1
|
Nalam P, Cook PD, Smith BA. Structural and Biochemical Characterization of Aminoglycoside Nucleotidyltransferase(6)-Ib From Campylobacter fetus subsp. fetus. Proteins 2025; 93:413-419. [PMID: 39246239 DOI: 10.1002/prot.26745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Aminoglycoside antibiotics have played a critical role in the treatment of both Gram-negative and Gram-positive bacterial infections. However, antibiotic resistance has severely compromised the efficacy of aminoglycosides. A leading cause of aminoglycoside resistance is mediated by bacterial enzymes that inactivate these drugs via chemical modification. Aminoglycoside nucleotidyltransferase-6 (ANT(6)) enzymes inactivate streptomycin by transferring an adenyl group from ATP to position 6 on the antibiotic. Despite the clinical significance of this activity, ANT(6) enzymes remain relatively uncharacterized. Here, we report the first high resolution x-ray crystallographic structure of ANT(6)-Ib from Campylobacter fetus subsp. fetus bound with streptomycin. Structural modeling and gel filtration chromatography experiments suggest that the enzyme exists as a dimer in which both subunits contribute to the active site. Moreover, superposition of the ANT(6)-Ib structure with the structurally related enzyme lincosamide nucleotidyltransferase B (LinB) permitted the identification of a putative nucleotide binding site. These data also suggest that residues D44 and D46 coordinate essential divalent metal ions and D102 functions as the catalytic base.
Collapse
Affiliation(s)
- Pranav Nalam
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Paul D Cook
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Brian A Smith
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| |
Collapse
|
2
|
Astudillo CA, López-Cortés XA, Ocque E, Manríquez-Troncoso JM. Multi-label classification to predict antibiotic resistance from raw clinical MALDI-TOF mass spectrometry data. Sci Rep 2024; 14:31283. [PMID: 39732799 DOI: 10.1038/s41598-024-82697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health challenge, necessitating advanced predictive models to support clinical decision-making. In this study, we explore multi-label classification as a novel approach to predict antibiotic resistance across four clinically relevant bacteria: E. coli, S. aureus, K. pneumoniae, and P. aeruginosa. Using multiple datasets from the DRIAMS repository, we evaluated the performance of four algorithms - Multi-Layer Perceptron, Support Vector Classifier, Random Forest, and Extreme Gradient Boosting - under both single-label and multi-label frameworks. Our results demonstrate that the multi-label approach delivers competitive performance compared to traditional single-label models, with no statistically significant differences in most cases. The multi-label framework naturally captures the complex, interconnected nature of AMR data, reflecting real-world scenarios more accurately. We further validated the models on external datasets (DRIAMS B and C), confirming their generalizability and robustness. Additionally, we investigated the impact of oversampling techniques and provided a reproducible methodology for handling MALDI-TOF data, ensuring scalability for future studies. These findings underscore the potential of multi-label classification to enhance predictive accuracy in AMR research, offering valuable insights for developing diagnostic tools and guiding clinical interventions.
Collapse
Affiliation(s)
- César A Astudillo
- Computer Science Department, Engineering Faculty, Universidad de Talca, Talca, Chile
| | - Xaviera A López-Cortés
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile.
- Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca, Chile.
| | - Elias Ocque
- Computer Science Department, Engineering Faculty, Universidad de Talca, Talca, Chile
| | | |
Collapse
|
3
|
Shoaib M, Tang M, Aqib AI, Zhang X, Wu Z, Wen Y, Hou X, Xu J, Hao R, Wang S, Pu W. Dairy farm waste: A potential reservoir of diverse antibiotic resistance and virulence genes in aminoglycoside- and beta-lactam-resistant Escherichia coli in Gansu Province, China. ENVIRONMENTAL RESEARCH 2024; 263:120190. [PMID: 39427936 DOI: 10.1016/j.envres.2024.120190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Aminoglycosides (AGs) and beta-lactams are the most commonly used antimicrobials in animal settings, particularly on dairy farms. Dairy farm waste is an important reservoir of antibiotic resistance genes (ARGs) and virulence genes (VGs) in environmental Escherichia coli, which is an important indicator of environmental contamination and foodborne pathogen that potentially threaten human and animal health. In the present study, we aimed to characterize the ARGs and VGs in AG- and beta-lactam-resistant E. coli from dairy farm waste in Gansu Province, China. The dairy farm waste consisted of fecal (n = 265) and sewage (n = 54) samples processed using standard microbiological techniques and the Clinical & Laboratory Standards Institute guidelines. The total DNA of AG- and beta-lactam-resistant E. coli was extracted, and whole-genome sequencing (WGS) was performed using the Illumina NovaSeq platform and analyzed using various bioinformatics tools. In this study, among 84.3% (269/319) of the E. coli strains, 23.8% (64/269) were identified as AG- and beta-lactam-resistant E. coli. WGS analysis revealed a large pool of ARGs belonging to multiple classes such as AGs, beta-lactams, aminocoumarins, fluoroquinolones, macrolides, phenicol, tetracyclines, phosphonic acid, disinfecting and antiseptic agents, elfamycin, rifamycin, and multidrug resistance genes. Furthermore, virulome analysis of 64 E. coli strains revealed clinically important virulence factors associated with adherence, biofilm, invasion, auto-transportation, siderophores, secretion systems, toxins, anti-phagocytosis, quorum sensing, regulation, metabolism, and motility. We identified dairy farm feces and sewage waste as important reservoirs of antimicrobial resistance and virulence determinants in E. coli in Gansu, China, which can threaten human and animal health through ecological exposure and contamination of food and water. We recommend continuous large-scale surveillance in dairy farm settings to formulate protective guidelines for public health safety.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Minjia Tang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Xuejing Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Yang Wen
- Animal Husbandry Company of Jinchang Jujia Ecological Agriculture Co. Ltd., Jinchang, 737100, PR China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Jinpeng Xu
- Animal Husbandry Company of Jinchang Jujia Ecological Agriculture Co. Ltd., Jinchang, 737100, PR China
| | - Ruochen Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China.
| |
Collapse
|
4
|
Story S, Arya DP. A Cell-Based Screening Assay for rRNA-Targeted Drug Discovery. ACS Infect Dis 2024; 10:4194-4207. [PMID: 39530678 DOI: 10.1021/acsinfecdis.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Worldwide, bacterial antibiotic resistance continues to outpace the level of drug development. One way to counteract this threat to society is to identify novel ways to rapidly screen and identify drug candidates in living cells. Developing fluorescent antibiotics that can enter microorganisms and be displaced by potential antimicrobial compounds is an important but challenging endeavor due to the difficulty in entering bacterial cells. We developed a cell-based assay using a fluorescent aminoglycoside molecule that allows for the rapid and direct characterization of aminoglycoside binding in a population of bacterial cells. The assay involves the accumulation and competitive displacement of a fluorescent aminoglycoside binding probe in Escherichia coli as a Gram-negative bacterial model. The assay was optimized for high signal-to-background ratios, ease of performance for reliable outcomes, and amenability to high-throughput screening. We demonstrate that the fluorescent binding probe shows a decrease in fluorescence with cellular uptake, consistent with RNA binding, and also shows a subsequent increase upon the addition of the positive control neomycin. Fluorescence intensity increase with aminoglycosides was indicative of their relative binding affinities for A-site rRNA, with neomycin having the highest affinity, followed by paromomycin, tobramycin, sisomicin, and netilmicin. Intermediate fluorescence was found with plazomicin, neamine, apramycin, ribostamicin, gentamicin, and amikacin. Weak fluorescence was observed with kanamycin, hygromycin, streptomycin, and spectinomycin. A high degree of sensitivity was observed with aminoglycosides known to be strong binders for the 16S rRNA A-site compared with antibiotics that target other biosynthetic pathways. The quality of the optimized assay was excellent for planktonic cells, with an average Z' factor value of 0.80. In contrast to planktonic cells, established biofilms yielded an average Z' factor of 0.61. The high sensitivity of this cell-based assay in a physiological context demonstrates significant potential for identifying potent new ribosomal binding antibiotics.
Collapse
Affiliation(s)
- Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
5
|
Yu Y, Zhang R, Pan W, Sheng X, Chen S, Wang J, Lu J, Bao Q, Hu Y, Jiang P, Huang D. Identification and characterization of a novel chromosome-encoded aminoglycoside O-nucleotidyltransferase gene, ant(9)-Id, in Providencia sp. TYF-12 isolated from the marine fish intestine. Front Microbiol 2024; 15:1475172. [PMID: 39726966 PMCID: PMC11669914 DOI: 10.3389/fmicb.2024.1475172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background The mechanisms underlying the resistance of the genus Providencia to aminoglycosides are complex, which poses a challenge for the efficient treatment of infectious diseases caused by these pathogens. To help clinicians treat infections more effectively, a more comprehensive understanding of antibiotic resistance mechanisms is urgently needed. Methods Plates were streaked to isolate bacteria from the intestinal contents of fish. The standard agar dilution method was used to determine the minimum inhibitory concentrations (MICs) of the antimicrobial agents. Molecular cloning was carried out to study the function of the novel antibiotic inactivation gene ant(9)-Id. The kinetic parameters of ANT(9)-Id were measured by a SpectraMax multifunctional microplate reader. Whole-genome sequencing and bioinformatic analysis were conducted to elucidate the sequence structure and evolutionary relationships of similar genes. Results The novel aminoglycoside O-nucleotidyltransferase gene ant(9)-Id was encoded on the chromosome of a species-unclassified isolate designated Providencia sp. TYF-12, which was isolated from the intestine of a marine fish. Among the 11 aminoglycosides tested, ant(9)-Id was resistant to only spectinomycin. The MIC of spectinomycin for the recombinant strain carrying ant(9)-Id (pUCP20-ant(9)-Id/DH5α) increased 64-fold compared with that of the control strain (pUCP20/DH5ɑ). ANT(9)-Id shares the highest amino acid (aa) identity of 46.70% with the known drug resistance enzyme ANT(9)-Ic. Consistent with the MIC results, ANT(9)-Id showed high affinity and catalytic efficiency for spectinomycin, with a K m of 8.94 ± 2.50 μM and a k cat/K m of 26.15 μM-1·s-1. This novel resistance gene and its close homologs are conserved in Providencia strains from various sources, including some of clinical significance. No mobile genetic elements (MGEs) surrounding the ant(9)-Id(-like) genes were identified. Conclusion This work revealed and characterized a novel spectinomycin resistance gene, ant(9)-Id, along with its biological features. Identifying novel resistance genes in pathogens can assist in rational medication use and the identification of additional antimicrobial resistance mechanisms in microbial populations.
Collapse
Affiliation(s)
- Yan Yu
- Institute of Biomedical Informatics/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Runzhi Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Pan
- Department of Laboratory Sciences, The People’s Hospital of Yuhuan, Yuhuan, China
| | - Xinyi Sheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Susu Chen
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
| | - Junjun Wang
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Qiyu Bao
- Institute of Biomedical Informatics/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Yunliang Hu
- Institute of Biomedical Informatics/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dawei Huang
- Department of Laboratory Sciences, The People’s Hospital of Yuhuan, Yuhuan, China
| |
Collapse
|
6
|
Zhang P, Wu X, Ji L, Yan W, Chen L, Lu Z, Xu D, Zha Y, Xu D, Dong F. Prevalence and virulence of Vibrio parahaemolyticus isolated from clinical and environmental samples in Huzhou, China. BMC Genomics 2024; 25:1187. [PMID: 39639224 PMCID: PMC11622476 DOI: 10.1186/s12864-024-11106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Vibrio parahaemolyticus has emerged as the leading cause of seafood-associated infections worldwide. Previous studies have shown that V. parahaemolyticus can be detected in both environmental and clinical samples. However, the molecular characteristics of V. parahaemolyticus isolated from these sources remain unknown. RESULTS This study examined 128 strains of V. parahaemolyticus isolated from clinical and environmental samples collected between 2020 and 2023 in Huzhou, China. We identified 73 serotypes; O10:K4, O3:K6, and O4:KUT were the dominant serotypes among clinical isolates. We examined the proliferation and motility of major epidemic strains from environmental and clinical samples. Genetic diversity and evolution were assessed by average nucleotide identity (ANI), phylogenetic tree construction, and multilocus sequence typing (MLST). Furthermore, we identified 13 novel sequence types (STs) among the environmental isolates, indicating that V. parahaemolyticus strains are widely distributed and evolve rapidly in the environment in Huzhou, China. We found 206 virulence genes among these isolates, indicating that environmental isolates possess numerous virulence genes. Additionally, we detected 4 strains carrying the tdh or trh gene, which may increase their pathogenicity. The prediction results of antibiotic resistance genes shown that environmental isolates may carry up to 104 resistance genes, compared to 30 in clinical isolates. CONCLUSIONS We observed that the environmental serotypes of V. parahaemolyticus exhibit greater diversity compared to clinical isolates, which are predominantly concentrated in three major serotypes. Furthermore, a considerable genetic distance was found between most clinical and environmental isolates. Notably, some clinical isolates show a closer genetic proximity to environmental isolates. Additionally, the distribution of virulence genes, specifically T3SS and tdh, significantly differs among isolates from these two distinct sources. The prediction results for antibiotic resistance genes suggest that environmental isolates may harbor a broader spectrum of resistance genes. The findings of this study provide new insights into the phylogenetic relationships between V. parahaemolyticus strains from clinical and environmental sources, and they enhance the MLST database.
Collapse
Affiliation(s)
- Peng Zhang
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Zhonghao Lu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Yunfeng Zha
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China
| | - Dafang Xu
- The First People's Hospital of Huzhou, No.158, Guangchang Hou Road, Huzhou, Zhejiang Province, 313000, People's Republic of China.
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang Province, 313000, People's Republic of China.
| |
Collapse
|
7
|
Jácome R. Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain. J Mol Evol 2024; 92:799-814. [PMID: 39297932 DOI: 10.1007/s00239-024-10207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Many polymerases and other proteins are endowed with a catalytic domain belonging to the nucleotidyltransferase fold, which has also been deemed the non-canonical palm domain, in which three conserved acidic residues coordinate two divalent metal ions. Tertiary structure-based evolutionary analyses provide valuable information when the phylogenetic signal contained in the primary structure is blurry or has been lost, as is the case with these proteins. Pairwise structural comparisons of proteins with a nucleotidyltransferase fold were performed in the PDBefold web server: the RMSD, the number of superimposed residues, and the Qscore were obtained. The structural alignment score (RMSD × 100/number of superimposed residues) and the 1-Qscore were calculated, and distance matrices were constructed, from which a dendogram and a phylogenetic network were drawn for each score. The dendograms and the phylogenetic networks display well-defined clades, reflecting high levels of structural conservation within each clade, not mirrored by primary sequence. The conserved structural core between all these proteins consists of the catalytic nucleotidyltransferase fold, which is surrounded by different functional domains. Hence, many of the clades include proteins that bind different substrates or partake in non-related functions. Enzymes endowed with a nucleotidyltransferase fold are present in all domains of life, and participate in essential cellular and viral functions, which suggests that this domain is very ancient. Despite the loss of evolutionary traces in their primary structure, tertiary structure-based analyses allow us to delve into the evolution and functional diversification of the NT fold.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
8
|
Braun HG, Perera SR, Tremblay YD, Thomassin JL. Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective. Can J Microbiol 2024; 70:507-528. [PMID: 39213659 DOI: 10.1139/cjm-2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Klebsiella pneumoniae is a ubiquitous opportunistic pathogen of the family Enterobacteriaceae. K. pneumoniae is a member of the ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), a group of bacteria that cause nosocomial infections and are able to resist killing by commonly relied upon antimicrobial agents. The acquisition of antimicrobial resistance (AMR) genes is increasing among community and clinical isolates of K. pneumoniae, making K. pneumoniae a rising threat to human health. In addition to the increase in AMR, K. pneumoniae is also thought to disseminate AMR genes to other bacterial species. In this review, the known mechanisms of K. pneumoniae AMR will be described and the current state of AMR K. pneumoniae within Canada will be discussed, including the impact of the coronavirus disease-2019 pandemic, current perspectives, and outlook for the future.
Collapse
Affiliation(s)
- Hannah G Braun
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sumudu R Perera
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yannick Dn Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenny-Lee Thomassin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Vaez H, Yazdanpour Z. Distribution of Virulence-Associated and Aminoglycoside Resistance Genes Among Clinical Isolates of Klebsiella pneumoniae in the Southeast of Iran, During 2019-2023: A Cross-Sectional Study. Health Sci Rep 2024; 7:e70309. [PMID: 39720237 PMCID: PMC11667750 DOI: 10.1002/hsr2.70309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
Background and Aims Klebsiella pneumoniae (K. pneumoniae), included in the World Health Organization's list of critical priority pathogens, is considered a serious threat to public health. The present study aims to investigate the prevalence of virulence-associated and aminoglycoside resistance genes in clinical isolates of K. pneumoniae. Methods This cross-sectional study was carried out on 88 clinical isolates of K. pneumoniae collected from patients at Zabol hospital, Iran. Isolates were identified using conventional microbiology tests and polymerase chain reaction (PCR). Antibiotic susceptibility patterns were ascertained by the disc diffusion method. The prevalence of virulence-associated genes (K1, K2, K5, iucA, and peg-344) and aminoglycoside resistance (AME) genes (aac (2')-Ia, aac (3)-IIa, aac (3)-Ib, aac (6')-1b, ant (2″)-Ia, and aph (3″)-Ib) was investigated by PCR. Results The isolates were mostly resistant to kanamycin (73.8%) and streptomycin (69.3%). The most predominant virulence gene was iucA, observed in 89.8% of isolates, followed by peg-344 55.7% and K5 14.8%. The most prevalent resistance gene was aph (3″)-Ib, which was detected in 35.2% of isolates, followed by ant (2″)-Ia 22.7% and aac (3)-Ib 17%. In addition, sixteen different patterns of AME genes were observed. Conclusion Most investigated isolates of K. pneumoniae were positive for different virulence-associated and AME genes and therefore can play a significant role in life-threatening infections. Meanwhile, resistance rates to aminoglycoside antibiotics were high and it was primarily due to the presence of AME genes such as aph (3″)-Ib, ant (2″)-Ia, and aac (3)-Ib.
Collapse
Affiliation(s)
- Hamid Vaez
- Department of MicrobiologySchool of Medicine, Zabol University of Medical SciencesZabolIran
| | - Zahra Yazdanpour
- Department of MicrobiologySchool of Medicine, Zabol University of Medical SciencesZabolIran
- Department of MicrobiologySchool of Medicine, Kermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
10
|
Shukla S, Bhardwaj N, Singh A. Drug resistance in Mycobacterium tuberculosis: An evolutionary perspective and its adaptation to the lung microenvironment. THE MICROBE 2024; 5:100189. [DOI: 10.1016/j.microb.2024.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
11
|
Delgado-Tejedor A, Medina R, Begik O, Cozzuto L, López J, Blanco S, Ponomarenko J, Novoa EM. Native RNA nanopore sequencing reveals antibiotic-induced loss of rRNA modifications in the A- and P-sites. Nat Commun 2024; 15:10054. [PMID: 39613750 DOI: 10.1038/s41467-024-54368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The biological relevance and dynamics of mRNA modifications have been extensively studied; however, whether rRNA modifications are dynamically regulated, and under which conditions, remains unclear. Here, we systematically characterize bacterial rRNA modifications upon exposure to diverse antibiotics using native RNA nanopore sequencing. To identify significant rRNA modification changes, we develop NanoConsensus, a novel pipeline that is robust across RNA modification types, stoichiometries and coverage, with very low false positive rates, outperforming all individual algorithms tested. We then apply NanoConsensus to characterize the rRNA modification landscape upon antibiotic exposure, finding that rRNA modification profiles are altered in the vicinity of A and P-sites of the ribosome, in an antibiotic-specific manner, possibly contributing to antibiotic resistance. Our work demonstrates that rRNA modification profiles can be rapidly altered in response to environmental exposures, and provides a robust workflow to study rRNA modification dynamics in any species, in a scalable and reproducible manner.
Collapse
Affiliation(s)
- Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
12
|
Selvakumar S, Singh S, Swaminathan P. Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics. Curr Microbiol 2024; 82:4. [PMID: 39579197 DOI: 10.1007/s00284-024-03985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
Antimicrobial resistance (AMR) is a growing public health threat caused by the widespread overuse of antibiotics. Bacteria with antibiotic resistance may acquire resistance genes from soil or water. Endogenous hydrogen sulfide (H2S) production in bacteria confers antibiotic tolerance in many, suggesting a universal defense mechanism against antibiotics. In this study, we isolated and identified soil-based antibiotic-resistant bacteria collected from contaminated areas. An antibiotic-resistant bacterium was identified as non-endogenous-H2S-producing, allowing us to examine the effect of exogenous H2S on its resistance mechanism. Therefore, we demonstrated that different classes of antibiotic resistance can be reverted by employing H2S with antibiotics like ampicillin and gentamicin. Methods like Kirby-Bauer Disk-Diffusion, Scanning Electron Microscopy, and Flow Cytometer analysis were performed to assess the antibacterial activity of H2S with ampicillin and gentamicin. The antioxidative efficiency of H2S was evaluated using the DCFH-DA (ROS) test, as well as lipid peroxidation, and LDH activity. These were further confirmed with enzymatic and non-enzymatic (SOD, CAT, GST, and GSH) antioxidant studies. These findings support H2S as an antibiotic-potentiator, causing bacterial membrane damage, oxidative stress, and disrupting DNA and proteins. Thus, supplying exogenous H2S can be a good agent for the reversal of Antibiotic resistance.
Collapse
Affiliation(s)
- Sahithya Selvakumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Shubhi Singh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Priya Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
13
|
Sakagianni A, Koufopoulou C, Koufopoulos P, Kalantzi S, Theodorakis N, Nikolaou M, Paxinou E, Kalles D, Verykios VS, Myrianthefs P, Feretzakis G. Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions. Antibiotics (Basel) 2024; 13:1052. [PMID: 39596745 PMCID: PMC11590962 DOI: 10.3390/antibiotics13111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The emergence of antimicrobial resistance (AMR) due to the misuse and overuse of antibiotics has become a critical threat to global public health. There is a dire need to forecast AMR to understand the underlying mechanisms of resistance for the development of effective interventions. This paper explores the capability of machine learning (ML) methods, particularly unsupervised learning methods, to enhance the understanding and prediction of AMR. It aims to determine the patterns from AMR gene data that are clinically relevant and, in public health, capable of informing strategies. Methods: We analyzed AMR gene data in the PanRes dataset by applying unsupervised learning techniques, namely K-means clustering and Principal Component Analysis (PCA). These techniques were applied to identify clusters based on gene length and distribution according to resistance class, offering insights into the resistance genes' structural and functional properties. Data preprocessing, such as filtering and normalization, was conducted prior to applying machine learning methods to ensure consistency and accuracy. Our methodology included the preprocessing of data and reduction of dimensionality to ensure that our models were both accurate and interpretable. Results: The unsupervised learning models highlighted distinct clusters of AMR genes, with significant patterns in gene length, including their associated resistance classes. Further dimensionality reduction by PCA allows for clearer visualizations of relationships among gene groupings. These patterns provide novel insights into the potential mechanisms of resistance, particularly the role of gene length in different resistance pathways. Conclusions: This study demonstrates the potential of ML, specifically unsupervised approaches, to enhance the understanding of AMR. The identified patterns in resistance genes could support clinical decision-making and inform public health interventions. However, challenges remain, particularly in integrating genomic data and ensuring model interpretability. Further research is needed to advance ML applications in AMR prediction and management.
Collapse
Affiliation(s)
- Aikaterini Sakagianni
- Intensive Care Unit, Sismanogelio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece;
| | - Christina Koufopoulou
- Anesthesiology Department, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vass. Sofias 76, 11528 Athens, Greece;
| | - Petros Koufopoulos
- Department of Internal Medicine, Sismanogleio General Hospital, 15126 Marousi, Greece;
| | - Sofia Kalantzi
- Department of Internal Medicine & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece;
| | - Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Dimitris Kalles
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Pavlos Myrianthefs
- Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| |
Collapse
|
14
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2024. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
15
|
Prabhu D, Shankari G, Rajamanikandan S, Jeyakanthan J, Velusamy P, Gopinath SCB, Pattabi S. Designing potential lead compounds targeting aminoglycoside N (6')-acetyltransferase in Serratia marcescens: A drug discovery strategy. Int J Biol Macromol 2024; 281:136976. [PMID: 39490491 DOI: 10.1016/j.ijbiomac.2024.136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Serratia marcescens is an opportunistic human pathogen that causes urinary tract infections, ocular lens infections, and respiratory tract infections. S. marcescens employs various defense mechanisms to evade antibiotics, one of which is mediated by aminoglycoside N-acetyltransferase (AAC). In this mechanism, the enzyme AAC facilitates the transfer and linkage of the acetyl moiety from the donor substrate acetyl-coenzyme A to specific positions on antibiotics. This modification alters the antibiotic's structure, leading to the inactivation of aminoglycoside antibiotics. In the current scenario, antibiotic resistance has become a global threat, and targeting the enzymes that mediate resistance is considered crucial to combat this issue. The study aimed to address the increasing global threat of antibiotic resistance in Serratia marcescens by targeting the aminoglycoside N-acetyltransferase (AAC (6')) enzyme, which inactivates aminoglycoside antibiotics through acetylation. Due to the absence of experimental structure, we constructed a homology model of aminoglycoside N (6')-acetyltransferase (AAC (6')) of S. marcescens using the atomic structure of aminoglycoside N-acetyltransferase AAC (6')-Ib (PDB ID: 1V0C) as a template. The stable architecture and integrity of the modelled AAC (6') structure were analyzed through a 100 ns simulation. Structure-guided high-throughput screening of four small molecule databases (Binding, Life Chemicals, Zinc, and Toslab) resulted in the identification of potent inhibitors against AAC (6'). The hits obtained from screening were manually clustered, and the five hit molecules were shortlisted based on the docking score, which are observed in the range of -17.09 kcal/mol to -11.95 kcal/mol. These selected five molecules displayed acceptable pharmacological properties in ADME predictions. The binding free energy calculations, and molecular dynamics simulations of ligand bound AAC (6') complexes represented higher affinity and stable binding. The selected molecules demonstrated stable binding with AAC (6'), indicating their strong potential to hamper the binding of aminoglycoside in the respective site. and thereby inhibit. This process mitigates enzyme mediated AAC (6') activity on aminoglycosides and reverse the bactericidal function of aminoglycosides, and also this method could serve as a platform for the development of potential antimicrobials.
Collapse
Affiliation(s)
- Dhamodharan Prabhu
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India.
| | - Gopalakrishnan Shankari
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Sundararaj Rajamanikandan
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | | | - Palaniyandi Velusamy
- Innovation and Incubation Centre for Health Sciences (IICHS), Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet 600 044, Tamil Nadu, India.
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India; Faculty of Chemical Engineering & Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sasikumar Pattabi
- Department of General Surgery, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, 600 044 Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
17
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
18
|
Al-Zahrani IA, Brek TM. Comprehensive Genome Analysis of Colistin-Only-Sensitive KPC-2 and NDM1-1-Coproducing Klebsiella pneumoniae ST11 and Acinetobacter baumannii ST2 From a Critically Ill Patient With COVID-19 in Saudi Arabia: Whole Genome Sequencing (WGS) of K. pneumoniae ST11 and A. baumannii ST2. Int J Microbiol 2024; 2024:9233075. [PMID: 39502515 PMCID: PMC11537734 DOI: 10.1155/2024/9233075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/13/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
The COVID-19 pandemic has intensified the issue of multidrug-resistant (MDR) infections, particularly in intensive care units (ICUs). This study documents the first known case of coinfection with two extensively drug-resistant (XDR) bacterial isolates in a critically ill patient with COVID-19 in Saudi Arabia. Both XDR isolates were recovered from blood and were resistant to all tested antimicrobial agents except colistin. Whole genome sequencing (WGS) revealed that the K. pneumoniae isolate KP-JZ107 had sequence type 11 (ST11) and core genome MLST (cgMLST 304742), while the A. baumannii isolate AB-JZ67 had ST2 and cgMLST 785. KP-JZ107 was found to possess the virulence plasmid KpVP-type-1, carbapenemase genes bla NDM and bla KPC , and numerous antimicrobial-resistant genes (ARGs). The AB-JZ67 isolate had several biofilm-related genes, including biofilm-associated protein (BAP), csuE, and pgaB, and multiple ARGs, including bla ADC-25, bla OXA-23, and bla OXA-66. Our findings suggest that the coexistence of KP-JZ107 and AB-JZ67 isolates may indicate their widespread presence in ICUs, requiring comprehensive surveillance studies across all hospitals.
Collapse
Affiliation(s)
- Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M. Brek
- Public Health Laboratory, The Regional Laboratory, Jazan Health Cluster, Jazan, Saudi Arabia
| |
Collapse
|
19
|
Maday SDM, Kingsbury JM, Weaver L, Pantos O, Wallbank JA, Doake F, Masterton H, Hopkins M, Dunlop R, Gaw S, Theobald B, Risani R, Abbel R, Smith D, Handley KM, Lear G. Taxonomic variation, plastic degradation, and antibiotic resistance traits of plastisphere communities in the maturation pond of a wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0071524. [PMID: 39329490 PMCID: PMC11497791 DOI: 10.1128/aem.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Ōtautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.
Collapse
Affiliation(s)
- Stefan D. M. Maday
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Jessica A. Wallbank
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Maisie Hopkins
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rosa Dunlop
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | - Kim M. Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
López-Cortés XA, Manríquez-Troncoso JM, Kandalaft-Letelier J, Cuadros-Orellana S. Machine learning and matrix-assisted laser desorption/ionization time-of-flight mass spectra for antimicrobial resistance prediction: A systematic review of recent advancements and future development. J Chromatogr A 2024; 1734:465262. [PMID: 39197363 DOI: 10.1016/j.chroma.2024.465262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The use of matrix-assisted laser desorption/ionization time-of-flight mass spectra (MALDI-TOF MS) combined with machine learning techniques has recently emerged as a method to address the public health crisis of antimicrobial resistance. This systematic review, conducted following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, aims to evaluate the current state of the art in using machine learning for the detection and classification of antimicrobial resistance from MALDI-TOF mass spectrometry data. METHODS A comprehensive review of the literature on machine learning applications for antimicrobial resistance detection was performed using databases such as Web Of Science, Scopus, ScienceDirect, IEEE Xplore, and PubMed. Only original articles in English were included. Studies applying machine learning without using MALDI-TOF mass spectra were excluded. RESULTS Forty studies met the inclusion criteria. Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli were the most frequently cited bacteria. The antibiotics resistance most studied corresponds to methicillin for S. aureus, cephalosporins for K. pneumoniae, and aminoglycosides for E. coli. Random forest, support vector machine and logistic regression were the most employed algorithms to predict antimicrobial resistance. Additionally, seven studies reported using artificial neural networks. Most studies reported metrics such as accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (AUROC) above 0.80. CONCLUSIONS Our study indicates that random forest, support vector machine, and logistic regression are effective for predicting antimicrobial resistance using MALDI-TOF MS data. Recent studies also highlight the potential of deep learning techniques in this area. We recommend further exploration of deep learning and multi-label supervised learning for comprehensive antibiotic resistance prediction in clinical practice.
Collapse
Affiliation(s)
- Xaviera A López-Cortés
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, 3480112, Chile; Centro de Innovación en Ingeniería Aplicada (CIIA), Universidad Católica del Maule, Talca, 3480112, Chile.
| | - José M Manríquez-Troncoso
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, 3480112, Chile
| | - John Kandalaft-Letelier
- Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, 3480112, Chile
| | - Sara Cuadros-Orellana
- Centro de Biotecnología de los Recursos Naturales, Universidad Católica del Maule, Talca, 3480112, Chile
| |
Collapse
|
21
|
Karpov DS, Kazakova EM, Kovalev MA, Shumkov MS, Kusainova T, Tarasova IA, Osipova PJ, Poddubko SV, Mitkevich VA, Kuznetsova MV, Goncharenko AV. Determinants of Antibiotic Resistance and Virulence Factors in the Genome of Escherichia coli APEC 36 Strain Isolated from a Broiler Chicken with Generalized Colibacillosis. Antibiotics (Basel) 2024; 13:945. [PMID: 39452211 PMCID: PMC11504656 DOI: 10.3390/antibiotics13100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Objective: Multidrug-resistant, highly pathogenic Escherichia coli strains are the primary causative agents of intestinal and extraintestinal human diseases. The extensive utilization of antibiotics for farm animals has been identified as a contributing factor to the emergence and dissemination of E. coli strains that exhibit multidrug resistance and possess high pathogenic potential. Consequently, a significant research objective is to examine the genetic diversity of pathogenic E. coli strains and to identify those that may pose a threat to human health. Methods: In this study, we present the results of genome sequencing and analysis, as well as the physiological characterization of E. coli strain APEC 36, which was isolated from the liver of a broiler chicken with generalized colibacillosis. Results: We found that APEC 36 possess a number of mechanisms of antibiotic resistance, including antibiotic efflux, antibiotic inactivation, and antibiotic target alteration/replacement/protection. The most widely represented group among these mechanisms was that of antibiotic efflux. This finding is consistent with the strain's documented resistance to multiple antibiotics. APEC 36 has an extremely rare variant of the beta-lactamase CTX-M-169. Notwithstanding the multitude of systems for interfering with foreign DNA present in the strain, seven plasmids have been identified, three of which may possess novel replication origins. Additionally, qnrS1, which confers resistance to fluoroquinolones, was found to be encoded in the genome rather than in the plasmid. This suggests that the determinants of antibiotic resistance may be captured in the genome and stably transmitted from generation to generation. Conclusions: The APEC 36 strain has genes for toxins, adhesins, protectins, and an iron uptake system. The obtained set of genetic and physiological characteristics allowed us to assume that this strain has a high pathogenic potential for humans.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Elizaveta M. Kazakova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Maxim A. Kovalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Mikhail S. Shumkov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Tomiris Kusainova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Irina A. Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (E.M.K.); (T.K.); (I.A.T.)
| | - Pamila J. Osipova
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia; (P.J.O.); (S.V.P.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia; (P.J.O.); (S.V.P.)
| | - Vladimir A. Mitkevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (M.A.K.); (V.A.M.)
| | - Marina V. Kuznetsova
- Perm Federal Research Centre, Institute of Ecology and Genetics of Microorganisms, Ural Branch Russian Academy of Sciences, 614081 Perm, Russia;
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
22
|
Khatoon H, Mohd Faudzi SM. Exploring quinoxaline derivatives: An overview of a new approach to combat antimicrobial resistance. Eur J Med Chem 2024; 276:116675. [PMID: 39004020 DOI: 10.1016/j.ejmech.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a long-standing global issue ever since the introduction of penicillin, the first antibiotic. Scientists are constantly working to develop innovative antibiotics that are more effective and superior. Unfortunately, the misuse of antibiotics has resulted in their declining effectiveness over the years. By 2050, it is projected that approximately 10 million lives could be lost annually due to antibiotic resistance. Gaining insight into the mechanisms behind the development and transmission of AMR in well-known bacteria including Escherichia coli, Bacillus pumilus, Enterobacter aerogenes, Salmonella typhimurium, and the gut microbiota is crucial for researchers. Environmental contamination in third world and developing countries also plays a significant role in the increase of AMR. Despite the availability of numerous recognized antibiotics to combat bacterial infections, their effectiveness is diminishing due to the growing problem of AMR. The overuse of antibiotics has led to an increase in resistance rates and negative impacts on global health. This highlights the importance of implementing strong antimicrobial stewardship and improving global monitoring, as emphasized by the World Health Organization (WHO) and other organizations. In the face of these obstacles, quinoxaline derivatives have emerged as promising candidates. They are characterized by their remarkable efficacy against a broad spectrum of harmful bacteria, including strains that are resistant to multiple drugs. These compounds are known for their strong structural stability and adaptability, making them a promising and creative solution to the AMR crisis. This review aims to assess the effectiveness of quinoxaline derivatives in treating drug-resistant infections, with the goal of making a meaningful contribution to the global fight against AMR.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
24
|
Fernández-Palacios P, Galán-Sánchez F, Casimiro-Soriguer CS, Jurado-Tarifa E, Arroyo F, Lara M, Chaves JA, Dopazo J, Rodríguez-Iglesias MA. Genotypic characterization and antimicrobial susceptibility of human Campylobacter jejuni isolates in Southern Spain. Microbiol Spectr 2024; 12:e0102824. [PMID: 39162511 PMCID: PMC11449230 DOI: 10.1128/spectrum.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacter jejuni is the main cause of bacterial gastroenteritis and a public health problem worldwide. Little information is available on the genotypic characteristics of human C. jejuni in Spain. This study is based on an analysis of the resistome, virulome, and phylogenetic relationship, antibiogram prediction, and antimicrobial susceptibility of 114 human isolates of C. jejuni from a tertiary hospital in southern Spain from October 2020 to June 2023. The isolates were sequenced using Illumina technology, and a bioinformatic analysis was subsequently performed. The susceptibility of C. jejuni isolates to ciprofloxacin, tetracycline, and erythromycin was also tested. The resistance rates for each antibiotic were 90.3% for ciprofloxacin, 66.7% for tetracycline, and 0.88% for erythromycin. The fluoroquinolone resistance rate obtained is well above the European average (69.1%). CC-21 (n = 23), ST-572 (n = 13), and ST-6532 (n = 13) were the most prevalent clonal complexes (CCs) and sequence types (STs). In the virulome, the cadF, ciaB, and cdtABC genes were detected in all the isolates. A prevalence of 20.1% was obtained for the genes wlaN and cstIII, which are related to the pathogenesis of Guillain-Barré syndrome (GBS). The prevalence of the main antimicrobial resistance markers detected were CmeABC (92.1%), RE-cmeABC (7.9%), the T86I substitution in gyrA (88.9%), blaOXA-61 (72.6%), tet(O) (65.8%), and ant (6)-Ia (17.1%). High antibiogram prediction rates (>97%) were obtained, except for in the case of the erythromycin-resistant phenotype. This study contributes significantly to the knowledge of C. jejuni genomics for the prevention, treatment, and control of infections caused by this pathogen.IMPORTANCEDespite being the pathogen with the greatest number of gastroenteritis cases worldwide, Campylobacter jejuni remains a poorly studied microorganism. A sustained increase in fluoroquinolone resistance in human isolates is a problem when treating Campylobacter infections. The development of whole genome sequencing (WGS) techniques has allowed us to better understand the genotypic characteristics of this pathogen and relate them to antibiotic resistance phenotypes. These techniques complement the data obtained from the phenotypic analysis of C. jejuni isolates. The zoonotic transmission of C. jejuni through the consumption of contaminated poultry supports approaching the study of this pathogen through "One Health" approach. In addition, due to the limited information on the genomic characteristics of C. jejuni in Spain, this study provides important data and allows us to compare the results with those obtained in other countries.
Collapse
Affiliation(s)
| | | | - Carlos S Casimiro-Soriguer
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, Sevilla, Spain
| | - Estefanía Jurado-Tarifa
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Federico Arroyo
- UGC Microbiología, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Lara
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, Sevilla, Spain
| | - J Alberto Chaves
- Subdirección de Protección de la Salud, Consejería de Salud y Familias, Sevilla, Spain
| | - Joaquín Dopazo
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, Sevilla, Spain
| | - Manuel A Rodríguez-Iglesias
- UGC Microbiología, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
25
|
Kouraki A, Zheng AS, Miller S, Kelly A, Ashraf W, Bazzani D, Bonadiman A, Tonidandel G, Bolzan M, Vijay A, Nightingale J, Menni C, Ollivere BJ, Valdes AM. Metagenomic changes in response to antibiotic treatment in severe orthopedic trauma patients. iScience 2024; 27:110783. [PMID: 39286492 PMCID: PMC11403444 DOI: 10.1016/j.isci.2024.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
We investigated changes in microbiome composition and abundance of antimicrobial resistance (AMR) genes post-antibiotic treatment in severe trauma patients. Shotgun sequencing revealed beta diversity (Bray-Curtis) differences between 16 hospitalized multiple rib fractures patients and 10 age- and sex-matched controls (p = 0.043), and between antibiotic-treated and untreated patients (p = 0.015). Antibiotic-treated patients had lower alpha diversity (Shannon) at discharge (p = 0.003) and 12-week post-discharge (p = 0.007). At 12 weeks, they also exhibited a 5.50-fold (95% confidence interval [CI]: 2.86-8.15) increase in Escherichia coli (p = 0.0004) compared to controls. Differential analysis identified nine AMRs that increased in antibiotic-treated compared to untreated patients between hospital discharge and 6 and 12 weeks follow-up (false discovery rate [FDR] < 0.20). Two aminoglycoside genes and a beta-lactamase gene were directly related to antibiotics administered, while five were unrelated. In trauma patients, lower alpha diversity, higher abundance of pathobionts, and increases in AMRs persisted for 12 weeks post-discharge, suggesting prolonged microbiome disruption. Probiotic or symbiotic therapies may offer future treatment avenues.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Amy S Zheng
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Suzanne Miller
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Waheed Ashraf
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jessica Nightingale
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Cristina Menni
- Department of Twin Research, King's College London, London SE1 7EH, UK
| | - Benjamin J Ollivere
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Ana M Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
26
|
Dharuman S, Phelps GA, Dunn CM, Wilt LA, Murphy PA, Lee RB, Snoke HE, Selchow P, Haldimann K, Böttger EC, Hobbie SN, Sander P, Lee RE. Synthesis and antibacterial action of 3',6'-disubstituted spectinomycins. J Antibiot (Tokyo) 2024; 77:577-588. [PMID: 38890386 PMCID: PMC11347369 DOI: 10.1038/s41429-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Spectinomycin is an aminocyclitol antibiotic with a unique ribosomal binding site. Prior synthetic modifications of spectinomycin have enhanced potency and antibacterial spectrum through addition at the 6'-position to produce trospectomycin and to the 3'-position to produce spectinamides and aminomethyl spectinomycins. This study focused on the design, synthesis, and evaluation of three 3',6'-disubstituted spectinomycin analogs: trospectinamide, N-benzyl linked aminomethyl, and N-ethylene linked aminomethyl trospectomycins. Computational experiments predicted that these disubstituted analogs would be capable of binding within the SPC ribosomal binding site. The new analogs were synthesized from trospectomycin, adapting the previously established routes for the spectinamide and aminomethyl spectinomycin series. In a cell-free translation assay, the disubstituted analogs showed ribosomal inhibition similar to spectinomycin or trospectomycin. These disubstituted analogs demonstrated inhibitory MIC activity against various bacterial species with the 3'-modification dictating spectrum of activity, leading to improved activity against mycobacterium species. Notably, N-ethylene linked aminomethyl trospectomycins exhibited increased potency against Mycobacterium abscessus and trospectinamide displayed robust activity against M. tuberculosis, aligning with the selective efficacy of spectinamides. The study also found that trospectomycin is susceptible to efflux in M. tuberculosis and M. abscessus. These findings contribute to the understanding of the structure-activity relationship of spectinomycin analogs and can guide the design and synthesis of more effective spectinomycin compounds.
Collapse
Affiliation(s)
- Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Gregory A Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA
| | - Christine M Dunn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA
| | - Laura A Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Patricia A Murphy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Hannah E Snoke
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
- National Reference Center for Mycobacteria, Gloriastrasse 28/30, CH-8006, Zurich, Switzerland
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA.
| |
Collapse
|
27
|
Opazo-Capurro A, Aguilar-Vera OA, González-Muñoz P, Amsteins-Romero L, Quiroga M, Encina A, Herrera-Chávez N, Quezada-Aguiluz M, Aguayo-Reyes A, Morales-León F, Illesca V, Vera R, Salgado F, Suazo P, Fuenzalida LM, Bello-Toledo H, Castillo-Ramírez S, González-Rocha G. Genomic and Phylogenomic Characterization of Carbapenem-resistant Pseudomonas aeruginosa 'High-risk' Clone O4/ExoS+/ST654 Circulating in Chilean Hospitals. J Glob Antimicrob Resist 2024; 38:205-211. [PMID: 38849115 DOI: 10.1016/j.jgar.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a serious threat to public health. Globally, carbapenemases-producing CRPA isolates mainly belong to 'high-risk' clones; however, the molecular epidemiology of CRPA isolates circulating in Chile are scarce, where this pathogen is the main aetiological agent of ventilator-associated pneumonia. OBJECTIVES To characterize the phylogenomics and molecular features of ST654 CRPA isolates collected in Chile between 2016 and 2022. METHODS Eighty-nine CRPA isolates collected in different Chilean hospitals from clinical specimens between 2005 and 2022 were analysed. Antibiotic susceptibility tests and carbapenemases production were carried out on the CRPA ST654 isolates. Also, they were subjected to whole-genome sequencing, from which in silico analyses were performed. RESULTS Thirty-four strains (38.2%) belonged to the ST654 high-risk clone, being the most predominant lineage of the collection. Most of these isolates belonged to a subclade including KPC producers that also clustered with strains from Argentina and the United States, whereas few VIM and NDM co-producers clustered in two different smaller subclades. The isolates exhibited a broad resistome encompassing genes mediating resistance to several other clinically relevant drugs. Additionally, all the 34 ST654 isolates were ExoS+ as a virulence factor and associated to the O4-serotype. CONCLUSIONS Our report represents the most comprehensive phylogenomic study of a CRPA high-risk clone ST654 to date. Our analyses suggest that this lineage is undergoing a divergent evolutionary path in Chile, because most of the isolates were KPC producers and were O4 serotype, differing from previous descriptions, which underline the relevance of performing molecular surveillance on this pathogen.
Collapse
Affiliation(s)
- Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Omar Alejandro Aguilar-Vera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Paulina González-Muñoz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Luis Amsteins-Romero
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Monserrat Quiroga
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Encina
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Néstor Herrera-Chávez
- Laboratorio de Microbiología, Hospital Regional Guillermo Grant Benavente, Concepción, Chile
| | - Mario Quezada-Aguiluz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Grupo de Estudio de Enfermedades Infecciosas de la Universidad de Concepción (GrEEn-UdeC), Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Alejandro Aguayo-Reyes
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Grupo de Estudio de Enfermedades Infecciosas de la Universidad de Concepción (GrEEn-UdeC), Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Felipe Morales-León
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile; Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Vijna Illesca
- Hospital Hernán Henríquez Aravena, Laboratorio Clínico, Temuco, Chile
| | - Rodrigo Vera
- Hospital de Urgencia Asistencia Pública, Santiago de Chile, Chile
| | | | | | | | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
28
|
Onyeka LO, Adesiyun AA, Ismail A, Allam M, Keddy KH, Thompson PN. Evidence for Horizontal Transmission and Recirculation of Shiga Toxin-Producing Escherichia coli in the Beef Production Chain in South Africa Using Whole Genome Sequencing. Pathogens 2024; 13:732. [PMID: 39338923 PMCID: PMC11434950 DOI: 10.3390/pathogens13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
We used whole genome sequencing (WGS) as an epidemiologic surveillance tool to elucidate the transmission dynamics of Shiga toxin-producing Escherichia coli (STEC) strains along the beef production chain in South Africa. Isolates were obtained from a cattle farm, abattoirs and retail outlets. Isolates were analysed using WGS on a MiSeq platform (Illumina, San Diego, CA, USA) and phylogenetic analysis was carried out. Of the 85 isolates, 39% (33) carried the stx gene and 61% (52) had lost the stx gene. The prevalence of stx subtypes was as follows; stx1a 55% (18/33), stx1b 52% (17/33), stx2a 55% (18/33), stx2b 27% (9/33), stx2dB 30% (10/33) and stx2d1A 15% (5/33). Thirty-five different serogenotypes were detected, of which 65% (56) were flagellar H-antigens and 34% (29) were both O-antigens and flagellar H-antigens. We identified 50 different sequence types (STs), and only nine of the isolates were assigned to three different clonal complexes. Core genome phylogenetic analysis revealed genetic relatedness, and isolates clustered mainly according to their STs and serogenotypes regardless of stx subtypes. This study provides evidence of horizontal transmission and recirculation of STEC strains in Gauteng province and demonstrates that every stage of the beef production chain plays a significant role in STEC entry into the food chain.
Collapse
Affiliation(s)
- Libby Obumneke Onyeka
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike 440101, Abia State, Nigeria
| | - Abiodun A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Karen H Keddy
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
29
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
30
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
31
|
Nkontcho Djamkeba F, Sainte-Rose V, Lontsi Ngoulla GR, Roujansky A, Abboud P, Walter G, Houcke S, Demar M, Kallel H, Pujo JM, Djossou F. Trends in the Prevalence of Antimicrobial Resistance in Escherichia coli Isolated from Outpatient Urine Cultures in French Amazonia. Am J Trop Med Hyg 2024; 111:287-296. [PMID: 38917783 PMCID: PMC11310616 DOI: 10.4269/ajtmh.23-0887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/23/2024] [Indexed: 06/27/2024] Open
Abstract
Antimicrobial resistance (AMR) in the community is increasing worldwide. We aimed to assess AMR trends in Escherichia coli from the community urine isolates in French Amazonia. We conducted a retrospective study from January 2016 to December 2022 in the Cayenne General Hospital microbiology laboratory (French Guiana). It included all urine samples positive for E. coli collected from adult outpatients. During the study period, 3,443 urinalyses positive for E. coli were studied. In 46% of cases, patients were women. In 64.4% of cases, E. coli were β-lactamase producers. The most frequently diagnosed resistance mechanisms were penicillinase production and sparing third-generation cephalosporins. Isolated E. coli were extended-spectrum β-lactamase (ESBL) producers in 6.1% of cases. Overall, E. coli was susceptible to amoxicillin in 35.9% [95% CI: 34.3-37.5], to amoxicillin/clavulanic acid in 62.2% [95% CI: 60.6-63.9], to cefotaxime in 94% [95% CI: 93.1-94.7], to gentamicin in 92.1% [95% CI: 89.1-92.6], to ofloxacin in 76.8% [95% CI: 75.3-78.2], to trimethoprim/sulfamethoxazole (SXT) in 58.8% [95% CI: 57.1-60.5], to fosfomycin in 99.1% [95% CI: 98.6-99.4], and to nitrofurantoin in 99% of cases [95% CI: 98.6-99.3]. We have observed a gradual decline in the susceptibility profile of E. coli for amoxicillin/clavulanic acid (P <0.001), piperacillin/tazobactam (P = 0.003), and temocillin (P = 0.006). However, susceptibility to ciprofloxacin was increasing (P = 0.001). In contrast, the susceptibility trends for amoxicillin, third-generation cephalosporins, gentamicin, SXT, nitrofurantoin, and fosfomycin remained stable over the 28 quarters of the study. In conclusion, isolated E. coli from outpatient urinalyses showed increased resistance profiles involving penicillinase and ESBL production. Close monitoring and strategies to decrease antibiotic consumption in the community are needed.
Collapse
Affiliation(s)
| | | | | | | | - Philippe Abboud
- Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana
| | - Gaelle Walter
- Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana
| | | | - Magalie Demar
- Laboratory of Microbiology, Cayenne General Hospital, French Guiana
- Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, French Guiana
- Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, French Guiana
| | - Felix Djossou
- Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana
- Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| |
Collapse
|
32
|
Chen J, Wu Y, Zhang G, Kang W, Wang T, Li J, Zhou M, Zhang L, Liu Y, Xu X, Jia X, Xu Y, Liu Y. Tracing the possible evolutionary trends of Morganella morganii: insights from molecular epidemiology and phylogenetic analysis. mSystems 2024; 9:e0030624. [PMID: 38884495 PMCID: PMC11264931 DOI: 10.1128/msystems.00306-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Morganella morganii, encompassing two subspecies, subsp. morganii and subsp. sibonii, is a common opportunistic pathogen, notable for intrinsic resistance to multiple antimicrobial agents. Despite its clinical significance, research into the potential evolutionary dynamics of M. morganii remains limited. This study involved the analysis of genome sequences from 431 M. morganii isolates, comprising 206 isolates that cause host infections, obtained from this study and 225 from the NCBI genome data sets. A diverse array of antimicrobial resistance genes (ARGs) was identified in M. morganii isolates, including mcr-1, tet(X4), tmexCD-toprJ, and various carbapenemase genes. In addition, a novel blaKPC-2-bearing plasmid with demonstrated conjugative capability was discovered in M. morganii. The majority of virulence-related genes (VRGs), except for the hlyCABD gene cluster, were found in almost all M. morganii. Three novel genospecies of M. morganii were identified, designated as M. chanii, M. variant1, and M. variant2. Compared to M. sibonii, M. chanii genospecies possessed a greater number of flagellar-related genes, typically located within mobile genetic elements (MGEs), suggesting potential for better environmental adaptability. Phylogenetic analysis further disclosed that M. morganii was divided into 12 sequence clusters (SCs). Particularly, SC9 harbored an elevated abundance of ARGs and VRGs, mainly toxin-related genes, and was associated with a higher presence of MGEs compared to non-SC9 strains. The collective findings suggest that M. morganii undergoes evolution driven by the influence of MGEs, thereby significantly enhancing its adaptability to selective pressures of environmental changes and clinical antimicrobial agents.IMPORTANCEThe growing clinical significance of Morganella morganii arises from its abundant virulence factors and antimicrobial resistance genes, resulting in elevated infection rates and increased clinical scrutiny. However, research on the molecular epidemiology and evolutionary trends of M. morganii has been scarce. Our study established a list of virulence-related genes (VRGs) for M. morganii and conducted a large-scale epidemiological investigation into these VRGs. Based on genomic classification, three novel genotypes of M. morganii were identified, representing evolutionary adaptations and responses to environmental challenges. Furthermore, we discovered the emergence of a sequence cluster enriched with antimicrobial resistance genes, VRGs, and mobile genetic elements, attributed to the selective pressure of antimicrobial agents. In addition, we identified a novel conjugative plasmid harboring the blaKPC-2 gene. These findings hold significance in monitoring and comprehending the epidemiology of M. morganii.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuesong Xu
- Department of Clinical Laboratory, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xinmiao Jia
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Sklenicka J, Tran T, Ramirez MS, Donow HM, Magaña AJ, LaVoi T, Mamun Y, Jimenez V, Chapagain P, Santos R, Pinilla C, Giulianotti MA, Tolmasky ME. Structure-Activity Relationship of Pyrrolidine Pentamine Derivatives as Inhibitors of the Aminoglycoside 6'- N-Acetyltransferase Type Ib. Antibiotics (Basel) 2024; 13:672. [PMID: 39061354 PMCID: PMC11274322 DOI: 10.3390/antibiotics13070672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic acetylation by the aminoglycoside 6'-N-acetyltransferase type I enzyme, of which type Ib [AAC(6')-Ib] is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess multiple properties that make them attractive for drug development. Mixture-based combinatorial libraries and positional scanning strategy have led to the identification of a chemical scaffold, pyrrolidine pentamine, that, when substituted with the appropriate functionalities at five locations (R1-R5), inhibits AAC(6')-Ib-mediated inactivation of amikacin. Structure-activity relationship studies have shown that while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations at position R1 of the two most active compounds, 2700.001 and 2700.003, reduced inhibition levels, demonstrating the essential nature not only of the presence of an S-phenyl moiety at this location but also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions had varied effects, demonstrating the potential for optimization. A correlation analysis between molecular docking values (ΔG) and the dose required for two-fold potentiation of the compounds described in this and the previous studies showed a significant correlation between ΔG values and inhibitory activity.
Collapse
Affiliation(s)
- Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Haley M. Donow
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (H.M.D.); (T.L.)
| | - Angel J. Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Travis LaVoi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (H.M.D.); (T.L.)
| | - Yasir Mamun
- Department of Physics, Florida International University, Miami, FL 33199, USA; (Y.M.); (P.C.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Verónica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA; (Y.M.); (P.C.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Clemencia Pinilla
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.P.); (M.A.G.)
| | - Marc A. Giulianotti
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.P.); (M.A.G.)
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (J.S.); (T.T.); (M.S.R.); (A.J.M.); (V.J.)
| |
Collapse
|
34
|
Harbaoui S, Ferjani S, Abbassi MS, Guzmán-Puche J, Causse M, Elías-López C, Martínez-Martínez L, Boubaker IBB. Genetic background of aminoglycoside-modifying enzymes in various genetic lineages of clinical aminoglycosides-resistant E. coli and K. pneumoniae isolates in Tunisia. J Appl Microbiol 2024; 135:lxae164. [PMID: 38955378 DOI: 10.1093/jambio/lxae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
AIMS This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse β-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.
Collapse
Affiliation(s)
- Sarra Harbaoui
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Sana Ferjani
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Boulevard 9 Avril, Tunis 1006, Tunisia
| | - Mohamed Salah Abbassi
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Bacteriological Research, Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Julia Guzmán-Puche
- Unidad de Gestión Clínica de Microbiologia, Hospital Universitario Reina Sofía de Córdoba, Córdoba 14004, Spain
| | - Manuel Causse
- Unidad de Gestión Clínica de Microbiologia, Hospital Universitario Reina Sofía de Córdoba, Córdoba 14004, Spain
| | - Cristina Elías-López
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba 14004, Spain
| | - Luis Martínez-Martínez
- Departamento de Química Agrícola, Edafología y Microbiología, Universidad de Córdoba, Córdoba 14004, Spain
| | - Ilhem Boutiba-Ben Boubaker
- Research Laboratory «Antimicrobial resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Laboratory of Microbiology, Charles Nicolle Hospital, Boulevard 9 Avril, Tunis 1006, Tunisia
| |
Collapse
|
35
|
Nokchan N, Wongsurawat T, Jenjaroenpun P, Nitayanon P, Saechan C, Thirakittiwatthana W, Tribuddharat C. Isolation and Genomic Characterization of Schaalia turicensis from a Patient with Gonococcal Urethritis, Thailand. Curr Microbiol 2024; 81:221. [PMID: 38874629 DOI: 10.1007/s00284-024-03756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Schaalia turicensis is facultative anaerobic Gram-positive bacillus that commonly inhabits the oropharynx, gastrointestinal, and genitourinary tract of healthy individuals. This organism has been co-isolated with Neisseria gonorrhoeae from 15-year-old Thai male patient with gonococcal urethritis in Bangkok, Thailand. In this study, we characterized the class 1 integron in S. turicensis isolate using whole-genome sequencing and bioinformatics analysis. Sequencing analysis confirmed the presence of an imperfect class 1 integron located on chromosome and a novel 24.5-kb-long composite transposon, named Tn7083. The transposon Tn7083 carried genes encoding chloramphenicol resistance (cmx), sulfonamide resistance (sul1), and aminoglycoside resistance [aph(6)-Id (strB), aph(3'')-Ib (strA), aph(3')-Ia].
Collapse
Affiliation(s)
- Natakorn Nokchan
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Perapon Nitayanon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Charinrat Saechan
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Witoon Thirakittiwatthana
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Chanwit Tribuddharat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
36
|
Patra S, Biswas P, Karmakar S, Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: implications of the combination of antibiotics and phytoconstituents. Arch Microbiol 2024; 206:294. [PMID: 38850339 DOI: 10.1007/s00203-024-04012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.
Collapse
Affiliation(s)
- Susmita Patra
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Poulomi Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kaushik Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
37
|
Lyu Z, Ling Y, van Hoof A, Ling J. Inactivation of the ribosome assembly factor RimP causes streptomycin resistance and impairs motility in Salmonella. Antimicrob Agents Chemother 2024; 68:e0000224. [PMID: 38629858 PMCID: PMC11620500 DOI: 10.1128/aac.00002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
The ribosome is the central hub for protein synthesis and the target of many antibiotics. Although the majority of ribosome-targeting antibiotics inhibit protein synthesis and are bacteriostatic, aminoglycosides promote protein mistranslation and are bactericidal. Understanding the resistance mechanisms of bacteria against aminoglycosides is not only vital for improving the efficacy of this critically important group of antibiotics but also crucial for studying the molecular basis of translational fidelity. In this work, we analyzed Salmonella mutants evolved in the presence of the aminoglycoside streptomycin (Str) and identified a novel gene rimP to be involved in Str resistance. RimP is a ribosome assembly factor critical for the maturation of the 30S small subunit that binds Str. Deficiency in RimP increases resistance against Str and facilitates the development of even higher resistance. Deleting rimP decreases mistranslation and cellular uptake of Str and further impairs flagellar motility. Our work thus highlights a previously unknown mechanism of aminoglycoside resistance via defective ribosome assembly.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA
| | - Yunyi Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA
| |
Collapse
|
38
|
Steyaert S, Peeters C, Wieme AD, Muyldermans A, Vandoorslaer K, Spilker T, Wybo I, Piérard D, LiPuma JJ, Vandamme P. Novel Ralstonia species from human infections: improved matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based identification and analysis of antimicrobial resistance patterns. Microbiol Spectr 2024; 12:e0402123. [PMID: 38661349 PMCID: PMC11237764 DOI: 10.1128/spectrum.04021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
A collection of 161 Ralstonia isolates, including 90 isolates from persons with cystic fibrosis, 27 isolates from other human clinical samples, 8 isolates from the hospital environment, 7 isolates from industrial samples, and 19 environmental isolates, was subjected to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification and yielded confident species level identification scores for only 62 (39%) of the isolates, including four that proved misidentified subsequently. Whole-genome sequence analysis of 32 representative isolates for which no confident MALDI-TOF MS species level identification was obtained revealed the presence of seven novel Ralstonia species, including three and four that were isolated from cystic fibrosis or other human clinical samples, respectively, and provided the basis for updating an in-house MALDI-TOF MS database. A reanalysis of all mass spectra with the updated MALDI-TOF MS database increased the percentage of isolates with confident species level identification up to 77%. The antimicrobial susceptibility of 30 isolates mainly representing novel human clinical and environmental Ralstonia species was tested toward 17 antimicrobial agents and demonstrated that the novel Ralstonia species were generally multi-resistant, yet susceptible to trimethoprim/sulfamethoxazole, ciprofloxacin, and tigecycline. An analysis of genomic antimicrobial resistance genes in 32 novel and publicly available genome sequences revealed broadly distributed beta-lactam resistance determinants.IMPORTANCEThe present study demonstrated that a commercial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification database can be tailored to improve the identification of Ralstonia species. It also revealed the presence of seven novel Ralstonia species, including three and four that were isolated from cystic fibrosis or other human clinical samples, respectively. An analysis of minimum inhibitory concentration values demonstrated that the novel Ralstonia species were generally multi-resistant but susceptible to trimethoprim/sulfamethoxazole, ciprofloxacin, and tigecycline.
Collapse
Affiliation(s)
- Stephanie Steyaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
| | - Anneleen D. Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Astrid Muyldermans
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kristof Vandoorslaer
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Theodore Spilker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ingrid Wybo
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Denis Piérard
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - John J. LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
| |
Collapse
|
39
|
Takei S, Tabe Y, Miida T, Hishinuma T, Khasawneh A, Kirikae T, Sherchand JB, Tada T. Multidrug-resistant Klebsiella pneumoniae clinical isolates producing NDM- and OXA-type carbapenemase in Nepal. J Glob Antimicrob Resist 2024; 37:233-243. [PMID: 38759919 DOI: 10.1016/j.jgar.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES The emergence of multidrug-resistant Klebsiella pneumoniae has become a serious problem in medical settings worldwide. METHODS A total of 46 isolates of multidrug-resistant K. pneumoniae were obtained from 2 hospitals in Nepal from October 2018 to April 2019. RESULTS Most of these isolates were highly resistant to carbapenems, aminoglycosides, and fluoroquinolones with the minimum inhibitory concentrations (MICs) of more than 64 µg/mL. These isolates harboured carbapenemase-encoding genes, including blaNDM-1, blaNDM-5, blaOXA-181 and blaOXA-232, and 16S rRNA methyltransferase-encoding genes, including armA, rmtB, rmtC, and rmtF. Multilocus sequence typing revealed that 44 of 46 isolates were high-risk clones such as ST11 (2%), ST14 (4%), ST15 (11%), ST37 (2%), ST101 (2%), ST147 (28%), ST231 (13%), ST340 (4%), and ST395 (28%). In particular, ST395 isolates, which spread across medical settings in Nepal, co-harboured blaNDM-5 and rmtB on IncFII plasmids and co-harboured blaOXA-181/-232 and rmtF on ColKP3 plasmids. Several isolates harboured blaOXA-181 or blaNDM-5 on their chromosomes and multi-copies of blaNDM-1 or genes encoding 16S rRNA methyltransferases on their plasmids. CONCLUSIONS The presented study demonstrates that the high-risk clones of multidrug-resistant K. pneumoniae spread in a clonal manner across hospitals in Nepal.
Collapse
Affiliation(s)
- Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Abdullah Khasawneh
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jeevan B Sherchand
- Department of Medical Microbiology, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
40
|
Dulyayangkul P, Beavis T, Lee WWY, Ardagh R, Edwards F, Hamilton F, Head I, Heesom KJ, Mounsey O, Murarik M, Pinweha P, Reding C, Satapoomin N, Shaw JM, Takebayashi Y, Tooke CL, Spencer J, Williams PB, Avison MB. Harvesting and amplifying gene cassettes confers cross-resistance to critically important antibiotics. PLoS Pathog 2024; 20:e1012235. [PMID: 38843111 PMCID: PMC11156391 DOI: 10.1371/journal.ppat.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Thomas Beavis
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Winnie W. Y. Lee
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robbie Ardagh
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Frances Edwards
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- North Bristol NHS Trust, Bristol, United Kingdom
| | | | - Ian Head
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Kate J. Heesom
- Bristol University Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Oliver Mounsey
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marek Murarik
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peechanika Pinweha
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Carlos Reding
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - John M. Shaw
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Catherine L. Tooke
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philip B. Williams
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Matthew B. Avison
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
41
|
Kahya Demirbilek S, Yıldız M, Akkoç A, Mutlu AM, Ardıçlı Ö, Aner H. Comparison of bacteriological culture method and multiplex real-time PCR for detection of mastitis. Res Vet Sci 2024; 172:105237. [PMID: 38555775 DOI: 10.1016/j.rvsc.2024.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
This study includes the evaluation of multiplex real-time PCR (rPCR) kit, which was developed to provide rapid diagnosis of mastitis infections, by working with milk samples of 2 different sources of mastitis and comparing the results with the classical bacteriological culture method (BC). A total of 273 bacteria were isolated in 226 samples (47.88%) out of 472 samples by BC. These were 139 (50.91%) Staphylococcus spp., 61 (22.34%) Streptococcus spp., 15 (5.49%) E. coli, 8 (2.93%) Enterococcus spp., 50 (18.31%) other bacteria. When we look at the multiplex rPCR results; 1052 positive were obtained for the gene regions of 14 different bacteria, 1 yeast, and 1 β-lactamase gene examined in 472 samples. While no searched gene region was found by rPCR in 78 (16.5%) of the 472 samples studied, at least 1 gene was detected in 394 (83.5%) samples. These 1052 positive samples by rPCR were; 263 (28.43%) Staphylococcus spp., 51 (5.51%) S. aureus, 57 (6.16%) Enterococcus spp., 49 (5.29%) C. bovis, 16 (1.73%) S. dysgalactiae, 84 (9.08%) S. agalactiae, 71 (7.67%) S. uberis, 73 (7.89%) E. coli, 14 (1.51%) Prototheca spp., 39 (4.21%) T. pyogenes/P. indolicus, 5 (0.54%) S. marcescens, 15 (1.62%) K. oxytoca/pneumonia, 117 (12.64%) Mycoplasma spp., 31 (3.35%) M. bovis, 40 (4.32%) yeast, and 127 samples (26.90%) were β-lactamase positive. When the antibiotic resistance of the isolates was evaluated, 78 (31.96%) tetracycline, 72 (29.5%) penicillin, and 60 (24.59%) clindamycin resistance were observed predominantly in Gram-positive isolates, while 6 (23.07%) tigecycline, 6 (23.07%) netilmicin, 6 (23.07%) pipercillin resistance was found in gram-negative isolates. While a bacteria and/or yeast gene was found by rPCR in 187 of 246 (76.01%) samples with no bacterial growth, a bacterium was isolated with BC in only 20 (8.84%) samples whose gene region was not found by rPCR. As a result, the multiplex rPCR system used in the diagnosis of mastitis has been found to be quite reliable as it can detect a large number of bacteria in a very short time compared to classical methods. Therefore, we advise the use of rPCR and/or culture for confirmation of clinical signs in mastitis and at routine mastitis surveillance.
Collapse
Affiliation(s)
| | - Merve Yıldız
- Uludag University, Faculty of Veterinary Medicine, Department of Microbiology, Turkey.
| | - Ahmet Akkoç
- Uludag University, Faculty of Veterinary Medicine, Department of Pathology, 16.000 Görükle-Bursa, Turkey.
| | - Ayşe Meriç Mutlu
- Uludag University, Faculty of Veterinary Medicine, Department of Pathology, 16.000 Görükle-Bursa, Turkey
| | - Özge Ardıçlı
- Uludag University, Faculty of Veterinary Medicine, Department of Microbiology, Turkey.
| | - Havva Aner
- Uludag University, Faculty of Veterinary Medicine, Department of Microbiology, Turkey
| |
Collapse
|
42
|
Tian S, Jiang Y, Han Q, Meng C, Ji F, Zhou B, Ye M. Putative Probiotic Ligilactobacillus salivarius Strains Isolated from the Intestines of Meat-Type Pigeon Squabs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10289-1. [PMID: 38805143 DOI: 10.1007/s12602-024-10289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
This study aims to screen for potential probiotic lactic acid bacteria from the intestines of meat-type pigeon squabs. Ligilactobacillus salivarius YZU37 was identified as the best comprehensive performed strain. Being acid- and bile salt-tolerant, it displayed growth-inhibition activities against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, and Salmonella typhimurium SL1344, exhibited sensitivity to 6 commonly used antibiotics, and endowed with good cell surface hydrophobicity, auto-aggregation property, and anti-oxidant activities. Results of in vitro experiments indicated that the bacteriostatic effects of this strain were related to the production of proteinaceous substances that depend on acidic conditions. Whole-genome sequencing of L. salivarius YZU37 was performed to elucidate the genetic basis underlying its probiotic potential. Pangenome analysis of L. salivarius YZU37 and other 212 L. salivarius strains available on NCBI database revealed a pigeon-unique gene coding choloylglycine hydrolase (CGH), which had higher enzyme-substrate binding affinity than that of the common CGH shared by L. salivarius strains of other sources. Annotation of the functional genes in the genome of L. salivarius YZU37 revealed genes involved in responses to acid, bile salt, heat, cold, heavy metal, and oxidative stresses. The whole genome analysis also revealed the absence of virulence and toxin genes and the presence of 65 genes distributed under 4 CAZymes classes, 2 CRISPR-cas regions, and 3 enterolysin A clusters which may confer the acid-dependent antimicrobial potential of L. salivarius YZU37. Altogether, our results highlighted the probiotic potential of L. salivarius YZU37. Further in vivo investigations are required to elucidate its beneficial effects on pigeons.
Collapse
Affiliation(s)
- Shaoqi Tian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yinhong Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qiannan Han
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chuang Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
43
|
Selvakumar S, Singh S, Swaminathan P. Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis. Int Microbiol 2024:10.1007/s10123-024-00537-3. [PMID: 38767682 DOI: 10.1007/s10123-024-00537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Antimicrobial resistance in bacteria is a global threat that can make antibacterial treatments ineffective. One well-known method of antibiotic resistance and a common defensive mechanism in many harmful bacteria is the synthesis of endogenous hydrogen sulfide (H2S) in bacteria. In this study, soil bacteria were screened using the lead acetate agar test and the triple sugar iron test to determine that they were non-endogenous H2S producers. This was further validated by full genome analysis of the identified organism against the gene sequences of H2S-producing genes. Antibacterial resistance of the bacteria was phenotypically analyzed using the Kirby-Bauer disk diffusion method. Then, the effect of exogenous H2S on the antibiotic-resistant bacteria was checked in sodium sulfide, leading to antibiotic re-sensitization.
Collapse
Affiliation(s)
- Sahithya Selvakumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India
| | - Shubhi Singh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India
| | - Priya Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, India.
| |
Collapse
|
44
|
Sklenicka J, Tran T, Ramirez MS, Donow HM, Magaña AJ, LaVoi T, Mamun Y, Chapagain P, Santos R, Pinilla C, Giulianotti MA, Tolmasky ME. Structure-activity relationship of pyrrolidine pentamine derivatives as inhibitors of the aminoglycoside 6'- N -acetyltransferase type Ib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594018. [PMID: 38798525 PMCID: PMC11118410 DOI: 10.1101/2024.05.14.594018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Resistance to amikacin and other major aminoglycosides is commonly due to enzymatic acetylation by aminoglycoside 6'- N -acetyltransferase type I enzyme, of which type Ib [AAC(6')-Ib] is the most widespread among Gram-negative pathogens. Finding enzymatic inhibitors could be an effective way to overcome resistance and extend the useful life of amikacin. Small molecules possess multiple properties that make them attractive compounds to be developed as drugs. Mixture-based combinatorial libraries and positional scanning strategy led to the identification of a chemical scaffold, pyrrolidine pentamine, that, when substituted with the appropriate functionalities at five locations (R1 - R5), inhibits AAC(6')-Ib-mediated inactivation of amikacin. Structure-activity relationship (SAR) studies showed that while truncations to the molecule result in loss of inhibitory activity, modifications of functionalities and stereochemistry have different effects on the inhibitory properties. In this study, we show that alterations at position R1 of the two most active compounds, 2700.001 and 2700.003 , reduced inhibition levels, demonstrating the essential nature not only of the presence of an S -phenyl moiety at this location but also the distance to the scaffold. On the other hand, modifications on the R3, R4, and R5 positions have varied effects, demonstrating the potential for optimization. A correlation analysis between molecular docking values (ΔG) and the dose required for two-fold potentiation of compounds described in this and the previous studies showed a significant correlation between ΔG values and inhibitory activity. Highlights Amikacin resistance in Gram-negatives is mostly caused by the AAC(6')-Ib enzymeAAC(6')-Ib has been identified in most Gram-negative pathogensInhibitors of AAC(6')-Ib could be used to treat resistant infectionsCombinatorial libraries and positional scanning identified an inhibitorThe lead compound can be optimized by structure activity relationship studies.
Collapse
|
45
|
Hou G, Ahmad S, Li Y, Yan D, Yang S, Chen S, Qiu Z, Yu X, Li N, Li Y, Liang Y, Leng Q, Qu Y. Epidemiological, Virulence, and Antibiotic Resistance Analysis of Klebsiella pneumoniae, a Major Source of Threat to Livestock and Poultry in Some Regions of Xinjiang, China. Animals (Basel) 2024; 14:1433. [PMID: 38791650 PMCID: PMC11117231 DOI: 10.3390/ani14101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is recognized as a zoonotic pathogen with an increasing threat to livestock and poultry. However, research on K. pneumoniae of animal origin remains limited. To address the gap, a comprehensive investigation was carried out by collecting a total of 311 samples from the farms of four animal species (dairy cow, chicken, sheep, and pig) in selected areas of Xinjiang, China. Isolates were identified by khe gene amplification and 16S rRNA gene sequencing. Genotyping of K. pneumonia isolates was performed using wzi typing and multilocus sequence typing (MLST). PCR was employed to identify virulence and resistance genes. An antibiotic susceptibility test was conducted using the Kirby-Bauer method. The findings revealed an isolation of 62 K. pneumoniae strains, with an average isolation rate of 19.94%, with the highest proportion originating from cattle sources (33.33%). Over 85.00% of these isolates harbored six virulence genes (wabG, uge, fimH, markD, entB, and ureA); while more than 75.00% of isolates possessed four resistance genes (blaTEM, blaSHV, oqxA, and gyrA). All isolates exhibited complete resistance to ampicillin and demonstrated substantial resistance to sulfisoxazole, amoxicillin/clavulanic acid, and enrofloxacin, with an antibiotic resistance rate of more than 50%. Furthermore, 48.39% (30/62) of isolates were classified as multidrug-resistant (MDR) strains, with a significantly higher isolation rate observed in the swine farms (66.67%) compared to other farms. Genetic characterization revealed the classification of the 62 isolates into 30 distinct wzi allele types or 35 different sequence types (STs). Notably, we identified K. pneumoniae strains of dairy and swine origin belonging to the same ST42 and wzi33-KL64 types, as well as strains of dairy and chicken origin belonging to the same wzi31-KL31-K31 type. These findings emphasize the widespread occurrence of drug-resistant K. pneumoniae across diverse animal sources in Xinjiang, underscoring the high prevalence of multidrug resistance. Additionally, our results suggest the potential for animal-to-animal transmission of K. pneumoniae and there was a correlation between virulence genes and antibiotic resistance genes. Moreover, the current study provides valuable data on the prevalence, antibiotic resistance, and genetic diversity of K. pneumoniae originating from diverse animal sources in Xinjiang, China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qingwen Leng
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (G.H.); (S.A.); (Y.L.); (D.Y.); (S.Y.); (S.C.); (Z.Q.); (X.Y.); (N.L.); (Y.L.); (Y.L.)
| | - Yonggang Qu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (G.H.); (S.A.); (Y.L.); (D.Y.); (S.Y.); (S.C.); (Z.Q.); (X.Y.); (N.L.); (Y.L.); (Y.L.)
| |
Collapse
|
46
|
Rastegar-Kashkouli A, Khaledi A, Moammer F, Ghenaatpisheh Sanani M, Mahdi Heidari M, Foroughi Eghbal A. Systematic Review and Meta-Analysis on the Prevalence and Antibiotic Susceptibility Pattern in Pseudomonas aeruginosa Isolated from Cystic Fibrosis Patients. Eurasian J Med 2024; 56:189-198. [PMID: 39655837 PMCID: PMC11535318 DOI: 10.5152/eurasianjmed.2024.23302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/05/2024] [Indexed: 12/13/2024] Open
Abstract
This study aimed to conduct a retrospective Middle East systematic review and meta-analysis on the prevalence and antibiotic susceptibility pattern for this microorganism isolated from cystic fibrosis patients. We searched MEDLINE, the Cochrane Library, SCOPUS, and Web of Science (ISI) to identify studies that reported the prevalence of Pseudomonas aeruginosa isolated from cystic fibrosis (CF) patients, and antibiotic resistance patterns. To assess the quality of publications was used of a checklist provided by the Joanna Briggs Institute. Finally, the data was analyzed by comprehensive meta-analysis software. The studied populations comprised children and young, and adult CF patients. Patients were aged between 3 months-65 years. A higher percentage of CF patients were males. Pseudomonas aeruginosa frequency varied between 5.9 and 76.2% in the studies included. The combined prevalence of P. aeruginosa was reported 34.3%. The lowest level resistance of P. aeruginosa was toward colistin (0%-13.3%) and ticarcillin (3.9%-24%). Our study showed the prevalence of P. aeruginosa and antibiotic resistance are almost high, while colistin and ticarcillin are the best antibiotics to decrease postantibiotic efects (PAEs) in CF patients from the Middle East. Therefore, physicians should pay more attention to therapeutic protocols to prevent further resistance.
Collapse
Affiliation(s)
| | - Azad Khaledi
- Infectious Diseases Reaserch Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Student Research Committee, Guilan University of Medical Sciences School of Medicine, Guilan, Iran
| | | | - Mohammad Mahdi Heidari
- Department of Pediatrics, Kashan University of Medical Sciences Faculty of Medicine, Kashan, Iran
| | | |
Collapse
|
47
|
Tóth K, Damjanova I, Laczkó L, Buzgó L, Lesinszki V, Ungvári E, Jánvári L, Hanczvikkel A, Tóth Á, Szabó D. Genomic Epidemiology of C2/H30Rx and C1-M27 Subclades of Escherichia coli ST131 Isolates from Clinical Blood Samples in Hungary. Antibiotics (Basel) 2024; 13:363. [PMID: 38667039 PMCID: PMC11047377 DOI: 10.3390/antibiotics13040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
Extended-spectrum β-lactamase-producing Escherichia coli ST131 has become widespread worldwide. This study aims to characterize the virulome, resistome, and population structure of E. coli ST131 isolates from clinical blood samples in Hungary. A total of 30 C2/H30Rx and 33 C1-M27 ST131 isolates were selected for Illumina MiSeq sequencing and 30 isolates for MinION sequencing, followed by hybrid de novo assembly. Five C2/H30Rx and one C1-M27 cluster were identified. C1-M27 isolates harbored the F1:A2:B20 plasmid in 93.9% of cases. Long-read sequencing revealed that blaCTX-M-27 was on plasmids. Among the C2/H30Rx isolates, only six isolates carried the C2-associated F2:A1:B- plasmid type. Of 19 hybrid-assembled C2/H30Rx genomes, the blaCTX-M-15 gene was located on plasmid only in one isolate, while in the other isolates, ISEcp1 or IS26-mediated chromosomal integration of blaCTX-M-15 was detected in unique variations. In one isolate a part of F2:A1:B- plasmid integrated into the chromosome. These results suggest that CTX-M-15-producing C2/H30Rx and CTX-M-27-producing C1-M27 subclades may have emerged and spread in different ways in Hungary. While blaCTX-M-27 was carried mainly on the C1/H30R-associated F1:A2:B20 plasmid, the IncF-like plasmids of C2/H30Rx or its composite transposons have been incorporated into the chromosome through convergent evolutionary processes.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Ivelina Damjanova
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Levente Laczkó
- One Health Institute, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-DE Conservation Biology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Buzgó
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Virág Lesinszki
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Erika Ungvári
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Laura Jánvári
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Adrienn Hanczvikkel
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Ákos Tóth
- Department of Bacteriology, Parasitology and Mycology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary (L.B.); (L.J.); (Á.T.)
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SE Human Microbiota Research Group, 1052 Budapest, Hungary
- Neurosurgical and Neurointervention Clinic, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
48
|
Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, Hendawy AO, De los Ríos-Escalante PR, Aboubakr M, Zakai SA, Nageeb WM. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol 2024; 15:1374466. [PMID: 38646632 PMCID: PMC11026690 DOI: 10.3389/fmicb.2024.1374466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is recognized for its adaptability and opportunistic nature. It poses a substantial challenge in clinical settings due to its complicated antibiotic resistance mechanisms, biofilm formation, and capacity for persistent infections in both animal and human hosts. Recent studies revealed a potential zoonotic transmission of P. aeruginosa between animals, the environment, and human populations which highlights awareness of this microbe. Implementation of the One Health approach, which underscores the connection between human, animal, and environmental health, we aim to offer a comprehensive perspective on the current landscape of P. aeruginosa management. This review presents innovative strategies designed to counteract P. aeruginosa infections. Traditional antibiotics, while effective in many cases, are increasingly compromised by the development of multidrug-resistant strains. Non-antibiotic avenues, such as quorum sensing inhibition, phage therapy, and nanoparticle-based treatments, are emerging as promising alternatives. However, their clinical application encounters obstacles like cost, side effects, and safety concerns. Effectively addressing P. aeruginosa infections necessitates persistent research efforts, advancements in clinical development, and a comprehension of host-pathogen interactions to deal with this resilient pathogen.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rokaia F. Ragab
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Eliana Ibáñez-Arancibia
- PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry – LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Ahmed Farag
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
49
|
Rahman Z, McLaws M, Thomas T. Genomic characterization of extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli from urban wastewater in Australia. Microbiologyopen 2024; 13:e1403. [PMID: 38488803 PMCID: PMC10941799 DOI: 10.1002/mbo3.1403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
This study investigates extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli isolates from Sydney's wastewater. These isolates exhibit resistance to critical antibiotics and harbor novel resistance mechanisms. The findings highlight the importance of wastewater-based surveillance in monitoring resistance beyond the clinical setting.
Collapse
Affiliation(s)
- Zillur Rahman
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| | - Mary‐Louise McLaws
- School of Population HealthUNSW SydneySydneyNew South WalesAustralia
- UNSW Global Water InstituteUNSW SydneySydneyNew South WalesAustralia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
50
|
Ghamari M, Emaneini M, Hemmati S, Jabalameli F, Beigverdi R. Phenotypic and genotypic evaluation of aminoglycoside resistance in Escherichia coli isolated from patients with blood stream infections in Tehran, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:187-192. [PMID: 38854982 PMCID: PMC11162164 DOI: 10.18502/ijm.v16i2.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Escherichia coli is a significant causative agent of bloodstream infections (BSIs). Aminoglycoside antibiotics play a crucial role in treating severe infections such as sepsis and pneumonia. However, resistance to these antibiotics often occurs due to the production of aminoglycoside-modifying enzymes (AMEs). This study was conducted to assess antimicrobial susceptibility patterns against various aminoglycosides and to determine the prevalence of common AME genes in E. coli strains isolated from BSIs. Materials and Methods Sixty-five E. coli isolates were obtained from blood samples in a referral hospital in Tehran, Iran. The susceptibility patterns of aminoglycosides were determined using disk diffusion method and AMEs genes were investigated using PCR assay. Results Resistance to aminoglycosides was observed in 64.6% (42/65) of the isolates. The most frequent resistance rate was found for kanamycin (44.6%) and gentamicin (38.5%), followed by tobramycin (29.2%) and amikacin (4.6%). The most frequent AME gene was aac(3)-IVa, which detected in 49.2% isolates, followed by aac(6)-Ib (40%), aac(3)-IIa (32.3%), and ant(2)-Ia (30.8%), respectively. Conclusion Athough the findings of this survey are based on specimens collected from a single hospital, our study shows that the high prevalence of aminoglycoside resistance is primarily attributed to the presence of the aac(3)-Iva, aac(6)-Ib and aac(3)-IIa genes. The low rate of resistance to amikacin makes this antibiotic a good candidate for treatment of BSIs due to E. coli.
Collapse
Affiliation(s)
- Mahsa Ghamari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hemmati
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|