1
|
Zhang J, Wang J, Li Y, Zheng Y, Hai P, Zhang J. Highly specific GSH-triggered bifunctional molecules to enable precise imaging and targeted therapy of cancer. Talanta 2025; 281:126862. [PMID: 39265421 DOI: 10.1016/j.talanta.2024.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The utilization of diagnostic-integrated molecules can enable targeted delivery and controlled release to significantly enhance therapeutic effectiveness and minimize toxic effects. Herein, we developed a novel class of glutathione (GSH)-activated bifunctional molecules that respond to elevated levels of GSH in tumor microenvironment. These bifunctional molecules retained the pharmacodynamic effects of parent molecules and mitigated cytotoxicity. Meanwhile, controlled release was monitored using fluorescent signals, enabling detection of drug distribution and accumulation in situ and in real time. Moreover, the correlation between GSH levels and fluorescence intensity offers the possibility of monitoring the effectiveness of responsive drugs. In conclusion, bifunctional molecules, as novel diagnostic-integrated molecules with both fluorescence imaging and therapeutic effects, exhibited potential applications in cancer therapy and imaging.
Collapse
Affiliation(s)
- Junyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongbiao Zheng
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, 810016, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, 810016, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Li Q, Zeng K, Chen Q, Han C, Wang X, Li B, Miao J, Zheng B, Liu J, Yuan X, Liu B. Atractylenolide I inhibits angiogenesis and reverses sunitinib resistance in clear cell renal cell carcinoma through ATP6V0D2-mediated autophagic degradation of EPAS1/HIF2α. Autophagy 2024:1-20. [PMID: 39477683 DOI: 10.1080/15548627.2024.2421699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is tightly associated with VHL (von Hippel-Lindau tumor suppressor) mutation and dysregulated angiogenesis. Accumulating evidence indicates that antiangiogenic treatment abolishing tumor angiogenesis can achieve longer disease-free survival in patients with ccRCC. Atractylenolide I (ATL-I) is one of the main active compounds in Atractylodes macrocephala root extract and exhibits various pharmacological effects, including anti-inflammatory and antitumor effects. In this study, we revealed the potent antitumor activity of ATL-I in ccRCC. ATL-I exhibited robust antiangiogenic capacity by inhibiting EPAS1/HIF2α-mediated VEGFA production in VHL-deficient ccRCC, and it promoted autophagic degradation of EPAS1 by upregulating the ATPase subunit ATP6V0D2 (ATPase H+ transporting V0 subunit d2) to increase lysosomal function and facilitated fusion between autophagosomes and lysosomes. Mechanistically, ATP6V0D2 directly bound to RAB7 and VPS41 and promoted the RAB7-HOPS interaction, facilitating SNARE complex assembly and autophagosome-lysosome fusion. Moreover, ATP6V0D2 promoted autolysosome degradation by increasing the acidification and activity of lysosomes during the later stages of macroautophagy/autophagy. Additionally, we found that ATL-I could decrease the level of EPAS1, which was upregulated in sunitinib-resistant cells, thus reversing sunitinib resistance. Collectively, our findings demonstrate that ATL-I is a robust antiangiogenic and antitumor lead compound with potential clinical application for ccRCC therapy.Abbreviations: ATL-I: atractylenolide I; ATP6V0D2: ATPase H+ transporting V0 subunit d2; CAM: chick chorioallantoic membrane; ccRCC: clear cell renal cell carcinoma; CTSB: cathepsin B; CTSD: cathepsin D; GO: Gene Ontology; HIF-1: HIF1A-ARNT heterodimer; HOPS: homotypic fusion and protein sorting; KDR/VEGFR: kinase insert domain receptor; KEGG: Kyoto Encyclopedia of Genes and Genomes; RCC: renal cell carcinoma; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; TKI: tyrosine kinase inhibitor; V-ATPase: vacuolar-type H±translocating ATPase; VEGF: vascular endothelial growth factor; VHL: von Hippel-Lindau tumor suppressor.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Urology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Qian Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bolong Zheng
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Huang S, Chung JYF, Li C, Wu Y, Qiao G, To KF, Tang PMK. Cellular dynamics of tumor microenvironment driving immunotherapy resistance in non-small-cell lung carcinoma. Cancer Lett 2024; 604:217272. [PMID: 39326553 DOI: 10.1016/j.canlet.2024.217272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have profoundly reshaped the treatment paradigm for non-small cell lung cancer (NSCLC). Despite these advancements, primary and secondary resistance to ICIs remain prevalent challenges in managing advanced NSCLC. Recent studies have highlighted the significant role of the tumor microenvironment (TME) in modulating treatment responses. This review aims to comprehensively examine the interactive roles of immune/stromal cells-such as T cells, B cells, neutrophils, macrophages, and CAFs within the TME, elucidating how these diverse cellular interactions contribute to immunotherapy resistance. It focuses on the dynamic interactions among diverse cell types such as the varying states of T cells under the influence of TME constituents like immune cells and cancer-associated fibroblasts (CAFs). By exploring the mechanisms involved in the complex cellular interactions, we highlight novel therapeutic targets and strategies aimed at overcoming resistance, thereby enhancing the efficacy of ICIs in NSCLC. Our synthesis of recent research provides critical insights into the multifaceted mechanisms of resistance and paves the way for the development of more effective, personalized treatment approaches.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Chaudhari PJ, Nemade AR, Shirkhedkar AA. Recent updates on potential of VEGFR-2 small-molecule inhibitors as anticancer agents. RSC Adv 2024; 14:33384-33417. [PMID: 39439843 PMCID: PMC11495155 DOI: 10.1039/d4ra05244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
The vascular endothelial growth factor receptor (VEGFR) system is the key component for controlling angiogenesis in cancer cells. Blocking vascular endothelial growth factor receptor 2 (VEGFR2) signalling is one of the most promising approaches to hindering angiogenesis and the subsequent growth of cancer cells. The USFDA-approved small-molecule drugs targeting VEGFR-2 are developing drug resistance over the course of chemotherapy, and cardiac-related side effects are consistently being reported; hence, there is an urgent need for more safe and effective anticancer molecules. The present review focuses on the structure and physiology of VEGFR-2 and its involvement in the progression of cancer cells. The recent updates from the last five years through papers and patents on structure-activity relationships, pharmacophoric attributes, molecular docking interactions, antiangiogenic assays, cancer cell line studies, and the potencies (IC50) of VEGFR-2 inhibitors are discussed herein. The common structural framework requirements, such as the Asp-Phe-Gly (DFG) motif of VEGFR-2 interacting with the HBD-HBA region in the ligand molecules, the central aryl ring occupying the linker region, and a variety of bio-isosteres, can enhance activity against VEGFR-2. At one end, the heteroaryl moiety is essential for interaction within the ATP-binding site of VEGFR-2, while the terminal hydrophobic tail occupies the allosteric binding site. Three to five bond spacers between the heteroaryl and HBD-HBA regions provided a better result towards VEGFR-2 inhibition, mirroring the behaviors of standard drugs. The in-depth analysis of recent updates on VEGFR-2 inhibitors presented in this paper will help prospective synthetic and medicinal chemists to discover new lead molecules for the treatment of various cancers.
Collapse
Affiliation(s)
- Prashant Jagannath Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Aditya Ramchandra Nemade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka 560054 India
| | - Atul Arun Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
| |
Collapse
|
5
|
Attar GS, Kumar M, Bhalla V. Targeting sub-cellular organelles for boosting precision photodynamic therapy. Chem Commun (Camb) 2024; 60:11610-11624. [PMID: 39320942 DOI: 10.1039/d4cc02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Among various cancer treatment methods, photodynamic therapy has received significant attention due to its non-invasiveness and high efficiency in inhibiting tumour growth. Recently, specific organelle targeting photosensitizers have received increasing interest due to their precise accumulation and ability to trigger organelle-mediated cell death signalling pathways, which greatly reduces the drug dosage, minimizes toxicity, avoids multidrug resistance, and prevents recurrence. In this review, recent advances and representative photosensitizers used in targeted photodynamic therapy on organelles, specifically including the endoplasmic reticulum, Golgi apparatus, mitochondria, nucleus, and lysosomes, have been comprehensively reviewed with a focus on organelle structure and organelle-mediated cell death signalling pathways. Furthermore, a perspective on future research and potential challenges in precision photodynamic therapy has been presented at the end.
Collapse
Affiliation(s)
- Gopal Singh Attar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Manoj Kumar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Vandana Bhalla
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| |
Collapse
|
6
|
Lu Y, Liu Y, Zuo X, Li G, Wang J, Liu J, Wang X, Wang S, Zhang W, Zhang K, Lei X, Hao Q, Li W, Liu L, Li M, Zhang C, Zhang H, Zhang Y, Gao Y. CXCL12 + Tumor-associated Endothelial Cells Promote Immune Resistance in Hepatocellular Carcinoma. J Hepatol 2024:S0168-8278(24)02618-7. [PMID: 39393439 DOI: 10.1016/j.jhep.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in the limited efficacy of existing treatments for hepatocellular carcinoma (HCC), with tumor-associated endothelial cells (TECs) serving as fundamental TME components that substantially influence tumor progression and treatment efficacy. However, the precise roles and mechanisms of TECs in HCC remain inadequately understood. METHODS We employed a multi-omics profiling strategy to investigate the single-cell and spatiotemporal evolution of TECs within the microenvironment of HCC tumors showcasing varied responses to immunotherapy. Through an analysis of a clinical cohort of HCC patients, we explored the correlation between TEC subpopulations and immunotherapy outcomes. The influence of TEC subsets on the immune microenvironment was confirmed through comprehensive in vitro and in vivo studies. To further explore the mechanisms of distinct TEC subpopulations in microenvironmental modulation and their impact on immunotherapy, we utilized TEC subset-specific knockout mouse models as well as humanized mouse models. RESULTS In this research, we identified a new subset of CXCL12+ TECs that exert a crucial role in immune suppression within the HCC TME. Functionally, CXCL12+ TECs impede the differentiation of CD8+ naïve T cells into CD8+ cytotoxic T cells by secreting CXCL12. Furthermore, they attract myeloid-derived suppressor cells (MDSCs). A bispecific antibody was developed to target both CXCL12 and PD1 specifically, showing significant promise in bolstering anti-tumor immune responses and advancing HCC therapy. CONCLUSIONS CXCL12+ TECs are pivotal in mediating immunosuppression within HCC microenvironment and targeting CXCL12+ TECs presents a promising approach to augment the efficacy of immunotherapies in HCC patients. IMPACT AND IMPLICATION This investigation reveals a pivotal mechanism in the HCC TME, where CXCL12+ TECs emerge as crucial modulators of immune suppression. The discovery of CXCL12+ TECs as inhibitors of CD8+ naïve T cell activation and recruiters of MDSCs significantly advances our grasp of the dynamic between HCC and immune regulation. Moreover, the development and application of a bispecific antibody precisely targeting CXCL12 and PD1 has proven to enhance immune responses in a humanized mouse HCC model. This finding underscores a promising therapeutic direction for HCC, offering the potential to amplify the impact of current immunotherapies.
Collapse
Affiliation(s)
- Yajie Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China; The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China
| | - Yunpeng Liu
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Xiaoshuang Zuo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Guodong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Jianlin Wang
- The Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Jianshan Liu
- The Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Xiangxu Wang
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China
| | - Shuning Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Wangqian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Kuo Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Xiaoying Lei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Qiang Hao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Weina Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Lei Liu
- Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China
| | - Meng Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China
| | - Cun Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China.
| | - Hongmei Zhang
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, PR China.
| | - Yingqi Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China.
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, PR China.
| |
Collapse
|
7
|
Feng Z, Chan YT, Lu Y, Wu J, Xing T, Yuan H, Feng Y, Wang N. Siwu decoction suppress myeloid-derived suppressor cells through tumour cells necroptosis to inhibit hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155913. [PMID: 39084183 DOI: 10.1016/j.phymed.2024.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/08/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Human hepatocellular carcinoma (HCC) acquired resistance to anti-cancer agents due to the presence of immunosuppressive tumour microenvironment (TME) established by the interaction between tumour cells and immune populations. New treatment targeting the interaction is urgently needed and clinically beneficial to patients with HCC. This study aims to explore the anti-tumour effect of a Traditional Chinese Medicine formula Siwu Decoction (SWD) and its potential mechanism. MATERIALS AND METHODS The chemical profile of SWD was determined by high-performance liquid chromatography coupled with mass spectrometry. In vitro and in vivo effects of SWD in regressing HCC were assessed. The role of myeloid-derived suppressor cells (MDSCs) in mediating SWD-induced HCC inhibition was determined by adoptive transfer assay. The regulation of SWD-induced interaction between HCC cells and MDSCs was also confirmed both in vitro and in vivo. RESULTS SWD dose-dependent inhibited the HCC growth and lung metastasis in an orthotopic growth tumour in mice, without significant toxicity and adverse side effect. SWD induced necroptosis in HCC cells, but did not directly inhibit in vitro culture of MDSCs, instead, SWD-treated HCC cell culture supernatant suppressed MDSCs by inducing its cell apoptosis. The necroptotic response of HCC cells can also suppress the MDSCs population in the TME without reducing circulating MDSCs infiltration into the tumours. Adoptive transfer of MDSCs recovered tumour growth and lung metastasis of HCC in SWD-treated mice. In HCC cells, SWD induced a necroptotic response, and blockade of necroptotic response in HCC cells recovered the MDSCs population in vitro and in vivo, and restored tumour growth and lung metastasis in SWD-treated mice. A combination of SWD improves the anti-HCC efficacy of sorafenib without inducing adverse side effects. Albiflorin, the effective compound of SWD, its anti-HCC manner has been verified to be consistent with that of SWD. CONCLUSION Our study observed for the first time that SWD can suppress HCC by regulating MDSCs through necroptosis of tumour cells in the TME. The main effective compound of SWD, albiflorin can be a potential adjuvant therapy in the clinical management of human HCC.
Collapse
Affiliation(s)
- Zixin Feng
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Yuanjun Lu
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Tingyuan Xing
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Hongchao Yuan
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, Academic Building at No. 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., China.
| |
Collapse
|
8
|
Zhang ZJ, Hu WJ, Yu AQ, Wu LH, Yang DQ, Kuang HX, Wang M. Review of polysaccharides from Chrysanthemum morifolium Ramat.: Extraction, purification, structural characteristics, health benefits, structural-activity relationships and applications. Int J Biol Macromol 2024; 278:134919. [PMID: 39179070 DOI: 10.1016/j.ijbiomac.2024.134919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.
Collapse
Affiliation(s)
- Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
9
|
Wen T, Zhang X, Gao Y, Tian H, Fan L, Yang P. SOX4-BMI1 axis promotes non-small cell lung cancer progression and facilitates angiogenesis by suppressing ZNF24. Cell Death Dis 2024; 15:698. [PMID: 39349443 PMCID: PMC11442842 DOI: 10.1038/s41419-024-07075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The incidence of lung cancer has become the highest among all cancer types globally, also standing as a leading cause of cancer-related deaths. Lung cancer is broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with the latter accounting for 85% of total cases. SRY-box transcription factor 4 (SOX4), a crucial transcription factor, has been found to play a key role in the development of various cancers. However, the association between SOX4 and NSCLC is still unclear. This study investigated the clinical relevance of SOX4 and its potential mechanisms in the progression of NSCLC. Analysis of our NSCLC patient cohort revealed a significant increase in SOX4 levels in cancerous tissues, indicating its role as an independent prognostic indicator for NSCLC. In vitro experiments demonstrated that elevated SOX4 expression facilitated NSCLC cell migration, invasion, and EMT. Functionally, SOX4 drives NSCLC progression by enhancing the transcription and expression of B-cell-specific moloney leukemia virus insertion site 1 (BMI1). The oncogenic impact of SOX4-induced BMI1 expression on NSCLC advancement was validated through both in vivo and in vitro studies. In addition, our findings showed that BMI1 promoted the ubiquitination of histone H2A (H2Aub), leading to decreased zinc finger protein 24 (ZNF24) expression, which subsequently triggered vascular endothelial growth factor A (VEGF-A) secretion in NSCLC cells, thereby promoting NSCLC angiogenesis. Moreover, we evaluated the therapeutic potential of a BMI1 inhibitor in combination with Bevacizumab for NSCLC treatment using orthotopic models. The data presented in our study reveal a previously unrecognized role of the SOX4-BMI1 axis in promoting NSCLC progression and angiogenesis. This research significantly contributes to our knowledge of the interplay between SOX4 and BMI1 in NSCLC, potentially paving the way for the development of targeted therapies for this disease.
Collapse
Affiliation(s)
- Ting Wen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Xiao Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Yun Gao
- Department of Internal Medicine, Shandong Provincial Taishan Hospital, Taian, Shandong, 271000, China
| | - Hong Tian
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China.
| | - Lufeng Fan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, China.
| | - Ping Yang
- Department of Oncology, Qingdao Endocrine and Diabetes Hospital & Institute, Qingdao, Shandong, 266000, China.
| |
Collapse
|
10
|
Qi L, Gao T, Bai C, Guo Z, Zhou L, Yang X, Fan Z, Zhang G. AOC3 accelerates lung metastasis of osteosarcoma by recruiting tumor-associated neutrophils, neutrophil extracellular trap formation and tumor vascularization. Heliyon 2024; 10:e37070. [PMID: 39296147 PMCID: PMC11408840 DOI: 10.1016/j.heliyon.2024.e37070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Osteosarcoma (OS) has strong invasiveness, early metastasis, high drug resistance, and poor prognosis. At present, OS still lacks reliable biomarkers, which makes early diagnosis of OS more difficult. AOC3 is highly expressed in OS and highly correlated with lung metastasis. qRT-PCR could identify mRNA levels of genes. Immunohistochemistry and Western blot assays could detect protein levels. Immunofluorescence and ELISA assays were applied to evaluate the activation of neutrophils. Additionally, transwell and wound healing assays evaluated cell migration and invasion abilities. Tube formation and sphere-forming assays were applied to detect the angiogenesis. C57BL/6 mice were injected with OS cells to establish a xenograft tumor model to observe the lung metastasis of OS. Flow cytometry is used to evaluate the ability of tumor cells to recruit neutrophils. AOC3 was significantly overexpressed in OS, and down-regulation of AOC3 could inhibit OS migration, invasion, and angiogenesis. AOC3 could increase tumor development and lung metastasis of OS in vivo experiments. The promoting effect of AOC3 on tumor lung metastasis was achieved by recruiting tumor neutrophils. Activated NETs could up-regulate the metastatic ability of OS cells. Tumor neovascularization also played a role in metastasis, and AOC3 supported tumor neovascularization. AOC3 accelerates lung metastasis of OS by recruiting tumor-related neutrophils and utilizing NETs and tumor vascularization formation.
Collapse
Affiliation(s)
- Luxia Qi
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Chujie Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhanfei Guo
- Department of Rheumatology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Linjing Zhou
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Xiaodong Yang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Zhengfu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Guifang Zhang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| |
Collapse
|
11
|
Chen J, Wang Y, Wu M, Yu K, Liu J, Chang J. Vasculogenic mimicry triggers early recidivation and resistance to adjuvant therapy in esophageal cancer. BMC Cancer 2024; 24:1132. [PMID: 39261780 PMCID: PMC11389244 DOI: 10.1186/s12885-024-12903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE To investigate the impact of vasculogenic mimicry (VM) and postoperative adjuvant therapy on the prognosis and survival of patients with esophageal squamous cell carcinoma (ESCC), as well as to assess whether VM affects the clinical benefit of postoperative adjuvant therapy. METHODS This single-center retrospective analysis included patients who underwent radical surgery for ESCC, which was documented in the medical record system. The presence or absence of VM in surgical specimens was determined using double staining with PAS/CD31. Stratification was applied based on adjuvant therapy and VM status. Survival curves and COX modeling were used to analyze the impact of the presence or absence of VM on the benefit of adjuvant therapy and the survival prognosis of patients. RESULTS VM-positive patients were more prone to postoperative recurrence and metastasis. VM was identified as an independent risk factor for progression-free survival (PFS) (p < 0.001, 95% CI:1.809-3.852) and overall survival (OS) (p < 0.001, 95% CI:1.603-2.786) in postoperative ESCC. Postoperative adjuvant therapy significantly prolonged PFS (p = 0.008) and OS time (p < 0.001) in patients with stage II and III ESCC, with concurrent chemoradiotherapy being the most effective. However, the presence of VM significantly reduced the benefits of postoperative adjuvant therapy (p < 0.001). CONCLUSION VM negatively impacts the prognosis of postoperative ESCC patients and reduces the efficacy of postoperative adjuvant therapy.
Collapse
Affiliation(s)
- Jue Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, No. 368 Hanjiang Middle Road, Hanjiang District, 225001, Yangzhou, China.
- Medical College of Yangzhou University, 225001, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the National Administration of Traditional Chinese Medicine, 225001, Yangzhou, China.
| | - Yu Wang
- Medical College of Yangzhou University, 225001, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the National Administration of Traditional Chinese Medicine, 225001, Yangzhou, China
| | - Mengke Wu
- Medical College of Yangzhou University, 225001, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the National Administration of Traditional Chinese Medicine, 225001, Yangzhou, China
| | - Keke Yu
- Medical College of Yangzhou University, 225001, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the National Administration of Traditional Chinese Medicine, 225001, Yangzhou, China
| | - Junchi Liu
- Medical College of Yangzhou University, 225001, Yangzhou, China
| | - Jiayu Chang
- Medical College of Yangzhou University, 225001, Yangzhou, China
| |
Collapse
|
12
|
Filimonova M, Shitova A, Shevchenko L, Soldatova O, Surinova V, Rybachuk V, Kosachenko A, Nikolaev K, Volkova I, Demyashkin G, Stanojkovic TP, Zizak Z, Ivanov S, Shegay P, Kaprin A, Filimonov A. In Vitro Cytotoxic Potential and In Vivo Antitumor Effects of NOS/PDK-Inhibitor T1084. Int J Mol Sci 2024; 25:9711. [PMID: 39273658 PMCID: PMC11396549 DOI: 10.3390/ijms25179711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Previously, we showed the antitumor activity of the new NOS/PDK inhibitor T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). The present study included an assessment of in vitro cytotoxicity against human malignant and normal cells according to the MTT-test and in vivo antitumor effects in solid tumor models in comparison with precursor compounds T1023 (NOS inhibitor; 1-isobutanoyl-2-isopropylisothiourea hydrobromide) and Na-DCA (PDK inhibitor; sodium dichloroacetate), using morphological, histological, and immunohistochemical methods. The effects of T1084 and T1023 on the in vitro survival of normal (MRC-5) and most malignant cells (A375, MFC-7, K562, OAW42, and PC-3) were similar and quantitatively equal. At the same time, melanoma A375 cells showed 2-2.5 times higher sensitivity (IC50: 0.39-0.41 mM) to the cytotoxicity of T1023 and T1084 than other cells. And only HeLa cells showed significantly higher sensitivity to the cytotoxicity of T1084 compared to T1023 (IC50: 0.54 ± 0.03 and 0.81 ± 0.02 mM). Comparative studies of the in vivo antitumor effects of Na-DCA, T1023, and T1084 on CC-5 cervical cancer and B-16 melanoma in mice were conducted with subchronic daily i.p. administration of these agents at an equimolar dose of 0.22 mmol/kg (33.6, 60.0, and 70.7 mg/kg, respectively). Cervical cancer CC-5 fairly quickly evaded the effects of both Na-DCA and T1023. So, from the end of the first week of Na-DCA or T1023 treatment, the tumor growth inhibition (TGI) began to decrease from 40% to an insignificant level by the end of the observation. In contrast, in two independent experiments, CC-5 showed consistently high sensitivity to the action of T1084: a significant antitumor effect with high TGI (43-58%) was registered throughout the observation, without any signs of neoplasia adaptation. The effect of precursor compounds on melanoma B-16 was either minimal (for Na-DCA) or moderate (for T1023) with TGI only 33%, which subsequently decreased by the end of the experiment. In contrast, the effect of T1084 on B-16 was qualitatively more pronounced and steadily increasing; it was accompanied by a 3-fold expansion of necrosis and dystrophy areas, a decrease in proliferation, and increased apoptosis of tumor cells. Morphologically, the T1084 effect was 2-fold superior to the effects of T1023-the TGI index reached 59-62%. This study suggests that the antitumor effects of T1084 develop through the interaction of NOS-dependent and PDK-dependent pathophysiological effects of this NOS/PDK inhibitor. The NOS inhibitory activity of T1084 exerts an anti-angiogenic effect on neoplasia. At the same time, the PDK inhibitory activity of T1084 enhances the cytotoxicity of induced intratumoral hypoxia and suppresses the development of neoplasia adaptation to anti-angiogenic stress. Such properties allow T1084 to overcome tumor resistance and realize a stable synergistic antitumor effect.
Collapse
Affiliation(s)
- Marina Filimonova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Anna Shitova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Ljudmila Shevchenko
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Olga Soldatova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Valentina Surinova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Vitaly Rybachuk
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Alexander Kosachenko
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Kirill Nikolaev
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Irina Volkova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Grigory Demyashkin
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Tatjana P. Stanojkovic
- Department of Experimental Oncology, Laboratory for Radiobiology and Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Zeljko Zizak
- Department of Experimental Oncology, Laboratory for Radiobiology and Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| | - Petr Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (P.S.); (A.K.)
| | - Andrey Kaprin
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (P.S.); (A.K.)
| | - Alexander Filimonov
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia; (A.S.); (L.S.); (O.S.); (V.S.); (V.R.); (A.K.); (K.N.); (I.V.); (G.D.); (A.F.)
| |
Collapse
|
13
|
Zhang K, Shi Y, Jin Z, He J. Advances in tumor vascular growth inhibition. Clin Transl Oncol 2024; 26:2084-2096. [PMID: 38504070 DOI: 10.1007/s12094-024-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.
Collapse
Affiliation(s)
- Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Wang L, Lin Y, Yao Z, Babu N, Lin W, Chen C, Du L, Cai S, Pan Y, Xiong X, Ye Q, Ren H, Zhang D, Chen Y, Yeung SCJ, Bremer E, Zhang H. Targeting undruggable phosphatase overcomes trastuzumab resistance by inhibiting multi-oncogenic kinases. Drug Resist Updat 2024; 76:101118. [PMID: 39094301 DOI: 10.1016/j.drup.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
AIMS Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands; Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Nipun Babu
- Shantou University Medical College, Shantou, China
| | - Wan Lin
- Shantou University Medical College, Shantou, China
| | | | - Liang Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Qiantao Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
15
|
Zhao C, Zeng Y, Kang N, Liu Y. A new perspective on antiangiogenic antibody drug resistance: Biomarkers, mechanisms, and strategies in malignancies. Drug Dev Res 2024; 85:e22257. [PMID: 39245913 DOI: 10.1002/ddr.22257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance of malignant tumor leads to disease progression be the bottleneck in clinical treatment. Antiangiogenic therapy, which aims to "starve" the tumor by inhibiting angiogenesis, is one of the key strategies in clinical oncology treatments. Recently, dozens of investigational antibody drugs and biosimilars targeting angiogenesis have obtained regulatory approval for the treatment of various malignancies. Moreover, a new generation of bispecific antibodies based on the principle of antiangiogenesis are being advanced for clinical trial to overcome antiangiogenic resistance in tumor treatment or enhance the efficacy of monotherapy. Tumors often develop resistance to antiangiogenesis therapy, presenting as refractory and sometimes even resistant to new therapies, for which there are currently no effective management strategies. Thus, a detailed understanding of the mechanisms mediating resistance to antiangiogenesis antibodies is crucial for improving drug effectiveness and achieving a durable response to antiangiogenic therapy. In this review, we provide a novel perspective on the tumor microenvironment, including antibody structure, tumor stroma, and changes within tumor cells, to analyze the multifactorial reasons underlying resistance to antiangiogenesis antibodies. The review also enumerates biomarkers that indicate resistance and potential strategies for monitoring resistance. Furthermore, based on recent clinical and preclinical studies, we summarize potential strategies and translational clinical trials aimed at overcoming resistance to antiangiogenesis antibodies. This review provides a valuable reference for researchers and clinical practitioners involved in the development of new drugs or therapeutic strategies to overcome antiangiogenesis antibodies resistance.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yuan Zeng
- Department of Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd., Shanghai, People's Republic of China
| | - Nannan Kang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yu Liu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Ma Y, Zhang H, Shen X, Yang X, Deng Y, Tian Y, Chen Z, Pan Y, Luo H, Zhong C, Yu S, Lu A, Zhang B, Tang T, Zhang G. Aptamer functionalized hypoxia-potentiating agent and hypoxia-inducible factor inhibitor combined with hypoxia-activated prodrug for enhanced tumor therapy. Cancer Lett 2024; 598:217102. [PMID: 38969157 DOI: 10.1016/j.canlet.2024.217102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. Hypoxia-activated prodrugs (HAPs) have shown promise as potential therapeutic agents for TNBC. While increasing hypoxia levels may promote the HAP activation, it raises concerns regarding HIF1α-dependent drug resistance. It is desirable to develop a targeted approach that enhances tumor hypoxia for HAP activation without promoting HIF1α-dependent drug resistance in TNBC treatment. Herein, we proposed a multi-responsive carrier-free self-assembled nanomedicine named AQ4N@CA4T1ASO. This nanomedicine first targeted tumors by the TNBC-targeting aptamers (T1), and then disassembled in the reductive and acidic conditions within tumors. The released Combretastatin 4 (CA4) could exacerbate hypoxia, thereby promoting the conversion of inactive Banoxantrone (AQ4N) to its active form, AQ4. Simultaneously, the released antisense oligonucleotide (ASO) could attenuate hypoxia-induced HIF1α mRNA expression, thereby sensitizing the tumor to chemotherapy. Overall, this smart nanomedicine represents a profound targeted therapy strategy, combining "hypoxia-potentiating, hypoxia-activated, chemo-sensitization" approaches for TNBC treatment. In vivo study demonstrated significant suppression of tumor growth, highlighting the promising potential of this nanomedicine for future clinical translation.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Huarui Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yan Deng
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuan Tian
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yufei Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Hang Luo
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Baoting Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Tao Tang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Department of Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan, Guangdong, 523560, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
17
|
Zhang SP, Tong M, Li SD, Zhang B, Zhang W, Wang R, Dong ZY, Huang YF. The Role of Microvascular Variations in the Process of Intervertebral Disk Degeneration and Its Regulatory Mechanisms: A Literature Review. Orthop Surg 2024. [PMID: 39205477 DOI: 10.1111/os.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Microvascular changes are considered key factors in the process of intervertebral disk degeneration (IDD). Microvascular invasion and growth into the nucleus pulposus (NP) and cartilaginous endplates are unfavorable factors that trigger IDD. In contrast, the rich distribution of microvessels in the bony endplates and outer layers of the annulus fibrosus is an important safeguard for the nutrient supply and metabolism of the intervertebral disk (IVD). In particular, the adequate supply of microvessels in the bony endplates is the main source of the nutritional supply for the entire IVD. Microvessels can affect the progression of IDD through a variety of pathways. Many studies have explored the effects of microvessel alterations in the NP, annulus fibrosus, cartilaginous endplates, and bony endplates on the local microenvironment through inflammation, apoptosis, and senescence. Studies also elucidated the important roles of microvessel alterations in the process of IDD, as well as conducted in-depth explorations of cytokines and biologics that can inhibit or promote the ingrowth of microvessels. Therefore, the present manuscript reviews the published literature on the effects of microvascular changes on IVD to summarize the roles of microvessels in IVD and elaborate on the mechanisms of action that promote or inhibit de novo microvessel formation in IVD.
Collapse
Affiliation(s)
- Si-Ping Zhang
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Min Tong
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Shi-Da Li
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Bin Zhang
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Wenhao Zhang
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Rong Wang
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Zhen-Yu Dong
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| | - Yi-Fei Huang
- Department of Spinal Surgery, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical University, Urumqi, China
- Xinjiang Uygur Autonomous Region Academy of Traditional Chinese Medicine, Urumqi, China
| |
Collapse
|
18
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
19
|
Wang Z, Wang Z, Deng L, Wu X, Liang Y, Wei P. Basic Fibroblast Growth Factor Accumulation in Culture Medium Masks the Direct Antitumor Effect of Anti-VEGF Agent Bevacizumab. DOKL BIOCHEM BIOPHYS 2024; 517:285-290. [PMID: 39002014 DOI: 10.1134/s1607672924600283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 07/15/2024]
Abstract
The direct antitumor effect of bevacizumab (BEV) has long been debated. Evidence of the direct antitumor activities of drugs are mainly obtained from in vitro experiments, which are greatly affected by experimental conditions. In this study, we evaluated the effect of BEV-containing medium renewal on the results of in vitro cytotoxicity experiments in A549 and U251 cancer cells. We observed starkly different results between the experiments with and without BEV-containing medium renewal. Specifically, BEV inhibited the tumor cell growth in the timely replacement with a BEV-containing medium but promoted tumor cell growth without medium renewal. Meanwhile, compared with the control, a significant basic fibroblast growth factor (bFGF) accumulation in the supernatant was observed in the group without medium renewal but none in that with replaced medium. Furthermore, bFGF neutralization partially reversed the pro-proliferative effect of BEV in the medium non-renewed group, while exogenous bFGF attenuated the tumor cell growth inhibition of BEV in the medium-renewed group. Our data explain the controversy over the direct antitumor effect of BEV in different studies from the perspective of the compensatory autocrine cytokines in tumor cells.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ziyi Wang
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Liyan Deng
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xiaolan Wu
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yanfang Liang
- Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Pei Wei
- Department of Immunology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| |
Collapse
|
20
|
Wang F, Zhang S, Sun F, Chen W, Liu C, Dong H, Cui B, Li L, Sun C, Du W, Liu B, Fan W, Deng J, Schmitt CA, Wang X, Du J. Anti-angiogenesis and anti-immunosuppression gene therapy through targeting COUP-TFII in an in situ glioblastoma mouse model. Cancer Gene Ther 2024; 31:1135-1150. [PMID: 38926596 DOI: 10.1038/s41417-024-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain cancer; angiogenesis and immunosuppression exacerbate GBM progression. COUP-TFII demonstrates pro-angiogenesis activity; however, its role in glioma progression remains unclear. This study revealed that COUP-TFII promotes angiogenesis in gliomas by inducing transdifferentiation of glioma cells into endothelial-like cells. Mechanistic investigation suggested that COUP-TFII as a transcription factor exerts its function via binding to the promoter of TXNIP. Interestingly, COUP-TFII knockdown attenuated tumorigenesis and tumor progression in an immunocompetent mouse model but promoted tumor progression in an immuno-deficient mouse model. As an explanation, repression of COUP-TFII induces cellular senescence and activates immune surveillance in glioma cells in vitro and in vivo. In addition, we used heparin-polyethyleneimine (HPEI) nanoparticles to deliver COUP-TFII shRNA, which regulated tumor angiogenesis and immunosuppression in an in situ GBM mouse model. This study provides a novel strategy and potential therapeutic targets to treat GBM.
Collapse
Affiliation(s)
- Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
- Medical Integration and Practice Center, Qilu Hospital of Shandong University, Shandong University, 250100, Jinan, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
- Department of Gynecology, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Lingyu Li
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, 256600, Binzhou, PR China
| | - Wen Du
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, 256600, Binzhou, PR China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Wanfeng Fan
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Krankenhausstraße 9, 4020, Linz, Austria
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site, Berlin, Germany
| | - Xiuwen Wang
- Medical Integration and Practice Center, Qilu Hospital of Shandong University, Shandong University, 250100, Jinan, PR China.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
| |
Collapse
|
21
|
Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer 2024; 23:150. [PMID: 39068459 PMCID: PMC11282869 DOI: 10.1186/s12943-024-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| |
Collapse
|
22
|
You H, Zhao P, Zhao X, Zheng Q, Ma W, Cheng K, Li M, Kou J, Feng W. Promotion of tumor angiogenesis and growth induced by low-dose antineoplastic agents via bone-marrow-derived cells in tumor tissues. Front Pharmacol 2024; 15:1414832. [PMID: 39119610 PMCID: PMC11306047 DOI: 10.3389/fphar.2024.1414832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background More research is needed to solidify the basis for reasonable metronomic chemotherapy regimens due to the inconsistent clinical outcomes from studies on metronomic chemotherapy with antineoplastic agents, along with signs of a nonlinear dose-response relationship at low doses. The present study therefore explored the dose-response relationships of representative antineoplastic agents in low dose ranges and their underlying mechanisms. Methods Cyclophosphamide (CPA) and 5-fluorouracil (5-Fu) were employed to observe the effects of the frequent administration of low-dose antineoplastic agents on tumor growth, tumor angiogenesis, and bone-marrow-derived cell (BMDC) mobilization in mouse models. The effects of antineoplastic agents on tumor and endothelial cell functions with or without BMDCs were analyzed in vitro. Results Tumor growth and metastasis were significantly promoted after the administration of CPA or 5-Fu at certain low dose ranges, and were accompanied by enhanced tumor angiogenesis and proangiogenic factor expression in tumor tissues, increased proangiogenic BMDC release in the circulating blood, and augmented proangiogenic BMDC retention in tumor tissues. Low concentrations of CPA or 5-Fu were found to significantly promote tumor cell migration and invasion, and enhance BMDC adhesion to endothelial cells in vitro. Conclusion These results suggest that there are risks in empirical metronomic chemotherapy using low-dose antineoplastic agents and the optimal dosage and administration schedule of antineoplastic agents need to be determined through further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Fan S, Yan X, Hu X, Liu X, Zhao S, Zhang Y, Zhou X, Shen X, Qi Q, Chen Y. Shikonin blocks CAF-induced TNBC metastasis by suppressing mitochondrial biogenesis through GSK-3β/NEDD4-1 mediated phosphorylation-dependent degradation of PGC-1α. J Exp Clin Cancer Res 2024; 43:180. [PMID: 38937832 PMCID: PMC11210116 DOI: 10.1186/s13046-024-03101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3β-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.
Collapse
Affiliation(s)
- Shuangqin Fan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xiaomin Yan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xiaoxia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xing Liu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Shijie Zhao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Yue Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
| |
Collapse
|
24
|
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y, Zhang H. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 2024; 29:570-585. [PMID: 38127283 DOI: 10.1007/s10495-023-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Tong Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yanqing Liu
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Tiantian Gou
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Kangli Chen
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Li Wang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Huan Zhang
- Department of Cardiology, Faculty of Life Sciences and Medicine, The Affiliated Hospital of Northwest University, Northwest University, Xi'an No.3 Hospital, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faulty of Life Sciences and Medicine, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
25
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Gong J, Han G, Chen Z, Zhang Y, Xu B, Xu C, Gao W, Wu J. CircDCAF8 promotes the progression of hepatocellular carcinoma through miR-217/NAP1L1 Axis, and induces angiogenesis and regorafenib resistance via exosome-mediated transfer. J Transl Med 2024; 22:517. [PMID: 38816735 PMCID: PMC11137954 DOI: 10.1186/s12967-024-05233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), which are a new type of single-stranded circular RNA, have significant involvement in progression of many diseases, including tumors. Currently, multiple circRNAs have been identified in hepatocellular carcinoma (HCC). Our study aims to investigate the function and mechanism of circDCAF8 in HCC. METHODS The expression of circDCAF8 (hsa_circ_0014879) in HCC and para-carcinoma tissue samples was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The biological function of circDCAF8 in HCC was confirmed by experiments conducted both in vitro and in vivo. And the relationship between circDCAF8, miR-217 and NAP1L1 was predicted by database and verified using qRT-PCR, RNA-binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Exosomes isolated from HCC cells were utilized to assess the connection of exosomal circDCAF8 with HCC angiogenesis and regorafenib resistance. RESULTS CircDCAF8 is upregulated in HCC tissues and cell lines, and is linked to an unfavourable prognosis for HCC patients. Functionally, circDCAF8 was proved to facilitate proliferation, migration, invasion and Epithelial-Mesenchymal Transformation (EMT) in HCC cells. Animal examinations also validated the tumor-promoting characteristics of circDCAF8 on HCC. Besides, exosomal circDCAF8 promoted angiogenesis in HUVECs. Mechanistically, circDCAF8 interacted with miR-217 and NAP1L1 was a downstream protein of miR-217. CircDCAF8 promoted NAP1L1 expression by sponging miR-217. In addition, exosomes may transfer circDCAF8 from regorafenib-resistant HCC cells to sensitive cells, where it would confer a resistant phenotype. CONCLUSION CircDCAF8 facilitates HCC proliferation and metastasis via the miR-217/NAP1L1 axis. Meanwhile, circDCAF8 can promote angiogenesis and drive resistance to regorafenib, making it a viable therapeutic target for HCC patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Exosomes/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Drug Resistance, Neoplasm/genetics
- Neovascularization, Pathologic/genetics
- Disease Progression
- Animals
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Cell Line, Tumor
- Pyridines/pharmacology
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Male
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Mice
- Mice, Inbred BALB C
- Female
- Base Sequence
- Human Umbilical Vein Endothelial Cells/metabolism
- Middle Aged
- Angiogenesis
Collapse
Affiliation(s)
- Jiahao Gong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Yinqi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Bin Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong Province, China
| | - Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province, China.
| |
Collapse
|
27
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
28
|
Tong R, Feng X, Sun J, Ling Z, Wang J, Li S, Yang B, Deng J, He G, Wu J. Co-Delivery of siNRF2 and Sorafenib by a "Click" Dual Functioned Hyperbranched Nanocarrier for Synergistically Inducing Ferroptosis in Hepatocellular Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307273. [PMID: 38102096 DOI: 10.1002/smll.202307273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 12/17/2023]
Abstract
In the course of antitumor therapy, the complex tumor microenvironment and drug-mediated changes in cell signaling and biological processes lead to drug resistance. The effect of sorafenib is greatly limited by the specific tumor microenvironment induced by antiangiogenic therapy and ferroptosis resistance induced by the upregulation of nuclear factor erythroid-2 related factor 2 (NRF2). In this study, a pH responsive and amphiphilic hyperbranched polyglycerol, HDP, is synthesized based on a co-graft click chemistry pathway. This nano-scale carrier provides excellent drug-loading capacity, storing stability and pH responsibility, and effectively co-delivery of sorafenib and siRNA. Sorafenib and siNRF2 plays a greatly synergistic effect in inducing reactive oxygen species (ROS), iron overloading, depleting glutathione (GSH), and promoting lipid peroxidation. Importantly, verified in two different animal experiments, HDP-ss (HDP loaded with both siNRF2 and sorafenib) presents a superior anti-tumor effect, by achieving a tumor inhibition rate of ≈94%. Thus, HDP can serve as an excellent targeted delivery nanocarrier with good biocompatibility in antitumor therapy, and combined application of siNRF2 effectively improves the antitumor effect of sorafenib by overcoming NRF2-mediated ferroptosis resistance. Taken together, this study provides a novel therapeutic strategy to combat the drug resistance in antiangiogenic therapy and ferroptosis.
Collapse
Affiliation(s)
- Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Xiaode Feng
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Zhenan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Jun Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shun Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Junfang Deng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
| | - Guijin He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, 310003, China
| |
Collapse
|
29
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
30
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
31
|
Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A, Parenti A. Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process. Pharmaceuticals (Basel) 2024; 17:558. [PMID: 38794128 PMCID: PMC11124529 DOI: 10.3390/ph17050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). METHODS qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. RESULTS HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. CONCLUSIONS HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects.
Collapse
Affiliation(s)
- Marta Cecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, 50134 Florence, Italy;
| | - Maria Luisa Coniglio
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Aurora Chinnici
- Department of Neuroscience, Psychology, Drug Research and Child Health, (NEUROFARBA) Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.C.); (A.C.)
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Andrea Lapucci
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy; (C.A.); (L.M.); (A.L.)
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, V. le G. Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
32
|
Tang H, Chen L, Liu X, Zeng S, Tan H, Chen G. Pan-cancer dissection of vasculogenic mimicry characteristic to provide potential therapeutic targets. Front Pharmacol 2024; 15:1346719. [PMID: 38694917 PMCID: PMC11061449 DOI: 10.3389/fphar.2024.1346719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/30/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Vasculogenic mimicry (VM) represents a novel form of tumor angiogenesis that is associated with tumor invasiveness and drug resistance. However, the VM landscape across cancer types remains poorly understood. In this study, we elucidate the characterizations of VM across cancers based on multi-omics data and provide potential targeted therapeutic strategies. Methods Multi-omics data from The Cancer Genome Atlas was used to conduct comprehensive analyses of the characteristics of VM related genes (VRGs) across cancer types. Pan-cancer vasculogenic mimicry score was established to provide a depiction of the VM landscape across cancer types. The correlation between VM and cancer phenotypes was conducted to explore potential regulatory mechanisms of VM. We further systematically examined the relationship between VM and both tumor immunity and tumor microenvironment (TME). In addition, cell communication analysis based on single-cell transcriptome data was used to investigate the interactions between VM cells and TME. Finally, transcriptional and drug response data from the Genomics of Drug Sensitivity in Cancer database were utilized to identify potential therapeutic targets and drugs. The impact of VM on immunotherapy was also further clarified. Results Our study revealed that VRGs were dysregulated in tumor and regulated by multiple mechanisms. Then, VM level was found to be heterogeneous among different tumors and correlated with tumor invasiveness, metastatic potential, malignancy, and prognosis. VM was found to be strongly associated with epithelial-mesenchymal transition (EMT). Further analyses revealed cancer-associated fibroblasts can promote EMT and VM formation. Furthermore, the immune-suppressive state is associated with a microenvironment characterized by high levels of VM. VM score can be used as an indicator to predict the effect of immunotherapy. Finally, seven potential drugs targeting VM were identified. Conclusion In conclusion, we elucidate the characteristics and key regulatory mechanisms of VM across various cancer types, underscoring the pivotal role of CAFs in VM. VM was further found to be associated with the immunosuppressive TME. We also provide clues for the research of drugs targeting VM. Our study provides an initial overview and reference point for future research on VM, opening up new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuxun Chen
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xvdong Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjie Zeng
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Gu Y, Huang Q, Wang Y, Wang H, Xiang Z, Xu Y, Wang X, Liu W, Wang A. The vasculogenic mimicry related signature predicts the prognosis and immunotherapy response in renal clear cell carcinoma. BMC Cancer 2024; 24:420. [PMID: 38580922 PMCID: PMC10996246 DOI: 10.1186/s12885-024-12107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Clear cell carcinoma of the kidney is a common urological malignancy characterized by poor patient prognosis and treatment outcomes. Modulation of vasculogenic mimicry in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. METHODS We downloaded the data from renal clear cell carcinoma samples and vasculogenic mimicry-related genes to establish a new vasculogenic mimicry-related index (VMRI) using a machine learning approach. Based on VMRI, patients with renal clear cell carcinoma were divided into high VMRI and low VMRI groups, and patients' prognosis, clinical features, tumor immune microenvironment, chemotherapeutic response, and immunotherapeutic response were systematically analyzed. Finally, the function of CDH5 was explored in renal clear cell carcinoma cells. RESULTS VMRI can be used for prognostic and immunotherapy efficacy prediction in a variety of cancers, which consists of four vasculogenic mimicry-related genes (CDH5, MMP9, MAPK1, and MMP13), is a reliable predictor of survival and grade in patients with clear cell carcinoma of the kidney and has been validated in multiple external datasets. We found that the high VMRI group presented higher levels of immune cell infiltration, which was validated by pathological sections. We performed molecular docking prediction of vasculogenic mimicry core target proteins and identified natural small molecule drugs with the highest affinity for the target protein. Knockdown of CDH5 inhibited the proliferation and migration of renal clear cell carcinoma. CONCLUSIONS The VMRI identified in this study allows for accurate prognosis assessment of patients with renal clear cell carcinoma and identification of patient populations that will benefit from immunotherapy, providing valuable insights for future precision treatment of patients with renal clear cell carcinoma.
Collapse
Affiliation(s)
- Yuming Gu
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
- Weifang Medical University, Weifang, Shandong Province, 261042, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Qinqin Huang
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
- Weifang Medical University, Weifang, Shandong Province, 261042, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Yun Wang
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
- Weifang Medical University, Weifang, Shandong Province, 261042, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Haixia Wang
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
- Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Zhenhua Xiang
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Yu Xu
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Xin Wang
- Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, China
| | - Weiguo Liu
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China
| | - Aiju Wang
- Department of Traditional Chinese medicine, School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, 261042, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, 261042, China.
| |
Collapse
|
34
|
Zhang Q, Li Z, Zhang J, Li Y, Pan X, Qu J, Zhang J. Novel multi-target angiogenesis inhibitors as potential anticancer agents: Design, synthesis and preliminary activity evaluation. Bioorg Chem 2024; 145:107211. [PMID: 38364550 DOI: 10.1016/j.bioorg.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Based on the crucial role of histone deacetylase (HDAC) and receptor tyrosine kinase in angiogenesis, in situ assembly, skeletal transition, molecular hybridization, and pharmacophore fusion were employed to yield seventy-six multi-target angiogenesis inhibitors. Biological evaluation indicated that most of the compounds exhibited potent proliferation inhibitory activity on MCF-7 cells, with the TH series having the highest inhibitory activity on MCF-7 cells. In addition, the IC50 values of TA11 and TH3 against HT-29 cellswere 0.078 μmol/L and 0.068 μmol/L, respectively. The cytotoxicity evaluation indicated that TC9, TA11, TM4, and TH3 displayed good safety against HEK293T cells. TH2 and TH3 could induce apoptosis of MCF-7 cells. Molecular modeling and ADMET prediction results indicated that most of target compounds showed promising medicinal properties, which was consistent with the experimental results. Our findings provided new lead compounds for the structural optimization of multi-target angiogenesis inhibitors.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zilong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingkun Qu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
35
|
Sun L, He M, Li F, Wu D, Zheng P, Zhang C, Liu Y, Liu D, Shan M, Yang M, Ma Y, Lian J, Xiong H. Oxyberberine sensitizes liver cancer cells to sorafenib via inhibiting NOTCH1-USP7-c-Myc pathway. Hepatol Commun 2024; 8:e0405. [PMID: 38573832 PMCID: PMC10997235 DOI: 10.1097/hc9.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/04/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Sorafenib is the first-line therapy for patients with advanced-stage HCC, but its clinical cure rate is unsatisfactory due to adverse reactions and drug resistance. Novel alternative strategies to overcome sorafenib resistance are urgently needed. Oxyberberine (OBB), a major metabolite of berberine in vivo, exhibits potential antitumor potency in various human malignancies, including liver cancer. However, it remains unknown whether and how OBB sensitizes liver cancer cells to sorafenib. METHODS Cell viability, trypan blue staining and flow cytometry assays were employed to determine the synergistic effect of OBB and sorafenib on killing HCC cells. PCR, western blot, co-immunoprecipitation and RNA interference assays were used to decipher the mechanism by which OBB sensitizes sorafenib. HCC xenograft models and clinical HCC samples were utilized to consolidate our findings. RESULTS We found for the first time that OBB sensitized liver cancer cells to sorafenib, enhancing its inhibitory effect on cell growth and induction of apoptosis in vitro. Interestingly, we observed that OBB enhanced the sensitivity of HCC cells to sorafenib by reducing ubiquitin-specific peptidase 7 (USP7) expression, a well-known tumor-promoting gene. Mechanistically, OBB inhibited notch homolog 1-mediated USP7 transcription, leading to the downregulation of V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), which synergized with sorafenib to suppress liver cancer. Furthermore, animal results showed that cotreatment with OBB and sorafenib significantly inhibited the tumor growth of liver cancer xenografts in mice. CONCLUSIONS These results indicate that OBB enhances the sensitivity of liver cancer cells to sorafenib through inhibiting notch homolog 1-USP7-c-Myc signaling pathway, which potentially provides a novel therapeutic strategy for liver cancer to improve the effectiveness of sorafenib.
Collapse
Affiliation(s)
- Liangbo Sun
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng He
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Feng Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Zheng
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Cong Zhang
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanhang Ma
- Department of General Surgery of Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
36
|
Lin X, Yang C, Lv Y, Zhang B, Kan J, Li H, Tao J, Yang C, Li X, Liu Y. Preclinical multi-physiologic monitoring of immediate-early responses to diverse treatment strategies in breast cancer by optoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300457. [PMID: 38221652 DOI: 10.1002/jbio.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Optoacoustic imaging enables the measurement of tissue oxygen saturation (sO2) and blood perfusion while being utilized for detecting tumor microenvironments. Our aim was to employ multispectral optoacoustic tomography (MSOT) to assess immediate-early changes of hemoglobin level and sO2 within breast tumors during diverse treatments. Mouse breast cancer models were allocated into four groups: control, everolimus (EVE), paclitaxel (PTX), and photodynamic therapy (PDT). Hemoglobin was quantified daily, as well as sO2 and blood perfusion were verified by immunohistochemical (IHC) staining. MSOT showed a temporal window of enhanced oxygenation and improved perfusion in EVE and PTX groups, while sO2 consistently remained below baseline in PDT. The same results were obtained for the IHC. Therefore, MSOT can monitor tumor hypoxia and indirectly reflect blood perfusion in a non-invasive and non-labeled way, which has the potential to monitor breast cancer progression early and enable individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Bowen Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Caixia Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, People's Republic of China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
37
|
Chang J, Feng Q, Mao Y, Zhang Z, Xu Y, Chen Y, Zheng P, Lin S, Shen F, Zhang Z, Zhang Z, He G, Xu J, Wei Y. Siglec9 + tumor-associated macrophages predict prognosis and therapeutic vulnerability in patients with colon cancer. Int Immunopharmacol 2024; 130:111771. [PMID: 38430807 DOI: 10.1016/j.intimp.2024.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Siglec9 has been identified as an immune checkpoint molecule on tumor-associated macrophages (TAMs). Nevertheless, the expression profile and clinical significance of Siglec9 + TAMs in colon cancer (CC) are still not fully understood. METHODS Two clinical cohorts from distinct medical centers were retrospectively enrolled. Immunohistochemistry and immunofluorescence were conducted to evaluate the infiltration of immune cells. Single-cell RNA sequencing and flow cytometry were utilized to identify the impact of Siglec9 + TAMs on the tumor immune environment, which was subsequently validated through bioinformatics analysis of the TCGA database. Prognosis and the benefit of adjuvant chemotherapy (ACT) were also evaluated using Cox regression analysis and the Kaplan-Meier method. RESULTS High infiltration of Siglec9 + TAMs was associated with worse prognosis and better benefit from 6-month ACT. Siglec9 + TAMs contributed to immunoevasion by promoting the infiltration of immunosuppressive cells and the dysfunction process of CD8 + T cells. Additionally, high infiltration of Siglec9 + TAMs was associated with the mesenchymal-featured subtype and overexpression of the VEGF signaling pathway, which was validated by the strongest communication between Siglec9 + TAMs and vascular endothelial cells. CONCLUSIONS Siglec9 + TAMs may serve as a biomarker for prognosis and response to ACT in CC. Furthermore, the immunoevasive contexture and angiogenesis stimulated by Siglec9 + TAMs suggest potential treatment combinations for CC patients.
Collapse
Affiliation(s)
- Jiang Chang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Qingyang Feng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China
| | - Yihao Mao
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqiu Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijiao Chen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zheng
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Songbin Lin
- General Surgery Department, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, Fujian Province, China
| | - Feifan Shen
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuojian Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziqi Zhang
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guodong He
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China.
| | - Jianmin Xu
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China.
| | - Ye Wei
- Colorectal Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China; Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Zhang C, Han ZY, Chen KW, Wang YZ, Bao P, Ji P, Yan X, Rao ZY, Zeng X, Zhang XZ. In Situ Formed Microalgae-Integrated Living Hydrogel for Enhanced Tumor Starvation Therapy and Immunotherapy through Photosynthetic Oxygenation. NANO LETTERS 2024; 24:3801-3810. [PMID: 38477714 DOI: 10.1021/acs.nanolett.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ke-Wei Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Yong Rao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
39
|
Zhang R, Yao Y, Gao H, Hu X. Mechanisms of angiogenesis in tumour. Front Oncol 2024; 14:1359069. [PMID: 38590656 PMCID: PMC10999665 DOI: 10.3389/fonc.2024.1359069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Angiogenesis is essential for tumour growth and metastasis. Antiangiogenic factor-targeting drugs have been approved as first line agents in a variety of oncology treatments. Clinical drugs frequently target the VEGF signalling pathway during sprouting angiogenesis. Accumulating evidence suggests that tumours can evade antiangiogenic therapy through other angiogenesis mechanisms in addition to the vascular sprouting mechanism involving endothelial cells. These mechanisms include (1) sprouting angiogenesis, (2) vasculogenic mimicry, (3) vessel intussusception, (4) vascular co-option, (5) cancer stem cell-derived angiogenesis, and (6) bone marrow-derived angiogenesis. Other non-sprouting angiogenic mechanisms are not entirely dependent on the VEGF signalling pathway. In clinical practice, the conversion of vascular mechanisms is closely related to the enhancement of tumour drug resistance, which often leads to clinical treatment failure. This article summarizes recent studies on six processes of tumour angiogenesis and provides suggestions for developing more effective techniques to improve the efficacy of antiangiogenic treatment.
Collapse
Affiliation(s)
| | | | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
40
|
Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat 2024; 73:101041. [PMID: 38198845 DOI: 10.1016/j.drup.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.
Collapse
Affiliation(s)
- Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Surgical Oncology, Harbin Medical University Cancer Hospital, PR China.
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Urology, Harbin Medical University Cancer Hospital, PR China.
| |
Collapse
|
41
|
Furuya K, Nakajima M, Tsunedomi R, Nakagami Y, Xu M, Matsui H, Tokumitsu Y, Shindo Y, Watanabe Y, Tomochika S, Maeda N, Iida M, Suzuki N, Takeda S, Hazama S, Ioka T, Hoshii Y, Ueno T, Nagano H. High serum proteinase-3 levels predict poor progression-free survival and lower efficacy of bevacizumab in metastatic colorectal cancer. BMC Cancer 2024; 24:165. [PMID: 38308214 PMCID: PMC10835931 DOI: 10.1186/s12885-024-11924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND To improve the prognosis of patients with metastatic colorectal cancer (mCRC), investigating predictive biomarkers of their prognosis and chemotherapeutic responsiveness is necessary. This study aimed to analyze the clinical significance of serum proteinase-3 (PRTN3) as a predictor for prognosis and chemosensitivity, especially to bevacizumab therapy, in mCRC. METHODS This single-center retrospective observational study enrolled 79 patients with mCRC in our hospital and 353 patients with colorectal cancer in the TCGA database. Preoperative serum PRTN3 levels were measured using an enzyme-linked immunosorbent assay. The clinicopathological characteristics and prognosis according to serum PRTN3 levels were then evaluated. PRTN3 expression in tumor and stromal cells was evaluated immunohistochemically. The impact of PRTN3 levels on angiogenesis and bevacizumab sensitivity was evaluated using the tube formation assay. RESULTS Serum PRTN3 levels were an independent poor prognostic factor for progression-free survival (PFS) (hazard ratio, 2.082; 95% confidence interval, 1.118-3.647; P=0.010) in patients with mCRC. Similarly, prognostic analysis with TCGA data sets showed poorer overall survival in patients with PRTN3 expression than that in patients without PRTN3 expression, especially in patients with stage IV. Immunohistochemical analysis of resected specimens revealed that stromal neutrophils expressed PRTN3, and their expression level was significantly correlated with serum PRTN3 levels. Interestingly, the effectiveness of first-line chemotherapy was significantly poorer in the high serum PRTN3 level group. High serum PRTN3 was significantly associated with poor PFS (hazard ratio, 3.027; 95% confidence interval, 1.175-7.793; P=0.0161) in patients treated with bevacizumab, an anti-angiogenic inhibitor. The tube formation assay revealed that PRTN3 administration notably augmented angiogenesis while simultaneously attenuating the anti-angiogenic influence exerted by bevacizumab therapy. CONCLUSIONS Serum PRTN3 levels could be a novel predictive biomarker of PFS of first-line chemotherapy, especially for bevacizumab therapy, in patients with mCRC.
Collapse
Affiliation(s)
- Kei Furuya
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
42
|
Li G, Gao J, Ding P, Gao Y. The role of endothelial cell-pericyte interactions in vascularization and diseases. J Adv Res 2024:S2090-1232(24)00029-8. [PMID: 38246244 DOI: 10.1016/j.jare.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Endothelial cells (ECs) and pericytes (PCs) are crucial components of the vascular system, with ECs lining the inner layer of blood vessels and PCs surrounding capillaries to regulate blood flow and angiogenesis. Intercellular communication between ECs and PCs is vital for the formation, stability, and function of blood vessels. Various signaling pathways, such as the vascular endothelial growth factor/vascular endothelial growth factor receptor pathway and the platelet-derived growth factor-B/platelet-derived growth factor receptor-β pathway, play roles in communication between ECs and PCs. Dysfunctional communication between these cells is associated with various diseases, including vascular diseases, central nervous system disorders, and certain types of cancers. AIM OF REVIEW This review aimed to explore the diverse roles of ECs and PCs in the formation and reshaping of blood vessels. This review focused on the essential signaling pathways that facilitate communication between these cells and investigated how disruptions in these pathways may contribute to disease. Additionally, the review explored potential therapeutic targets, future research directions, and innovative approaches, such as investigating the impact of EC-PCs in novel systemic diseases, addressing resistance to antiangiogenic drugs, and developing novel antiangiogenic medications to enhance therapeutic efficacy. KEY SCIENTIFIC CONCEPTS OF REVIEW Disordered EC-PC intercellular signaling plays a role in abnormal blood vessel formation, thus contributing to the progression of various diseases and the development of resistance to antiangiogenic drugs. Therefore, studies on EC-PC intercellular interactions have high clinical relevance.
Collapse
Affiliation(s)
- Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
43
|
Zhou M, Jin Y, Zhu S, Xu C, Li L, Liu B, Shen J. A phase II study to evaluate the safety and efficacy of anlotinib combined with toripalimab for advanced biliary tract cancer. Clin Transl Immunology 2024; 13:e1483. [PMID: 38223257 PMCID: PMC10786709 DOI: 10.1002/cti2.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Objectives To assess the safety and efficacy of anlotinib (a multi-targeted tyrosine kinase inhibitor) combined with toripalimab (a PD-1 monoclonal antibody) in the treatment of unresectable biliary tract cancer (BTC). Methods In this prospective, single-arm, single-centre exploratory clinical study, patients with locally progressed or metastatic BTC were included. Patients were treated with anlotinib (12 mg, PO, QD, for 2 weeks and then stopped for a week, 21 days for a cycle) and toripalimab (240 mg, IV, Q3W). The primary endpoint of the study was the objective response rate (ORR), as defined in RECIST version 1.1 criteria. Results In this study, 15 BTC patients who met the criteria were enrolled. The ORR was 26.7%, the median progression-free survival (mPFS) was 8.6 months (95% CI: 2.1-15.2), the median overall survival (mOS) was 14.53 months (95% CI: 0.8-28.2) and the disease control rate (DCR) was 87.6%. A patient with hilar cholangiocarcinoma was successfully converted after three cycles of treatment and underwent surgical resection. Furthermore, patient gene sequencing revealed that STK11 was mutated more frequently in patients with poor outcomes. In addition, patients with a CD8/Foxp3 ratio > 3 had a longer survival than those with a CD8/Foxp3 ratio ≤ 3 (P = 0.0397). Conclusions In patients with advanced BTC, the combination of anlotinib and toripalimab demonstrated remarkable anti-tumor potential, with increased objective response rates (ORR), longer overall survival (OS) and progression-free survival (PFS). Moreover, STK11 and CD8/Foxp3 may be as biomarkers that can predict the effectiveness of targeted therapy in combination with immunotherapy.
Collapse
Affiliation(s)
- Mingzhen Zhou
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yuncheng Jin
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Sihui Zhu
- International Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Chen Xu
- International Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Lin Li
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Baorui Liu
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jie Shen
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Precision Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
44
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
45
|
Oliveira RFD, Stoltz IR, Gonçalves PG, Echevarria A, Taborda L, Lepinsk Lopes RH, Pereira LF, Elifio-Esposito S. Evaluation of the antitumoral effects of the mesoionic compound MI-D: Implications for endothelial cells viability and angiogenesis inhibition. Chem Biol Interact 2024; 387:110796. [PMID: 37951333 DOI: 10.1016/j.cbi.2023.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Angiogenesis is considered one of the hallmarks of cancer, assisting tumor progression and metastasis. The mesoionic compound, MI-D, can induce cell death and provoke cytoskeletal and metabolic changes in cancer cells. Using in vitro and in vivo models, this study aimed to evaluate the effects of MI-D on the viability of human endothelial cells (EC) and its ability to inhibit tumor-induced angiogenesis induced by tumoral cells. For in vitro analysis, colon carcinoma (HT29) and endothelial (EA.hy926) cells were used as the tumoral and angiogenesis models, respectively. To evaluate cytotoxicity, methylene blue viability stain and annexin-V/7AAD tests were performed with both cell types. For the angiogenesis experiments, scratch wound healing and capillary tube-like formation assays were performed with the EC. The in vivo tests were performed with the chorioallantoic membrane (HET-CAM) methodology, wherein gelatin sponge implants containing MI-D (5, 25, and 50 μM), HT29 cells, or both were grafted in the CAM. Our data showed that MI-D induced apoptosis in both endothelial and colon carcinoma cells, with a strong cytotoxic effect on the tumoral lineage. The drug inhibited the EC's migration and capillary-like structure formation in vitro. In the HET-CAM assays, MI-D reduced the number of blood vessels in the membrane when grafted alone and accompanied by tumor cells. In this study, MI-D interfered in important steps of angiogenesis, such as maintenance of endothelial cell viability, migration, formation of capillary-like structures, as well tumor-induced neovascularization, reinforcing the hypothesis that MI-D might act as an inhibitor of angiogenesis, and a potential antitumor agent.
Collapse
Affiliation(s)
- Ronaldo Figueira de Oliveira
- Post Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil; School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Ian Rodrigo Stoltz
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Paola Gyuliane Gonçalves
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Aurea Echevarria
- Institute of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Leandro Taborda
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | | | - Luiz Fernando Pereira
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Selene Elifio-Esposito
- Post Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
46
|
Suo J, Wang Y, Wang L, Qiu B, Wang Z, Yan A, Qiang B, Han W, Peng X. RAB31 in glioma-derived endothelial cells promotes glioma cell invasion via extracellular vesicle-mediated enrichment of MYO1C. FEBS Open Bio 2024; 14:138-147. [PMID: 37953466 PMCID: PMC10761932 DOI: 10.1002/2211-5463.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.
Collapse
Affiliation(s)
- Jinghao Suo
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Yuxin Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Lin Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Bojun Qiu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Zhixing Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - An Yan
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Wei Han
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases,Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
47
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Xia L, Zhou Z, Chen X, Luo W, Ding L, Xie H, Zhuang W, Ni K, Li G. Ligand-dependent CD36 functions in cancer progression, metastasis, immune response, and drug resistance. Biomed Pharmacother 2023; 168:115834. [PMID: 37931517 DOI: 10.1016/j.biopha.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
CD36, a multifunctional glycoprotein, has been shown to play critical roles in tumor initiation, progression, metastasis, immune response, and drug resistance. CD36 serves as a receptor for a wide range of ligands, including lipid-related ligands (e.g., long-chain fatty acid (LCFA), oxidized low-density lipoprotein (oxLDL), and oxidized phospholipids), as well as protein-related ligands (e.g., thrombospondins, amyloid proteins, collagens I and IV). CD36 is overexpressed in various cancers and may act as an independent prognostic marker. While it was initially identified as a mediator of anti-angiogenesis through its interaction with thrombospondin-1 (TSP1), recent research has highlighted its role in promoting tumor growth, metastasis, drug resistance, and immune suppression. The varied impact of CD36 on cancer is likely ligand-dependent. Therefore, we focus specifically on the ligand-dependent role of CD36 in cancer to provide a critical review of recent advances, perspectives, and challenges.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Kangxin Ni
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
49
|
Lu Y, Chan YT, Wu J, Feng Z, Yuan H, Li Q, Xing T, Xu L, Zhang C, Tan HY, Lee TKW, Feng Y, Wang N. CRISPR/Cas9 screens unravel miR-3689a-3p regulating sorafenib resistance in hepatocellular carcinoma via suppressing CCS/SOD1-dependent mitochondrial oxidative stress. Drug Resist Updat 2023; 71:101015. [PMID: 37924725 DOI: 10.1016/j.drup.2023.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
AIMS Therapeutic outcome of sorafenib in hepatocellular carcinoma (HCC) is undermined by the development of drug resistance. This study aimed to identify the critical microRNA (miRNA) which is responsible for sorafenib resistance at the genomic level. METHODS CRISPR/Cas9 screen followed by gain- and loss-of-function assays both in vitro and in vivo were applied to identify the role of miR-3689a-3p in mediating sorafenib response in HCC. The upstream and downstream molecules of miR-3689a-3p and their mechanism of action were investigated. RESULTS CRISPR/Cas9 screening identified miR-3689a-3p was the most up-regulated miRNA in sorafenib sensitive HCC. Knockdown of miR-3689a-3p significantly increased sorafenib resistance, while its overexpression sensitized HCC response to sorafenib treatment. Proteomic analysis revealed that the effect of miR-3689a-3p was related to the copper-dependent mitochondrial superoxide dismutase type 1 (SOD1) activity. Mechanistically, miR-3689a-3p targeted the 3'UTR of the intracellular copper chaperone for superoxide dismutase (CCS) and suppressed its expression. As a result, miR-3689a-3p disrupted the intracellular copper trafficking and reduced SOD1-mediated scavenge of mitochondrial oxidative stress that eventually caused HCC cell death in response to sorafenib treatment. CCS overexpression blunted sorafenib response in HCC. Clinically, miR-3689a-3p was down-regulated in HCC and predicted favorable prognosis for HCC patients. CONCLUSION Our findings provide comprehensive evidence for miR-3689a-3p as a positive regulator and potential druggable target for improving sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Tingyuan Xing
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Hor-Yue Tan
- Centre for Chinese Medicine New Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong S.A.R., P.R. China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, Faculty of Science, Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., P.R. China.
| |
Collapse
|
50
|
Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:189020. [PMID: 37951481 DOI: 10.1016/j.bbcan.2023.189020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Targeting angiogenesis has remained one of the important aspects in disease biology in general and cancer in particular. Currently (June 2023), over 593 clinical trials have been registered at ClinicalTrials.gov having inference of term 'angiogenesis'. A panel of 14 anti-angiogenic drugs have been approved by FDA for the treatment of variety of cancers and other human ailments. Although the anti-angiogenic therapy (AAT) has gained significant clinical attention as a promising approach in the treatment of various diseases, particularly cancer, however, sizable literature has accumulated in the recent past describing the aggressive nature of tumours after the drug holidays, evolving drug resistance and off-target toxicities. Nevertheless, the emergence of inscrutable compensatory or alternative angiogenic mechanisms is limiting the efficacy of anti-angiogenic drugs and focussing the therapeutic regime as a puzzle of 'Lernaean hydra'. This review offers an overview of recent updates on the efficacy of antiangiogenic therapy and the current clinical performance of aaRTK inhibitors. Additionally, it also explores the changing application landscape of AAT, focusing on its role in diabetic nephropathy, age-related macular degeneration and other neovascular ocular disorders. Combination therapy with antiangiogenic drugs and immune check point inhibitors (ICIs) has emerged as a potential strategy to enhance the therapeutic index of cancer immunotherapy. While clinical studies have demonstrated the clinical efficacy of this approach, they also highlight the complex and sometimes unpredictable adverse events associated with it. Normalizing tumour vasculature has been identified as a key factor in unlocking the full potential of ICIs, thereby providing hope for improved treatment outcomes. The future prospects and challenges of AAT have been described with special reference to integration of technological advances for enhancing its efficacy and applications beyond its discovery.
Collapse
Affiliation(s)
- Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MS, India.
| |
Collapse
|