA, Miguel-Batuecas A, de Sancha M, Liras A. The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency. Int J Mol Sci 2023; 24:ijms24076243. [PMID: 37047215 PMCID: PMC10093859 DOI: 10.3390/ijms24076243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Proteostasis, i.e., the homeostasis of proteins, responsible for ensuring protein turnover, is regulated by proteases, which also participate in the etiopathogenesis of multiple conditions. The magic of proteases is such that, in blood coagulation, one same molecule, such as coagulation factor V, for example, can perform both a procoagulant and an anticoagulant function as a result of the activity of proteases. However, this magic has an insidious side to it, as it may also prevent the completion of the clinical value chain of factor V deficiency. This value chain encompasses the discovery of knowledge, the transfer of this knowledge, and its translation to clinical practice. In the case of rare and ultra-rare diseases like factor V deficiency, this value chain has not been completed as the knowledge acquisition phase has dragged out over time, holding up the transfer of knowledge to clinical practice. The reason for this is related to the small number of patients afflicted with these conditions. As a result, new indications must be found to make the therapies cost-effective. In the case of factor V, significant research efforts have been directed at developing a recombinant factor V capable of resisting the action of the proteases capable of inactivating this factor. This is where bioethics and health equity considerations come into the equation.
Collapse
|
20
|
Chen A, Pan Y, Chen J. Clinical, genetic, and experimental research of hyperphenylalaninemia. Front Genet 2023; 13:1051153. [PMID: 36685931 PMCID: PMC9845280 DOI: 10.3389/fgene.2022.1051153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hyperphenylalaninemia (HPA) is the most common amino acid metabolism defect in humans. It is an autosomal-recessive disorder of the phenylalanine (Phe) metabolism, in which high Phe concentrations and low tyrosine (Tyr) concentrations in the blood cause phenylketonuria (PKU), brain dysfunction, light pigmentation and musty odor. Newborn screening data of HPA have revealed that the prevalence varies worldwide, with an average of 1:10,000. Most cases of HPA result from phenylalanine hydroxylase (PAH) deficiency, while a small number of HPA are caused by defects in the tetrahydrobiopterin (BH4) metabolism and DnaJ heat shock protein family (Hsp40) member C12 (DNAJC12) deficiency. Currently, the molecular pathophysiology of the neuropathology associated with HPA remains incompletely understood. Dietary restriction of Phe has been highly successful, although outcomes are still suboptimal and patients find it difficult to adhere to the treatment. Pharmacological treatments, such as BH4 and phenylalanine ammonia lyase, are available. Gene therapy for HPA is still in development.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yukun Pan
- Barbell Therapeutics Co. Ltd., Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| |
Collapse
|
21
|
Puscas M, Martineau G, Bhella G, Bonnen PE, Carr P, Lim R, Mitchell J, Osmond M, Urquieta E, Flamenbaum J, Iaria G, Joly Y, Richer É, Saary J, Saint-Jacques D, Buckley N, Low-Decarie E. Rare diseases and space health: optimizing synergies from scientific questions to care. NPJ Microgravity 2022; 8:58. [PMID: 36550172 PMCID: PMC9780351 DOI: 10.1038/s41526-022-00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Knowledge transfer among research disciplines can lead to substantial research progress. At first glance, astronaut health and rare diseases may be seen as having little common ground for such an exchange. However, deleterious health conditions linked to human space exploration may well be considered as a narrow sub-category of rare diseases. Here, we compare and contrast research and healthcare in the contexts of rare diseases and space health and identify common barriers and avenues of improvement. The prevalent genetic basis of most rare disorders contrasts sharply with the occupational considerations required to sustain human health in space. Nevertheless small sample sizes and large knowledge gaps in natural history are examples of the parallel challenges for research and clinical care in the context of both rare diseases and space health. The two areas also face the simultaneous challenges of evidence scarcity and the pressure to deliver therapeutic solutions, mandating expeditious translation of research knowledge into clinical care. Sharing best practices between these fields, including increasing participant involvement in all stages of research and ethical sharing of standardized data, has the potential to contribute to humankind's efforts to explore ever further into space while caring for people on Earth in a more inclusive fashion.
Collapse
Affiliation(s)
- Maria Puscas
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- The School of Health Sciences, University of Western Ontario, London, Canada
| | - Gabrielle Martineau
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- Hawaii Institute of Marine Biology (HIMB), Kaneohe, HI, USA
| | - Gurjot Bhella
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- University of Waterloo, Waterloo, Canada
| | - Penelope E Bonnen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Phil Carr
- The Strategic Review Group Inc., Ottawa, Canada
| | - Robyn Lim
- Legislative and Regulatory Modernization, Health Canada, Ottawa, Canada
| | - John Mitchell
- Pediatric Endocrinology and Biochemical Genetics, Montreal Children's Hospital-McGill University, Human Genetics and Pediatrics, McGill University, Montreal, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Emmanuel Urquieta
- Translational Research Institute for Space Health (TRISH) and Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Flamenbaum
- Canadian Institutes of Health Research Ethics Office, Ottawa, Canada
| | - Giuseppe Iaria
- Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Yann Joly
- Centre of Genomics and Policy, Faculty of Medicine, Human Genetics, McGill University, Montreal, Canada
| | - Étienne Richer
- Canadian Institutes of Health Research Institute of Genetics, Ottawa, Canada
| | - Joan Saary
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, Canada
| | - David Saint-Jacques
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
| | - Nicole Buckley
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada.
- Directorate of Human Spaceflight and Robotic Exploration, European Space Agency, Noordwijk, Holland.
| | - Etienne Low-Decarie
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada.
- Agriculture and Agri-Food Canada, Government of Canada, Montreal, Canada.
| |
Collapse
|
22
|
Shan Z, Ding L, Zhu C, Sun R, Hong W. Medical care of rare and undiagnosed diseases: Prospects and challenges. FUNDAMENTAL RESEARCH 2022; 2:851-858. [PMID: 38933390 PMCID: PMC11197738 DOI: 10.1016/j.fmre.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Rare and undiagnosed diseases tend to be diverse, misdiagnosed, and difficult to diagnose. In some cases, the disease is progressive and life-threatening. Yet, to date, an estimated 95% of rare diseases have no approved therapy. Therefore, rare and undiagnosed diseases are considered the ultimate challenges for understanding human diseases. Here, we review the research progress, research frontiers, and important scientific issues related to rare and undiagnosed diseases. We mainly focus on five topics: (1) the identification and functional analysis of disease-causing genes; (2) the construction of cells, organoids, and animal models for mechanism validation; (3) subtyping and diagnosis; (4) treatment and drug screening based on causative genes and mutations; and (5) new technologies and methods for studying rare and undiagnosed diseases. In this review, we briefly update and discuss the pathogenic mechanisms and precision medicine for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Zhiyan Shan
- Department of Health Sciences, National Natural Science Foundation of China, Beijing 100085, China
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Lijun Ding
- Department of Health Sciences, National Natural Science Foundation of China, Beijing 100085, China
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Wei Hong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing 100085, China
| |
Collapse
|
23
|
Pablo-Moreno JAD, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 2022; 23:ijms23158283. [PMID: 35955419 PMCID: PMC9425441 DOI: 10.3390/ijms23158283] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.
Collapse
Affiliation(s)
- Juan A. De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Javier Serrano
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Revuelta
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, 41013 Sevilla, Spain;
| | - Antonio Liras
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
- Correspondence:
| |
Collapse
|
24
|
Wu X, Xu W, Yu M, Zhang F, Wang H. Clinical trials of orphan drugs in China over the decade 2012-2022: Opportunities and challenges. Pharmacol Res 2022; 182:106349. [PMID: 35835367 DOI: 10.1016/j.phrs.2022.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Rare diseases refer to diseases with very low prevalence. Along with the support of national policies and improvement of research capability, a new landscape for orphan drug is emerging in China. To identity unmet clinical needs and provide insight on the development of orphan drugs, we reviewed the changes over time of orphan drug clinical trials in China from 2012 to 2022. A total of 261 trials of 40 drugs were initiated, of which 66.3% trials were sponsored by Chinese local pharmaceutical enterprises. Among the 261 trials, chemical drugs (about 63.6%) and biological products (35.6%) account for the high proportions, and traditional Chinese medicine (0.8%) was the least; the indications mainly focused on homozygous hypercholesterolemia, hemophilia, multiple sclerosis and idiopathic pulmonary fibrosis; single-arm study design was applied to 50% of the clinical trials, with an average sample size of 52 participants. Additionally, totally 122 trials were completed by January 2022, of which the average duration time was 15.7 months for new drug and 3.5 months for generic drug, respectively. The trends over time illustrated that remarkable progress has been achieved in development of orphan drugs in China since 2012. Given the large patient pool and the rising capability of innovation, it is believed that China will contribute more to the global drug pipelines for rare diseases.
Collapse
Affiliation(s)
- Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Wen Xu
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd, Shijiazhuang, Hebei, China
| | - Mengyang Yu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Fan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| |
Collapse
|
25
|
Agonists of prostaglandin E 2 receptors as potential first in class treatment for nephronophthisis and related ciliopathies. Proc Natl Acad Sci U S A 2022; 119:e2115960119. [PMID: 35482924 PMCID: PMC9170064 DOI: 10.1073/pnas.2115960119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceJuvenile nephronophthisis (NPH) is a renal ciliopathy due to a dysfunction of primary cilia for which no curative treatment is available. This paper describes the identification of agonists of prostaglandin E2 receptors as a potential therapeutic approach for the most common NPHP1-associated ciliopathies. We demonstrated that prostaglandin E1 rescues defective ciliogenesis and ciliary composition in NPHP1 patient urine-derived renal tubular cells and improves ciliary and kidney phenotypes in our NPH zebrafish and Nphp1-/- mouse models. In addition, Taprenepag alleviates the severe retinopathy observed in Nphp1-/- mice. Finally, transcriptomic analyses pointed out several pathways downstream the prostaglandin receptors as cell cycle progression, extracellular matrix, or actin cytoskeleton organization. Altogether, our findings provide an alternative for treatment of NPH.
Collapse
|
26
|
Ardizzone A, Capra AP, Campolo M, Filippone A, Esposito E, Briuglia S. Neurofibromatosis: New Clinical Challenges in the Era of COVID-19. Biomedicines 2022; 10:biomedicines10050940. [PMID: 35625677 PMCID: PMC9138859 DOI: 10.3390/biomedicines10050940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Rare diseases constitute a wide range of disorders thus defined for their low prevalence. However, taken together, rare diseases impact a considerable percentage of the world population, thus representing a public healthcare problem. In particular, neurofibromatoses are autosomal-dominant genetic disorders that include type 1 neurofibromatosis (NF1), type 2 neurofibromatosis (NF2) and schwannomatosis. Each of the three types is a genetically distinct disease with an unpredictable clinical course and for which there is still no resolutive cure. Therefore, a personalized therapeutic approach directed at improving the symptomatology as well as the search for new pharmacological strategies for the management of neurofibromatosis represents a priority for positive outcomes for affected patients. The coronavirus disease 2019 (COVID-19) pandemic has severely affected health systems around the world, impacting the provision of medical care and modifying clinical surveillance along with scientific research procedures. COVID-19 significantly worsened exchanges between healthcare personnel and neurofibromatosis patients, precluding continuous clinical monitoring in specialized clinic centers. In this new scenario, our article presents, for the first time, a comprehensive literature review on the clinical challenges for neurofibromatosis clinical care and research during the COVID-19 pandemic health emergency. The review was performed through PubMed (Medline) and Google Scholar databases until December 2021.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
- Correspondence: ; Tel.: +39-090-676-5208
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
27
|
Wang L, Wang J, Feng J, Doi M, Pepe S, Pacanowski M, Schuck RN. Dose-finding studies in drug development for rare genetic diseases. Orphanet J Rare Dis 2022; 17:156. [PMID: 35382851 PMCID: PMC8985255 DOI: 10.1186/s13023-022-02298-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small patient populations inherent to rare genetic diseases present many challenges to the traditional drug development paradigm. One major challenge is generating sufficient data in early phase studies to inform dose selection for later phase studies and dose optimization for clinical use of the drug. However, optimizing the benefit-risk profile of drugs through appropriate dose selection during drug development is critical for all drugs, including those being developed to treat rare diseases. Recognizing the challenges of conducting dose finding studies in rare disease populations and the importance of dose selection and optimization for successful drug development, we assessed the dose-finding studies and analyses conducted for drugs recently approved for rare genetic diseases. RESULTS Of the 40 marketing applications for new molecular entity (NME) drugs and biologics approved by the United States Food and Drug Administration for rare genetic diseases from 2015 to 2020, 21 (53%) of the development programs conducted at least one dedicated dose-finding study. In addition, the majority of drug development programs conducted clinical studies in healthy subjects and included population pharmacokinetic and exposure-response analyses; some programs also conducted clinical studies in patient populations other than the disease for which the drug was initially approved. The majority of primary endpoints utilized in dedicated dose-finding studies were biomarkers, and the primary endpoint of the safety and efficacy study matched the primary endpoint used in the dose finding study in 9 of 13 (69%) drug development programs where primary study endpoints were assessed. CONCLUSIONS Our study showed that NME drug development programs for rare genetic diseases utilize multiple data sources for dosing information, including studies in healthy subjects, population pharmacokinetic analyses, and exposure-response analyses. In addition, our results indicate that biomarkers play a key role in dose-finding studies for rare genetic disease drug development programs. Our findings highlight the need to develop study designs and methods to allow adequate dose-finding efforts within rare disease drug development programs that help overcome the challenges presented by low patient prevalence and other factors. Furthermore, the frequent reliance on biomarkers as endpoints for dose-finding studies underscores the importance of biomarker development in rare diseases.
Collapse
Affiliation(s)
- Lingshan Wang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ji Feng
- Office of Translational Sciences Immediate Office, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Mary Doi
- Office of Translational Sciences Immediate Office, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Salvatore Pepe
- Office of Translational Sciences Immediate Office, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Robert N Schuck
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
28
|
Medicina de precisión de Enfermedades Raras. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Epidemiology of rare diseases in Brazil: protocol of the Brazilian Rare Diseases Network (RARAS-BRDN). Orphanet J Rare Dis 2022; 17:84. [PMID: 35209917 PMCID: PMC8867447 DOI: 10.1186/s13023-022-02254-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/13/2022] [Indexed: 11/18/2022] Open
Abstract
The Brazilian Policy of Comprehensive Care for People with Rare Diseases (BPCCPRD) was established by the Ministry of Health to reduce morbidity and mortality and improve the quality of life of people with rare diseases (RD). Several laboratory tests, most using molecular genetic technologies, have been incorporated by the Brazilian Public Health System, and 18 specialised centres have so far been established at university hospitals (UH) in the capitals of the Southern, Southeastern and Northeastern regions. However, whether the available human and technological resources in these services are appropriate and sufficient to achieve the goals of care established by the BPCCPRD is unknown. Despite great advances in diagnosis, especially due to new technologies and the recent structuring of clinical assessment of RD in Brazil, epidemiological data are lacking and when available, restricted to specific disorders. This position paper summarises the performance of a nationally representative survey on epidemiology, clinical status, and diagnostic and therapeutic resources employed for individuals with genetic and non-genetic RD in Brazil. The Brazilian Rare Disease Network (BRDN) is under development, comprising 40 institutions, including 18 UH, 17 Rare Diseases Reference Services and five Newborn Screening Reference Services. A retrospective study will be initially conducted, followed by a prospective study. The data collection instrument will use a standard protocol with sociodemographic data and clinical and diagnostic aspects according to international ontology. This great collaborative network is the first initiative of a large epidemiological data collection of RD in Latin America, and the results will increase the knowledge of RD in Brazil and help health managers to improve national public policy on RD in Brazil.
Collapse
|
30
|
Frederiksen SD, Avramović V, Maroilley T, Lehman A, Arbour L, Tarailo-Graovac M. Rare disorders have many faces: in silico characterization of rare disorder spectrum. Orphanet J Rare Dis 2022; 17:76. [PMID: 35193637 PMCID: PMC8864832 DOI: 10.1186/s13023-022-02217-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background The diagnostic journey for many rare disease patients remains challenging despite use of latest genetic technological advancements. We hypothesize that some patients remain undiagnosed due to more complex diagnostic scenarios that are currently not considered in genome analysis pipelines. To better understand this, we characterized the rare disorder (RD) spectrum using various bioinformatics resources (e.g., Orphanet/Orphadata, Human Phenotype Ontology, Reactome pathways) combined with custom-made R scripts. Results Our in silico characterization led to identification of 145 borderline-common, 412 rare and 2967 ultra-rare disorders. Based on these findings and point prevalence, we would expect that approximately 6.53%, 0.34%, and 0.30% of individuals in a randomly selected population have a borderline-common, rare, and ultra-rare disorder, respectively (equaling to 1 RD patient in 14 people). Importantly, our analyses revealed that (1) a higher proportion of borderline-common disorders were caused by multiple gene defects and/or other factors compared with the rare and ultra-rare disorders, (2) the phenotypic expressivity was more variable for the borderline-common disorders than for the rarer disorders, and (3) unique clinical characteristics were observed across the disorder categories forming the spectrum. Conclusions Recognizing that RD patients who remain unsolved even after genome sequencing might belong to the more common end of the RD spectrum support the usage of computational pipelines that account for more complex genetic and phenotypic scenarios. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02217-9.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Avramović
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
31
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
32
|
Tarani L, Rasio D, Tarani F, Parlapiano G, Valentini D, Dylag KA, Spalice A, Paparella R, Fiore M. Pediatrics for Disability: A Comprehensive Approach to Children with Syndromic Psychomotor Delay. Curr Pediatr Rev 2022; 18:110-120. [PMID: 34844545 DOI: 10.2174/1573396317666211129093426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
Intellectual disability is the impairment of cognitive, linguistic, motor and social skills that occurs in the pediatric age and is also described by the term "mental retardation". Intellectual disability occurs in 3-28 % of the general population due to a genetic cause, including chromosome aberrations. Among people with intellectual disabilities, the cause of the disability was identified as a single gene disorder in up to 12 %, multifactorial disorders in up to 4 %, and genetic disorders in up to 8.5 %. Children affected by a malformation syndrome associated with mental retardation or intellectual disability represent a care challenge for the pediatrician. A multidisciplinary team is essential to manage the patient, thereby controlling the complications of the syndrome and promoting the correct psychophysical development. This requires continuous follow-up of these children by the pediatrician, which is essential for both the clinical management of the syndrome and facilitating the social integration of these children.
Collapse
Affiliation(s)
- Luigi Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Debora Rasio
- Department of Pediatry, Sarn Raffaele Hospital, Rome, Italy
| | - Francesca Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Giovanni Parlapiano
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | | | - Katarzyna Anna Dylag
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Krakow, Poland.,St. Louis Children Hospital, Krakow, Poland
| | - Alberto Spalice
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Roberto Paparella
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
33
|
Benchoua A, Lasbareilles M, Tournois J. Contribution of Human Pluripotent Stem Cell-Based Models to Drug Discovery for Neurological Disorders. Cells 2021; 10:cells10123290. [PMID: 34943799 PMCID: PMC8699352 DOI: 10.3390/cells10123290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
One of the major obstacles to the identification of therapeutic interventions for central nervous system disorders has been the difficulty in studying the step-by-step progression of diseases in neuronal networks that are amenable to drug screening. Recent advances in the field of human pluripotent stem cell (PSC) biology offers the capability to create patient-specific human neurons with defined clinical profiles using reprogramming technology, which provides unprecedented opportunities for both the investigation of pathogenic mechanisms of brain disorders and the discovery of novel therapeutic strategies via drug screening. Many examples not only of the creation of human pluripotent stem cells as models of monogenic neurological disorders, but also of more challenging cases of complex multifactorial disorders now exist. Here, we review the state-of-the art brain cell types obtainable from PSCs and amenable to compound-screening formats. We then provide examples illustrating how these models contribute to the definition of new molecular or functional targets for drug discovery and to the design of novel pharmacological approaches for rare genetic disorders, as well as frequent neurodegenerative diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Alexandra Benchoua
- Neuroplasticity and Therapeutics, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
- High Throughput Screening Platform, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
- Correspondence:
| | - Marie Lasbareilles
- Neuroplasticity and Therapeutics, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
- UEVE UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Johana Tournois
- High Throughput Screening Platform, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
| |
Collapse
|
34
|
Kieslinger M, Swoboda A, Kramer N, Freund P, Pratscher B, Neubauer HA, Steinborn R, Wolfesberger B, Fuchs-Baumgartinger A, Moriggl R, Burgener IA. A Recurrent STAT5BN642H Driver Mutation in Feline Alimentary T Cell Lymphoma. Cancers (Basel) 2021; 13:5238. [PMID: 34680385 PMCID: PMC8534107 DOI: 10.3390/cancers13205238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Alimentary lymphomas arising from T cells are rare and aggressive malignancies in humans. In comparison, they represent the most common anatomical form of lymphoma in cats. Due to the low prevalence in humans, the underlying pathomechanism for these diseases is poorly characterised, limiting experimental analysis and therapeutic exploration. To date, activating mutations of the JAK/STAT core cancer pathway and particularly the STAT5B oncoprotein have been identified in human enteropathy-associated T cell lymphoma. Here, we describe a high homology of human and feline STAT3 and STAT5B proteins and strong conservation at the genomic level. Analysis of 42 samples of feline T cell alimentary lymphoma reveals broad activation of STAT3 and STAT5B. Screening for known activating mutations in STAT3 or STAT5B identifies the presence of the STAT5BN642H driver mutation in feline enteropathy-associated T cell lymphoma in 7 out of 42 (16.67%) samples in total. Regarding lymphoma subtypes, the majority of mutations with 5 out of 17 (29.41%) cases were found in feline enteropathy-associated lymphoma type II (EATL II). This identification of an oncogenic STAT5B driver mutation in felines recapitulates the genetic situation in the corresponding human disease, thereby establishing the cat as a potential new model for a rare and incurable human T cell disease.
Collapse
Affiliation(s)
- Matthias Kieslinger
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Alexander Swoboda
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Nina Kramer
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Patricia Freund
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Barbara Pratscher
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Heidi A. Neubauer
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.A.N.); (R.M.)
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Birgitt Wolfesberger
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Andrea Fuchs-Baumgartinger
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Richard Moriggl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.A.N.); (R.M.)
| | - Iwan A. Burgener
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| |
Collapse
|
35
|
Schlieben LD, Prokisch H, Yépez VA. How Machine Learning and Statistical Models Advance Molecular Diagnostics of Rare Disorders Via Analysis of RNA Sequencing Data. Front Mol Biosci 2021; 8:647277. [PMID: 34141720 PMCID: PMC8204083 DOI: 10.3389/fmolb.2021.647277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Rare diseases, although individually rare, collectively affect approximately 350 million people worldwide. Currently, nearly 6,000 distinct rare disorders with a known molecular basis have been described, yet establishing a specific diagnosis based on the clinical phenotype is challenging. Increasing integration of whole exome sequencing into routine diagnostics of rare diseases is improving diagnostic rates. Nevertheless, about half of the patients do not receive a genetic diagnosis due to the challenges of variant detection and interpretation. During the last years, RNA sequencing is increasingly used as a complementary diagnostic tool providing functional data. Initially, arbitrary thresholds have been applied to call aberrant expression, aberrant splicing, and mono-allelic expression. With the application of RNA sequencing to search for the molecular diagnosis, the implementation of robust statistical models on normalized read counts allowed for the detection of significant outliers corrected for multiple testing. More recently, machine learning methods have been developed to improve the normalization of RNA sequencing read count data by taking confounders into account. Together the methods have increased the power and sensitivity of detection and interpretation of pathogenic variants, leading to diagnostic rates of 10-35% in rare diseases. In this review, we provide an overview of the methods used for RNA sequencing and illustrate how these can improve the diagnostic yield of rare diseases.
Collapse
Affiliation(s)
- Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vicente A. Yépez
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
36
|
Pimenta C, Bettiol V, Alencar-Silva T, Franco OL, Pogue R, Carvalho JL, Felipe MSS. Advanced Therapies and Regulatory Framework in Different Areas of the Globe: Past, Present, and Future. Clin Ther 2021; 43:e103-e138. [PMID: 33892966 DOI: 10.1016/j.clinthera.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The field of human medicine is in a constant state of evolution, developing and incorporating technological advances from diverse scientific fields. In recent years, cellular and gene therapies have come of age, challenging regulatory agencies to define the path for commercial registration. Approval necessarily demands robust evidence for safety and efficacy, but these exigencies must not be such that they render unviable the development and testing of the therapeutic agent. Furthermore, reimbursement strategies are required to guarantee commercial viability of these products, to avoid the risk that they will be removed from the market or become unavailable to most patients through lack of financial resources. To address such challenges, several countries have created strategies to manage advanced therapy products. METHODS Based on official documents published by regulatory agencies worldwide, this review summarizes the current scenario in the United States, Europe, Brazil, Japan, South Korea, and China in this regard, discussing the harmonized and dissonant aspects of the regulatory framework in different regions of the world and exploring perspectives for the future. FINDINGS The technical aspects of advanced therapies are increasingly complex, bringing challenges for high mass commercialization and demanding specific regulation. The regulatory framework of the analyzed regions is mainly recent and discordant, but many harmonizing initiatives were observed. IMPLICATIONS The comparative analysis of regulatory frameworks in different parts of the world is informative, as scientists must be aware of the rationale of regulators to assertively develop new technology and products that will be commercialized. The comparative analysis also provides insight into the main dissonances that must be addressed, fostering the harmonization of local regulatory frameworks. Many unanswered questions still lie ahead for the field of advanced therapies, and empirical evidence will be the most effective way to separate hype from hope and to establish the most sustainable mechanisms to regulate and finance such products in each part of the world.
Collapse
Affiliation(s)
- Cleila Pimenta
- Public Health Program, University of Brasília, DF, Brazil
| | - Vitória Bettiol
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Thuany Alencar-Silva
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Octavio Luiz Franco
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil; Catholic University of Dom Bosco, Campo Grande, MS, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil; Faculty of Medicine, University of Brasília, DF, Brazil
| | - Maria Sueli Soares Felipe
- Public Health Program, University of Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, DF, Brazil.
| |
Collapse
|
37
|
Systematic assessment of outcomes following a genetic diagnosis identified through a large-scale research study into developmental disorders. Genet Med 2021; 23:1058-1064. [PMID: 33603196 PMCID: PMC8187151 DOI: 10.1038/s41436-021-01110-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose The clinical and psychosocial outcomes associated with receiving a genetic diagnosis for developmental disorders are wide-ranging but under-studied. We sought to investigate outcomes from a subset of families who received a diagnosis through the Deciphering Developmental Disorders (DDD) study. Methods Individuals recruited through the Peninsula Clinical Genetics Service who received a confirmed genetic diagnosis through the DDD study before August 2019 (n = 112) were included in a clinical audit. Families with no identified clinical outcomes (n = 16) were invited to participate in semistructured telephone interviews. Results Disease-specific treatment was identified for 7 probands (6%), while 48 probands (43%) were referred for further investigations or screening and 60 probands (54%) were recruited to further research. Just 5 families (4%) opted for prenatal testing in a subsequent pregnancy, reflecting the relatively advanced maternal age in our cohort, and 42 families (38%) were given disease-specific information or signposting to patient-specific resources such as support groups. Six interviews were performed (response rate = 47%) and thematic analysis identified four major themes: reaching a diagnosis, emotional impact, family implications, and practical issues. Conclusion Our data demonstrate that receiving a genetic diagnosis has substantial positive medical and psychosocial outcomes for the majority of patients and their families.
Collapse
|
38
|
Shur N, Atabaki SM, Kisling MS, Tabarani A, Williams C, Fraser JL, S. Regier D, Summar M. Rapid deployment of a telemedicine care model for genetics and metabolism during COVID-19. Am J Med Genet A 2021; 185:68-72. [PMID: 33051968 PMCID: PMC7675281 DOI: 10.1002/ajmg.a.61911] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/15/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022]
Abstract
The national importance of telemedicine for safe and effective patient care has been highlighted by the current COVID-19 pandemic. Prior to the 2020 pandemic the Division of Genetics and Metabolism piloted a telemedicine program focused on initial and follow-up visits in the patients' home. The goals were to increase access to care, decrease missed work, improve scheduling, and avoid the transport and exposure of medically fragile patients. Visits were conducted by physician medical geneticists, genetic counselors, and biochemical dietitians, together and separately. This allowed the program to develop detailed standard operating procedures. At the onset of the COVID-19 pandemic, this pilot-program was deployed by the full team of 22 providers in one business day. Two physicians remained on-site for patients requiring in-person evaluations. This model optimized patient safety and workforce preservation while providing full access to patients during a pandemic. We provide initial data on visit numbers, types of diagnoses, and no-show rates. Experience in this implementation before and during the pandemic has confirmed the effectiveness and value of telemedicine for a highly complex medical population. This program is a model that can and will be continued well-beyond the current crisis.
Collapse
Affiliation(s)
- Natasha Shur
- Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | | | | | - Abir Tabarani
- Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | | | - Jamie L. Fraser
- Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Debra S. Regier
- Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | - Marshall Summar
- Children's National HospitalWashingtonDistrict of ColumbiaUSA
| | | |
Collapse
|
39
|
Santos FR, Pinotti T, Fujita R. Population Variation of the Human Genome. HUMAN GENOME STRUCTURE, FUNCTION AND CLINICAL CONSIDERATIONS 2021:329-350. [DOI: 10.1007/978-3-030-73151-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
40
|
Zhu T, Gong X, Bei F, Ma L, Chen Y, Zhang Y, Wang X, Sun J, Wang J, Qiu G, Sun J, Sun Y, Zhang Y. Application of Next-Generation Sequencing for Genetic Diagnosis in Neonatal Intensive Care Units: Results of a Multicenter Study in China. Front Genet 2020; 11:565078. [PMID: 33240318 PMCID: PMC7677510 DOI: 10.3389/fgene.2020.565078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022] Open
Abstract
To identify next-generation-sequencing (NGS) clinical usability and to propose a standard diagnostic routine for critically ill infants, aged less than 100 days and suspected of having a genetically heterogeneous condition, a retrospective study was conducted between January 2016 and December 2018 at neonatal intensive care units (NICUs) of three tertiary hospitals in Shanghai, China. Whole-exome sequencing (WES) or panel sequencing was performed on 307 patients. Trio-WES, trio-panel, proband-WES, and proband-panel diagnostic yields were 39.71% (83/209), 68.75% (22/32), 59.09% (26/44), and 33.33% (4/12), respectively. Definitive molecular diagnoses of 142 infants (46.25%) uncovered 99 disorders; 21 disorders displayed on 44.37% of the diagnosed patients. Genetic etiologies were identified for 61.73% (50/81) of the deceased infants. One in three (29.58%) diagnosed infants exhibited one of the following four clinical traits which had a higher odds of diagnostic rate: integument abnormality (adjusted odds ratio [aOR], 19.7; 95% confidence interval [CI], 2.5–156.3), complex immune-related phenotypes (aOR, 9.2; 95% CI, 1.4–83.5), mixed nervous system phenotypes and congenital anomalies (aOR, 5.0; 95% CI, 1.3–19.1), or mixed metabolism and nervous system phenotypes (aOR, 4.5; 95% CI, 1.0–21.5). Our results demonstrated that NGS was an effective diagnostic tool. Infants exhibiting integument, complex immune-related conditions, metabolism, and nervous signs have higher chances of carrying variants in known disease-causing genes. The number of specific phenotypes could be used as an independent predictor of a positive molecular diagnosis, rather than an isolated abnormality. We developed a molecular diagnostic procedure for the use of NGS for diagnosis in Chinese NICU population based on individual characteristics.
Collapse
Affiliation(s)
- Tianwen Zhu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Bei
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghong Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Wang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Sun
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Qiu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Sun
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Wu L, Leng Q, Wang Y, Wang D, Yang D. Extensive eye-oral-bronchial mucosal nodules with eosinopgillia: a rare case report and literature review. BMC Pulm Med 2020; 20:296. [PMID: 33183266 PMCID: PMC7664023 DOI: 10.1186/s12890-020-01340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucosal nodules can be caused by infection, inflammation and neoplastic disease. Many noninfectious diseases, such as eosinophilia, amyloidosis, sarcoidosis, Wegener's granuloma, langerhans cell histiocytosis etc., are associated with the formation of multisytem mucosal nodules, especially significant bronchial lesions. Detailed medical history, comprehensive metabolic profile, biopsy specimen and imaging examinations are required for differentiating among these disorders. The process of diagnosis and treatment of our patient's mucosal nodules was challenging, which could be helpful to similar cases. CASE PRESENTATION We represent a case of a 29-year-old woman with plentiful nodules of unknown origin on extensive mucous membranes. Biopsy specimen reports inflammatory lesions with large numbers of neutrophils, lymphocytes, and varying degrees of eosinophils. Treatment of anti-infection, anti-tussive and anti-allergic was ineffective, but glucocorticoid showed great improvement to her symptoms. CONCLUSION We experienced a rare case with plentiful nodules of unknown origin on extensive mucous membranes. She may be a specific phenotype of eosinophilia or may be a novel multisystem disease with respiratory system as the primary symptom. The diagnosis of our patient remains unclear, but tentative glucocorticoid therapy was beneficial.
Collapse
Affiliation(s)
- Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Wuhan, China
| | - Qianru Leng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Wuhan, China
| | - Danlei Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
42
|
The Biennial report: The collaboration between MAGI Research, Diagnosis and Treatment Center of Genetic and Rare Diseases and Near East University DESAM Institute. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Background
Scientific collaboration is more common now than it was before. In many areas of biomedical science, collaborations between researchers with different scientific backgrounds and perspectives have enabled researchers to address complicated questions and solve complex problems.
Particularly, international collaborations and improvements in science and technology have shed light on solving the mechanisms that are involved in the etiology of many rare diseases. Hence, the diagnosis and treatment options have been improved for a number of rare diseases. The collaboration between Near East University DESAM Institute and MAGI Research, Diagnosis and Treatment Center of Genetic and Rare Diseases brought out significant results. Importantly, this collaboration contributed to the rare disease research by the identification of novel rare genetic disease-causing variations commonly in pediatric cases. Consequently, many pediatric unsolved cases have been diagnosed.
The main scope of this article is to emphasize the outcomes of the collaboration between Near East University DESAM Institute and MAGI Research, Diagnosis and Treatment Center of Genetic and Rare Diseases which contributed greatly to the scientific literature by identifying novel rare genetic disease-causing variation.
Collapse
|
43
|
Rod function deficit in retained photoreceptors of patients with class B Rhodopsin mutations. Sci Rep 2020; 10:12552. [PMID: 32724127 PMCID: PMC7387454 DOI: 10.1038/s41598-020-69456-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
A common inherited retinal disease is caused by mutations in RHO expressed in rod photoreceptors that provide vision in dim ambient light. Approximately half of all RHO mutations result in a Class B phenotype where mutant rods are retained in some retinal regions but show severe degeneration in other regions. We determined the natural history of dysfunction and degeneration of retained rods by serially evaluating patients. Even when followed for more than 20 years, rod function and structure at some retinal locations could remain unchanged. Other locations showed loss of both vision and photoreceptors but the rate of rod vision loss was greater than the rate of photoreceptor degeneration. This unexpected divergence in rates with disease progression implied the development of a rod function deficit beyond loss of cells. The divergence of progression rates was also detectable over a short interval of 2 years near the health-disease transition in the superior retina. A model of structure–function relationship supported the existence of a large rod function deficit which was also most prominent near regions of health-disease transition. Our studies support the realistic therapeutic goal of improved night vision for retinal regions specifically preselected for rod function deficit in patients.
Collapse
|
44
|
Masoudi-Sobhanzadeh Y, Masoudi-Nejad A. Synthetic repurposing of drugs against hypertension: a datamining method based on association rules and a novel discrete algorithm. BMC Bioinformatics 2020; 21:313. [PMID: 32677879 PMCID: PMC7469914 DOI: 10.1186/s12859-020-03644-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Drug repurposing aims to detect the new therapeutic benefits of the existing drugs and reduce the spent time and cost of the drug development projects. The synthetic repurposing of drugs may prove to be more useful than the single repurposing in terms of reducing toxicity and enhancing efficacy. However, the researchers have not given it serious consideration. To address the issue, a novel datamining method is introduced and applied to repositioning of drugs for hypertension (HT) which is a serious medical condition and needs some improved treatment plans to help treat it. RESULTS A novel two-step data mining method, which is based on the If-Then association rules as well as a novel discrete optimization algorithm, was introduced and applied to the synthetic repurposing of drugs for HT. The required data were also extracted from DrugBank, KEGG, and DrugR+ databases. The findings indicated that based on the different statistical criteria, the proposed method outperformed the other state-of-the-art approaches. In contrast to the previously proposed methods which had failed to discover a list on some datasets, our method could find a combination list for all of them. CONCLUSION Since the proposed synthetic method uses medications in small dosages, it might revive some failed drug development projects and put forward a suitable plan for treating different diseases such as COVID-19 and HT. It is also worth noting that applying efficient computational methods helps to produce better results.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Öztürk H, Özgür A, Schwaller P, Laino T, Ozkirimli E. Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discov Today 2020; 25:689-705. [DOI: 10.1016/j.drudis.2020.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 01/06/2023]
|
46
|
Radouani F, Zass L, Hamdi Y, Rocha JD, Sallam R, Abdelhak S, Ahmed S, Azzouzi M, Benamri I, Benkahla A, Bouhaouala-Zahar B, Chaouch M, Jmel H, Kefi R, Ksouri A, Kumuthini J, Masilela P, Masimirembwa C, Othman H, Panji S, Romdhane L, Samtal C, Sibira R, Ghedira K, Fadlelmola F, Kassim SK, Mulder N. A review of clinical pharmacogenetics Studies in African populations. Per Med 2020; 17:155-170. [PMID: 32125935 PMCID: PMC8093600 DOI: 10.2217/pme-2019-0110] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Effective interventions and treatments for complex diseases have been implemented globally, however, coverage in Africa has been comparatively lower due to lack of capacity, clinical applicability and knowledge on the genetic contribution to disease and treatment. Currently, there is a scarcity of genetic data on African populations, which have enormous genetic diversity. Pharmacogenomics studies have the potential to revolutionise treatment of diseases, therefore, African populations are likely to benefit from these approaches to identify likely responders, reduce adverse side effects and optimise drug dosing. This review discusses clinical pharmacogenetics studies conducted in African populations, focusing on studies that examined drug response in complex diseases relevant to healthcare. Several pharmacogenetics associations have emerged from African studies, as have gaps in knowledge.
Collapse
Affiliation(s)
- Fouzia Radouani
- Research Department, Chlamydiae & Mycoplasmas Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Lyndon Zass
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics & Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002 Tunis, Belvédère, Tunisie
| | - Jorge da Rocha
- Sydney Brenner Institute for Molecular Bioscience, University of The Witwatersrand, Johannesburg, South Africa
| | - Reem Sallam
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo 11381, Egypt
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics & Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002 Tunis, Belvédère, Tunisie
| | - Samah Ahmed
- Centre for Bioinformatics & Systems Biology, Faculty of Science, University of Khartoum, 321 Khartoum, Sudan.,Faculty of Clinical & Industrial Pharmacy, National University, Khartoum, Sudan
| | - Maryame Azzouzi
- Research Department, Chlamydiae & Mycoplasmas Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Ichrak Benamri
- Research Department, Chlamydiae & Mycoplasmas Laboratory, Institut Pasteur du Maroc, Casablanca 20360, Morocco.,Systems & Data Engineering Team, National School of Applied Sciences of Tangier, Morocco
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics & Biostatistics LR 16 IPT 09, Institute Pasteur de Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms & Therapeutic Molecules, Pasteur Institute of Tunis, 13 Place Pasteur, BP74, Tunis Belvedere- University of Tunis El Manar, Tunisia
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics & Biostatistics LR 16 IPT 09, Institute Pasteur de Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics & Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002 Tunis, Belvédère, Tunisie
| | - Rym Kefi
- Laboratory of Biomedical Genomics & Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002 Tunis, Belvédère, Tunisie
| | - Ayoub Ksouri
- Laboratory of Bioinformatics, Biomathematics & Biostatistics LR 16 IPT 09, Institute Pasteur de Tunis, Tunisia.,Laboratory of Venoms & Therapeutic Molecules, Pasteur Institute of Tunis, 13 Place Pasteur, BP74, Tunis Belvedere- University of Tunis El Manar, Tunisia
| | - Judit Kumuthini
- H3ABioNet, Bioinformatics Department, Centre for Proteomic & Genomic Research, Cape Town, South Africa
| | - Phumlani Masilela
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| | - Collen Masimirembwa
- Sydney Brenner Institute for Molecular Bioscience, University of The Witwatersrand, Johannesburg, South Africa.,DMPK Department, African Institute of Biomedical Science & Technology, Harare, Zimbabwe
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of The Witwatersrand, Johannesburg, South Africa
| | - Sumir Panji
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics & Oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002 Tunis, Belvédère, Tunisie.,Département des Sciences de la Vie, Faculté des Sciences de Bizerte, Université Carthage, 7021 Jarzouna, BP 21, Tunisie
| | - Chaimae Samtal
- Biotechnology Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco.,Department of Biology, University of Mohammed Premier, Oujda, Morocco.,Department of Biology Faculty of Sciences, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Rania Sibira
- Centre for Bioinformatics & Systems Biology, Faculty of Science, University of Khartoum, 321 Khartoum, Sudan.,Department of Neurosurgery, National Center For Neurological Sciences, Khartoum, Sudan
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics & Biostatistics LR 16 IPT 09, Institute Pasteur de Tunis, Tunisia
| | - Faisal Fadlelmola
- Centre for Bioinformatics & Systems Biology, Faculty of Science, University of Khartoum, 321 Khartoum, Sudan
| | - Samar Kamal Kassim
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo 11381, Egypt
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa Wellcome Trust Centre, University of Cape Town, South Africa
| |
Collapse
|
47
|
Bhattacharya A, Bhattacharya S. Patient-driven initiatives for prioritizing drug discovery for rare diseases. Indian J Med Res 2020; 149:326-328. [PMID: 31249196 PMCID: PMC6607820 DOI: 10.4103/ijmr.ijmr_499_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Alok Bhattacharya
- Department of Biology, Ashoka University, National Capital Region, Sonepat 131 029, Haryana, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
48
|
Abstract
The Canadian Genomics Partnership for Rare Diseases, spearheaded by Genome Canada, will integrate genome-wide sequencing to rare disease clinical care in Canada. Centralized and tiered models of data stewardship are proposed to ensure that the data generated can be shared for secondary clinical, research, and quality assurance purposes in compliance with ethics and law. The principal ethico-legal obligations of clinicians, researchers, and institutions are synthesized. Governance infrastructures such as registered access platforms, data access compliance offices, and Beacon systems are proposed as potential organizational and technical foundations of responsible rare disease data sharing. The appropriate delegation of responsibilities, the transparent communication of rights and duties, and the integration of data privacy safeguards into infrastructure design are proposed as the cornerstones of rare disease data stewardship.
Collapse
Affiliation(s)
- Alexander Bernier
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, QC H3A 0G1, Canada
| |
Collapse
|
49
|
Wanker EE, Ast A, Schindler F, Trepte P, Schnoegl S. The pathobiology of perturbed mutant huntingtin protein-protein interactions in Huntington's disease. J Neurochem 2019; 151:507-519. [PMID: 31418858 DOI: 10.1111/jnc.14853] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Mutations are at the root of many human diseases. Still, we largely do not exactly understand how they trigger pathogenesis. One, more recent, hypothesis has been that they comprehensively perturb protein-protein interaction (PPI) networks and significantly alter key biological processes. Under this premise, many rare genetic disorders with Mendelian inheritance, like Huntington's disease and several spinocerebellar ataxias, are likely to be caused by complex genotype-phenotype relationships involving abnormal PPIs. These altered PPI networks and their effects on cellular pathways are poorly understood at the molecular level. In this review, we focus on PPIs that are perturbed by the expanded pathogenic polyglutamine tract in huntingtin (HTT), the protein which, in its mutated form, leads to the autosomal dominant, neurodegenerative Huntington's disease. One aspect of perturbed mutant HTT interactions is the formation of abnormal protein species such as fibrils or large neuronal inclusions as a result of homotypic and heterotypic aberrant molecular interactions. This review focuses on abnormal PPIs that are associated with the assembly of mutant HTT aggregates in cells and their potential relevance in disease. Furthermore, the mechanisms and pathobiological processes that may contribute to phenotype development, neuronal dysfunction and toxicity in Huntington's disease brains are also discussed. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anne Ast
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Franziska Schindler
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Philipp Trepte
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
50
|
Xafis V, Schaefer GO, Labude MK, Brassington I, Ballantyne A, Lim HY, Lipworth W, Lysaght T, Stewart C, Sun S, Laurie GT, Tai ES. An Ethics Framework for Big Data in Health and Research. Asian Bioeth Rev 2019; 11:227-254. [PMID: 33717314 PMCID: PMC7747261 DOI: 10.1007/s41649-019-00099-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Ethical decision-making frameworks assist in identifying the issues at stake in a particular setting and thinking through, in a methodical manner, the ethical issues that require consideration as well as the values that need to be considered and promoted. Decisions made about the use, sharing, and re-use of big data are complex and laden with values. This paper sets out an Ethics Framework for Big Data in Health and Research developed by a working group convened by the Science, Health and Policy-relevant Ethics in Singapore (SHAPES) Initiative. It presents the aim and rationale for this framework supported by the underlying ethical concerns that relate to all health and research contexts. It also describes a set of substantive and procedural values that can be weighed up in addressing these concerns, and a step-by-step process for identifying, considering, and resolving the ethical issues arising from big data uses in health and research. This Framework is subsequently applied in the papers published in this Special Issue. These papers each address one of six domains where big data is currently employed: openness in big data and data repositories, precision medicine and big data, real-world data to generate evidence about healthcare interventions, AI-assisted decision-making in healthcare, public-private partnerships in healthcare and research, and cross-sectoral big data.
Collapse
Affiliation(s)
- Vicki Xafis
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - G. Owen Schaefer
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus K. Labude
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Iain Brassington
- Centre for Social Ethics and Policy, School of Law, University of Manchester, Manchester, UK
| | - Angela Ballantyne
- Department of Primary Health Care & General Practice, University of Otago, Dunedin, New Zealand
| | - Hannah Yeefen Lim
- Division of Business Law, College of Business, Nanyang Technological University, Singapore
| | - Wendy Lipworth
- Sydney Health Ethics, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tamra Lysaght
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Shirley Sun
- School of Social Sciences, College of Humanities, Arts, & Social Sciences, Nanyang Technological University, Singapore
| | - Graeme T. Laurie
- School of Law and JK Mason Institute for Medicine, Life Sciences and the Law, University of Edinburgh, Edinburgh, UK
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Division of Endocrinology, National University Hospital, Singapore
| |
Collapse
|