1
|
Kim Y, Lane SP, Miller AP, Wilhelmsen KC, Gizer IR. Genetic Risk for Alcohol Use Disorder in Relation to Individual Symptom Criteria: Do Polygenic Indices Provide Unique Information for Understanding Severity and Heterogeneity? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24313762. [PMID: 39399010 PMCID: PMC11469397 DOI: 10.1101/2024.09.20.24313762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Alcohol Use Disorder (AUD) is a heterogenous category with many unique configurations of symptoms. Previous investigations of AUD heterogeneity using molecular genetics methods studied the association between genetic liability and individual AUD symptoms at the latent level or focusing on a small number of genetic variants. Notably, these studies did not investigate potential severity differences between symptoms in their genetic analyses. Therefore, the current study aimed to examine the genetic risk for individual AUD symptom criteria by using a polygenic risk score (PRS) approach to assess the relative severity of each AUD symptom and test for associates with AUD symptoms above and beyond a unidimensional AUD construct. An AUD PRS was created using summary statistics obtained from published genome-wide association studies (GWAS), and Multiple Indicators Multiple Causes (MIMIC) models were employed to examine the effect of the PRS on overall AUD severity as well as on individual symptoms after accounting for this overall effect. The phenotypic severity of AUD symptoms was highly correlated with the genetic severity of AUD symptoms (r = 0.78). Results of MIMIC models indicated that the AUD PRS significantly predicted the AUD factor. Regression paths testing the unique, direct effects of the PRS on individual AUD symptoms, independent of the latent AUD factor, were not significant. These results imply that PRSs derived from GWAS of AUD influence symptom expression through a single genetic factor that is highly correlated with the relative severity of individual symptoms when measured at the phenotypic level. Item-level GWAS of AUD symptoms are needed to further parse heterogeneous symptom expression and allow for more nuanced tests of these conclusions.
Collapse
Affiliation(s)
- Yongguk Kim
- Department of Psychological Sciences, University of Missouri-Columbia
| | - Sean P. Lane
- Department of Psychological Sciences, University of Missouri-Columbia
| | - Alex P. Miller
- Department of Psychiatry, Indiana University School of Medicine
| | - Kirk C. Wilhelmsen
- Rockefeller Neuroscience Institute, West Virginia University
- Department of Neurology, West Virginia University
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri-Columbia
| |
Collapse
|
2
|
Berg SJ, Zaso MJ, Biehler KM, Read JP. Self-Compassion and Self-Forgiveness in Alcohol Risk, Treatment and Recovery: A Systematic Review. Clin Psychol Psychother 2024; 31:e2987. [PMID: 38769941 PMCID: PMC11360266 DOI: 10.1002/cpp.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Self-compassion and self-forgiveness are two self-focused, positive coping approaches that may reduce risk of problem drinking and/or aid in treatment/recovery from alcohol use disorder. The present systematic review aimed to evaluate support for the unique and complementary roles of self-compassion and self-forgiveness in alcohol outcomes. METHODS A systematic literature search yielded 18 studies examining self-compassion, 18 studies examining self-forgiveness and 1 study examining both constructs in alcohol outcomes. RESULTS Findings suggest greater self-compassion and self-forgiveness relate to lower likelihood of problem drinking. Self-forgiveness was considerably more researched in treatment/recovery outcomes than self-compassion; self-forgiveness-based interventions appear able to improve drinking-adjacent outcomes, and self-forgiveness may increase across various alcohol treatments. Finally, research suggests that associations of self-compassion and/or self-forgiveness with alcohol outcomes could be driven by numerous factors, including coping-motivated drinking, depression, psychache, social support perceptions, mental health status and/or psychiatric distress. CONCLUSIONS Self-compassion and self-forgiveness both appear protective against harmful alcohol outcomes. Nevertheless, many questions remain about the role of self-forgiveness and, particularly, self-compassion in alcohol treatment and recovery outcomes. Future research should examine whether targeted interventions and/or adjunctive therapeutic supports designed to increase self-compassion or self-forgiveness can reduce alcohol use disorder symptoms to facilitate alcohol treatment and recovery success.
Collapse
Affiliation(s)
- Sophia J. Berg
- Department of Psychology, University at Buffalo – The State University of New York, 204 Park Hall, North Campus, Buffalo, NY 14260
| | - Michelle J. Zaso
- Department of Psychology, University at Buffalo – The State University of New York, 204 Park Hall, North Campus, Buffalo, NY 14260
- Department of Psychology, Syracuse University, 430 Huntington Hall, Syracuse, NY 13244
| | - Kaitlyn M. Biehler
- Department of Psychology, University at Buffalo – The State University of New York, 204 Park Hall, North Campus, Buffalo, NY 14260
| | - Jennifer P. Read
- Department of Psychology, University at Buffalo – The State University of New York, 204 Park Hall, North Campus, Buffalo, NY 14260
| |
Collapse
|
3
|
Deutsch AR, Chau E, Motabar N, Jalali MS. Grounding alcohol simulation models in empirical and theoretical alcohol research: a model for a Northern Plains population in the United States. SYSTEM DYNAMICS REVIEW 2023; 39:207-238. [PMID: 38107548 PMCID: PMC10723070 DOI: 10.1002/sdr.1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/05/2023] [Indexed: 12/19/2023]
Abstract
The growing number of systems science simulation models for alcohol use (AU) are often disconnected from AU models within empirical and theoretical alcohol research. As AU prevention/intervention efforts are typically grounded in alcohol research, this disconnect may reduce policy testing results, impact, and implementation. We developed a simulation model guided by AU research (accounting for the multiple AU stages defined by AU behavior and risk for harm and diverse transitions between stages). Simulated projections were compared to historical data to evaluate model accuracy and potential policy leverage points for prevention and intervention at risky drinking (RD) and alcohol use disorder (AUD) stages. Results indicated prevention provided the greatest RD and AUD reduction; however, focusing exclusively on AUD prevention may not be effective for long-term change, given the continued increase in RD. This study makes a case for the strength and importance of aligning subject-based research with systems science simulation models.
Collapse
Affiliation(s)
- Arielle R Deutsch
- Avera Research Institute, Avera Health, Sioux Falls, SD, USA
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Nikki Motabar
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Mohammad S Jalali
- University of California Santa Barbara, Santa Barbara, CA, USA
- MGH Institute for Technology Assessment, Harvard Medical School, Boston, MA, USA
- Sloan School of Management, Massachusetts, Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Palmer RHC, Johnson EC, Won H, Polimanti R, Kapoor M, Chitre A, Bogue MA, Benca‐Bachman CE, Parker CC, Verma A, Reynolds T, Ernst J, Bray M, Kwon SB, Lai D, Quach BC, Gaddis NC, Saba L, Chen H, Hawrylycz M, Zhang S, Zhou Y, Mahaffey S, Fischer C, Sanchez‐Roige S, Bandrowski A, Lu Q, Shen L, Philip V, Gelernter J, Bierut LJ, Hancock DB, Edenberg HJ, Johnson EO, Nestler EJ, Barr PB, Prins P, Smith DJ, Akbarian S, Thorgeirsson T, Walton D, Baker E, Jacobson D, Palmer AA, Miles M, Chesler EJ, Emerson J, Agrawal A, Martone M, Williams RW. Integration of evidence across human and model organism studies: A meeting report. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12738. [PMID: 33893716 PMCID: PMC8365690 DOI: 10.1111/gbb.12738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
The National Institute on Drug Abuse and Joint Institute for Biological Sciences at the Oak Ridge National Laboratory hosted a meeting attended by a diverse group of scientists with expertise in substance use disorders (SUDs), computational biology, and FAIR (Findability, Accessibility, Interoperability, and Reusability) data sharing. The meeting's objective was to discuss and evaluate better strategies to integrate genetic, epigenetic, and 'omics data across human and model organisms to achieve deeper mechanistic insight into SUDs. Specific topics were to (a) evaluate the current state of substance use genetics and genomics research and fundamental gaps, (b) identify opportunities and challenges of integration and sharing across species and data types, (c) identify current tools and resources for integration of genetic, epigenetic, and phenotypic data, (d) discuss steps and impediment related to data integration, and (e) outline future steps to support more effective collaboration-particularly between animal model research communities and human genetics and clinical research teams. This review summarizes key facets of this catalytic discussion with a focus on new opportunities and gaps in resources and knowledge on SUDs.
Collapse
Affiliation(s)
- Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| | - Emma C. Johnson
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Hyejung Won
- Department of Genetics and Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Renato Polimanti
- Department of PsychiatryYale University School of MedicineWest HavenConnecticutUSA
| | - Manav Kapoor
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Apurva Chitre
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Chelsie E. Benca‐Bachman
- Behavioral Genetics of Addiction Laboratory, Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| | - Clarissa C. Parker
- Department of Psychology and Program in NeuroscienceMiddlebury CollegeMiddleburyVermontUSA
| | - Anurag Verma
- Biomedical and Translational Informatics LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Jason Ernst
- Department of Biological ChemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Michael Bray
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Soo Bin Kwon
- Department of Biological ChemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dongbing Lai
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Bryan C. Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Nathan C. Gaddis
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Laura Saba
- Department of Pharmaceutical SciencesUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and ToxicologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Shan Zhang
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichiganUSA
| | - Yuan Zhou
- Department of Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Colorado DenverAuroraColoradoUSA
| | - Christian Fischer
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Sandra Sanchez‐Roige
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Anita Bandrowski
- Department of NeuroscienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Qing Lu
- Department of Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Joel Gelernter
- Department of PsychiatryYale University School of MedicineWest HavenConnecticutUSA
| | - Laura J. Bierut
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Howard J. Edenberg
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Eric O. Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Pjotr Prins
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Desmond J. Smith
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, UCLALos AngelesCaliforniaUSA
| | - Schahram Akbarian
- Friedman Brain Institute and Departments of Psychiatry and NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | | | - Erich Baker
- Department of Computer ScienceBaylor UniversityWacoTexasUSA
| | - Daniel Jacobson
- Computational and Predictive Biology, BiosciencesOak Ridge National LaboratoryOak RidgeTennesseeUSA
- Department of PsychologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Genomic Medicine, University of California San DiegoLa JollaCaliforniaUSA
| | - Michael Miles
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | | | - Arpana Agrawal
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Maryann Martone
- Department of NeuroscienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Robert W. Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
6
|
Blokhin IO, Khorkova O, Saveanu RV, Wahlestedt C. Molecular mechanisms of psychiatric diseases. Neurobiol Dis 2020; 146:105136. [PMID: 33080337 DOI: 10.1016/j.nbd.2020.105136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
For most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing. Current review summarizes these and other molecular mechanisms of such psychiatric illnesses as schizophrenia, major depressive disorder, and alcohol use disorder and suggests a conceptual framework for future studies.
Collapse
Affiliation(s)
- Ilya O Blokhin
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America; Jackson Memorial Hospital, Miami, FL, United States of America
| | - Olga Khorkova
- OPKO Health Inc., Miami, FL, United States of America
| | - Radu V Saveanu
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
7
|
Schifano F. Coming Off Prescribed Psychotropic Medications: Insights from Their Use as Recreational Drugs. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 89:274-282. [PMID: 32615566 DOI: 10.1159/000507897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Fabrizio Schifano
- Psychopharmacology, Drug Misuse, and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom,
| |
Collapse
|
8
|
Lai D, Wetherill L, Bertelsen S, Carey CE, Kamarajan C, Kapoor M, Meyers JL, Anokhin AP, Bennett DA, Bucholz KK, Chang KK, De Jager PL, Dick DM, Hesselbrock V, Kramer J, Kuperman S, Nurnberger JI, Raj T, Schuckit M, Scott DM, Taylor RE, Tischfield J, Hariri AR, Edenberg HJ, Agrawal A, Bogdan R, Porjesz B, Goate AM, Foroud T. Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12579. [PMID: 31090166 PMCID: PMC6612573 DOI: 10.1111/gbb.12579] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/19/2019] [Accepted: 05/11/2019] [Indexed: 01/04/2023]
Abstract
Genome-wide association studies (GWAS) of alcohol dependence (AD) have reliably identified variation within alcohol metabolizing genes (eg, ADH1B) but have inconsistently located other signals, which may be partially attributable to symptom heterogeneity underlying the disorder. We conducted GWAS of DSM-IV AD (primary analysis), DSM-IV AD criterion count (secondary analysis), and individual dependence criteria (tertiary analysis) among 7418 (1121 families) European American (EA) individuals from the Collaborative Study on the Genetics of Alcoholism (COGA). Trans-ancestral meta-analyses combined these results with data from 3175 (585 families) African-American (AA) individuals from COGA. In the EA GWAS, three loci were genome-wide significant: rs1229984 in ADH1B for AD criterion count (P = 4.16E-11) and Desire to cut drinking (P = 1.21E-11); rs188227250 (chromosome 8, Drinking more than intended, P = 6.72E-09); rs1912461 (chromosome 15, Time spent drinking, P = 1.77E-08). In the trans-ancestral meta-analysis, rs1229984 was associated with multiple phenotypes and two additional loci were genome-wide significant: rs61826952 (chromosome 1, DSM-IV AD, P = 8.42E-11); rs7597960 (chromosome 2, Time spent drinking, P = 1.22E-08). Associations with rs1229984 and rs18822750 were replicated in independent datasets. Polygenic risk scores derived from the EA GWAS of AD predicted AD in two EA datasets (P < .01; 0.61%-1.82% of variance). Identified novel variants (ie, rs1912461, rs61826952) were associated with differential central evoked theta power (loss - gain; P = .0037) and reward-related ventral striatum reactivity (P = .008), respectively. This study suggests that studying individual criteria may unveil new insights into the genetic etiology of AD liability.
Collapse
Affiliation(s)
- Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mt.
Sinai, New York, NY
| | - Caitlin E. Carey
- BRAIN Lab, Department of Psychological and Brain Sciences,
Washington University School of Medicine, St. Louis, MO
| | - Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of
Psychiatry, State University of New York, Downstate Medical Center, Brooklyn,
NY
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt.
Sinai, New York, NY
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, Department of
Psychiatry, State University of New York, Downstate Medical Center, Brooklyn,
NY
| | - Andrey P. Anokhin
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University
Medical Center, Chicago, IL
| | - Kathleen K. Bucholz
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO
| | - Katharine K. Chang
- BRAIN Lab, Department of Psychological and Brain Sciences,
Washington University School of Medicine, St. Louis, MO
| | - Philip L. De Jager
- Departments of Neurology and Psychiatry, Brigham and
Women's Hospital, Boston, MA
| | - Danielle M. Dick
- Department of Psychology, Virginia Commonwealth University,
Richmond, VA
| | | | - John Kramer
- Department of Psychiatry, Roy Carver College of Medicine,
University of Iowa, Iowa City, IA
| | - Samuel Kuperman
- Department of Psychiatry, Roy Carver College of Medicine,
University of Iowa, Iowa City, IA
| | - John I. Nurnberger
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
- Department of Psychiatry, Indiana University School of
Medicine, Indianapolis, IN
| | - Towfique Raj
- Department of Neuroscience, Icahn School of Medicine at Mt.
Sinai, New York, NY
| | - Marc Schuckit
- Department of Psychiatry, University of California, San
Diego Medical School, San Diego, CA
| | - Denise M. Scott
- Departments of Pediatrics and Human Genetics, Howard
University, Washington, DC
| | | | | | - Ahmad R. Hariri
- Laboratory of NeuroGenetics, Department of Psychology and
Neuroscience, Duke University, Durham, NC, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, IN
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO
| | - Ryan Bogdan
- BRAIN Lab, Department of Psychological and Brain Sciences,
Washington University School of Medicine, St. Louis, MO
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of
Psychiatry, State University of New York, Downstate Medical Center, Brooklyn,
NY
| | - Alison M. Goate
- Department of Neuroscience, Icahn School of Medicine at Mt.
Sinai, New York, NY
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN
| |
Collapse
|