1
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
2
|
Bamps D, Blockeel AJ, Dreesen E, Marynissen H, Laenen J, Van Hecken A, Wilke A, Shahabi S, Johnson KW, Collins EC, Broad LM, Phillips KG, de Hoon J. TRPA1 Antagonist LY3526318 Inhibits the Cinnamaldehyde-Evoked Dermal Blood Flow Increase: Translational Proof of Pharmacology. Clin Pharmacol Ther 2023; 114:1093-1103. [PMID: 37562824 DOI: 10.1002/cpt.3024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Transient receptor potential Ankyrin 1 (TRPA1) is an ion channel expressed by sensory neurons, where it mediates pain signaling. Consequently, it has emerged as a promising target for novel analgesics, yet, to date, no TRPA1 antagonists have been approved for clinical use. In the present translational study, we utilized dermal blood flow changes evoked by TRPA1 agonist cinnamaldehyde as a target engagement biomarker to investigate the in vivo pharmacology of LY3526318, a novel TRPA1 antagonist. In rats, LY3526318 (1, 3, and 10 mg/kg, p.o.) dose-dependently reduced the cutaneous vasodilation typically observed following topical application of 10% v/v cinnamaldehyde. The inhibition was significant at the site of cinnamaldehyde application and also when including an adjacent area of skin. Similarly, in a cohort of 16 healthy human volunteers, LY3526318 administration (10, 30, and 100 mg, p.o.) dose-dependently reduced the elevated blood flow surrounding the site of 10% v/v cinnamaldehyde application, with a trend toward inhibition at the site of application. Comparisons between both species reveal that the effects of LY3526318 on the cinnamaldehyde-induced dermal blood flow are greater in rats relative to humans, even when adjusting for cross-species differences in potency of the compound at TRPA1. Exposure-response relationships suggest that a greater magnitude response may be observed in humans if higher antagonist concentrations could be achieved. Taken together, these results demonstrate that cinnamaldehyde-evoked changes in dermal blood flow can be utilized as a target engagement biomarker for TRPA1 activity and that LY3526318 antagonizes the ion channel both in rats and humans.
Collapse
Affiliation(s)
- Dorien Bamps
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | | | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Heleen Marynissen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - Jolien Laenen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - Anne Van Hecken
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - August Wilke
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | | | - Kirk W Johnson
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | | | - Lisa M Broad
- Eli Lilly and Company, Erl Wood Manor, Windlesham, UK
| | - Keith G Phillips
- Eli Lilly and Company, Neuroscience Next Generation Therapeutics, Lilly Innovation Center, Cambridge, Massachusetts, USA
| | - Jan de Hoon
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Soussi M, Hasselsweiller A, Gkika D. TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? MEMBRANES 2023; 13:788. [PMID: 37755210 PMCID: PMC10536409 DOI: 10.3390/membranes13090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Breast cancer is a major health concern worldwide, and resistance to therapies remains a significant challenge in treating this disease. In breast cancer, Transient Receptor Potential (TRP) channels are well studied and constitute key players in nearly all carcinogenesis hallmarks. Recently, they have also emerged as important actors in resistance to therapy by modulating the response to various pharmaceutical agents. Targeting TRP channels may represent a promising approach to overcome resistance to therapies in breast cancer patients.
Collapse
Affiliation(s)
| | | | - Dimitra Gkika
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.S.); (A.H.)
| |
Collapse
|
4
|
Rautenberg S, Keller M, Leser C, Chen CC, Bracher F, Grimm C. Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels. Handb Exp Pharmacol 2023; 278:249-276. [PMID: 35902436 DOI: 10.1007/164_2022_605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Functional characterization of endolysosomal ion channels is challenging due to their intracellular location. With recent advances in endolysosomal patch clamp technology, it has become possible to directly measure ion channel currents across endolysosomal membranes. Members of the transient receptor potential (TRP) cation channel family, namely the endolysosomal TRPML channels (TRPML1-3), also called mucolipins, as well as the distantly related two-pore channels (TPCs) have recently been characterized in more detail with endolysosomal patch clamp techniques. However, answers to many physiological questions require work in intact cells or animal models. One major obstacle thereby is that the known endogenous ligands of TRPMLs and TPCs are anionic in nature and thus impermeable for cell membranes. Microinjection, on the other hand, is technically demanding. There is also a risk of losing essential co-factors for channel activation or inhibition in isolated preparations. Therefore, lipophilic, membrane-permeable small-molecule activators and inhibitors for TRPMLs and TPCs are urgently needed. Here, we describe and discuss the currently available small-molecule modulators of TRPMLs and TPCs.
Collapse
Affiliation(s)
- Susanne Rautenberg
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Keller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Charlotte Leser
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Cheng-Chang Chen
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany.
| | - Christian Grimm
- Department of Pharmacology and Toxicology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
5
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
6
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Changes in smell and taste perception related to COVID-19 infection: a case-control study. Sci Rep 2022; 12:8192. [PMID: 35581235 PMCID: PMC9112641 DOI: 10.1038/s41598-022-11864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
The main aim of the present study was to psychophysically evaluate smell and taste functions in hospitalized COVID-19 patients and to compare those results with a group of healthy subjects. Another aim of the study was to assess the relationship of changes in patients’ smell and taste functions with a number of clinical parameters, symptoms, and other physiological signs as well as with severity of disease. Olfactory and gustatory functions were tested in 61 hospitalized patients positive for SARS-CoV-2 infection and in a control group of 54 healthy individuals. Overall, we found a significant impairment of olfactory and gustatory functions in COVID-19 patients compared with the control group. Indeed, about 45% of patients self-reported complaints about or loss of either olfactory or gustatory functions. These results were confirmed by psychophysical testing, which showed a significantly reduced performance in terms of intensity perception and identification ability for both taste and smell functions in COVID-19 patients. Furthermore, gustatory and olfactory impairments tended to be more evident in male patients suffering from more severe respiratory failure (i.e., pneumonia with need of respiratory support need during hospitalization).
Collapse
|
8
|
Courtin AS, Mouraux A. Combining Topical Agonists With the Recording of Event-Related Brain Potentials to Probe the Functional Involvement of TRPM8, TRPA1 and TRPV1 in Heat and Cold Transduction in the Human Skin. THE JOURNAL OF PAIN 2022; 23:754-771. [PMID: 34863944 DOI: 10.1016/j.jpain.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
TRP channels play a central role in the transduction of thermal and nociceptive stimuli by free nerve endings. Most of the research on these channels has been conducted in vitro or in vivo in nonhuman animals and translation of these results to humans must account for potential experimental biases and interspecific differences. This study aimed at evaluating the involvement of TRPM8, TRPA1 and TRPV1 channels in the transduction of heat and cold stimuli by the human thermonociceptive system. For this purpose, we evaluated the effects of topical agonists of these 3 channels (menthol, cinnamaldehyde and capsaicin) on the event-related brain potentials (ERPs) elicited by phasic thermal stimuli (target temperatures: 10°C, 42°C, and 60°C) selected to activate cold Aδ thermoreceptors, warm sensitive C thermoreceptors and heat sensitive Aδ polymodal nociceptors. Sixty-four participants were recruited, 16 allocated to each agonist solution group (20% menthol, 10% cinnamaldehyde, .025% capsaicin and 1% capsaicin). Participants were treated sequentially with the active solution on one forearm and vehicle only on the other forearm for 20 minutes. Menthol decreased the amplitude and increased the latency of cold and heat ERPs. Cinnamic aldehyde decreased the amplitude and increased the latency of heat but not cold ERPs. Capsaicin decreased the amplitude and increased the latency of heat ERPs and decreased the amplitude of the N2P2 complex of the cold ERPs without affecting the earlier N1 wave or the latencies of the peaks. These findings are compatible with previous evidence indicating that TRPM8 is involved in innocuous cold transduction and that TRPV1 and TRPA1 are involved in noxious heat transduction in humans. PERSPECTIVE: By chemically modulating TRPM8, TRPA1 and TRPV1 reactivity (key molecules in the transduction of temperature) and assessing how this affected EEG responses to the activation of cold thermoreceptors and heat nociceptors, we aimed at confirming the role of these channels in a functional healthy human model.
Collapse
Affiliation(s)
- Arthur S Courtin
- Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium.
| | - André Mouraux
- Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
9
|
Habgood M, Seiferth D, Zaki AM, Alibay I, Biggin PC. Atomistic mechanisms of human TRPA1 activation by electrophile irritants through molecular dynamics simulation and mutual information analysis. Sci Rep 2022; 12:4929. [PMID: 35322090 PMCID: PMC8943162 DOI: 10.1038/s41598-022-08824-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open ‘pockets’ in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.
Collapse
Affiliation(s)
- Matthew Habgood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,AWE Aldermaston, Reading, Berkshire, RG7 4PR, UK.
| | - David Seiferth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Afroditi-Maria Zaki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
10
|
Hori A, Hotta N, Fukazawa A, Estrada JA, Katanosaka K, Mizumura K, Sato J, Ishizawa R, Kim HK, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Insulin potentiates the response to capsaicin in dorsal root ganglion neurons in vitro and muscle afferents ex vivo in normal healthy rodents. J Physiol 2022; 600:531-545. [PMID: 34967443 PMCID: PMC8810710 DOI: 10.1113/jp282740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli. TRPV1, whose agonist is capsaicin (CAP), is widely expressed on chemically sensitive metaboreceptors and/or nociceptors. The aim of this investigation was to determine the effects of insulin on CAP-activated currents in small DRG neurons and CAP-induced action potentials in thin-fibre muscle afferents of normal healthy rodents. Additionally, we investigated whether insulin potentiates sympathetic nerve activity (SNA) responses to CAP. In whole-cell patch-clamp recordings from cultured mice DRG neurons in vitro, the fold change in CAP-activated current from pre- to post-application of insulin (n = 13) was significantly (P < 0.05) higher than with a vehicle control (n = 14). Similar results were observed in single-fibre recording experiments ex vivo as insulin potentiated CAP-induced action potentials compared to vehicle controls (n = 9 per group, P < 0.05). Furthermore, insulin receptor blockade with GSK1838705 significantly suppressed the insulin-induced augmentation in CAP-activated currents (n = 13) as well as the response magnitude of CAP-induced action potentials (n = 9). Likewise, the renal SNA response to CAP after intramuscular injection of insulin (n = 8) was significantly (P < 0.05) greater compared to vehicle (n = 9). The findings suggest that insulin potentiates TRPV1 responsiveness to CAP at the DRG and muscle tissue levels, possibly contributing to the augmentation in sympathoexcitation during activities such as physical exercise. KEY POINTS: Evidence suggests insulin centrally activates the sympathetic nervous system, and a chemical stimulus to tissues activates the sympathetic nervous system via thin fibre muscle afferents. Insulin is reported to modulate putative chemical-sensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, it is demonstrated that insulin potentiates the responsiveness of thin fibre afferents to capsaicin at muscle tissue levels as well as at the level of dorsal root ganglion neurons. In addition, it is demonstrated that insulin augments the sympathetic nerve activity response to capsaicin in vivo. These data suggest that sympathoexcitation is peripherally mediated via insulin-induced chemical sensitization. The present study proposes a possible physiological role of insulin in the regulation of chemical sensitivity in somatosensory thin fibre muscle afferents.
Collapse
Affiliation(s)
- Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Norio Hotta
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Ayumi Fukazawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan A. Estrada
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimiaki Katanosaka
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Jun Sato
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan;,College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Puleo S, Braghieri A, Pacelli C, Bendini A, Toschi TG, Torri L, Piochi M, Di Monaco R. Food Neophobia, Odor and Taste Sensitivity, and Overall Flavor Perception in Food. Foods 2021; 10:foods10123122. [PMID: 34945673 PMCID: PMC8702209 DOI: 10.3390/foods10123122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Smell, which allows us to gather information about the hedonic value of an odor, is affected by many factors. This study aimed to assess the relationship among individual factors, odor sensitivity, and enjoyment, and to evaluate how overall flavor perception and liking in actual food samples are affected by odor sensitivity. A total of 749 subjects, from four different Italian regions, participated in the study. The olfactory capabilities test on four odors (anise, banana, mint, and pine), as well as PROP (6-n-prpyl-2-thiouracil) status and food neophobia were assessed. The subjects were clustered into three groups of odor sensitivity, based on the perceived intensity of anise. The liking and intensity of the overall flavor were evaluated for four chocolate puddings with increasing sweetness (C1, C2, C3, and C4). The individual variables significantly affected the perceived intensity and liking of the odors. Even if all of the odor sensitivity groups perceived the more intensely flavored samples as the C1 and C4 chocolate puddings, the high-sensitivity group scored the global flavor of all of the samples as more intense than the low-sensitivity group. The low-sensitive subjects evaluated the liking of the sweeter samples with higher scores than the moderate-sensitive subjects, whereas the high-sensitive subjects gave intermediate scores. In conclusion, odor sensitivity plays a pivotal role in the perception and liking of real food products; this has to be taken into account in the formulation of new products, suitable for particular categories with reduced olfactory abilities.
Collapse
Affiliation(s)
- Sharon Puleo
- Department of Agricultural Sciences, Food Science and Technology Division, University of Naples Federico II, 80055 Portici, Italy; (S.P.); (R.D.M.)
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
- Correspondence: ; Tel.: +39-0971-205101
| | - Corrado Pacelli
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences (DiSTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (A.B.); (T.G.T.)
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DiSTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (A.B.); (T.G.T.)
| | - Luisa Torri
- Sensory and Consumer Science, University of Gastronomic Sciences, 12042 Pollenzo, Italy; (L.T.); (M.P.)
| | - Maria Piochi
- Sensory and Consumer Science, University of Gastronomic Sciences, 12042 Pollenzo, Italy; (L.T.); (M.P.)
| | - Rossella Di Monaco
- Department of Agricultural Sciences, Food Science and Technology Division, University of Naples Federico II, 80055 Portici, Italy; (S.P.); (R.D.M.)
| |
Collapse
|
12
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
Quesada C, Kostenko A, Ho I, Leone C, Nochi Z, Stouffs A, Wittayer M, Caspani O, Brix Finnerup N, Mouraux A, Pickering G, Tracey I, Truini A, Treede RD, Garcia-Larrea L. Human surrogate models of central sensitization: A critical review and practical guide. Eur J Pain 2021; 25:1389-1428. [PMID: 33759294 PMCID: PMC8360051 DOI: 10.1002/ejp.1768] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Background As in other fields of medicine, development of new medications for management of neuropathic pain has been difficult since preclinical rodent models do not necessarily translate to the clinics. Aside from ongoing pain with burning or shock‐like qualities, neuropathic pain is often characterized by pain hypersensitivity (hyperalgesia and allodynia), most often towards mechanical stimuli, reflecting sensitization of neural transmission. Data treatment We therefore performed a systematic literature review (PubMed‐Medline, Cochrane, WoS, ClinicalTrials) and semi‐quantitative meta‐analysis of human pain models that aim to induce central sensitization, and generate hyperalgesia surrounding a real or simulated injury. Results From an initial set of 1569 reports, we identified and analysed 269 studies using more than a dozen human models of sensitization. Five of these models (intradermal or topical capsaicin, low‐ or high‐frequency electrical stimulation, thermode‐induced heat‐injury) were found to reliably induce secondary hyperalgesia to pinprick and have been implemented in multiple laboratories. The ability of these models to induce dynamic mechanical allodynia was however substantially lower. The proportion of subjects who developed hypersensitivity was rarely provided, giving rise to significant reporting bias. In four of these models pharmacological profiles allowed to verify similarity to some clinical conditions, and therefore may inform basic research for new drug development. Conclusions While there is no single “optimal” model of central sensitization, the range of validated and easy‐to‐use procedures in humans should be able to inform preclinical researchers on helpful potential biomarkers, thereby narrowing the translation gap between basic and clinical data. Significance Being able to mimic aspects of pathological pain directly in humans has a huge potential to understand pathophysiology and provide animal research with translatable biomarkers for drug development. One group of human surrogate models has proven to have excellent predictive validity: they respond to clinically active medications and do not respond to clinically inactive medications, including some that worked in animals but failed in the clinics. They should therefore inform basic research for new drug development.
Collapse
Affiliation(s)
- Charles Quesada
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.,Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| | - Anna Kostenko
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Idy Ho
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Zahra Nochi
- Danish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandre Stouffs
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | - Matthias Wittayer
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | | | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Luis Garcia-Larrea
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.,Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
14
|
Piochi M, Dinnella C, Spinelli S, Monteleone E, Torri L. Individual differences in responsiveness to oral sensations and odours with chemesthetic activity: Relationships between sensory modalities and impact on the hedonic response. Food Qual Prefer 2021. [DOI: 10.1016/j.foodqual.2020.104112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
16
|
Santos Passos FR, Pereira EWM, Heimfarth L, Monteiro BS, Barbosa Gomes de Carvalho YM, Siqueira-Lima PS, Melo Coutinho HD, Antunes de Souza Araújo A, Guedes da Silva Almeida JR, Barreto RSS, Picot L, Quintans-Júnior LJ, Quintans JSS. Role of peripheral and central sensitization in the anti-hyperalgesic effect of hecogenin acetate, an acetylated sapogenin, complexed with β-cyclodextrin: Involvement of NFκB and p38 MAPK pathways. Neuropharmacology 2021; 186:108395. [PMID: 33516738 DOI: 10.1016/j.neuropharm.2020.108395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain develops due to injury to the somatosensory system, affecting the patient's quality of life. In view of the ineffectiveness of the current pharmacotherapy, substances obtained from natural products (NPs) are a promising alternative. One NP that has been discussed in the literature is hecogenin acetate (HA), a steroidal sapogenin with anti-inflammatory and antinociceptive activity. However, HA has low water solubility, which affects its bioavailability. Thus, the objective of this study was to evaluate the anti-hyperalgesic activity of pure and complexed hecogenin acetate (HA/βCD) in an animal model of chronic neuropathic and inflammatory pain. The inclusion complex was prepared at a molar ratio of 1:2 (HA:βCD) by the lyophilization method. For the induction of chronic inflammatory pain, the mice received an intraplantar injection of CFA (complete Freund's adjuvant), and were evaluated for mechanical hyperalgesia and for the levels of myeloperoxidase (MPO) in the skin of the paw after eight days of treatment. HA and HA/βCD reduced mechanical hyperalgesia in relation to the vehicle group until the fourth and fifth hours, respectively, in the acute evaluation, with a superior effect of the complexed form over the pure form in the second and third hour after treatment (p < 0.001). In the chronic evaluation, HA and HA/βCD reduced hyperalgesia in relation to the vehicle in the eight days of treatment (p < 0.001). Both pure (p < 0.01) and complexed (p < 0.001) forms reduced myeloperoxidase activity in the skin of the animals' paw. Groups of animals subjected to the same pharmacological protocol were submitted to the partial sciatic nerve ligation (PSNL) model and evaluated for mechanical and thermal hyperalgesia, and cold allodynia. HA and HA/βCD reduced mechanical hyperalgesia until the fourth and sixth hours, respectively, and both reduced hyperalgesia in relation to the vehicle in the chronic evaluation (p < 0.001). HA and HA/βCD also reduced thermal hyperalgesia and cold allodynia (p < 0.05 and p < 0.001, respectively). The analysis of the spinal cord of these animals showed a decrease in the levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 and a reduction in the phosphorylation of NFκB and p38MAPK, as well as a decrease in microglioses compared to the vehicle group. In addition, HA/βCD reduced the nociception induced by intraplantar injection of agonist TRPA1 (p < 0.01) and TRPM8 (p < 0.05). Treatment for eight days with HA and HA/βCD showed no signs of gastric or liver damage. HA and HA/βCD were, therefore, shown to have antinociceptive effects in chronic pain models. Based on our exploration of the mechanisms of the action of HA, these effects are likely to be related to inhibited leukocyte migration, interaction with the TRPA1 and TRPM8 receptors, reduced pro-inflammatory cytokines levels, microglial expression and suppression of NF-κB p65 and p38 MAPK pathway signaling. Therefore, HA/βCD has great potential for use in the treatment of chronic pain.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Erik W M Pereira
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Luana Heimfarth
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda S Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Yasmim Maria Barbosa Gomes de Carvalho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Rosana S S Barreto
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Laurent Picot
- La Rochelle Université, UMRi CNRS 7266 LIENSs, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil.
| |
Collapse
|
17
|
Moraes PA, Brum ES, Brusco I, Marangoni MA, Lobo MM, Camargo AF, Nogara PA, Bonacorso HG, Martins MAP, Da Rocha JBT, Oliveira SM, Zanatta N. Pyrazole‐Enaminones as Promising Prototypes for the Development of Analgesic Drugs. ChemistrySelect 2020. [DOI: 10.1002/slct.202004049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paulo A. Moraes
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Evelyne S. Brum
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Indiara Brusco
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Mário A. Marangoni
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Marcio M. Lobo
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Adriano F. Camargo
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Pablo A. Nogara
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - João Batista T. Da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Sara M. Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria 97105-900 Santa Maria, RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| |
Collapse
|
18
|
Zubcevic L. Temperature‐sensitive transient receptor potential vanilloid channels: structural insights into ligand‐dependent activation. Br J Pharmacol 2020; 179:3542-3559. [DOI: 10.1111/bph.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry and Molecular Biology The University of Kansas School of Medicine Kansas City KS USA
| |
Collapse
|
19
|
Zhang WD, Chen XY, Wu C, Lian YN, Wang YJ, Wang JH, Yang F, Liu CH, Li XY. Evodiamine reduced peripheral hypersensitivity on the mouse with nerve injury or inflammation. Mol Pain 2020; 16:1744806920902563. [PMID: 31992128 PMCID: PMC6990609 DOI: 10.1177/1744806920902563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Management of chronic pain is still hard, and new analgesic drugs are needed. Evodiamine (Evo) and rutaecarpine (Rut) are two major active components of Evodia rutaecarpa, a Chinese traditional medicine that has been used as an analgesic for a long time. However, their effects on peripheral hypersensitivity remain unknown. Similar to capsaicin, the Evo and Rut were docked to the transient receptor potential cation channel subfamily V member 1 (TRPV1) in molecular simulation experiments. Moreover, Evo (10 µM) and Rut (50 µM) activated TRPV1 on human embryonic kidney 293 (HEK293) cells in electrophysiological recording experiments. Behaviorally, the application of Evo and Rut reduced peripheral hypersensitivity in a dose-dependent manner, which was blocked by capsazepine (a selective inhibitor of TRPV1). Furthermore, both Evo and Rut increased time in the open arms of the elevated plus maze on mice with nerve injury. These observations suggested that Evo and Rut reduced peripheral hypersensitivity and anxiety in mice with nerve injury or inflammation via TRPV1.
Collapse
Affiliation(s)
- Wen-Dong Zhang
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao-Ying Chen
- China National Institute of Standardization, Beijing, China
| | - Cheng Wu
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Na Lian
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong-Jie Wang
- Department of Biophysics, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Hua Wang
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun-Hui Liu
- China National Institute of Standardization, Beijing, China
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Espiritu MJ, Chen J, Yadav J, Larkin M, Pelletier RD, Chan JM, Gc JB, Natesan S, Harrelson JP. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metab Dispos 2020; 48:1028-1043. [PMID: 32788161 PMCID: PMC7543486 DOI: 10.1124/dmd.120.000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.
Collapse
Affiliation(s)
- Michael J Espiritu
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Justin Chen
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jaydeep Yadav
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Michael Larkin
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Robert D Pelletier
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeannine M Chan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeevan B Gc
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Senthil Natesan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - John P Harrelson
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| |
Collapse
|
21
|
Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 2020; 160:2699-2709. [PMID: 31343541 DOI: 10.1097/j.pain.0000000000001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human cold perception and nociception play an important role in persisting pain. However, species differences in the target temperature of thermosensitive ion channels expressed in peripheral nerve endings have fueled discussions about the mechanism of cold nociception in humans. Most frequently implicated thermosensors are members of the transient receptor potential (TRP) ion channel family TRPM8 and TRPA1. Regularly observed, distinct cold pain phenotype groups suggested the existence of interindividually differing molecular bases. In 28 subjects displaying either high or medium sensitivity to local cooling of the skin, the density at epidermal nerve fibers of TRPM8, but not that of TRPA1 expression, correlated significantly with the cold pain threshold. Moreover, reproducible grouping of the subjects, based on high or medium sensitivity to cooling, was reflected in an analogous grouping based on high or low TRPM8 expression at epidermal nerve fibers. The distribution of TRPM8 expression in epidermal nerve fibers provided an explanation for the previously observed (bi)modal distribution of human cold pain thresholds which was reproduced in this study. In the light of current controversies on the role of human TRPA1 ion channels in cold pain perception, the present observations demonstrating a lack of association of TRPA1 channel expression with cold sensitivity-related measures reinforce doubts about involvement of this channel in cold pain in humans. Since TRP inhibitors targeting TRPM8 and TRPA1 are currently entering clinical phases of drug development, the existence of known species differences, in particular in the function of TRPA1, emphasizes the increasing importance of new methods to directly approach the roles of TRPs in humans.
Collapse
|
22
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
23
|
Machine-Learned Association of Next-Generation Sequencing-Derived Variants in Thermosensitive Ion Channels Genes with Human Thermal Pain Sensitivity Phenotypes. Int J Mol Sci 2020; 21:ijms21124367. [PMID: 32575443 PMCID: PMC7352872 DOI: 10.3390/ijms21124367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic association studies have shown their usefulness in assessing the role of ion channels in human thermal pain perception. We used machine learning to construct a complex phenotype from pain thresholds to thermal stimuli and associate it with the genetic information derived from the next-generation sequencing (NGS) of 15 ion channel genes which are involved in thermal perception, including ASIC1, ASIC2, ASIC3, ASIC4, TRPA1, TRPC1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4. Phenotypic information was complete in 82 subjects and NGS genotypes were available in 67 subjects. A network of artificial neurons, implemented as emergent self-organizing maps, discovered two clusters characterized by high or low pain thresholds for heat and cold pain. A total of 1071 variants were discovered in the 15 ion channel genes. After feature selection, 80 genetic variants were retained for an association analysis based on machine learning. The measured performance of machine learning-mediated phenotype assignment based on this genetic information resulted in an area under the receiver operating characteristic curve of 77.2%, justifying a phenotype classification based on the genetic information. A further item categorization finally resulted in 38 genetic variants that contributed most to the phenotype assignment. Most of them (10) belonged to the TRPV3 gene, followed by TRPM3 (6). Therefore, the analysis successfully identified the particular importance of TRPV3 and TRPM3 for an average pain phenotype defined by the sensitivity to moderate thermal stimuli.
Collapse
|
24
|
Dalenogare DP, Theisen MC, Peres DS, Fialho MFP, Lückemeyer DD, Antoniazzi CTDD, Kudsi SQ, Ferreira MDA, Ritter CDS, Ferreira J, Oliveira SM, Trevisan G. TRPA1 activation mediates nociception behaviors in a mouse model of relapsing-remitting experimental autoimmune encephalomyelitis. Exp Neurol 2020; 328:113241. [DOI: 10.1016/j.expneurol.2020.113241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
25
|
Suo Y, Wang Z, Zubcevic L, Hsu AL, He Q, Borgnia MJ, Ji RR, Lee SY. Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron 2020; 105:882-894.e5. [PMID: 31866091 PMCID: PMC7205012 DOI: 10.1016/j.neuron.2019.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
Transient receptor potential channel subfamily A member 1 (TRPA1) is a Ca2+-permeable cation channel that serves as one of the primary sensors of environmental irritants and noxious substances. Many TRPA1 agonists are electrophiles that are recognized by TRPA1 via covalent bond modifications of specific cysteine residues located in the cytoplasmic domains. However, a mechanistic understanding of electrophile sensing by TRPA1 has been limited due to a lack of high-resolution structural information. Here, we present the cryoelectron microscopy (cryo-EM) structures of nanodisc-reconstituted ligand-free TRPA1 and TRPA1 in complex with the covalent agonists JT010 and BITC at 2.8, 2.9, and 3.1 Å, respectively. Our structural and functional studies provide the molecular basis for electrophile recognition by the extraordinarily reactive C621 in TRPA1 and mechanistic insights into electrophile-dependent conformational changes in TRPA1. This work also provides a platform for future drug development targeting TRPA1.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lejla Zubcevic
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mario J Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA; Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
26
|
So CL, Milevskiy MJG, Monteith GR. Transient receptor potential cation channel subfamily V and breast cancer. J Transl Med 2020; 100:199-206. [PMID: 31822791 DOI: 10.1038/s41374-019-0348-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential cation channel subfamily V (TRPV) channels play important roles in a variety of cellular processes. One example includes the sensory role of TRPV1 that is sensitive to elevated temperatures and acidic environments and is activated by the hot pepper component capsaicin. Another example is the importance of the highly Ca2+ selective channels TRPV5 and TRPV6 in Ca2+ absorption/reabsorption in the intestine and kidney. However, in some cases such as TRPV4 and TRPV6, breast cancer cells appear to overexpress TRPV channels. Moreover, TRPV mediated Ca2+ influx may contribute to enhanced breast cancer cell proliferation and other processes important in tumor progression such as angiogenesis. It appears that the overexpression of some TRPV channels in breast cancer and/or their involvement in breast cancer cell processes, processes important in the tumor microenvironment or pain may make some TRPV channels potential targets for breast cancer therapy. In this review, we provide an overview of TRPV expression in breast cancer subtypes, the roles of TRPV channels in various aspects of breast cancer progression and consider implications for future therapeutic approaches.
Collapse
Affiliation(s)
- Choon Leng So
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia. .,Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia. .,Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
27
|
De Caro C, Cristiano C, Avagliano C, Bertamino A, Ostacolo C, Campiglia P, Gomez-Monterrey I, La Rana G, Gualillo O, Calignano A, Russo R. Characterization of New TRPM8 Modulators in Pain Perception. Int J Mol Sci 2019; 20:ijms20225544. [PMID: 31703254 PMCID: PMC6888553 DOI: 10.3390/ijms20225544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Transient Receptor Potential Melastatin-8 (TRPM8) is a non-selective cation channel activated by cold temperature and by cooling agents. Several studies have proved that this channel is involved in pain perception. Although some studies indicate that TRPM8 inhibition is necessary to reduce acute and chronic pain, it is also reported that TRPM8 activation produces analgesia. These conflicting results could be explained by extracellular Ca2+-dependent desensitization that is induced by an excessive activation. Likely, this effect is due to phosphatidylinositol 4,5-bisphosphate (PIP2) depletion that leads to modification of TRPM8 channel activity, shifting voltage dependence towards more positive potentials. This phenomenon needs further evaluation and confirmation that would allow us to understand better the role of this channel and to develop new therapeutic strategies for controlling pain. EXPERIMENTAL APPROACH To understand the role of TRPM8 in pain perception, we tested two specific TRPM8-modulating compounds, an antagonist (IGM-18) and an agonist (IGM-5), in either acute or chronic animal pain models using male Sprague-Dawley rats or CD1 mice, after systemic or topical routes of administration. RESULTS IGM-18 and IGM-5 were fully characterized in vivo. The wet-dog shake test and the body temperature measurements highlighted the antagonist activity of IGM-18 on TRPM8 channels. Moreover, IGM-18 exerted an analgesic effect on formalin-induced orofacial pain and chronic constriction injury-induced neuropathic pain, demonstrating the involvement of TRPM8 channels in these two pain models. Finally, the results were consistent with TRPM8 downregulation by agonist IGM-5, due to its excessive activation. CONCLUSIONS TRPM8 channels are strongly involved in pain modulation, and their selective antagonist is able to reduce both acute and chronic pain.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, 88100 Catanzaro, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.B.); (P.C.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.B.); (P.C.)
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and inflammatory Diseases), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
- Correspondence:
| |
Collapse
|
28
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
29
|
Non-Analgesic Symptomatic or Disease-Modifying Potential of TRPA1. Med Sci (Basel) 2019; 7:medsci7100099. [PMID: 31547502 PMCID: PMC6836032 DOI: 10.3390/medsci7100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
TRPA1, a versatile ion channel of the Transient Receptor Potential (TRP) channel family, detects a large variety of chemicals and can contribute to signal processing of other stimuli, e.g., due to its sensitivity to cytosolic calcium elevation or phosphoinositolphosphate modulation. At first, TRPA1 was found on sensory neurons, where it can act as a sensor for potential or actual tissue damage that ultimately may elicit pain or itch as warning symptoms. This review provides an update regarding the analgesic and antipruritic potential of TRPA1 modulation and the respective clinical trials. Furthermore, TRPA1 has been found in an increasing amount of other cell types. Therefore, the main focus of the review is to discuss the non-analgesic and particularly the disease-modifying potential of TRPA1. This includes diseases of the respiratory system, cancer, ischemia, allergy, diabetes, and the gastrointestinal system. The involvement of TRPA1 in the respective pathophysiological cascades is so far mainly based on pre-clinical data.
Collapse
|
30
|
TRPA1 Sensitization Produces Hyperalgesia to Heat but not to Cold Stimuli in Human Volunteers. Clin J Pain 2019; 35:321-327. [DOI: 10.1097/ajp.0000000000000677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
D'Arcangelo D, Scatozza F, Giampietri C, Marchetti P, Facchiano F, Facchiano A. Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. Cancers (Basel) 2019; 11:cancers11040446. [PMID: 30934896 PMCID: PMC6520727 DOI: 10.3390/cancers11040446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022] Open
Abstract
Expression of 328 ion channel genes was investigated, by in silico analysis, in 170 human melanoma samples and controls. Ninety-one members of this gene-family (i.e., about 28%) show a significant (p < 0.05) differential expression in melanoma- vs. nevi-biopsies, taken from the GEO database. ROC (receiver operating characteristic) analysis selected 20 genes as potential markers showing the highest discrimination ability of melanoma vs. nevi (AUC > 0.90 and p < 0.0001). These 20 genes underwent a first in silico-validation round in an independent patients-dataset from GEO. A second-in silico-validation step was then carried out on a third human dataset in Oncomine. Finally, five genes were validated, showing extremely high sensitivity and specificity in melanoma detection (>90% in most cases). Such five genes (namely, SCNN1A, GJB3, KCNK7, GJB1, KCNN2) are novel potential melanoma markers or molecular targets, never previously related to melanoma. The “druggable genome” analysis was then carried out. Miconazole, an antifungal drug commonly used in clinics, is known to target KCNN2, the best candidate among the five identified genes. Miconazole was then tested in vitro in proliferation assays; it dose-dependently inhibited proliferation up to 90% and potently induced cell-death in A-375 and SKMEL-28 melanoma cells, while it showed no effect in control cells. Moreover, specific silencing of KCNN2 ion channel was achieved by siRNA transfection; under such condition miconazole strongly increases its anti-proliferative effect. In conclusion, the present study identified five ion channels that can potentially serve as sensitive and specific markers in human melanoma specimens and demonstrates that the antifungal drug miconazole, known to target one of the five identified ion channels, exerts strong and specific anti-melanoma effects in vitro.
Collapse
Affiliation(s)
| | | | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Paolo Marchetti
- Medical Oncology, Sapienza, University of Rome, 00161 Rome, Italy.
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00167 Rome, Italy.
| |
Collapse
|
32
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
33
|
Abstract
Persistent, in particular neuropathic pain affects millions of people worldwide. However, the response rate of patients to existing analgesic drugs is less than 50%. There are several possibilities to increase this response rate, such as optimization of the pharmacokinetic and pharmacodynamic properties of analgesics. Another promising approach is to use prognostic biomarkers in patients to determine the optimal pharmacological therapy for each individual. Here, we discuss recent efforts to identify plasma and CSF biomarkers, as well as genetic biomarkers and sensory testing, and how these readouts could be exploited for the prediction of a suitable pharmacological treatment. Collectively, the information on single biomarkers may be stored in knowledge bases and processed by machine-learning and related artificial intelligence techniques, resulting in the optimal pharmacological treatment for individual pain patients. We highlight the potential for biomarker-based individualized pain therapies and discuss biomarker reliability and their utility in clinical practice, as well as limitations of this approach.
Collapse
|
34
|
Inoue R, Kurahara LH, Hiraishi K. TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol 2018; 94:40-49. [PMID: 30445149 DOI: 10.1016/j.semcdb.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
It is now widely accepted that advanced fibrosis underlies many chronic inflammatory disorders and is the main cause of morbidity and mortality of the modern world. The pathogenic mechanism of advanced fibrosis involves diverse and intricate interplays between numerous extracellular and intracellular signaling molecules, among which the non-trivial roles of a stress-responsive Ca2+/Na+-permeable cation channel superfamily, the transient receptor potential (TRP) protein, are receiving growing attention. Available evidence suggests that several TRP channels such as TRPC3, TRPC6, TRPV1, TRPV3, TRPV4, TRPA1, TRPM6 and TRPM7 may play central roles in the progression and/or prevention of fibroproliferative disorders in vital visceral organs such as lung, heart, liver, kidney, and bowel as well as brain, blood vessels and skin, and may contribute to both acute and chronic inflammatory processes involved therein. This short paper overviews the current knowledge accumulated in this rapidly growing field, with particular focus on cardiac and intestinal fibrosis, which are tightly associated with the pathogenesis of atrial fibrillation and inflammatory bowel diseases such as Crohn's disease.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Lin-Hai Kurahara
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|