1
|
Giratallah H, Chenoweth MJ, Pouget JG, El-Boraie A, Alsaafin A, Lerman C, Knight J, Tyndale RF. CYP2A6 associates with respiratory disease risk and younger age of diagnosis: a phenome-wide association Mendelian Randomization study. Hum Mol Genet 2024; 33:198-210. [PMID: 37802914 PMCID: PMC10772040 DOI: 10.1093/hmg/ddad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
CYP2A6, a genetically variable enzyme, inactivates nicotine, activates carcinogens, and metabolizes many pharmaceuticals. Variation in CYP2A6 influences smoking behaviors and tobacco-related disease risk. This phenome-wide association study examined associations between a reconstructed version of our weighted genetic risk score (wGRS) for CYP2A6 activity with diseases in the UK Biobank (N = 395 887). Causal effects of phenotypic CYP2A6 activity (measured as the nicotine metabolite ratio: 3'-hydroxycotinine/cotinine) on the phenome-wide significant (PWS) signals were then estimated in two-sample Mendelian Randomization using the wGRS as the instrument. Time-to-diagnosis age was compared between faster versus slower CYP2A6 metabolizers for the PWS signals in survival analyses. In the total sample, six PWS signals were identified: two lung cancers and four obstructive respiratory diseases PheCodes, where faster CYP2A6 activity was associated with greater disease risk (Ps < 1 × 10-6). A significant CYP2A6-by-smoking status interaction was found (Psinteraction < 0.05); in current smokers, the same six PWS signals were found as identified in the total group, whereas no PWS signals were found in former or never smokers. In the total sample and current smokers, CYP2A6 activity causal estimates on the six PWS signals were significant in Mendelian Randomization (Ps < 5 × 10-5). Additionally, faster CYP2A6 metabolizer status was associated with younger age of disease diagnosis for the six PWS signals (Ps < 5 × 10-4, in current smokers). These findings support a role for faster CYP2A6 activity as a causal risk factor for lung cancers and obstructive respiratory diseases among current smokers, and a younger onset of these diseases. This research utilized the UK Biobank Resource.
Collapse
Affiliation(s)
- Haidy Giratallah
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Alaa Alsaafin
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Caryn Lerman
- Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA 90033, United States
| | - Jo Knight
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Data Science Institute, Lancaster University Medical School, Lancaster LA1 4YE, United Kingdom
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. Impact of Adolescent Nicotine Exposure in Pre- and Post-natal Oxycodone Exposed Offspring. J Neuroimmune Pharmacol 2023; 18:413-426. [PMID: 37351737 DOI: 10.1007/s11481-023-10074-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found synaptic protein alterations, especially upregulation of synaptophysin in IUO-withdrawal animals. RT-qPCR further validated immune dysfunction in the central nervous system (CNS). Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning IUO animals. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal. Graphical Abstract.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Victoria L Schaal
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | | | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
- Department of Genetics, Cell Biology, and Anatomy, UNMC, Omaha, NE, USA.
- Child Health Research Institute, UNMC, Omaha, NE, USA.
- National Strategic Research Institute, UNMC, Omaha, NE, USA.
| |
Collapse
|
3
|
Flores A, Gowen A, Schaal VL, Koul S, Hernandez JB, Yelamanchili SV, Pendyala G. An Integrated Systems Approach to Decode the Impact of Adolescent Nicotine Exposure in Utero and Postnatally Oxycodone Exposed Offspring. RESEARCH SQUARE 2023:rs.3.rs-2753084. [PMID: 37066266 PMCID: PMC10104203 DOI: 10.21203/rs.3.rs-2753084/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found alterations of the blood-brain barrier (B.B.B.) and synaptic proteins. RT-qPCR further validated immune dysfunction in the central nervous system (CNS) consistent with compromised B.B.B. Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning PNO & IUO, a predictor of greater addiction risk. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal.
Collapse
Affiliation(s)
| | | | | | - Sneh Koul
- University of Nebraska Medical Center (UNMC)
| | | | | | | |
Collapse
|
4
|
Kumar A, Sinha N, Kodidela S, Zhou L, Singh UP, Kumar S. Effect of benzo(a)pyrene on oxidative stress and inflammatory mediators in astrocytes and HIV-infected macrophages. PLoS One 2022; 17:e0275874. [PMID: 36240258 PMCID: PMC9565757 DOI: 10.1371/journal.pone.0275874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Benzo(a)pyrene (BaP), an important polycyclic aromatic hydrocarbons (PAH) component of cigarette/tobacco smoking, is known to cause adverse health effects and is responsible for various life-threatening conditions including cancer. However, it is not yet clear whether BaP contributes to the macrophage- and astrocyte-mediated inflammatory response. METHODS We examined the acute (up to 72 h) effects of BaP on the expression of antioxidant enzymes (AOEs), cytokines/chemokines, and cytochromes P450 (CYP) enzymes in astrocytic cell lines, SVGA, and chronically HIV-infected U1 macrophage. The treated cells were examined for mRNA, protein levels of CYPs, AOEs superoxide dismutase-1 (SOD1) and catalase (CAT), cytokines/chemokines, using Western blot, multiplex ELISA, and reactive oxygen species (ROS) by flow cytometry analysis. RESULTS Upon acute exposure, BaP (1 μM) showed a significant increase in the mRNA levels of CYPs (CYP1A1 and CYP1B1), and pro-inflammatory cytokine IL-1β in SVGA cells following BaP for 24, 48, and 72h. In addition, we observed a significant increase in the mRNA levels of SOD1 and CAT at 24h of BaP treatment. In contrast, BaP did not exert any change in the protein expression of AOEs and CYP enzymes. In U1 cells, however, we noticed an interesting increase in the levels of MCP-1 as well as a modest increase in TNFα, IL-8 and IL-1β levels observed at 72 h of BaP treatment but could not reach to statistically significant level. CONCLUSIONS Overall, these results suggest that BaP contributes in part to macrophage and astrocyte-mediated neuroinflammation by mainly inducing IL-1β and MCP-1 production, which is likely to occur with the involvement of CYP and/or oxidative stress pathways.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
6
|
Mitochondria oxidative stress mediated nicotine-promoted activation of pancreatic stellate cells by regulating mitochondrial dynamics. Toxicol In Vitro 2022; 84:105436. [PMID: 35842057 DOI: 10.1016/j.tiv.2022.105436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022]
Abstract
Nicotine, one of the main ingredients of cigarettes, promotes activation of pancreatic stellate cells(PSCs) and exacerbates pancreatic fibrosis in previous studies. Here we focus on the inner relationship between mitochondrial oxidative stress and mitochondrial dynamics to explore the possible mechanism. Primary human PSCs were stimulated by nicotine. The effect of nicotine on oxidative stress and mitochondrial dynamics was analyzed by reactive oxygen species (ROS) assay, quantitative real-time PCR, and western blotting. Mitochondrial morphology was observed. Antioxidant and small interfering RNA transfection were applied to explore the interrelationship between oxidative stress and mitochondrial dynamics, as well as its effect on PSCs activation. Nicotine exposure significantly increased Intracellular and mitochondrial ROS of hPSCs and promoted mitochondrial fission by upregulating dynamin-related protein 1(DRP1). Knockdown Drp1 reversed mitochondrial fragmentation and hPSCs activation that promoted by nicotine, but fail to alleviate oxidative stress. A mitochondrial-targeted antioxidant could reverse all the above changes. Our finding suggests that mitochondria oxidative stress mediated nicotine-promoted activation of PSCs by inducing Drp1-mediated mitochondrial fission, provides a new perspective on the possible mechanism by which nicotine affects PSCs, and reveals a potential therapeutic strategy.
Collapse
|
7
|
Nicotine self-administration with menthol and audiovisual cue facilitates differential packaging of CYP2A6 and cytokines/chemokines in rat plasma extracellular vesicles. Sci Rep 2021; 11:17393. [PMID: 34462474 PMCID: PMC8405708 DOI: 10.1038/s41598-021-96807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated whether intravenously self-administered nicotine with menthol and audiovisual cue modulates nicotine-metabolizing CYP2A6, oxidative stress modulators, and cytokines/chemokines in plasma extracellular vesicles (EVs) in rats. We assigned rats to self-administered nicotine with: (a) audiovisual cue (AV), (b) menthol, and (c) menthol and AV cue. We found increased levels of CD9 in plasma EVs after self-administered nicotine with menthol and AV cue. Moreover, expression of CYP2A6 in plasma EVs was significantly increased after self-administered nicotine in response to menthol and AV cue. However, despite an upward trend on SOD1 and catalase, increase was not found to be statistically significant, while total antioxidant capacity was found to be significantly increased in plasma and plasma EVs obtained after self-administered nicotine with menthol and AV cue. Among cytokine and chemokine profiling, we found a significant increase in the levels of MCP-1 after self-administered nicotine with menthol and AV cue and complete packaging of IL-1β in EVs. Taken together, the study provides evidence that nicotine in response to menthol and AV cues can package altered levels of CYP2A6, and cytokines/chemokines in plasma EVs that may contribute to cell–cell communication, nicotine metabolism, and inflammation upon cigarette smoking.
Collapse
|
8
|
Rehman K, Haider K, Akash MSH. Cigarette smoking and nicotine exposure contributes for aberrant insulin signaling and cardiometabolic disorders. Eur J Pharmacol 2021; 909:174410. [PMID: 34375672 DOI: 10.1016/j.ejphar.2021.174410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023]
Abstract
Cigarette smoking- and nicotine-mediated dysregulation in insulin-signaling pathways are becoming leading health issues associated with morbidity and mortality worldwide. Many cardiometabolic disorders particularly insulin resistance, polycystic ovary syndrome (PCOS), central obesity and cardiovascular diseases are initiated from exposure of exogenous substances which augment by disturbances in insulin signaling cascade. Among these exogenous substances, nicotine and cigarette smoking are potential triggers for impairment of insulin-signaling pathways. Further, this aberrant insulin signaling is associated with many metabolic complications, which consequently give rise to initiation as well as progression of these metabolic syndromes. Hence, understanding the underlying molecular mechanisms responsible for cigarette smoking- and nicotine-induced altered insulin signaling pathways and subsequent participation in several health hazards are quite essential for prophylaxis and combating these complications. In this article, we have focused on the role of nicotine and cigarette smoking mediated pathological signaling; for instance, nicotine-mediated inhibition of nuclear factor erythroid 2-related factor 2 and oxidative damage, elevated cortisol that may promote central obesity, association PCOS and oxidative stress via diminished nitric oxide which may lead to endothelial dysfunction and vascular inflammation. Pathological underlying molecular mechanisms involved in mediating these metabolic syndromes via alteration of insulin signaling cascade and possible molecular mechanism responsible for these consequences on nicotine exposure have also been discussed.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kamran Haider
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
9
|
Haque S, Kodidela S, Sinha N, Kumar P, Cory TJ, Kumar S. Differential packaging of inflammatory cytokines/ chemokines and oxidative stress modulators in U937 and U1 macrophages-derived extracellular vesicles upon exposure to tobacco constituents. PLoS One 2020; 15:e0233054. [PMID: 32433651 PMCID: PMC7239484 DOI: 10.1371/journal.pone.0233054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Smoking, which is highly prevalent in HIV-infected populations, has been shown to exacerbate HIV replication, in part via the cytochrome P450 (CYP)-induced oxidative stress pathway. Recently, we have shown that extracellular vesicles (EVs), derived from tobacco- and/or HIV-exposed macrophages, alter HIV replication in macrophages by cell-cell interactions. We hypothesize that cigarette smoke condensate (CSC) and/or HIV-exposed macrophage-derived EVs carry relatively high levels of pro-oxidant and pro-inflammatory cargos and/or low levels of antioxidant and anti-inflammatory cargos, which are key mediators for HIV pathogenesis. Therefore, in this study, we investigated differential packaging of pro- and anti-inflammatory cytokines/chemokines and pro- and anti-oxidant contents in EVs after CSC exposure to myeloid cells (uninfected U937 and HIV-infected U1 cells). Our results showed that relatively long to short exposures with CSC increased the expression of cytokines in EVs isolated from HIV-infected U1 macrophages. Importantly, pro-inflammatory cytokines, especially IL-6, were highly packaged in EVs isolated from HIV-infected U1 macrophages upon both long and short-term CSC exposures. In general, anti-inflammatory cytokines, particularly IL-10, had a lower packaging in EVs, while packaging of chemokines was mostly increased in EVs upon CSC exposure in both HIV-infected U1 and uninfected U937 macrophages. Moreover, we observed higher expression of CYPs (1A1 and 1B1) and lower expression of antioxidant enzymes (SOD-1 and catalase) in EVs from HIV-infected U1 macrophages than in uninfected U937 macrophages. Together, they are expected to increase oxidative stress factors in EVs derived from HIV-infected U1 cells. Taken together, our results suggest packaging of increased level of oxidative stress and inflammatory elements in the EVs upon exposure to tobacco constituents and/or HIV to myeloid cells, which would ultimately enhance HIV replication in macrophages via cell-cell interactions.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Prashant Kumar
- Division of Pediatric Nephrology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Theodore J. Cory
- Department of Clinical Pharmacy and Translational Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
10
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
11
|
Malińska D, Więckowski MR, Michalska B, Drabik K, Prill M, Patalas-Krawczyk P, Walczak J, Szymański J, Mathis C, Van der Toorn M, Luettich K, Hoeng J, Peitsch MC, Duszyński J, Szczepanowska J. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr 2019; 51:259-276. [PMID: 31197632 PMCID: PMC6679833 DOI: 10.1007/s10863-019-09800-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jarosław Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
12
|
Nicotine enhances alcoholic fatty liver in mice: Role of CYP2A5. Arch Biochem Biophys 2018; 657:65-73. [PMID: 30222954 DOI: 10.1016/j.abb.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023]
Abstract
Tobacco and alcohol are often co-abused. Nicotine can enhance alcoholic fatty liver, and CYP2A6 (CYP2A5 in mice), a major metabolism enzyme for nicotine, can be induced by alcohol. CYP2A5 knockout (cyp2a5-/-) mice and their littermates (cyp2a5+/+) were used to test whether CYP2A5 has an effect on nicotine-enhanced alcoholic fatty liver. The results showed that alcoholic fatty liver was enhanced by nicotine in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Combination of ethanol and nicotine increased serum triglyceride in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Cotinine, a major metabolite of nicotine, also enhanced alcoholic fatty liver, which was also observed in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Nitrotyrosine and malondialdehyde (MDA), markers of oxidative/nitrosative stress, were induced by alcohol and were further increased by nicotine and cotinine in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Reactive oxygen species (ROS) production during microsomal metabolism of nicotine and cotinine was increased in microsomes from cyp2a5+/+ mice but not in microsomes from cyp2a5-/- mice. These results suggest that nicotine enhances alcoholic fatty liver in a CYP2A5-dependent manner, which is related to ROS produced during the process of CYP2A5-dependent nicotine metabolism.
Collapse
|
13
|
Haque S, Sinha N, Ranjit S, Midde NM, Kashanchi F, Kumar S. Monocyte-derived exosomes upon exposure to cigarette smoke condensate alter their characteristics and show protective effect against cytotoxicity and HIV-1 replication. Sci Rep 2017; 7:16120. [PMID: 29170447 PMCID: PMC5701054 DOI: 10.1038/s41598-017-16301-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/10/2017] [Indexed: 01/10/2023] Open
Abstract
Smoking is known to exacerbate HIV-1 pathogenesis, especially in monocytes, through the oxidative stress pathway. Exosomes are known to alter HIV-1 pathogenesis through inter-cellular communication. However, the role of exosomes in smoking-mediated HIV-1 pathogenesis is unknown. In this study, we investigated the effect of cigarette smoke condensate (CSC) on the characteristics of monocyte-derived exosomes and their influence on HIV-1 replication. Initially, we demonstrated that CSC reduced total protein and antioxidant capacity in exosomes derived from HIV-1-infected and uninfected macrophages. The exosomes from CSC-treated uninfected cells showed a protective effect against cytotoxicity and viral replication in HIV-1-infected macrophages. However, exosomes derived from HIV-1-infected cells lost their protective capacity. The results suggest that the exosomal defense is likely to be more effective during the early phase of HIV-1 infection and diminishes at the latter phase. Furthermore, we showed CSC-mediated upregulation of catalase in exosomes from uninfected cells, with a decrease in the levels of catalase and PRDX6 in exosomes derived from HIV-1-infected cells. These results suggest a potential role of antioxidant enzymes, which are differentially packaged into CSC-exposed HIV-1-infected and uninfected cell-derived exosomes, on HIV-1 replication of recipient cells. Overall, our study suggests a novel role of exosomes in tobacco-mediated HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
14
|
Rao PSS, Kumar S. Chronic Effects of Ethanol and/or Darunavir/Ritonavir on U937 Monocytic Cells: Regulation of Cytochrome P450 and Antioxidant Enzymes, Oxidative Stress, and Cytotoxicity. Alcohol Clin Exp Res 2016; 40:73-82. [PMID: 26727525 DOI: 10.1111/acer.12938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Our recent study has shown that acute treatment with ethanol (EtOH) increases oxidative stress and cytotoxicity through cytochrome P450 2E1 (CYP2E1)-mediated pathway in U937 monocytic cells. U937 cells are derived from blood monocytes and are considered as the model system for HIV-related study. Since the prevalence of alcohol use in HIV-infected population is high, and HIV+ patients are on antiretroviral therapy (ART) soon after they are diagnosed, it is important to study the interactions between EtOH and ART in monocytes. METHODS This study examined the chronic effects of EtOH and ART (darunavir/ritonavir), alone and in combination, on expression/levels of cytochrome P450 enzymes (CYPs), antioxidant enzymes (AOEs), reactive oxygen species (ROS), and cytotoxicity in U937 cells. The mRNA and protein levels were measured using quantitative reverse transcription polymerase chain reaction and Western blot, respectively. ROS and cytotoxicity were measured using flow cytometry and cell viability assay, respectively. RESULTS While chronic ART treatment increased CYP2E1 protein expression by 2-fold, EtOH and EtOH+ART increased CYP2E1 by ~5-fold. In contrast, ART and EtOH treatments decreased CYP3A4 protein expression by 38 ± 17% and 74 ± 15%, respectively, and the combination additively decreased CYP3A4 level by 90 ± 8%. Expressions of superoxide dismutase 1 (SOD1) and peroxiredoxin (PRDX6) were decreased by both EtOH and ART, however, the expressions of SOD2 and catalase were unaltered. These results suggested increased EtOH metabolism, increased ART accumulation, and decreased defense against ROS. Therefore, we determined the effects of EtOH and ART on ROS and cytotoxicity. While ART showed a slight increase, EtOH and EtOH+ART displayed significant increase in ROS and cytotoxicity. Moreover, the combination showed additive effects on ROS and cytotoxicity. CONCLUSIONS These results suggest that chronic EtOH, in the absence and presence of ART, increases ROS and cytotoxicity in monocytes, perhaps via CYP- and AOE-mediated pathways. This study has clinical implications in HIV+ alcohol users who are on ART.
Collapse
Affiliation(s)
- P S S Rao
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Santosh Kumar
- Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
15
|
Rao PSS, Ande A, Sinha N, Kumar A, Kumar S. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells. PLoS One 2016; 11:e0155791. [PMID: 27203850 PMCID: PMC4874604 DOI: 10.1371/journal.pone.0155791] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC-treated cells of myeloid lineage. This study warrants a closer examination of the role of CYP1B1 in smoking-mediated enhanced HIV replication.
Collapse
Affiliation(s)
- PSS Rao
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anusha Ande
- Division of pharmacology and toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Namita Sinha
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anil Kumar
- Division of pharmacology and toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Santosh Kumar
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abdallah IA, Hammell DC, Stinchcomb AL, Hassan HE. A fully validated LC–MS/MS method for simultaneous determination of nicotine and its metabolite cotinine in human serum and its application to a pharmacokinetic study after using nicotine transdermal delivery systems with standard heat application in adult smokers. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:67-77. [DOI: 10.1016/j.jchromb.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
17
|
Rao PSS, Kumar S. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis. Front Microbiol 2015; 6:550. [PMID: 26082767 PMCID: PMC4451413 DOI: 10.3389/fmicb.2015.00550] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022] Open
Abstract
High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, TN, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, TN, USA
| |
Collapse
|
18
|
Ande A, McArthur C, Ayuk L, Awasom C, Achu PN, Njinda A, Sinha N, Rao PSS, Agudelo M, Nookala AR, Simon S, Kumar A, Kumar S. Effect of mild-to-moderate smoking on viral load, cytokines, oxidative stress, and cytochrome P450 enzymes in HIV-infected individuals. PLoS One 2015; 10:e0122402. [PMID: 25879453 PMCID: PMC4399877 DOI: 10.1371/journal.pone.0122402] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/21/2015] [Indexed: 01/05/2023] Open
Abstract
Mild-to-moderate tobacco smoking is highly prevalent in HIV-infected individuals, and is known to exacerbate HIV pathogenesis. The objective of this study was to determine the specific effects of mild-to-moderate smoking on viral load, cytokine production, and oxidative stress and cytochrome P450 (CYP) pathways in HIV-infected individuals who have not yet received antiretroviral therapy (ART). Thirty-two human subjects were recruited and assigned to four different cohorts as follows: a) HIV negative non-smokers, b) HIV positive non-smokers, c) HIV negative mild-to-moderate smokers, and d) HIV positive mild-to-moderate smokers. Patients were recruited in Cameroon, Africa using strict selection criteria to exclude patients not yet eligible for ART and not receiving conventional or traditional medications. Those with active tuberculosis, hepatitis B or with a history of substance abuse were also excluded. Our results showed an increase in the viral load in the plasma of HIV positive patients who were mild-to-moderate smokers compared to individuals who did not smoke. Furthermore, although we did not observe significant changes in the levels of most pro-inflammatory cytokines, the cytokine IL-8 and MCP-1 showed a significant decrease in the plasma of HIV-infected patients and smokers compared with HIV negative non-smokers. Importantly, HIV-infected individuals and smokers showed a significant increase in oxidative stress compared with HIV negative non-smoker subjects in both plasma and monocytes. To examine the possible pathways involved in increased oxidative stress and viral load, we determined the mRNA levels of several antioxidant and cytochrome P450 enzymes in monocytes. The results showed that the levels of most antioxidants are unaltered, suggesting their inability to counter oxidative stress. While CYP2A6 was induced in smokers, CYP3A4 was induced in HIV and HIV positive smokers compared with HIV negative non-smokers. Overall, the findings suggest a possible association of oxidative stress and perhaps CYP pathway with smoking-mediated increased viral load in HIV positive individuals.
Collapse
Affiliation(s)
- Anusha Ande
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Carole McArthur
- Department of Oral and Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Leo Ayuk
- Regional Hospital, Box 818, Bamenda, North West Province, Cameroon
| | - Charles Awasom
- Regional Hospital, Box 818, Bamenda, North West Province, Cameroon
| | - Paul Ngang Achu
- Mezam Polyclinic HIV/AIDS Treatment Center, Bamenda, Cameroon
| | - Annette Njinda
- Mezam Polyclinic HIV/AIDS Treatment Center, Bamenda, Cameroon
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - P. S. S. Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Marisela Agudelo
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Stephen Simon
- Department of Medical Informatics, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
19
|
Vichi S, Sandström von Tobel J, Gemma S, Stanzel S, Kopp-Schneider A, Monnet-Tschudi F, Testai E, Zurich MG. Cell type-specific expression and localization of cytochrome P450 isoforms in tridimensional aggregating rat brain cell cultures. Toxicol In Vitro 2015; 30:176-84. [PMID: 25795400 DOI: 10.1016/j.tiv.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 02/05/2023]
Abstract
Within the Predict-IV FP7 project a strategy for measurement of in vitro biokinetics was developed, requiring the characterization of the cellular model used, especially regarding biotransformation, which frequently depends on cytochrome P450 (CYP) activity. The extrahepatic in situ CYP-mediated metabolism is especially relevant in target organ toxicity. In this study, the constitutive mRNA levels and protein localization of different CYP isoforms were investigated in 3D aggregating brain cell cultures. CYP1A1, CYP2B1/B2, CYP2D2/4, CYP2E1 and CYP3A were expressed; CYP1A1 and 2B1 represented almost 80% of the total mRNA content. Double-immunolabeling revealed their presence in astrocytes, in neurons, and to a minor extent in oligodendrocytes, confirming the cell-specific localization of CYPs in the brain. These results together with the recently reported formation of an amiodarone metabolite following repeated exposure suggest that this cell culture system possesses some metabolic potential, most likely contributing to its high performance in neurotoxicological studies and support the use of this model in studying brain neurotoxicity involving mechanisms of toxication/detoxication.
Collapse
Affiliation(s)
- S Vichi
- Istituto Superiore di Sanità, Environment and Primary Prevention Department, Mechanisms of Toxicity Unit, Rome, Italy.
| | - J Sandström von Tobel
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland
| | - S Gemma
- Istituto Superiore di Sanità, Environment and Primary Prevention Department, Mechanisms of Toxicity Unit, Rome, Italy
| | - S Stanzel
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - A Kopp-Schneider
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - F Monnet-Tschudi
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland
| | - E Testai
- Istituto Superiore di Sanità, Environment and Primary Prevention Department, Mechanisms of Toxicity Unit, Rome, Italy
| | - M G Zurich
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
20
|
Zabala V, Tong M, Yu R, Ramirez T, Yalcin EB, Balbo S, Silbermann E, Deochand C, Nunez K, Hecht S, de la Monte SM. Potential contributions of the tobacco nicotine-derived nitrosamine ketone (NNK) in the pathogenesis of steatohepatitis in a chronic plus binge rat model of alcoholic liver disease. Alcohol Alcohol 2015; 50:118-31. [PMID: 25618784 DOI: 10.1093/alcalc/agu083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Alcoholic liver disease (ALD) is linked to binge drinking and cigarette smoking. Heavy chronic ± binge alcohol, or low-level exposures to dietary nitrosamines cause steatohepatitis with insulin resistance and oxidative stress in animal models. This study examines hepatotoxic effects of sub-mutagenic exposures to tobacco-specific nitrosamine (NNK) in relation to ALD. METHODS Long Evans rats were fed liquid diets containing 0 or 26% (caloric) ethanol (EtOH) for 8 weeks. In Weeks 3 through 8, rats were treated with NNK (2 mg/kg) or saline by i.p. injection, 3×/week, and in Weeks 7 and 8, EtOH-fed rats were binge-administered 2 g/kg EtOH 3×/week; controls were given saline. RESULTS EtOH ± NNK caused steatohepatitis with necrosis, disruption of the hepatic cord architecture, ballooning degeneration, early fibrosis, mitochondrial cytopathy and ER disruption. Severity of lesions was highest in the EtOH+NNK group. EtOH and NNK inhibited insulin/IGF signaling through Akt and activated pro-inflammatory cytokines, while EtOH promoted lipid peroxidation, and NNK increased apoptosis. O(6)-methyl-Guanine adducts were only detected in NNK-exposed livers. CONCLUSION Both alcohol and NNK exposures contribute to ALD pathogenesis, including insulin/IGF resistance and inflammation. The differential effects of EtOH and NNK on adduct formation are critical to ALD progression among alcoholics who smoke.
Collapse
Affiliation(s)
- Valerie Zabala
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosa Yu
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Teresa Ramirez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Emine B Yalcin
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Chetram Deochand
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Kavin Nunez
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Stephen Hecht
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Suzanne M de la Monte
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
21
|
Reshi ML, Su YC, Hong JR. RNA Viruses: ROS-Mediated Cell Death. Int J Cell Biol 2014; 2014:467452. [PMID: 24899897 PMCID: PMC4034720 DOI: 10.1155/2014/467452] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for being both beneficial and deleterious. The main thrust of this review is to investigate the role of ROS in ribonucleic acid (RNA) virus pathogenesis. Much evidences has accumulated over the past decade, suggesting that patients infected with RNA viruses are under chronic oxidative stress. Changes to the body's antioxidant defense system, in relation to SOD, ascorbic acid, selenium, carotenoids, and glutathione, have been reported in various tissues of RNA-virus infected patients. This review focuses on RNA viruses and retroviruses, giving particular attention to the human influenza virus, Hepatitis c virus (HCV), human immunodeficiency virus (HIV), and the aquatic Betanodavirus. Oxidative stress via RNA virus infections can contribute to several aspects of viral disease pathogenesis including apoptosis, loss of immune function, viral replication, inflammatory response, and loss of body weight. We focus on how ROS production is correlated with host cell death. Moreover, ROS may play an important role as a signal molecule in the regulation of viral replication and organelle function, potentially providing new insights in the prevention and treatment of RNA viruses and retrovirus infections.
Collapse
Affiliation(s)
- Mohammad Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Che Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
22
|
Earla R, Ande A, McArthur C, Kumar A, Kumar S. Enhanced nicotine metabolism in HIV-1-positive smokers compared with HIV-negative smokers: simultaneous determination of nicotine and its four metabolites in their plasma using a simple and sensitive electrospray ionization liquid chromatography-tandem mass spectrometry technique. Drug Metab Dispos 2013; 42:282-93. [PMID: 24301609 DOI: 10.1124/dmd.113.055186] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Smoking is approximately three times more prevalent in HIV-1-positive than HIV-negative individuals in the United States. Nicotine, which is the major constituent of tobacco, is rapidly metabolized mainly by cytochrome P450 (CYP2A6) to many metabolites. In this study, we developed a simple, fast, and sensitive electrospray ionization liquid chromatography-tandem mass spectrometry method using a strong cation solid phase extraction, and determined the concentration of nicotine and its four major metabolites (cotinine, nornicotine, norcotinine, and trans-3'-hydroxycotinine) in the plasma of HIV-1-positive and HIV-negative smokers. The multiple reaction monitoring transitions for nicotine, cotinine, trans-3'-hydroxycotinine, nornicotine, norcotinine, nicotine-d4, and cotinine-d3 were selected at mass-to-charge ratios of 163.3/117.1, 177.5/80.3, 193.2/80.1, 149.5/132.3, 163.4/80.3, 167.3/121.4, and 180.3/101.2, respectively. The lower limit of quantitation for nicotine and its metabolites was 0.53 ng/ml, which is relatively more sensitive than those previously reported. The concentration of nicotine was detected 5-fold lower in HIV-1-positive smokers (7.17 ± 3.8 ng/ml) than that observed in HIV-negative smokers (33.29 ± 15.4 ng/ml), whereas the concentration of the metabolite nornicotine was 3-fold higher in HIV-1-positive smokers (6.8 ± 2.9 ng/ml) than in HIV-negative smokers (2.3 ± 1.2 ng/ml). Although it was statistically nonsignificant, the concentration of the metabolite cotinine was also higher in HIV-1-positive smokers (85.6 ± 60.5 ng/ml) than in HIV-negative smokers (74.9 ± 40.5 ng/ml). In conclusion, a decrease in the concentration of nicotine and an increase in the concentration of its metabolites in HIV-1-positive smokers compared with HIV-negative smokers support the hypothesis that nicotine metabolism is enhanced in HIV-1-positive smokers compared with HIV-negative smokers.
Collapse
Affiliation(s)
- Ravinder Earla
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.A., A.K., S.K.); and Department of Oral and Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri (C.M.)
| | | | | | | | | |
Collapse
|
23
|
Ande A, McArthur C, Kumar A, Kumar S. Tobacco smoking effect on HIV-1 pathogenesis: role of cytochrome P450 isozymes. Expert Opin Drug Metab Toxicol 2013; 9:1453-64. [PMID: 23822755 PMCID: PMC4007120 DOI: 10.1517/17425255.2013.816285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Tobacco smoking is highly prevalent among the HIV-1-infected population. In addition to diminished immune response, smoking has been shown to increase HIV-1 replication and decrease response to antiretroviral therapy, perhaps through drug-drug interaction. However, the mechanism by which tobacco/nicotine increases HIV-1 replication and mediates drug-drug interaction is poorly understood. AREAS COVERED In this review, the authors discuss the effects of smoking on HIV-1 pathogenesis. Since they propose a role for the cytochrome P450 (CYP) pathway in smoking-mediated HIV-1 pathogenesis, the authors briefly converse the role of CYP enzymes in tobacco-mediated oxidative stress and toxicity. Finally, the authors focus on the role of CYP enzymes, especially CYP2A6, in tobacco/nicotine metabolism and oxidative stress in HIV-1 model systems monocytes/macrophages, lymphocytes, astrocytes and neurons, which may be responsible for HIV-1 pathogenesis. EXPERT OPINION Recent findings suggest that CYP-mediated oxidative stress is a novel pathway that may be involved in smoking-mediated HIV-1 pathogenesis, including HIV-1 replication and drug-drug interaction. Thus, CYP and CYP-associated oxidative stress pathways may be potential targets to develop novel pharmaceuticals for HIV-1-infected smokers. Since HIV-1/TB co-infections are common, future study involving interactions between antiretroviral and antituberculosis drugs that involve CYP pathways would also help treat HIV-1/TB co-infected smokers effectively.
Collapse
Affiliation(s)
- Anusha Ande
- University of Missouri Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, Kansas City, MO 64108, USA
| | - Carole McArthur
- Professor, University of Missouri Kansas City, School of Dentistry, Department of Oral Biology, Kansas City, MO 64108, USA
| | - Anil Kumar
- Professor and Chair, University of Missouri Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, Kansas City, MO 64108, USA
| | - Santosh Kumar
- Assistant Professor, University of Missouri Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte St. Kansas City, MO 64108, USA Tel: +1 816 235 5494 (Off); Fax: +1 816 235 1776;
| |
Collapse
|
24
|
Shah A, Kumar S, Simon SD, Singh DP, Kumar A. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis 2013; 4:e850. [PMID: 24113184 PMCID: PMC3824683 DOI: 10.1038/cddis.2013.374] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/05/2013] [Accepted: 08/20/2013] [Indexed: 11/09/2022]
Abstract
HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS-mediated apoptotic cell death. In conclusion, this is the first report on the involvement of CYP and NOX pathways in gp120/MA-induced oxidative stress and apoptotic cell death in astrocytes, which has clinical implications in neurodegenerative diseases, including neuroAIDS.
Collapse
Affiliation(s)
- A Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
25
|
Jin M, Ande A, Kumar A, Kumar S. Regulation of cytochrome P450 2e1 expression by ethanol: role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis 2013; 4:e554. [PMID: 23519123 PMCID: PMC3615729 DOI: 10.1038/cddis.2013.78] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CYP2E1 metabolizes ethanol leading to production of reactive oxygen species (ROS) and acetaldehyde, which are known to cause not only liver damage but also toxicity to other organs. However, the signaling pathways involved in CYP2E1 regulation by ethanol are not clear, especially in extra-hepatic cells. This study was designed to examine the role of CYP2E1 in ethanol-mediated oxidative stress and cytotoxicity, as well as signaling pathways by which ethanol regulates CYP2E1 in extra-hepatic cells. In this study, we used astrocytic and monocytic cell lines, because they are important cells in central nervous system . Our results showed that 100 mM ethanol significantly induced oxidative stress, apoptosis, and cell death at 24 h in the SVGA astrocytic cell line, which was rescued by a CYP2E1 selective inhibitor, diallyl sulfide (DAS), CYP2E1 siRNA, and antioxidants (vitamins C and E). Further, we showed that DAS and vitamin C abrogated ethanol-mediated (50 mℳ) induction of CYP2E1 at 6 h, as well as production of ROS at 2 h, suggesting the role of oxidative stress in ethanol-mediated induction of CYP2E1. We then investigated the role of the protein kinase C/c-Jun N-terminal kinase/specificity protein1 (PKC/JNK/SP1) pathway in oxidative stress-mediated CYP2E1 induction. Our results showed that staurosporine, a non-specific inhibitor of PKC, as well as specific PKCζ inhibitor and PKCζ siRNA, abolished ethanol-induced CYP2E1 expression. In addition, inhibitors of JNK (SP600125) and SP1 (mithramycin A) completely abrogated induction of CYP2E1 by ethanol in SVGA astrocytes. Subsequently, we showed that CYP2E1 is also responsible for ethanol-mediated oxidative stress and apoptotic cell death in U937 monocytic cell lines. Finally, our results showed that PKC/JNK/SP1 pathway is also involved in regulation of CYP2E1 in U937 cells. This study has clinical implications with respect to alcohol-associated neuroinflammatory toxicity among alcohol users.
Collapse
Affiliation(s)
- M Jin
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
26
|
Tiwari S, Nair MP, Saxena SK. Latest trends in drugs of abuse - HIV infection and neuroAIDS. Future Virol 2013; 8:121-127. [PMID: 23626655 DOI: 10.2217/fvl.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug abuse and co-occurring infections are associated with significant morbidity and mortality. In particular, HIV infection is associated with serious neurological complications, including neuroAIDS. Therefore, on 13-15 September 2012, the OMICS Group (USA) and Shailendra K Saxena (Centre for Cellular and Molecular Biology, India) hosted a symposium titled: 'Drugs of Abuse - HIV Infection and NeuroAIDS: A Global Perspective' that was cochaired by Jag H Khalsa and Jeymohan Joseph of the NIH, MD, USA, at the 3rd World Congress on Biotechnology, in Hyderabad, India. Renowned scientists from India and the USA highlighted a number of issues, including the epidemiology, causes and underlying pathophysiological mechanisms of neuroAIDS, impact on health, and designing new treatment modalities (e.g., nanotherapeutics) for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sneham Tiwari
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007 AP, India
| | | | | |
Collapse
|
27
|
Kumar S, Jin M, Ande A, Sinha N, Silverstein PS, Kumar A. Alcohol consumption effect on antiretroviral therapy and HIV-1 pathogenesis: role of cytochrome P450 isozymes. Expert Opin Drug Metab Toxicol 2012; 8:1363-75. [PMID: 22871069 PMCID: PMC4033313 DOI: 10.1517/17425255.2012.714366] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Alcohol consumption, which is highly prevalent in HIV-infected individuals, poses serious concerns in terms of rate of acquisition of HIV-1 infection, HIV-1 replication, response to highly active antiretroviral therapy (HAART) and AIDS/neuroAIDS progression. However, little is known about the mechanistic pathways by which alcohol exerts these effects, especially with respect to HIV-1 replication and the patient's response to HAART. AREAS COVERED In this review, the authors discuss the effects of alcohol consumption on HIV-1 pathogenesis and its effect on HAART. They also describe the role of cytochrome P450 2E1 (CYP2E1) in alcohol-mediated oxidative stress and toxicity, and the role of CYP3A4 in the metabolism of drugs used in HAART (i.e., protease inhibitors (PI) and non-nucleoside reverse transcriptase inhibitors (NNRTI)). Based on the most recent findings the authors discuss the role of CYP2E1 in alcohol-mediated oxidative stress in monocytes/macrophages and astrocytes, as well as the role of CYP3A4 in alcohol-PI interactions leading to altered metabolism of PI in these cells. EXPERT OPINION The authors propose that alcohol and PI/NNRTI interact synergistically in monocytes/macrophages and astrocytes through the CYP pathway leading to an increase in oxidative stress and a decrease in response to HAART. Ultimately, this exacerbates HIV-1 pathogenesis and neuroAIDS.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri Kansas City, School of Pharmacy, 2464 Charlotte St., Kansas City, MO 64108, USA.
| | | | | | | | | | | |
Collapse
|