1
|
Yang Y, Wang Y, Campbell DE, Lee HW, Wang L, Baldridge M, López CB. SLC35A2 modulates paramyxovirus fusion events during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609835. [PMID: 39253522 PMCID: PMC11382999 DOI: 10.1101/2024.08.27.609835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuchen Wang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng-Wei Lee
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Hershan AA. Pathogenesis of COVID19 and the applications of US FDA-approved repurposed antiviral drugs to combat SARS-CoV-2 in Saudi Arabia: A recent update by review of literature. Saudi J Biol Sci 2024; 31:104023. [PMID: 38799719 PMCID: PMC11127266 DOI: 10.1016/j.sjbs.2024.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Still, there is no cure for the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID19). The COVID19 pandemic caused health emergencies which resulted in enormous medical and financial consequences worldwide including Saudi Arabia. Saudi Arabia is the largest Arab country of the Middle East. The urban setting of Saudi Arabia makes it vulnerable towards SARS-CoV-2 (SCV-2). Religious areas of this country are visited by millions of pilgrims every year for the Umrah and Hajj pilgrimage, which contributes to the potential COVID19 epidemic risk. COVID19 throws various challenges to healthcare professionals to choose the right drugs or therapy in clinical settings because of the lack of availability of newer drugs. Current drug development and discovery is an expensive, complex, and long process, which involves a high failure rate in clinical trials. While repurposing of United States Food and Drug Administration (US FDA)-approved antiviral drugs offers numerous benefits including complete pharmacokinetic and safety profiles, which significantly shorten drug development cycles and reduce costs. A range of repurposed US FDA-approved antiviral drugs including ribavirin, lopinavir/ritonavir combination, oseltamivir, darunavir, remdesivir, nirmatrelvir/ritonavir combination, and molnupiravir showed encouraging results in clinical trials in COVID19 treatment. In this article, several COVID19-related discussions have been provided including emerging variants of concern of, COVID19 pathogenesis, COVID19 pandemic scenario in Saudi Arabia, drug repurposing strategies against SCV-2, as well as repurposing of US FDA-approved antiviral drugs that might be considered to combat SCV-2 in Saudi Arabia. Moreover, drug repurposing in the context of COVID19 management along with its limitations and future perspectives have been summarized.
Collapse
Affiliation(s)
- Almonther Abdullah Hershan
- The University of Jeddah, College of Medicine, Department of Medical microbiology and parasitology, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Valipour M, Irannejad H, Keyvani H. An Overview on Anti-COVID-19 Drug Achievements and Challenges Ahead. ACS Pharmacol Transl Sci 2023; 6:1248-1265. [PMID: 37705590 PMCID: PMC10496143 DOI: 10.1021/acsptsci.3c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/15/2023]
Abstract
The appearance of several coronavirus pandemics/epidemics during the last two decades (SARS-CoV-1 in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019) indicates that humanity will face increasing challenges from coronaviruses in the future. The emergence of new strains with similar transmission characteristics as SARS-CoV-2 and mortality rates similar to SARS-CoV-1 (∼10% mortality) or MERS-CoV (∼35% mortality) in the future is a terrifying possibility. Therefore, getting enough preparations to face such risks is an inevitable necessity. The present study aims to review the drug achievements and challenges in the fight against SARS-CoV-2 with a combined perspective derived from pharmacology, pharmacotherapy, and medicinal chemistry insights. Appreciating all the efforts made during the past few years, there is strong evidence that the desired results have not yet been achieved and research in this area should still be pursued seriously. By expressing some pessimistic possibilities and concluding that the drug discovery and pharmacotherapy of COVID-19 have not been successful so far, this short essay tries to draw the attention of responsible authorities to be more prepared against future coronavirus epidemics/pandemics.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi
Drug Research Center, Iran University of
Medical Sciences, Tehran 1134845764, Iran
| | - Hamid Irannejad
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hossein Keyvani
- Department
of Virology, School of Medicine, Iran University
of Medical Sciences, Tehran 1134845764, Iran
| |
Collapse
|
5
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
6
|
Ferreira AC, Sacramento CQ, Pereira-Dutra FS, Fintelman-Rodrigues N, Silva PP, Mattos M, de Freitas CS, Marttorelli A, de Melo GR, Campos MM, Azevedo-Quintanilha IG, Carlos AS, Emídio JV, Garcia CC, Bozza PT, Bozza FA, Souza TML. Severe influenza infection is associated with inflammatory programmed cell death in infected macrophages. Front Cell Infect Microbiol 2023; 13:1067285. [PMID: 36875528 PMCID: PMC9980436 DOI: 10.3389/fcimb.2023.1067285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.
Collapse
Affiliation(s)
- André C. Ferreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natália Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Priscila P. Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brazil
| | - Mayara Mattos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Caroline S. de Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Andressa Marttorelli
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Gabrielle R. de Melo
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Mariana M. Campos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Aluana S. Carlos
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brazil
| | - João Vítor Emídio
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brazil
| | - Cristiana C. Garcia
- Respiratory and Measles Virus Laboratory, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Fernando A. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute of Infectious Disease Evandro Chagas, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Department of Critical Care, Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ, Brazil
| | - Thiago M. L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswado Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- *Correspondence: Thiago M. L. Souza,
| |
Collapse
|
7
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Wang J, Tian WJ, Li CC, Zhang XZ, Fan K, Li SL, Wang XJ. Small-Molecule RAF265 as an Antiviral Therapy Acts against PEDV Infection. Viruses 2022; 14:v14102261. [PMID: 36298816 PMCID: PMC9611448 DOI: 10.3390/v14102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the family Coronaviridae, causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, and has caused significant economic losses in the pig industry. There are currently no specific drugs available to treat PEDV. Viruses depend exclusively on the cellular machinery to ensure an efficient replication cycle. In the present study, we found that small-molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of RAF, reduced viral loads of PEDV by 4 orders of magnitude in Vero cells, and protected piglets from virus challenge. RAF265 reduced PEDV production by mediating cytoskeleton arrangement and targeting the host cell’s translation machinery. Treatment with RAF265 inhibited viral entry of PEDV S-glycoprotein pseudotyped viral vector particle (PEDV-pp), at half maximal effective concentrations (EC50) of 79.1 nM. RAF265 also presented potent inhibitory activity against viral infection by SARS-CoV-2-pp and SARS-CoV-pp. The present work may provide a starting point for further progress toward the development of antiviral strategies effective against coronavirus PEDV.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai Fan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| | - Song-Li Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| |
Collapse
|
9
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
10
|
Ishola AA, Joshi T, Abdulai SI, Tijjani H, Pundir H, Chandra S. Molecular basis for the repurposing of histamine H2-receptor antagonist to treat COVID-19. J Biomol Struct Dyn 2022; 40:5785-5802. [PMID: 33491579 PMCID: PMC7852284 DOI: 10.1080/07391102.2021.1873191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
With the world threatened by a second surge in the number of Coronavirus cases, there is an urgent need for the development of effective treatment for the novel coronavirus (COVID-19). Recently, global attention has turned to preliminary reports on the promising anti-COVID-19 effect of histamine H2-receptor antagonists (H2RAs), most especially Famotidine. Therefore, this study was designed to exploit a possible molecular basis for the efficacy of H2RAs against coronavirus. Molecular docking was performed between four H2RAs, Cimetidine, Famotidine, Nizatidine, Ranitidine, and three non-structural proteins viz. NSP3, NSP7/8 complex, and NSP9. Thereafter, a 100 ns molecular dynamics simulation was carried out with the most outstanding ligands to determine the stability. Thereafter, Famotidine and Cimetidine were subjected to gene target prediction analysis using HitPickV2 and eXpression2Kinases server to determine the possible network of genes associated with their anti-COVID activities. Results obtained from molecular docking showed the superiority of Famotidine and Cimetidine compared to other H2RAs with a higher binding affinity to all selected targets. Molecular dynamic simulation and MMPBSA results revealed that Famotidine as well as Cimetidine bind to non-structural proteins more efficiently with high stability over 100 ns. Results obtained suggest that Famotidine and Cimetidine could be a viable option to treat COVID-19 with a mechanism of action that involves the inhibition of viral replication through the inhibition of non-structural proteins. Therefore, Famotidineand Cimetidine qualify for further study as a potential treatment for COVID-19.
Collapse
Affiliation(s)
- Ahmed A. Ishola
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India
| | | | - Habibu Tijjani
- Department of Biochemistry, Natural Product Research Laboratory, Bauchi State University, Gadau, Nigeria
| | - Hemlata Pundir
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India
| |
Collapse
|
11
|
Favilli A, Mattei Gentili M, Raspa F, Giardina I, Parazzini F, Vitagliano A, Borisova AV, Gerli S. Effectiveness and safety of available treatments for COVID-19 during pregnancy: a critical review. J Matern Fetal Neonatal Med 2022; 35:2174-2187. [PMID: 32508168 PMCID: PMC7284138 DOI: 10.1080/14767058.2020.1774875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND COVID-19 is a pandemic disease caused by the SARS-CoV-2 and it spread globally in the last few months. The complete lack of specific treatment forced clinicians to use old drugs, chosen for their efficacy against similar viruses or their in vitro activity. Trials on patients are ongoing but the majority of information comes from small case series and single center reports. We aimed to provide a literature review on the putative effectiveness and safety of available treatments for COVID-19 in pregnant women. METHODS We reviewed all the available literature concerning the drugs that have been used in the treatment of COVID-19 during pregnancy and whose safe assumption during pregnancy had been demonstrated by clinical studies (i.e. including studies on other infectious diseases). Drugs contra-indicated during pregnancy or with unknown adverse effects were not included in our review. RESULTS AND CONCLUSIONS Clinical trials are not often conducted among pregnant patients for safety reasons and this means that drugs that may be effective in general population cannot be used for pregnant women due to the lack of knowledge of side effects in this category of people .The choice to use a specific drug for COVID-19 in pregnancy should take into account benefits and possible adverse events in each single case. In the current situation of uncertainty and poor knowledge about the management of COVID-19 during pregnancy, this present overview may provide useful information for physicians with practical implications.
Collapse
Affiliation(s)
| | - Marta Mattei Gentili
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| | - Francesca Raspa
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| | - Irene Giardina
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| | - Fabio Parazzini
- Fondazione IRCCS Cà Granda, Dipartimento
Materno-Infantile, Ospedale Maggiore Policlinico, Università degli Studi di Milano,
Dipartimento di Scienze Cliniche e di Comunità, Universita' di Milano,
Milan, Italy
| | - Amerigo Vitagliano
- Department of Women’s and Children’s Health,
University of Padua, Padova, Italy
| | - Anna V. Borisova
- Department of Obstetrics and Gynecology with
the Course of Perinatology, Peoples Friendship University of Russia (RUDN
University), Moscow, Russian Federation
| | - Sandro Gerli
- Department of Surgical and Biochemical
Sciences, Centre of Perinatal and Reproductive Medicine, University of
Perugia, Perugia, Italy
| |
Collapse
|
12
|
Abdulaziz L, Elhadi E, Abdallah EA, Alnoor FA, Yousef BA. Antiviral Activity of Approved Antibacterial, Antifungal, Antiprotozoal and Anthelmintic Drugs: Chances for Drug Repurposing for Antiviral Drug Discovery. J Exp Pharmacol 2022; 14:97-115. [PMID: 35299994 PMCID: PMC8922315 DOI: 10.2147/jep.s346006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing process aims to identify new uses for the existing drugs to overcome traditional de novo drug discovery and development challenges. At the same time, as viral infections became a serious threat to humans and the viral organism itself has a high ability to mutate genetically, and due to serious adverse effects that result from antiviral drugs, there are crucial needs for the discovery of new antiviral drugs, and to identify new antiviral effects for the exciting approved drugs towards different types of viral infections depending on the observed antiviral activity in preclinical studies or clinical findings is one of the approaches to counter the viral infections problems. This narrative review article summarized mainly the published preclinical studies that evaluated the antiviral activity of drugs that are approved and used mainly as antibacterial, antifungal, antiprotozoal, and anthelmintic drugs, and the preclinical studies included the in silico, in vitro, and in vivo findings, additionally some clinical observations were also included while trying to relate them to the preclinical findings. Finally, the structure used for writing about the antiviral activity of the drugs was according to the families of the viruses used in the studies to form a better image for the target of antiviral activity of different drugs in the different kinds of viruses and to relate between the antiviral activity of the drugs against different strains of viruses within the same viral family.
Collapse
Affiliation(s)
- Leena Abdulaziz
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
| | - Esraa Elhadi
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, 14415, Sudan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Ejlal A Abdallah
- Department of Pharmacology and Pharmacy Practice, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, 11111, Sudan
| | - Fadlalbaseer A Alnoor
- Department of Pharmacology, Faculty of Pharmacy, National University, Khartoum, 11111, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
- Correspondence: Bashir A Yousef, Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum, 11111, Sudan, Tel +249 912932418, Fax +249 183780696, Email
| |
Collapse
|
13
|
Abstract
Tremendous efforts are being made around the world to develop efficient ways to prevent/treat the novel β-coronavirus disease (COVID-19) caused by SARS-CoV-2. There are currently many studies and clinical trials (either based on computational predictions or clinical experiences), in progress, focusing on finding relevant protein targets and medications anti-COVID-19. In the present study, we report a hydrogel drug delivery system based on Laponite® RD (Lap) entrapped in a poly(vinyl alcohol) (PVA) matrix obtained by freezing/thawing method. The PVA/Lap hydrogels were characterized in terms of their morphological, rheological, and swelling properties. Moreover, in vitro drug delivery investigations were performed with a promising drug, Rifampicin (Rif). Rif is an antitubercular drug and was selected for this study in order to demonstrate its efficacy as an anti-COVID-19 repurposed drug. In vitro studies were supplemented by in silico molecular docking simulations of Rif capacity of inhibition against SARS-CoV-2 target protein 3-chymotrypsin-like protease (3CLpro). The results obtained in this study are encouraging and we propose the Rif loaded PVA/Lap hydrogels as promising drug delivery systems for COVID-19 treatment, promoting a synergistic therapeutic effect by dual targeting of viral 3CLpro and S proteins.
Collapse
|
14
|
Gao S, Huang T, Song L, Xu S, Cheng Y, Cherukupalli S, Kang D, Zhao T, Sun L, Zhang J, Zhan P, Liu X. Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm Sin B 2022; 12:581-599. [PMID: 34485029 PMCID: PMC8405450 DOI: 10.1016/j.apsb.2021.08.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China,Corresponding authors. Tel./fax: +86 531 88382005 (Peng Zhan), +86 531 88380270 (Xinyong Liu).
| |
Collapse
|
15
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
16
|
Vanderboom PM, Mun DG, Madugundu AK, Mangalaparthi KK, Saraswat M, Garapati K, Chakraborty R, Ebihara H, Sun J, Pandey A. Proteomic Signature of Host Response to SARS-CoV-2 Infection in the Nasopharynx. Mol Cell Proteomics 2021; 20:100134. [PMID: 34400346 PMCID: PMC8363427 DOI: 10.1016/j.mcpro.2021.100134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.
Collapse
Affiliation(s)
- Patrick M Vanderboom
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anil K Madugundu
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rana Chakraborty
- Division of Pediatric Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Sun
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA; Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA; Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
17
|
Inhibitors of Venezuelan Equine Encephalitis Virus Identified Based on Host Interaction Partners of Viral Non-Structural Protein 3. Viruses 2021; 13:v13081533. [PMID: 34452398 PMCID: PMC8402862 DOI: 10.3390/v13081533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections.
Collapse
|
18
|
Nile SH, Nile A, Jalde S, Kai G. Recent advances in potential drug therapies combating COVID-19 and related coronaviruses-A perspective. Food Chem Toxicol 2021; 154:112333. [PMID: 34118347 PMCID: PMC8189744 DOI: 10.1016/j.fct.2021.112333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) are a large family of viruses responsible for the severe pathophysiological effects on human health. The most severe outbreak includes Severe Acute Respiratory Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 poses major challenges to clinical management because no specific FDA-approved therapy yet to be available. Thus, the existing therapies are being used for the treatment of COVID-19, which are under clinical trials and compassionate use, based on in vitro and in silico studies. In this review, we summarize the potential therapies utilizing small molecules, bioactive compounds, nucleoside and nucleotide analogs, peptides, antibodies, natural products, and synthetic compounds targeting the complex molecular signaling network involved in COVID-19. In this review>230 natural and chemically synthesized drug therapies are described with their recent advances in research and development being done in terms of their chemical, structural and functional properties. This review focuses on possible targets for viral cells, viral proteins, viral replication, and different molecular pathways for the discovery of novel viral- and host-based therapeutic targets against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Shivkumar Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, South Korea
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
19
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
20
|
Bojarska J, New R, Borowiecki P, Remko M, Breza M, Madura ID, Fruziński A, Pietrzak A, Wolf WM. The First Insight Into the Supramolecular System of D,L-α-Difluoromethylornithine: A New Antiviral Perspective. Front Chem 2021; 9:679776. [PMID: 34055746 PMCID: PMC8155678 DOI: 10.3389/fchem.2021.679776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
Targeting the polyamine biosynthetic pathway by inhibiting ornithine decarboxylase (ODC) is a powerful approach in the fight against diverse viruses, including SARS-CoV-2. Difluoromethylornithine (DFMO, eflornithine) is the best-known inhibitor of ODC and a broad-spectrum, unique therapeutical agent. Nevertheless, its pharmacokinetic profile is not perfect, especially when large doses are required in antiviral treatment. This article presents a holistic study focusing on the molecular and supramolecular structure of DFMO and the design of its analogues toward the development of safer and more effective formulations. In this context, we provide the first deep insight into the supramolecular system of DFMO supplemented by a comprehensive, qualitative and quantitative survey of non-covalent interactions via Hirshfeld surface, molecular electrostatic potential, enrichment ratio and energy frameworks analysis visualizing 3-D topology of interactions in order to understand the differences in the cooperativity of interactions involved in the formation of either basic or large synthons (Long-range Synthon Aufbau Modules, LSAM) at the subsequent levels of well-organized supramolecular self-assembly, in comparison with the ornithine structure. In the light of the drug discovery, supramolecular studies of amino acids, essential constituents of proteins, are of prime importance. In brief, the same amino-carboxy synthons are observed in the bio-system containing DFMO. DFT calculations revealed that the biological environment changes the molecular structure of DFMO only slightly. The ADMET profile of structural modifications of DFMO and optimization of its analogue as a new promising drug via molecular docking are discussed in detail.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, Lodz, Poland
| | - Roger New
- Faculty of Science & Technology, Middlesex University, London, United Kingdom
| | - Paweł Borowiecki
- Faculty of Chemistry, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformation, Warsaw University of Technology, Warsaw, Poland
| | | | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Bratislava, Slovakia
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Andrzej Fruziński
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, Lodz, Poland
| | - Anna Pietrzak
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, Lodz, Poland
| | - Wojciech M. Wolf
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Li Z, Yao Y, Cheng X, Chen Q, Zhao W, Ma S, Li Z, Zhou H, Li W, Fei T. A computational framework of host-based drug repositioning for broad-spectrum antivirals against RNA viruses. iScience 2021; 24:102148. [PMID: 33665567 PMCID: PMC7900436 DOI: 10.1016/j.isci.2021.102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
RNA viruses are responsible for many zoonotic diseases that post great challenges for public health. Effective therapeutics against these viral infections remain limited. Here, we deployed a computational framework for host-based drug repositioning to predict potential antiviral drugs from 2,352 approved drugs and 1,062 natural compounds embedded in herbs of traditional Chinese medicine. By systematically interrogating public genetic screening data, we comprehensively cataloged host dependency genes (HDGs) that are indispensable for successful viral infection corresponding to 10 families and 29 species of RNA viruses. We then utilized these HDGs as potential drug targets and interrogated extensive drug-target interactions through database retrieval, literature mining, and de novo prediction using artificial intelligence-based algorithms. Repurposed drugs or natural compounds were proposed against many viral pathogens such as coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses, and influenza viruses. This study helps to prioritize promising drug candidates for in-depth evaluation against these virus-related diseases.
Collapse
Affiliation(s)
- Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Yingjia Yao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Qing Chen
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Wenchang Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Shixin Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Zihan Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, People's Republic of China
| |
Collapse
|
22
|
Senapati S, Banerjee P, Bhagavatula S, Kushwaha PP, Kumar S. Contributions of human ACE2 and TMPRSS2 in determining host–pathogen interaction of COVID-19. J Genet 2021. [PMID: 33707363 PMCID: PMC7904510 DOI: 10.1007/s12041-021-01262-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is at present an emerging global public health crisis. Angiotensin converting enzyme 2 (ACE2) and trans-membrane protease serine 2 (TMPRSS2) are the two major host factors that contribute to the virulence of SARS-CoV-2 and pathogenesis of coronavirus disease-19 (COVID-19). Transmission of SARS-CoV-2 from animal to human is considered a rare event that necessarily requires strong evolutionary adaptations. Till date no other human cellular receptors are identified beside ACE2 for SARS-CoV-2 entry inside the human cell. Proteolytic cleavage of viral spike (S)-protein and ACE2 by TMPRSS2 began the entire host–pathogen interaction initiated with the physical binding of ACE2 to S-protein. SARS-CoV-2 S-protein binds to ACE2 with much higher affinity and stability than that of SARS-CoVs. Molecular interactions between ACE2-S and TMPRSS2-S are crucial and preciously mediated by specific residues. Structural stability, binding affinity and level of expression of these three interacting proteins are key susceptibility factors for COVID-19. Specific protein–protein interactions (PPI) are being identified that explains uniqueness of SARS-CoV-2 infection. Amino acid substitutions due to naturally occurring genetic polymorphisms potentially alter these PPIs and poses further clinical heterogeneity of COVID-19. Repurposing of several phytochemicals and approved drugs against ACE2, TMPRSS2 and S-protein have been proposed that could inhibit PPI between them. We have also identified some novel lead phytochemicals present in Azadirachta indica and Aloe barbadensis which could be utilized for further in vitro and in vivo anti-COVID-19 drug discovery. Uncovering details of ACE2-S and TMPRSS2-S interactions would further contribute to future research on COVID-19.
Collapse
Affiliation(s)
- Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India.
| | | | | | | | | |
Collapse
|
23
|
Ram TS, Munikumar M, Raju VN, Devaraj P, Boiroju NK, Hemalatha R, Prasad PVV, Gundeti M, Sisodia BS, Pawar S, Prasad GP, Chincholikar M, Goel S, Mangal A, Gaidhani S, Srikanth N, Dhiman KS. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main protease. J Ayurveda Integr Med 2021; 13:100413. [PMID: 33654345 PMCID: PMC7906523 DOI: 10.1016/j.jaim.2021.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Outbreak of Corona Virus Disease in late 2019 (COVID-19) has become a pandemic global Public health emergency. Since there is no approved anti-viral drug or vaccine declared for the disease and investigating existing drugs against the COVID-19. Objective AYUSH-64 is an Ayurvedic formulation, developed and patented by Central Council of Research in Ayurvedic Sciences, India, has been in clinical use as anti-malarial, anti-inflammatory, anti-pyretic drug for few decades. Thus, the present study was undertaken to evaluate AYUSH-64 compounds available in this drug against Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) Main Protease (Mpro; PDB ID: 6LU7) via in silico techniques. Materials and methods Different molecular docking software's of Discovery studio and Auto Dock Vina were used for drugs from selected AYUSH-64 compounds against SARS-CoV-2. We also conducted 100 ns period of molecular dynamics simulations with Desmond and further MM/GBSA for the best complex of AYUSH-64 with Mpro of SARS-CoV-2. Results Among 36 compounds of four ingredients of AYUSH-64 screened, 35 observed to exhibits good binding energies than the published positive co–crystal compound of N3 pepetide. The best affinity and interactions of Akuammicine N-Oxide (from Alstonia scholaris) towards the Mpro with binding energy (AutoDock Vina) of −8.4 kcal/mol and Discovery studio of Libdock score of 147.92 kcal/mol. Further, molecular dynamics simulations with MM-GBSA were also performed for Mpro– Akuammicine N-Oxide docked complex to identify the stability, specific interaction between the enzyme and the ligand. Akuammicine N-Oxide is strongly formed h-bonds with crucial Mpro residues, Cys145, and His164. Conclusion The results provide lead that, the presence of Mpro– Akuammicine N-Oxide with highest Mpro binding energy along with other 34 chemical compounds having similar activity as part of AYUSH-64 make it a suitable candidate for repurposing to management of COVID-19 by further validating through experimental, clinical studies. Main protease (Mpro) is a molecular drug target for the 2019-nCoV of epidemic disease of COVID-19. Docking strategies implemented to identify AUSH-64 having dual role as immunomodualtor and inhibition against Mpro of SARS-CoV-2. Molecular dynamics stability analysis revealed that 2019-nCoV Mpro – Akuammicine N-Oxide is stable. Akuammicine N-Oxide may represent potential treatment options against Mpro of 2019-nCoV.
Collapse
Key Words
- 2019 novel coronavirus, 2019-nCOV
- AYUSH-64
- Absorption, Distribution, Metabolism, Excretion, and Toxicity, ADME/T
- COVID-19
- Coronavirus disease of 2019, COVID-19
- Coronavirus, CoV
- Dynamics simulations
- Main Protease
- Main protease, Mpro
- Middle East Respiratory Syndrome, MERS
- Molecular Docking
- Molecular Dynamics simulations, MD simulations
- Molecular Mechanics/Generalized Born Surface Area, MM/GBSA
- Number of atoms, Pressure, Temperature, NPT
- Protein Data Bank, PDB
- RNA‐dependent RNA polymerase, RdRp
- Radius of Gyration, rGyr
- Root Mean Square Deviation, RMSD
- Root Mean Square Fluctuation, RMSF
- SARS-CoV-2
- Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2
- Severe Acute Respiratory Syndrome, SARS
- Simulation Event Analysis, SEA
- Simulation Quality Analysis, SQA
- World Health Organization, WHO
Collapse
Affiliation(s)
- Thrigulla Saketh Ram
- Research Officer (Ayurveda), CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manne Munikumar
- Scientist-C (Bioinformatics), NIN-TATA Centre for Excellence in Public Health Nutrition, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Vankudavath Naik Raju
- Scientist-C (Programmer), Nutrition Information, Communication & Health Education (NICHE), ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Parasannanavar Devaraj
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Naveen Kumar Boiroju
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Rajkumar Hemalatha
- Scientist-G, Director, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - P V V Prasad
- Assistant Director In-charge, CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manohar Gundeti
- Research Officer (Ayurveda), CCRAS-Raja Ramdeo Anandilal Podar (RRAP) Central Ayurveda Research Institute for Cancer, Mumbai
| | - Brijesh S Sisodia
- Asst. Director (Biochemistry), CCRAS-Regional Ayurveda Research Institute for Drug Development, Gwalior
| | - Sharad Pawar
- Research Officer, Scientist-2 (Pharmacognosy), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - G P Prasad
- Assistant Director (Ayurveda), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - Mukesh Chincholikar
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sumeet Goel
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Anupam Mangal
- Assistant Director (Pharmacognosy), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sudesh Gaidhani
- Assistant Director (Pharmacology), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - N Srikanth
- Deputy Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| | - K S Dhiman
- Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| |
Collapse
|
24
|
|
25
|
Xi ZC, Xu HX, Song ZJ, Nik Nabil W. Current global status and future development of traditional Chinese medicine in the prevention and treatment of Coronavirus Disease 2019. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_43_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Senapati S, Banerjee P, Bhagavatula S, Kushwaha PP, Kumar S. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J Genet 2021; 100:12. [PMID: 33707363 PMCID: PMC7904510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 09/20/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is at present an emerging global public health crisis. Angiotensin converting enzyme 2 (ACE2) and trans-membrane protease serine 2 (TMPRSS2) are the two major host factors that contribute to the virulence of SARS-CoV-2 and pathogenesis of coronavirus disease-19 (COVID-19). Transmission of SARS-CoV-2 from animal to human is considered a rare event that necessarily requires strong evolutionary adaptations. Till date no other human cellular receptors are identified beside ACE2 for SARS-CoV-2 entry inside the human cell. Proteolytic cleavage of viral spike (S)-protein and ACE2 by TMPRSS2 began the entire host-pathogen interaction initiated with the physical binding of ACE2 to S-protein. SARS-CoV-2 S-protein binds to ACE2 with much higher affinity and stability than that of SARS-CoVs. Molecular interactions between ACE2-S and TMPRSS2-S are crucial and preciously mediated by specific residues. Structural stability, binding affinity and level of expression of these three interacting proteins are key susceptibility factors for COVID-19. Specific protein-protein interactions (PPI) are being identified that explains uniqueness of SARS-CoV-2 infection. Amino acid substitutions due to naturally occurring genetic polymorphisms potentially alter these PPIs and poses further clinical heterogeneity of COVID-19. Repurposing of several phytochemicals and approved drugs against ACE2, TMPRSS2 and S-protein have been proposed that could inhibit PPI between them. We have also identified some novel lead phytochemicals present in Azadirachta indica and Aloe barbadensis which could be utilized for further in vitro and in vivo anti-COVID-19 drug discovery. Uncovering details of ACE2-S and TMPRSS2-S interactions would further contribute to future research on COVID-19.
Collapse
Affiliation(s)
- Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India.
| | | | | | | | | |
Collapse
|
27
|
Sahebnasagh A, Avan R, Saghafi F, Mojtahedzadeh M, Sadremomtaz A, Arasteh O, Tanzifi A, Faramarzi F, Negarandeh R, Safdari M, Khataminia M, Rezai Ghaleno H, Habtemariam S, Khoshi A. Pharmacological treatments of COVID-19. Pharmacol Rep 2020; 72:1446-1478. [PMID: 32816200 PMCID: PMC7439639 DOI: 10.1007/s43440-020-00152-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The viral infection due to the new coronavirus or coronavirus disease 2019 (COVID-19), which was reported for the first time in December 2019, was named by the World Health Organization (WHO) as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV2), because of the very similar genome and also its related symptoms to SARS-CoV1. The ongoing COVID-19 pandemic with significant mortality, morbidity, and socioeconomic impact is considered by the WHO as a global public health emergency. Since there is no specific treatment available for SARS-CoV2 infection, and or COVID-19, several clinical and sub-clinical studies are currently undertaken to find a gold-standard therapeutic regimen with high efficacy and low side effect. Based on the published scientific evidence published to date, we summarized herein the effects of different potential therapies and up-to-date clinical trials. The review is intended to help readers aware of potentially effective COVID-19 treatment and provide useful references for future studies.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojataba Mojtahedzadeh
- Department of Clinical Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadremomtaz
- XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asal Tanzifi
- Sepanta Faragene Azma Research Laboratory. Co. LTD., Gorgan, Iran
- Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Negarandeh
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Masoud Khataminia
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Arkan roadway, Bojnurd, Iran
| |
Collapse
|
28
|
Sofi MS, Hamid A, Bhat SU. SARS-CoV-2: A critical review of its history, pathogenesis, transmission, diagnosis and treatment. BIOSAFETY AND HEALTH 2020; 2:217-225. [PMID: 33196035 PMCID: PMC7648888 DOI: 10.1016/j.bsheal.2020.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the deadly virus (novel coronavirus or Severe Acute Respiratory Syndrome Coronavirus-2) that emerged in December 2019, remained a controversial subject of intense speculations regarding its origin, became a worldwide health problem resulting in serious coronavirus disease 2019 (acronym COVID-19). The concern regarding this new viral strain "Severe Acute Respiratory Syndrome Coronavirus-2" (acronym SARS-CoV-2) and diseases it causes (COVID-19) is well deserved at all levels. The incidence of COVID-19 infection and infectious patients are increasing at a high rate. Coronaviruses (CoVs), enclosed positive-sense RNA viruses, are distinguished by club-like spikes extending from their surface, an exceptionally large genome of RNA, and a special mechanism for replication. Coronaviruses are associated with a broad variety of human and other animal diseases spanning from enteritis in cattle and pigs and upper chicken respiratory disease to extremely lethal human respiratory infections. With World Health Organization (WHO) declaring COVID-19 as pandemic, we deemed it necessary to provide a detailed review of coronaviruses discussing their history, current situation, coronavirus classification, pathogenesis, structure, mode of action, diagnosis and treatment, the effect of environmental factors, risk reduction and guidelines to understand the virus and develop ways to control it.
Collapse
Affiliation(s)
| | | | - Sami Ullah Bhat
- Corresponding author: Department of Environmental Science, School of Earth and Environmental Science, University of Kashmir, 190006, India
| |
Collapse
|
29
|
Farooq S, Ngaini Z. Natural and Synthetic Drugs as Potential Treatment for Coronavirus Disease 2019 (COVID-2019). CHEMISTRY AFRICA 2020. [PMCID: PMC7682129 DOI: 10.1007/s42250-020-00203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic in a short period, where a tragically large number of human lives being lost. It is an infectious pandemic that recently infected more than two hundred countries in the world. Many potential treatments have been introduced, which are considered potent antiviral drugs and commonly reported as herbal or traditional and medicinal treatments. A variety of bioactive metabolites extracts from natural herbal have been reported for coronaviruses with some effective results. Food and Drug Administration (FDA) has approved numerous drugs to be introduced against COVID-19, which commercially available as antiviral drugs and vaccines. In this study, a comprehensive review is discussed on the potential antiviral remedies based on natural and synthetic drugs. This review highlighted the potential remedies of COVID-19 which successfully applied to patients with high cytopathic inhibition potency for cell-to-cell spread and replication of coronavirus.
Collapse
|
30
|
Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H, Habeichi NJ, Zouein FA. Macrophage responses associated with COVID-19: A pharmacological perspective. Eur J Pharmacol 2020; 887:173547. [PMID: 32919938 PMCID: PMC7483085 DOI: 10.1016/j.ejphar.2020.173547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused worldwide death and economic destruction. The pandemic is the result of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has demonstrated high rates of infectivity leading to great morbidity and mortality in vulnerable populations. At present, scientists are exploring various approaches to curb this pandemic and alleviate its health consequences, while racing to develop a vaccine. A particularly insidious aspect of COVID-19 is the delayed overactivation of the body's immune system that is manifested as the cytokine storm. This unbridled production of pro-inflammatory cytokines and chemokines can directly or indirectly cause massive organ damage and failure. Systemic vascular endothelial inflammation and thrombocytopenia are potential consequences as well. In the case of COVID-19, the cytokine storm often fits the pattern of the macrophage activation syndrome with lymphocytopenia. The basis for the imbalance between the innate and adaptive immune systems is not clearly defined, but highlights the effect of SARS-CoV-2 on macrophages. Here we discuss the potential underlying basis for the impact of SARS-CoV-2 on macrophages, both direct and indirect, and potential therapeutic targets. These include granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 6 (IL-6), interferons, and CXCL10 (IP-10). Various biopharmaceuticals are being repurposed to target the cytokine storm in COVID-19 patients. In addition, we discuss the rationale for activating the macrophage alpha 7 nicotinic receptors as a therapeutic target. A better understanding of the molecular consequences of SARS-CoV-2 infection of macrophages could lead to novel and more effective treatments for COVID-19.
Collapse
Affiliation(s)
| | - Raffaele Altara
- Department of Pathology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway; KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; College of Medicine, Qatar University, Doha, Qatar
| | - Zena Wehbe
- Department of Biology, Faculty of Medicine, American University of Beirut, Beirut Lebanon
| | - Souha Fares
- Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; INSERM Department of Signaling and Cardiovascular Pathophysiology-UMR-S1180, University Paris-Saclay, Châtenay-Malabry, France
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|
31
|
Berretta AA, Silveira MAD, Cóndor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother 2020; 131:110622. [PMID: 32890967 PMCID: PMC7430291 DOI: 10.1016/j.biopha.2020.110622] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Propolis, a resinous material produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as a health aid and immune system booster. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis compounds. SARS-CoV-2 entry into host cells is characterized by viral spike protein interaction with cellular angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2. This mechanism involves PAK1 overexpression, which is a kinase that mediates coronavirus-induced lung inflammation, fibrosis, and immune system suppression. Propolis components have inhibitory effects on the ACE2, TMPRSS2 and PAK1 signaling pathways; in addition, antiviral activity has been proven in vitro and in vivo. In pre-clinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF-α. This immunoregulation involves monocytes and macrophages, as well as Jak2/STAT3, NF-kB, and inflammasome pathways, reducing the risk of cytokine storm syndrome, a major mortality factor in advanced COVID-19 disease. Propolis has also shown promise as an aid in the treatment of various of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. Standardized propolis products with consistent bioactive properties are now available. Given the current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.
Collapse
Affiliation(s)
- Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, São Paulo, Brazil.
| | | | - José Manuel Cóndor Capcha
- Interdisciplinary Stem Cell Institute at Miller School of Medicine, University of Miami, Miami, Florida, United States.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
32
|
Radwan NM, Mahmoud NE, Alfaifi AH, Alabdulkareem KI. Comorbidities and severity of coronavirus disease 2019 patients. Saudi Med J 2020; 41:1165-1174. [PMID: 33130835 PMCID: PMC7804237 DOI: 10.15537/smj.2020.11.25454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To determine the association between comorbidities and the severity of the disease among COVID-19 patients. METHODS We searched the Cochrane, Medline, Trip, and EMBASE databases from 2019. The review included all available studies of COVID-19 patients published in the English language and studied the clinical characteristics, comorbidities, and disease outcomes from the beginning of the pandemic. Two authors extracted studies characteristics and the risk of bias. Odds ratio (OR) was used to analyze the data with 95% confidence interval (CI). RESULTS The review included 1,885 COVID-19 patients from 7 observational studies with some degree of bias risk and substantial heterogeneity. A significant association was recorded between COVID-19 severity and the following variables: male (OR= 1.60, 95%CI= 1.05 - 2.43); current smoker (OR=2.06, 95%CI= 1.08 - 3.94); and the presence of comorbidities including hypertension (OR=2.05, 95%CI= 1.56 - 2.70), diabetes (OR=2.46, 95%CI= 1.53 - 3.96), coronary heart disease (OR=4.10, 95%CI= 2.36 - 7.12), chronic kidney disease (OR=4.06, 95%CI= 1.45 - 11.35), and cancer (OR=2.28, 95%CI= 1.08 - 4.81). CONCLUSIONS Comorbidities among COVID-19 patients may contribute to increasing their susceptibility to severe illness. The identification of these potential risk factors could help reduce mortality by identifying patients with poor prognosis at an early stage.
Collapse
Affiliation(s)
- Nashwa M Radwan
- Ministry of Health, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | |
Collapse
|
33
|
Dickinson PJ. Coronavirus Infection of the Central Nervous System: Animal Models in the Time of COVID-19. Front Vet Sci 2020; 7:584673. [PMID: 33195610 PMCID: PMC7644464 DOI: 10.3389/fvets.2020.584673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring coronaviral infections have been studied for several decades in the context of companion and production animals, and central nervous system involvement is a common finding, particularly in cats with feline infectious peritonitis (FIP). These companion and production animal coronaviruses have many similarities to recent human pandemic-associated coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV2 (COVID-19). Neurological involvement is being increasingly recognized as an important clinical presentation in human COVID-19 patients, often associated with para-infectious processes, and potentially with direct infection within the CNS. Recent breakthroughs in the treatment of coronaviral infections in cats, including neurological FIP, have utilized antiviral drugs similar to those currently in human COVID-19 clinical trials. Differences in specific coronavirus and host factors are reflected in major variations in incidence and mechanisms of CNS coronaviral infection and pathology between species; however, broad lessons relating to treatment of coronavirus infection present within the CNS may be informative across species.
Collapse
Affiliation(s)
- Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Parvathaneni V, Gupta V. Utilizing drug repurposing against COVID-19 - Efficacy, limitations, and challenges. Life Sci 2020; 259:118275. [PMID: 32818545 PMCID: PMC7430345 DOI: 10.1016/j.lfs.2020.118275] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
The recent outbreak of Coronavirus disease (COVID-19), first in Eastern Asia and then essentially across the world has been declared a pandemic by the WHO. COVID-19 is caused by a novel virus SARS-CoV2 (2019-nCoV), against which there is currently no vaccine available; and current antiviral therapies have failed, causing a very high mortality rate. Drug repurposing i.e. utilizing an approved drug for different indication, offers a time- and cost-efficient alternative for making new therapies available to patients. Although there are several reports presenting novel approaches to treat COVID-19, still an attentive review of previous scientific literature is essential to overcome their failure to exhibit efficacy. There is an urgent need to provide a comprehensive outlook toward utilizing drug repurposing as a tool for discovery of new therapies against COVID-19. In this article, we aim to provide a to-the-point review of current literature regarding efficacy of repurposed drugs against COVID-19 and other respiratory infections caused by coronaviruses. We have briefly discussed COVID-19 epidemiology, and then have discussed drug repurposing approaches and examples, specific to respiratory viruses. Limitations of utilization of repurposed drug molecules such as dosage regimen and associated challenges such as localized delivery in respiratory tract have also been discussed in detail.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
35
|
Klimczak A. Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19. World J Stem Cells 2020; 12:1013-1022. [PMID: 33033561 PMCID: PMC7524694 DOI: 10.4252/wjsc.v12.i9.1013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal. SARS-CoV-2 enters the lungs via angiotensin-converting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells, causing a cytokine storm, which leads to target organ injury and subsequent dysfunction. To date, there is no effective antiviral therapy for COVID-19 patients, and therapeutic strategies are based on experience treating previously recognized coronaviruses. In search of new treatment modalities of COVID-19, cell-based therapy with mesenchymal stem cells (MSCs) and/or their secretome, such as soluble bioactive factors and extracellular vesicles, is considered supportive therapy for critically ill patients. Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin, including alveolar epithelial cells, lung epithelial cells, and vascular endothelial cells, which are severely damaged in the course of COVID-19 disease. Moreover, MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic, anti-inflammatory, immunomodulatory, anti-apoptotic, pro-regenerative, and proangiogenic properties.
Collapse
Affiliation(s)
- Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wrocław 53-114, Poland
| |
Collapse
|
36
|
Gupta MN, Roy I. Drugs, host proteins and viral proteins: how their promiscuities shape antiviral design. Biol Rev Camb Philos Soc 2020; 96:205-222. [PMID: 32918378 DOI: 10.1111/brv.12652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The reciprocal nature of drug specificity and target specificity implies that the same is true for their respective promiscuities. Protein promiscuity has two broadly different types of footprint in drug design. The first is relaxed specificity of binding sites for substrates, inhibitors, effectors or cofactors. The second involves protein-protein interactions of regulatory processes such as signal transduction and transcription, and here protein intrinsic disorder plays an important role. Both viruses and host cells exploit intrinsic disorder for their survival, as do the design and discovery programs for antivirals. Drug action, strictly speaking, always relies upon promiscuous activity, with drug promiscuity enlarging its scope. Drug repurposing searches for additional promiscuity on the part of both the drug and the target in the host. Understanding the subtle nuances of these promiscuities is critical in the design of novel and more effective antivirals.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| |
Collapse
|
37
|
Mohanty S, Harun Ai Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr 2020; 14:1027-1031. [PMID: 32634717 PMCID: PMC7332938 DOI: 10.1016/j.dsx.2020.06.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM COVID-19 outbreak has created havoc and a quick cure for the disease will be a therapeutic medicine that has usage history in patients to resolve the current pandemic. With technological advancements in Artificial Intelligence (AI) coupled with increased computational power, the AI-empowered drug repurposing can prove beneficial in the COVID-19 scenario. METHODS The recent literature is studied and analyzed from various sources such as Scopus, Google Scholar, PubMed, and IEEE Xplore databases. The search terms used are 'COVID-19', ' AI ', and 'Drug Repurposing'. RESULTS AI is implemented in the field design through the generation of the learning-prediction model and performs a quick virtual screening to accurately display the output. With a drug-repositioning strategy, AI can quickly detect drugs that can fight against emerging diseases such as COVID-19. This technology has the potential to improve the drug discovery, planning, treatment, and reported outcomes of the COVID-19 patient, being an evidence-based medical tool. CONCLUSIONS Thus, there are chances that the application of the AI approach in drug discovery is feasible. With prior usage experiences in patients, few of the old drugs, if shown active against SARS-CoV-2, can be readily applied to treat the COVID-19 patients. With the collaboration of AI with pharmacology, the efficiency of drug repurposing can improve significantly.
Collapse
Affiliation(s)
- Sweta Mohanty
- School of Applied Science, KIIT University, Bhubaneswar, Odisha, India
| | | | - Mayank Mridul
- School of Computer Engineering, KIIT University, Bhubaneswar, Odisha, India
| | - Chandana Mohanty
- School of Applied Science, KIIT University, Bhubaneswar, Odisha, India.
| | - Swati Swayamsiddha
- School of Electronics Engineering, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
38
|
Ashraf MA, Sherafat A, Pourdast A, Nazemi P, Mohraz M. The application of direct viral cytopathic hypothesis to design drug trials in the battle against COVID-19. ACTA ACUST UNITED AC 2020; 28:813-814. [PMID: 32803688 PMCID: PMC7429091 DOI: 10.1007/s40199-020-00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022]
Abstract
COVID-19 has caused many deaths worldwide. Systemic complications alongside coagulopathy, and ARDS account for the majority of COVID-19 mortalities. The pathogenesis of the disease can be explained by two theories of direct viral cytopathy and systemic inflammatory cascade of events. ACE-2 is shown to be the cellular host receptor for SARS-CoV-2. It might be the key to explain the pathogenesis of systemic complications with a focus on the direct viral cytopathic hypothesis. Different medications tend to show up in many in vitro drug screens. However, more trials are needed to translate their application into in vivo efficacy.
Collapse
Affiliation(s)
| | - Alireza Sherafat
- School of Medicine, University of Central Lancashire, Preston, England
| | - Alieh Pourdast
- Iranian Research Center for HIV/AIDS (IRCHA), District 6, Imam Khomeini Hospital, Keshavarz Blvd, Nosrat St, Tehran, Tehran Province, Iran.,Tehran University of Medical Sciences, Tehran, Iran
| | | | - Minoo Mohraz
- Iranian Research Center for HIV/AIDS (IRCHA), District 6, Imam Khomeini Hospital, Keshavarz Blvd, Nosrat St, Tehran, Tehran Province, Iran.
| |
Collapse
|
39
|
Laskar P, Yallapu MM, Chauhan SC. "Tomorrow Never Dies": Recent Advances in Diagnosis, Treatment, and Prevention Modalities against Coronavirus (COVID-19) amid Controversies. Diseases 2020; 8:E30. [PMID: 32781617 PMCID: PMC7563589 DOI: 10.3390/diseases8030030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of novel coronavirus disease (2019-nCoV or COVID-19) is responsible for severe health emergency throughout the world. The attack of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is found to be responsible for COVID-19. The World Health Organization has declared the ongoing global public health emergency as a pandemic. The whole world fights against this invincible enemy in various capacities to restore economy, lifestyle, and safe life. Enormous amount of scientific research work(s), administrative strategies, and economic measurements are in place to create a successful step against COVID-19. Furthermore, differences in opinion, facts, and implementation methods laid additional layers of complexities in this battle against survival. Thus, a timely overview of the recent, important, and overall inclusive developments against this pandemic is a pressing need for better understanding and dealing with COVID-19. In this review, we have systematically summarized the epidemiological studies, clinical features, biological properties, diagnostic methods, treatment modalities, and preventive measurements related to COVID-19.
Collapse
Affiliation(s)
- Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
40
|
Alonso DF, Farina HG. Repurposing of host-based therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19): a link between antiviral and anticancer mechanisms? Int J Antimicrob Agents 2020; 56:106125. [PMID: 32739476 PMCID: PMC7391054 DOI: 10.1016/j.ijantimicag.2020.106125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel F Alonso
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina.
| | - Hernán G Farina
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|
41
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
42
|
Zhao X, Jiang Y, Zhao Y, Xi H, Liu C, Qu F, Feng X. Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur J Clin Microbiol Infect Dis 2020; 39:1209-1220. [PMID: 32328850 PMCID: PMC7178925 DOI: 10.1007/s10096-020-03897-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
To analyze the susceptibility of SARS-CoV-2 in pregnancy and the drugs that can be used to treat pregnancy with COVID-19, so as to provide evidence for drug selection in clinic. By reviewing the existing literature, this paper analyzes the susceptibility of pregnant women to virus, especially to SARS-CoV-2, from the aspects of anatomical, reproductive endocrine and immune changes during pregnancy and screens effective and fetal-safe treatments from the existing drugs. The anatomical structure of the respiratory system is changed during pregnancy, and the virus transmitted by droplets and aerosols is more easily inhaled by pregnant women and is difficult to remove. Furthermore, the prognosis is worse after infection when compared with non-pregnancy women. And changes in reproductive hormones and immune systems during pregnancy collectively make them more susceptible to certain infections. More importantly, angiotensin-converting enzyme (ACE)-2, the SARS-CoV-2 receptor, has been proven highly increased during pregnancy, which may contribute to the susceptibility to SARS-CoV-2. When it comes to treatment, specific drugs for COVID-19 have not been found at present, and taking old drugs for new use in treating COVID-19 has become an emergency method for the pandemic. Particularly, drugs that show superior maternal and fetal safety are worthy of consideration for pregnant women with COVID-19, such as chloroquine, metformin, statins, lobinavir/ritonavir, glycyrrhizic acid, and nanoparticle-mediated drug delivery (NMDD), etc. Pregnant women are susceptible to COVID-19, and special attention should be paid to the selection of drugs that are both effective for maternal diseases and friendly to the fetus. However, there are still many deficiencies in the study of drug safety during pregnancy, and broad-spectrum, effective and fetal-safe drugs for pregnant women need to be developed so as to cope with more infectious diseases in the future.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuepeng Jiang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Zhao
- Hebei College of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Hongyan Xi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chang Liu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Xiaoling Feng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
43
|
Dissecting the mechanism of signaling-triggered nuclear export of newly synthesized influenza virus ribonucleoprotein complexes. Proc Natl Acad Sci U S A 2020; 117:16557-16566. [PMID: 32601201 PMCID: PMC7368312 DOI: 10.1073/pnas.2002828117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Influenza viruses (IV) replicate in the nucleus. Export of newly produced genomes, packaged in viral ribonucleoprotein (vRNP) complexes, relies on the nuclear CRM1 export pathway and appears to be timely controlled by virus-induced cellular signaling. However, the exact mechanism of the signaling-controlled complex assembly and export is enigmatic. Here we show that IV activates the Raf/MEK/ERK/RSK1 pathway, leading to phosphorylation at specific sites of the NP, which in turn, creates a docking site for binding of the M1 protein, an initial step in formation of vRNP export complexes. These findings are of broad relevance regarding the regulatory role of signaling pathways and posttranslational modifications in virus propagation and will strongly support ongoing development of an alternative anti-influenza therapy. Influenza viruses (IV) exploit a variety of signaling pathways. Previous studies showed that the rapidly accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway is functionally linked to nuclear export of viral ribonucleoprotein (vRNP) complexes, suggesting that vRNP export is a signaling-induced event. However, the underlying mechanism remained completely enigmatic. Here we have dissected the unknown molecular steps of signaling-driven vRNP export. We identified kinases RSK1/2 as downstream targets of virus-activated ERK signaling. While RSK2 displays an antiviral role, we demonstrate a virus-supportive function of RSK1, migrating to the nucleus to phosphorylate nucleoprotein (NP), the major constituent of vRNPs. This drives association with viral matrix protein 1 (M1) at the chromatin, important for vRNP export. Inhibition or knockdown of MEK, ERK or RSK1 caused impaired vRNP export and reduced progeny virus titers. This work not only expedites the development of anti-influenza strategies, but in addition demonstrates converse actions of different RSK isoforms.
Collapse
|
44
|
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling. Front Pharmacol 2020; 11:836. [PMID: 32581799 PMCID: PMC7283382 DOI: 10.3389/fphar.2020.00836] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated that cardiovascular disease (CVD) patients are at higher risk of progression to severe respiratory manifestations of COVID-19 including acute respiratory distress syndrome. Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de novo cardiac and vascular damage in previously healthy individuals. Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health, Qatar University, Doha, Qatar
| |
Collapse
|
45
|
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53:66-70. [PMID: 32418715 PMCID: PMC7204669 DOI: 10.1016/j.cytogfr.2020.05.002] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
The outbreak of the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) responsible for coronavirus disease 2019 (COVID-19) has developed into an unprecedented global pandemic. Clinical investigations in patients with COVID-19 has shown a strong upregulation of cytokine and interferon production in SARS-CoV2- induced pneumonia, with an associated cytokine storm syndrome. Thus, the identification of existing approved therapies with proven safety profiles to treat hyperinflammation is a critical unmet need in order to reduce COVI-19 associated mortality. To date, no specific therapeutic drugs or vaccines are available to treat COVID-19 patients. This review evaluates several options that have been proposed to control SARS-CoV2 hyperinflammation and cytokine storm, eincluding antiviral drugs, vaccines, small-molecules, monoclonal antibodies, oligonucleotides, peptides, and interferons (IFNs).
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Arti Nile
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Jiayin Qiu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, China.
| | - Guoyin Kai
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
46
|
Sinha SK, Shakya A, Prasad SK, Singh S, Gurav NS, Prasad RS, Gurav SS. An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. J Biomol Struct Dyn 2020; 39:3244-3255. [PMID: 32345124 PMCID: PMC7232888 DOI: 10.1080/07391102.2020.1762741] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Public Health Emergency of International Concern declared the widespread outbreak of SARS-CoV-2 as a global pandemic emergency, which has resulted in 1,773,086 confirmed cases including 111,652 human deaths, as on 13 April 2020, as reported to World Health Organization. As of now, there are no vaccines or antiviral drugs declared to be officially useful against the infection. Saikosaponin is a group of oleanane derivatives reported in Chinese medicinal plants and are described for their anti-viral, anti-tumor, anti-inflammatory, anticonvulsant, antinephritis and hepatoprotective activities. They have also been known to have anti-coronaviral property by interfering the early stage of viral replication including absorption and penetration of the virus. Thus, the present study was undertaken to screen and evaluate the potency of different Saikosaponins against different sets of SARS-CoV-2 binding protein via computational molecular docking simulations. Docking was carried out on a Glide module of Schrodinger Maestro 2018-1 MM Share Version on NSP15 (PDB ID: 6W01) and Prefusion 2019-nCoV spike glycoprotein (PDB ID: 6VSB) from SARS-CoV-2. From the binding energy and interaction studies, the Saikosaponins U and V showed the best affinity towards both the proteins suggesting them to be future research molecule as they mark the desire interaction with NSP15, which is responsible for replication of RNA and also with 2019-nCoV spike glycoprotein which manage the connection with ACE2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Saurabh K Sinha
- Department of Pharmaceutical Sciences, Mohanlal Shukhadia University, Udaipur, India
| | - Anshul Shakya
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | | | | - Nilambari S Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Goa University, Ponda, India
| | - Rupali S Prasad
- Department of Pharmaceutical Sciences, R.T.M. University, Nagpur, India
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, India
| |
Collapse
|
47
|
Derwand R, Scholz M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today's battle against COVID-19? Med Hypotheses 2020; 142:109815. [PMID: 32408070 PMCID: PMC7202847 DOI: 10.1016/j.mehy.2020.109815] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022]
Abstract
Currently, drug repurposing is an alternative to novel drug development for the treatment of COVID-19 patients. The antimalarial drug chloroquine (CQ) and its metabolite hydroxychloroquine (HCQ) are currently being tested in several clinical studies as potential candidates to limit SARS-CoV-2-mediated morbidity and mortality. CQ and HCQ (CQ/HCQ) inhibit pH-dependent steps of SARS-CoV-2 replication by increasing pH in intracellular vesicles and interfere with virus particle delivery into host cells. Besides direct antiviral effects, CQ/HCQ specifically target extracellular zinc to intracellular lysosomes where it interferes with RNA-dependent RNA polymerase activity and coronavirus replication. As zinc deficiency frequently occurs in elderly patients and in those with cardiovascular disease, chronic pulmonary disease, or diabetes, we hypothesize that CQ/HCQ plus zinc supplementation may be more effective in reducing COVID-19 morbidity and mortality than CQ or HCQ in monotherapy. Therefore, CQ/HCQ in combination with zinc should be considered as additional study arm for COVID-19 clinical trials.
Collapse
Affiliation(s)
- R Derwand
- Alexion Pharma Germany GmbH, Landsberger Str. 300, 80687 Munich, Germany
| | - M Scholz
- LEUKOCARE AG, Am Klopferspitz 19, Martinsried, Munich, Germany.
| |
Collapse
|
48
|
Ekins S, Mottin M, Ramos PRPS, Sousa BKP, Neves BJ, Foil DH, Zorn KM, Braga RC, Coffee M, Southan C, Puhl AC, Andrade CH. Déjà vu: Stimulating open drug discovery for SARS-CoV-2. Drug Discov Today 2020; 25:928-941. [PMID: 32320852 PMCID: PMC7167229 DOI: 10.1016/j.drudis.2020.03.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
In the past decade we have seen two major Ebola virus outbreaks in Africa, the Zika virus in Brazil and the Americas and the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is a strong sense of déjà vu because there are still no effective treatments. In the COVID-19 pandemic, despite being a new virus, there are already drugs suggested as active in in vitro assays that are being repurposed in clinical trials. Promising SARS-CoV-2 viral targets and computational approaches are described and discussed. Here, we propose, based on open antiviral drug discovery approaches for previous outbreaks, that there could still be gaps in our approach to drug discovery.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA.
| | - Melina Mottin
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Paulo R P S Ramos
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Bruna K P Sousa
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Bruno Junior Neves
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Daniel H Foil
- Collaborations Pharmaceuticals, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | | | - Megan Coffee
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University, NY, USA; Department of Population and Family Health, Mailman School of Public Health, Columbia University, NY, USA
| | | | - Ana C Puhl
- Collaborations Pharmaceuticals, 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Carolina Horta Andrade
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil; Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-864, Brazil.
| |
Collapse
|
49
|
Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica 2020; 44:e40. [PMID: 32256547 PMCID: PMC7105280 DOI: 10.26633/rpsp.2020.40] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023] Open
Abstract
The World Health Organization (WHO) was informed on December 2019 about a coronavirus pneumonia outbreak in Wuhan, Hubei province (China). Subsequently, on March 12, 2020, 125,048 cases and 4,614 deaths were reported. Coronavirus is an enveloped RNA virus, from the genus Betacoronavirus, that is distributed in birds, humans, and other mammals. WHO has named the novel coronavirus disease as COVID-19. More than 80 clinical trials have been launched to test coronavirus treatment, including some drug repurposing or repositioning for COVID-19. Hence, we performed a search in March 2020 of the clinicaltrials.gov database. The eligibility criteria for the retrieved studies were: contain a clinicaltrials.gov base identifier number; describe the number of participants and the period for the study; describe the participants' clinical conditions; and utilize interventions with medicines already studied or approved for any other disease in patients infected with the novel coronavirus SARS-CoV-2 (2019-nCoV). It is essential to emphasize that this article only captured trials listed in the clinicaltrials.gov database. We identified 24 clinical trials, involving more than 20 medicines, such as human immunoglobulin, interferons, chloroquine, hydroxychloroquine, arbidol, remdesivir, favipiravir, lopinavir, ritonavir, oseltamivir, methylprednisolone, bevacizumab, and traditional Chinese medicines (TCM). Although drug repurposing has some limitations, repositioning clinical trials may represent an attractive strategy because they facilitate the discovery of new classes of medicines; they have lower costs and take less time to reach the market; and there are existing pharmaceutical supply chains for formulation and distribution.
Collapse
Affiliation(s)
- Sandro G. Viveiros Rosa
- Universidade Federal FluminenseUniversidade Federal FluminenseBrazilUniversidade Federal Fluminense, Rio de Janeiro, Brazil.
| | - Wilson C. Santos
- Universidade Federal FluminenseUniversidade Federal FluminenseBrazilUniversidade Federal Fluminense, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 2020; 21:730-738. [PMID: 32022370 PMCID: PMC7162020 DOI: 10.1002/cbic.202000047] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/08/2022]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. Although little is known about the virus, an examination of the genome sequence shows strong homology with its better-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations that might hamper the efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RNA-dependent RNA polymerase and coronavirus main proteinase (3CLpro), share a strikingly high (>95 %) homology to SARS-CoV. Herein, we suggest four potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that could be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad-spectrum anti-coronaviral agents for future epidemics.
Collapse
Affiliation(s)
- Jared S. Morse
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Tyler Lalonde
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|