1
|
Galbo-Thomma LK, Epperly PM, Blough BE, Landavazo A, Saldaña SJ, Carroll FI, Czoty PW. Cognitive-Enhancing Effects of Acetylcholine Receptor Agonists in Group-Housed Cynomolgus Monkeys Who Drink Ethanol. J Pharmacol Exp Ther 2024; 389:258-267. [PMID: 38135508 PMCID: PMC11125785 DOI: 10.1124/jpet.123.001854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The cognitive impairments that are often observed in patients with alcohol use disorder (AUD) partially contribute to the extremely low rates of treatment initiation and adherence. Brain acetylcholine receptors (AChR) mediate and modulate cognitive and reward-related behavior, and their distribution can be altered by long-term heavy drinking. Therefore, AChRs are promising pharmacotherapeutic targets for treating the cognitive symptoms of AUD. In the present study, the procognitive efficacy of two AChR agonists, xanomeline and varenicline, were evaluated in group-housed monkeys who self-administered ethanol for more than 1 year. The muscarinic AChR antagonist scopolamine was used to disrupt performance of a serial stimulus discrimination and reversal (SDR) task designed to probe cognitive flexibility, defined as the ability to modify a previously learned behavior in response to a change in reinforcement contingencies. The ability of xanomeline and varenicline to remediate the disruptive effects of scopolamine was compared between socially dominant and subordinate monkeys, with lighter and heavier drinking histories, respectively. We hypothesized that subordinate monkeys would be more sensitive to all three drugs. Scopolamine dose-dependently impaired performance on the serial SDR task in all monkeys at doses lower than those that produced nonspecific impairments (e.g., sedation); its potency did not differ between dominant and subordinate monkeys. However, both AChR agonists were effective in remediating the scopolamine-induced deficit in subordinate monkeys but not in dominant monkeys. These findings suggest xanomeline and varenicline may be effective for enhancing cognitive flexibility in individuals with a history of heavy drinking. SIGNIFICANCE STATEMENT: Procognitive effects of two acetylcholine (ACh) receptor agonists were assessed in group-housed monkeys who had several years' experience drinking ethanol. The muscarinic ACh receptor agonist xanomeline and the nicotinic ACh receptor agonist varenicline reversed a cognitive deficit induced by the muscarinic ACh receptor antagonist scopolamine. However, this effect was observed only in lower-ranking (subordinate) monkeys and not higher-ranking (dominant monkeys). Results suggest that ACh agonists may effectively remediate alcohol-induced cognitive deficits in a subpopulation of those with alcohol use disorder.
Collapse
Affiliation(s)
- Lindsey K Galbo-Thomma
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Phillip M Epperly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Bruce E Blough
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Antonio Landavazo
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Santiago J Saldaña
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - F Ivy Carroll
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (L.K.G.-T., P.M.E., S.J.S., P.W.C.) and Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina (B.E.B., A.L., F.I.C.)
| |
Collapse
|
2
|
Kolpakova J, van der Vinne V, Gimenez-Gomez P, Le T, Martin GE. Binge alcohol drinking alters the differential control of cholinergic interneurons over nucleus accumbens D1 and D2 medium spiny neurons. Front Cell Neurosci 2022; 16:1010121. [PMID: 36589290 PMCID: PMC9797504 DOI: 10.3389/fncel.2022.1010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Animals studies support the notion that striatal cholinergic interneurons (ChIs) play a central role in basal ganglia function by regulating associative learning, reward processing, and motor control. In the nucleus accumbens (NAc), a brain region that mediates rewarding properties of substance abuse, acetylcholine regulates glutamatergic, dopaminergic, and GABAergic neurotransmission in naïve mice. However, it is unclear how ChIs orchestrate the control of these neurotransmitters/modulators to determine the synaptic excitability of medium spiny neurons (MSNs), the only projecting neurons that translate accumbens electrical activity into behavior. Also unknown is the impact of binge alcohol drinking on the regulation of dopamine D1- and D2 receptor-expressing MSNs (D1- and D2-MSNs, respectively) by ChIs. To investigate this question, we optogenetically stimulated ChIs while recording evoked and spontaneous excitatory postsynaptic currents (sEPSCs) in nucleus accumbens core D1- and D2-MSN of ChAT.ChR2.eYFPxDrd1.tdtomato mice. In alcohol-naïve mice, we found that stimulating NAc ChIs decreased sEPSCs frequency in both D1- and D2-MSNs, presumably through a presynaptic mechanism. Interestingly, ChI stimulation decreased MSN synaptic excitability through different mechanisms in D1- vs. D2-MSNs. While decrease of ChI-mediated sEPSCs frequency in D1-MSNs was mediated by dopamine, the same effect in D2-MSNs resulted from a direct control of glutamate release by ChIs. Interestingly, after 2 weeks of binge alcohol drinking, optogenetic stimulation of ChIs enhanced glutamate release in D1-MSNs, while its effect on D2-MSNs remained unchanged. Taken together, these data suggest that cholinergic interneurons could be a key target for regulation of NAc circuitry and for alcohol consumption.
Collapse
Affiliation(s)
- Jenya Kolpakova
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States,Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | | - Pablo Gimenez-Gomez
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States,Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Gilles E. Martin,
| |
Collapse
|
3
|
Smart K, Naganawa M, Baldassarri SR, Nabulsi N, Ropchan J, Najafzadeh S, Gao H, Navarro A, Barth V, Esterlis I, Cosgrove KP, Huang Y, Carson RE, Hillmer AT. PET Imaging Estimates of Regional Acetylcholine Concentration Variation in Living Human Brain. Cereb Cortex 2021; 31:2787-2798. [PMID: 33442731 PMCID: PMC8355478 DOI: 10.1093/cercor/bhaa387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) has distinct functional roles in striatum compared with cortex, and imbalance between these systems may contribute to neuropsychiatric disease. Preclinical studies indicate markedly higher ACh concentrations in the striatum. The goal of this work was to leverage positron emission tomography (PET) imaging estimates of drug occupancy at cholinergic receptors to explore ACh variation across the human brain, because these measures can be influenced by competition with endogenous neurotransmitter. PET scans were analyzed from healthy human volunteers (n = 4) and nonhuman primates (n = 2) scanned with the M1-selective radiotracer [11C]LSN3172176 in the presence of muscarinic antagonist scopolamine, and human volunteers (n = 10) scanned with the α4β2* nicotinic ligand (-)-[18F]flubatine during nicotine challenge. In all cases, occupancy estimates within striatal regions were consistently lower (M1/scopolamine human scans, 31 ± 3.4% occupancy in striatum, 43 ± 2.9% in extrastriatal regions, p = 0.0094; nonhuman primate scans, 42 ± 26% vs. 69 ± 28%, p < 0.0001; α4β2*/nicotine scans, 67 ± 15% vs. 74 ± 16%, p = 0.0065), indicating higher striatal ACh concentration. Subject-level measures of these concentration differences were estimated, and whole-brain images of regional ACh concentration gradients were generated. These results constitute the first in vivo estimates of regional variation in ACh concentration in the living brain and offer a novel experimental method to assess potential ACh imbalances in clinical populations.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jim Ropchan
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Gao
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly P Cosgrove
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Vivekanandarajah A, Nelson ME, Kinney HC, Elliott AJ, Folkerth RD, Tran H, Cotton J, Jacobs P, Minter M, McMillan K, Duncan JR, Broadbelt KG, Schissler K, Odendaal HJ, Angal J, Brink L, Burger EH, Coldrey JA, Dempers J, Boyd TK, Fifer WP, Geldenhuys E, Groenewald C, Holm IA, Myers MM, Randall B, Schubert P, Sens MA, Wright CA, Roberts DJ, Nelsen L, Wadee S, Zaharie D, Haynes RL. Nicotinic Receptors in the Brainstem Ascending Arousal System in SIDS With Analysis of Pre-natal Exposures to Maternal Smoking and Alcohol in High-Risk Populations of the Safe Passage Study. Front Neurol 2021; 12:636668. [PMID: 33776893 PMCID: PMC7988476 DOI: 10.3389/fneur.2021.636668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pre-natal exposures to nicotine and alcohol are known risk factors for sudden infant death syndrome (SIDS), the leading cause of post-neonatal infant mortality. Here, we present data on nicotinic receptor binding, as determined by 125I-epibatidine receptor autoradiography, in the brainstems of infants dying of SIDS and of other known causes of death collected from the Safe Passage Study, a prospective, multicenter study with clinical sites in Cape Town, South Africa and 5 United States sites, including 2 American Indian Reservations. We examined 15 pons and medulla regions related to cardiovascular control and arousal in infants dying of SIDS (n = 12) and infants dying from known causes (n = 20, 10 pre-discharge from time of birth, 10 post-discharge). Overall, there was a developmental decrease in 125I-epibatidine binding with increasing postconceptional age in 5 medullary sites [raphe obscurus, gigantocellularis, paragigantocellularis, centralis, and dorsal accessory olive (p = 0.0002-0.03)], three of which are nuclei containing serotonin cells. Comparing SIDS with post-discharge known cause of death (post-KCOD) controls, we found significant decreased binding in SIDS in the nucleus pontis oralis (p = 0.02), a critical component of the cholinergic ascending arousal system of the rostral pons (post-KCOD, 12.1 ± 0.9 fmol/mg and SIDS, 9.1 ± 0.78 fmol/mg). In addition, we found an effect of maternal smoking in SIDS (n = 11) combined with post-KCOD controls (n = 8) on the raphe obscurus (p = 0.01), gigantocellularis (p = 0.02), and the paragigantocellularis (p = 0.002), three medullary sites found in this study to have decreased binding with age and found in previous studies to have abnormal indices of serotonin neurotransmission in SIDS infants. At these sites, 125I-epibatidine binding increased with increasing cigarettes per week. We found no effect of maternal drinking on 125I-epibatidine binding at any site measured. Taken together, these data support changes in nicotinic receptor binding related to development, cause of death, and exposure to maternal cigarette smoking. These data present new evidence in a prospective study supporting the roles of developmental factors, as well as adverse exposure on nicotinic receptors, in serotonergic nuclei of the rostral medulla-a finding that highlights the interwoven and complex relationship between acetylcholine (via nicotinic receptors) and serotonergic neurotransmission in the medulla.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Morgan E. Nelson
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Hannah C. Kinney
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Amy J. Elliott
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Rebecca D. Folkerth
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Forensic Medicine, New York University School of Medicine, New York City, NY, United States
| | - Hoa Tran
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jacob Cotton
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Perri Jacobs
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Megan Minter
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kristin McMillan
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jhodie R. Duncan
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kevin G. Broadbelt
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Schissler
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Hein J. Odendaal
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Jyoti Angal
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, United States
| | - Lucy Brink
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Elsie H. Burger
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Jean A. Coldrey
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Johan Dempers
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Theonia K. Boyd
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | - William P. Fifer
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, United States
| | - Elaine Geldenhuys
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Coen Groenewald
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Ingrid A. Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Michael M. Myers
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, United States
| | - Bradley Randall
- Department of Pathology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Pawel Schubert
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Colleen A. Wright
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
- Lancet Laboratories, Johannesburg, South Africa
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | | | - Shabbir Wadee
- Division of Forensic Pathology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University & Western Cape Forensic Pathology Service, Tygerberg, South Africa
| | - Dan Zaharie
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| | - Robin L. Haynes
- Department of Pathology, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, United States
| | | |
Collapse
|
5
|
Affan RO, Huang S, Cruz SM, Holcomb LA, Nguyen E, Marinkovic K. High-intensity binge drinking is associated with alterations in spontaneous neural oscillations in young adults. Alcohol 2018; 70:51-60. [PMID: 29778070 DOI: 10.1016/j.alcohol.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/07/2023]
Abstract
Heavy episodic alcohol consumption (also termed binge drinking) contributes to a wide range of health and cognitive deficits, but the associated brain-based indices are poorly understood. The current study used electroencephalography (EEG) to examine spontaneous neural oscillations in young adults as a function of quantity, frequency, and the pattern of their alcohol consumption. Sixty-one young adults (23.4 ± 3.4 years of age) were assigned to binge drinking (BD) and light drinking (LD) groups that were equated on gender, race/ethnic identity, age, educational background, and family history of alcoholism. EEG activity was recorded during eyes-open and eyes-closed resting conditions. Each participant's alpha peak frequency (APF) was used to calculate absolute power in individualized theta and alpha frequency bands, with a canonical frequency range used for beta. APF was slower by 0.7 Hz in BD, especially in individuals engaging in high-intensity drinking, but there were no changes in alpha power. BD also exhibited higher frontal theta and beta power than LD. Alpha slowing and increased theta power in BD remained after accounting for depression, anxiety, and personality characteristics, while elevated beta power covaried with sensation seeking. Furthermore, APF slowing and theta power correlated with various measures of alcohol consumption, including binge episodes and blackouts, but not with measures of working and episodic memory, cognitive flexibility, processing speed, or personality variables, suggesting that these physiological changes may be modulated by high-intensity alcohol intake. These results are consistent with studies of alcohol-use disorder (AUD) and support the hypothesis that binge drinking is a transitional stage toward alcohol dependence. The observed thalamocortical dysrhythmia may be indicative of an excitatory-inhibitory imbalance in BD and may potentially serve as an index of the progressive development of AUD, with a goal of informing possible interventions to minimize alcohol's deleterious effects on the brain.
Collapse
|
6
|
|
7
|
Betthauser TJ, Hillmer AT, Lao PJ, Ehlerding E, Mukherjee J, Stone CK, Christian BT. Human biodistribution and dosimetry of [ 18F]nifene, an α4β2* nicotinic acetylcholine receptor PET tracer. Nucl Med Biol 2017; 55:7-11. [PMID: 28963927 DOI: 10.1016/j.nucmedbio.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The α4β2* nicotinic acetylcholine receptor (nAChR) system is implicated in many neuropsychiatric pathologies. [18F]Nifene is a positron emission tomography (PET) ligand that has shown promise for in vivo imaging of the α4β2* nAChR system in preclinical models and humans. This work establishes the radiation burden associated with [18F]nifene PET scans in humans. METHODS Four human subjects (2M, 2F) underwent whole-body PET/CT scans to determine the human biodistribution of [18F]nifene. Source organs were identified and time-activity-curves (TACs) were extracted from the PET time-series. Dose estimates were calculated for each subject using OLINDA/EXM v1.1. RESULTS [18F]Nifene was well tolerated by all subjects with no adverse events reported. The mean whole-body effective dose was 28.4±3.8 mSv/MBq without bladder voiding, and 22.6±1.9 mSv/MBq with hourly micturition. The urinary bladder radiation dose limited the maximum injected dose for a single scan to 278 MBq without urinary bladder voiding, and 519 MBq with hourly voiding. CONCLUSIONS [18F]Nifene is a safe PET radioligand for imaging the α4β2* nAChR system in humans. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This works presents human internal dosimetry for [18F]nifene in humans for the first time. These results facilitate safe development of future [18F]nifene studies to image the α4β2* nAChR system in humans.
Collapse
Affiliation(s)
- Tobey J Betthauser
- Department of Medical Physics, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Ansel T Hillmer
- Departments of Radiology and Biomedical Imaging, Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Patrick J Lao
- Department of Medical Physics, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA
| | - Emily Ehlerding
- Department of Medical Physics, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California - Irvine, Irvine, CA, USA
| | - Charles K Stone
- Department of Medicine, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
8
|
Lao PJ, Betthauser TJ, Tudorascu DL, Barnhart TE, Hillmer AT, Stone CK, Mukherjee J, Christian BT. [ 18 F]Nifene test-retest reproducibility in first-in-human imaging of α4β2* nicotinic acetylcholine receptors. Synapse 2017; 71. [PMID: 28420041 DOI: 10.1002/syn.21981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/10/2022]
Abstract
The aim of this study was to examine the suitability of [18 F]nifene, a novel α4β2* nicotinic acetylcholine receptor (nAChR) radiotracer, for in vivo brain imaging in a first-in-human study. METHODS Eight healthy subjects (4 M,4 F;21-69,44 ± 21 yrs) underwent a [18 F]nifene positron emission tomography scan (200 ± 3.7 MBq), and seven underwent a second scan within 58 ± 31 days. Regional estimates of DVR were measured using the multilinear reference tissue model (MRTM2) with the corpus callosum as reference region. DVR reproducibility was evaluated with test-retest variability (TRV) and intraclass correlation coefficient (ICC). RESULTS The DVR ranged from 1.3 to 2.5 across brain regions with a TRV of 0-7%, and did not demonstrate a systematic difference between test and retest. The ICCs ranged from 0.2 to 0.9. DVR estimates were stable after 40 min. CONCLUSION The binding profile and tracer kinetics of [18 F]nifene make it a promising α4β2* nAChR radiotracer for scientific research in humans, with reliable DVR test-retest reproducibility.
Collapse
Affiliation(s)
- Patrick J Lao
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin, 53705
| | - Tobey J Betthauser
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin, 53705
| | - Dana L Tudorascu
- Department of Medicine, Biostatistics, Psychiatry, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, and Psychiatry, Yale University, New Haven, Connecticut, 06520
| | - Charles K Stone
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53705
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, University of California-Irvine, Irvine, California, 92697
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53705.,Waisman Laboratory for Brain Imaging and Behavior, Madison, Wisconsin, 53705.,Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| |
Collapse
|
9
|
Developmental Ethanol Exposure Leads to Long-Term Deficits in Attention and Its Underlying Prefrontal Circuitry. eNeuro 2016; 3:eN-NWR-0267-16. [PMID: 27844059 PMCID: PMC5099605 DOI: 10.1523/eneuro.0267-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/18/2016] [Accepted: 10/22/2016] [Indexed: 11/21/2022] Open
Abstract
Chronic prenatal exposure to ethanol can lead to a spectrum of teratogenic outcomes that are classified in humans as fetal alcohol spectrum disorders (FASD). One of the most prevalent and persistent neurocognitive components of FASD is attention deficits, and it is now thought that these attention deficits differ from traditional attention deficit hyperactivity disorder (ADHD) in their quality and response to medication. However, the neuronal mechanisms underlying attention deficits in FASD are not well understood. We show here that after developmental binge-pattern ethanol exposure, adult mice exhibit impaired performance on the five-choice serial reaction time test for visual attention, with lower accuracy during initial training and a higher rate of omissions under challenging conditions of high attention demand. Whole-cell electrophysiology experiments in these same mice find dysregulated pyramidal neurons in layer VI of the medial prefrontal cortex, which are critical for normal attention performance. Layer VI neurons show decreased intrinsic excitability and increased responses to stimulation of both nicotinic acetylcholine receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. Moreover, although nicotinic acetylcholine responses correlate with performance on the five-choice task in control mice, these relationships are completely disrupted in mice exposed to ethanol during development. These findings demonstrate a novel outcome of developmental binge-pattern ethanol exposure and suggest that persistent alterations to the function of prefrontal layer VI neurons play an important mechanistic role in attention deficits associated with FASD.
Collapse
|
10
|
Rahman S, Engleman EA, Bell RL. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:183-201. [PMID: 26810002 PMCID: PMC4754113 DOI: 10.1016/bs.pmbts.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA.
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Hillmer AT, Mason GF, Fucito LM, O'Malley SS, Cosgrove KP. How Imaging Glutamate, γ-Aminobutyric Acid, and Dopamine Can Inform the Clinical Treatment of Alcohol Dependence and Withdrawal. Alcohol Clin Exp Res 2015; 39:2268-82. [PMID: 26510169 DOI: 10.1111/acer.12893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/29/2015] [Indexed: 12/29/2022]
Abstract
Neuroimaging studies have dramatically advanced our understanding of the neurochemical basis of alcohol dependence, a major public health issue. In this paper, we review the research generated from neurochemical specific imaging modalities including magnetic resonance spectroscopy, positron emission tomography, and single-photon emission computed tomography in studies of alcohol dependence and withdrawal. We focus on studies interrogating γ-aminobutyric acid (GABA), glutamate, and dopamine, as these are prominent neurotransmitter systems implicated in alcohol dependence. Highlighted findings include diminished dopaminergic functioning and modulation of the GABA system by tobacco smoking during alcohol withdrawal. Then, we consider how these findings impact the clinical treatment of alcohol dependence and discuss directions for future experiments to address existing gaps in the literature, for example, sex differences and smoking comorbidity. These and other considerations provide opportunities to build upon the current neurochemistry imaging literature of alcohol dependence and withdrawal, which may usher in improved therapeutic and relapse prevention strategies.
Collapse
Affiliation(s)
- Ansel T Hillmer
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Graeme F Mason
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Lisa M Fucito
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie S O'Malley
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P Cosgrove
- Departments of Psychiatry and Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Hillmer AT, Wooten DW, Tudorascu DL, Barnhart TE, Ahlers EO, Resch LM, Larson JA, Converse AK, Moore CF, Schneider ML, Christian BT. The effects of chronic alcohol self-administration on serotonin-1A receptor binding in nonhuman primates. Drug Alcohol Depend 2014; 144:119-26. [PMID: 25220896 PMCID: PMC4253864 DOI: 10.1016/j.drugalcdep.2014.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/13/2014] [Accepted: 08/20/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous studies have found interrelationships between the serotonin system and alcohol self-administration. The goal of this work was to directly observe in vivo effects of chronic ethanol self-administration on serotonin 5-HT1A receptor binding with [(18)F]mefway PET neuroimaging in rhesus monkeys. Subjects were first imaged alcohol-naïve and again during chronic ethanol self-administration to quantify changes in 5-HT1A receptor binding. METHODS Fourteen rhesus monkey subjects (10.7-12.8 years) underwent baseline [(18)F]mefway PET scans prior to alcohol exposure. Subjects then drank gradually increasing ethanol doses over four months as an induction period, immediately followed by at least nine months ad libidum ethanol access. A post [(18)F]mefway PET scan was acquired during the final three months of ad libidum ethanol self-administration. 5-HT1A receptor binding was assayed with binding potential (BPND) using the cerebellum as a reference region. Changes in 5-HT1A binding during chronic ethanol self-administration were examined. Relationships of binding metrics with daily ethanol self-administration were also assessed. RESULTS Widespread increases in 5-HT1A binding were observed during chronic ethanol self-administration, independent of the amount of ethanol consumed. A positive correlation between 5-HT1A binding in the raphe nuclei and average daily ethanol self-administration was also observed, indicating that baseline 5-HT1A binding in this region predicted drinking levels. CONCLUSIONS The increase in 5-HT1A binding levels during chronic ethanol self-administration demonstrates an important modulation of the serotonin system due to chronic alcohol exposure. Furthermore, the correlation between 5-HT1A binding in the raphe nuclei and daily ethanol self-administration indicates a relationship between the serotonin system and alcohol self-administration.
Collapse
Affiliation(s)
- Ansel T. Hillmer
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison,Department of Medical Physics, University of Wisconsin, Madison
| | - Dustin W. Wooten
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison,Department of Medical Physics, University of Wisconsin, Madison
| | - Dana L. Tudorascu
- Department of Internal Medicine, University of Pittsburgh,Department of Biostatistics, University of Pittsburgh
| | | | - Elizabeth O. Ahlers
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison
| | - Leslie M. Resch
- Harlow Center for Biological Psychology, University of Wisconsin, Madison,Department of Kinesiology, University of Wisconsin, Madison
| | - Julie A. Larson
- Harlow Center for Biological Psychology, University of Wisconsin, Madison,Department of Kinesiology, University of Wisconsin, Madison
| | | | - Colleen F. Moore
- Department of Psychology, University of Wisconsin, Madison,Department of Psychology, Montana State University
| | - Mary L. Schneider
- Harlow Center for Biological Psychology, University of Wisconsin, Madison,Department of Kinesiology, University of Wisconsin, Madison,Department of Psychology, University of Wisconsin, Madison
| | - Bradley T. Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison,Department of Medical Physics, University of Wisconsin, Madison,Department of Psychiatry, University of Wisconsin, Madison
| |
Collapse
|