1
|
Shen F, Zhou H. Advances in the etiology and neuroimaging of children with attention deficit hyperactivity disorder. Front Pediatr 2024; 12:1400468. [PMID: 38915870 PMCID: PMC11194347 DOI: 10.3389/fped.2024.1400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children, characterized by age-inappropriate inattention, hyperactivity, and impulsivity, which can cause extensive damage to children's academic, occupational, and social skills. This review will present current advancements in the field of attention deficit hyperactivity disorder, including genetics, environmental factors, epigenetics, and neuroimaging features. Simultaneously, we will discuss the highlights of promising directions for further study.
Collapse
Affiliation(s)
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
3
|
Li Y, Shen W, Zhang R, Mao J, Liu L, Chang YM, Ye XZ, Qiu YP, Ma L, Cheng R, Wu H, Chen DM, Chen L, Xu P, Mei H, Wang SN, Xu FL, Ju R, Tong XM, Lin XZ, Wu F. Hyperglycemia in pregnancy did not worsen the short-term outcomes of very preterm infants: a propensity score matching study. Front Pediatr 2024; 12:1341221. [PMID: 38510082 PMCID: PMC10950918 DOI: 10.3389/fped.2024.1341221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hyperglycemia in pregnancy (HGP) has generally been considered a risk factor associated with adverse outcomes in offspring, but its impact on the short-term outcomes of very preterm infants remains unclear. Methods A secondary analysis was performed based on clinical data collected prospectively from 28 hospitals in seven regions of China from September 2019 to December 2020. According to maternal HGP, all infants were divided into the HGP group or the non-HGP group. A propensity score matching analysis was used to adjust for confounding factors, including gestational age, twin or multiple births, sex, antenatal steroid administration, delivery mode and hypertensive disorders of pregnancy. The main complications and the short-term growth status during hospitalization were evaluated in the HGP and non-HGP groups. Results A total of 2,514 infants were eligible for analysis. After matching, there were 437 infants in the HGP group and 874 infants in the non-HGP group. There was no significant difference between the two groups in main complications including respiratory distress syndrome, bronchopulmonary dysplasia, necrotizing enterocolitis, retinopathy of prematurity, patent ductus arteriosus, culture positive sepsis, intraventricular hemorrhage, periventricular leukomalacia, anemia, feeding intolerance, metabolic bone disease of prematurity, or parenteral nutrition-associated cholestasis. The incidences of extrauterine growth retardation and increased growth retardation for weight and head circumference in the non-HGP group were all higher than those in the HGP group after matching (P < 0.05). Conclusions HGP did not worsen the short-term outcomes of the surviving very preterm infants, as it did not lead to a higher risk of the main neonatal complications, and the infants' growth improved during hospitalization.
Collapse
Affiliation(s)
- Ying Li
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Shen
- Department of Neonatology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen, Fujian, China
| | - Rong Zhang
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Jian Mao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Liu
- Department of Neonatology, Guiyang Maternal and Child Health Hospital·Guiyang Children’s Hospital, Guiyang, Guizhou, China
| | - Yan-Mei Chang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xiu-Zhen Ye
- Department of Neonatology, Guangdong Province Maternal and Children’s Hospital, Guangzhou, Guangdong, China
| | - Yin-Ping Qiu
- Department of Neonatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Ma
- Department of Neonatology, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Cheng
- Department of Neonatology, Children’ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Wu
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong-Mei Chen
- Department of Neonatology, Quanzhou Maternity and Children’s Hospital, Quanzhou, Fujian, China
| | - Ling Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Xu
- Department of Neonatology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Hua Mei
- Department of Neonatology, The Affiliate Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - San-Nan Wang
- Department of Neonatology, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Fa-Lin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women’ and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiao-Mei Tong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xin-Zhu Lin
- Department of Neonatology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen, Fujian, China
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Volqvartz T, Andersen HHB, Pedersen LH, Larsen A. Obesity in pregnancy-Long-term effects on offspring hypothalamic-pituitary-adrenal axis and associations with placental cortisol metabolism: A systematic review. Eur J Neurosci 2023; 58:4393-4422. [PMID: 37974556 DOI: 10.1111/ejn.16184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Obesity, affecting one in three pregnant women worldwide, is not only a major obstetric risk factor. The resulting low-grade inflammation may have a long-term impact on the offspring's HPA axis through dysregulation of maternal, placental and fetal corticosteroid metabolism, and children born of obese mothers have increased risk of diabetes and cardiovascular disease. The long-term effects of maternal obesity on offspring neurodevelopment are, however, undetermined and could depend on the specific effects on placental and fetal cortisol metabolism. This systematic review evaluates how maternal obesity affects placental cortisol metabolism and the offspring's HPA axis. Pubmed, Embase and Scopus were searched for original studies on maternal BMI, obesity, and cortisol metabolism and transfer. Fifteen studies were included after the screening of 4556 identified records. Studies were small with heterogeneous exposures and outcomes. Two studies found that maternal obesity reduced placental HSD11β2 activity. In one study, umbilical cord blood cortisol levels were affected by maternal BMI. In three studies, an altered cortisol response was consistently seen among offspring in childhood (n = 2) or adulthood (n = 1). Maternal BMI was not associated with placental HSD11β1 or HSD11β2 mRNA expression, or placental HSD11β2 methylation. In conclusion, high maternal BMI is associated with reduced placental HSD11β2 activity and a dampened cortisol level among offspring, but the data is sparse. Further investigations are needed to clarify whether the HPA axis is affected by prenatal factors including maternal obesity and investigate if adverse effects can be ameliorated by optimising the intrauterine environment.
Collapse
Affiliation(s)
- Tabia Volqvartz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lars Henning Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
7
|
Luo S, Hsu E, Lawrence KE, Adise S, Pickering TA, Herting MM, Buchanan T, Page KA, Thompson PM. Associations among prenatal exposure to gestational diabetes mellitus, brain structure, and child adiposity markers. Obesity (Silver Spring) 2023; 31:2699-2708. [PMID: 37840377 PMCID: PMC11025497 DOI: 10.1002/oby.23901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the mediating role of child brain structure in the relationship between prenatal gestational diabetes mellitus (GDM) exposure and child adiposity. METHODS This was a cross-sectional study of 9- to 10-year-old participants and siblings across the US. Data were obtained from the baseline assessment of the Adolescent Brain Cognitive Development (ABCD) Study®. Brain structure was evaluated by magnetic resonance imaging. GDM exposure was self-reported, and discordance for GDM exposure within biological siblings was identified. Mixed effects and mediation models were used to examine associations among prenatal GDM exposure, brain structure, and adiposity markers with sociodemographic covariates. RESULTS The sample included 8521 children (7% GDM-exposed), among whom there were 28 sibling pairs discordant for GDM exposure. Across the entire study sample, prenatal exposure to GDM was associated with lower global and regional cortical gray matter volume (GMV) in the bilateral rostral middle frontal gyrus and superior temporal gyrus. GDM-exposed siblings also demonstrated lower global cortical GMV than unexposed siblings. Global cortical GMV partially mediated the associations between prenatal GDM exposure and child adiposity markers. CONCLUSIONS The results identify brain markers of prenatal GDM exposure and suggest that low cortical GMV may explain increased obesity risk for offspring prenatally exposed to GDM.
Collapse
Affiliation(s)
- Shan Luo
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Eustace Hsu
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Katherine E. Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shana Adise
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Division of Research on Children, Youth, and Families, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Trevor A. Pickering
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Thomas Buchanan
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kathleen A. Page
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Tocci V, Mirabelli M, Salatino A, Sicilia L, Giuliano S, Brunetti FS, Chiefari E, De Sarro G, Foti DP, Brunetti A. Metformin in Gestational Diabetes Mellitus: To Use or Not to Use, That Is the Question. Pharmaceuticals (Basel) 2023; 16:1318. [PMID: 37765126 PMCID: PMC10537239 DOI: 10.3390/ph16091318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a dramatic increase in the number of pregnancies complicated by gestational diabetes mellitus (GDM). GDM occurs when maternal insulin resistance develops and/or progresses during gestation, and it is not compensated by a rise in maternal insulin secretion. If not properly managed, this condition can cause serious short-term and long-term problems for both mother and child. Lifestyle changes are the first line of treatment for GDM, but if ineffective, insulin injections are the recommended pharmacological treatment choice. Some guidance authorities and scientific societies have proposed the use of metformin as an alternative pharmacological option for treating GDM, but there is not yet a unanimous consensus on this. Although the use of metformin appears to be safe for the mother, concerns remain about its long-term metabolic effects on the child that is exposed in utero to the drug, given that metformin, contrary to insulin, crosses the placenta. This review article describes the existing lines of evidence about the use of metformin in pregnancies complicated by GDM, in order to clarify its potential benefits and limits, and to help clinicians make decisions about who could benefit most from this drug treatment.
Collapse
Affiliation(s)
- Vera Tocci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Luciana Sicilia
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Stefania Giuliano
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
| | - Daniela P. Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (V.T.); (M.M.)
- Operative Unit of Endocrinology, Diabetes in Pregnancy Ambulatory Care Center, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Rodolaki K, Pergialiotis V, Iakovidou N, Boutsikou T, Iliodromiti Z, Kanaka-Gantenbein C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol (Lausanne) 2023; 14:1125628. [PMID: 37469977 PMCID: PMC10352101 DOI: 10.3389/fendo.2023.1125628] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Maternal health during gestational period is undoubtedly critical in shaping optimal fetal development and future health of the offspring. Gestational diabetes mellitus is a metabolic disorder occurring in pregnancy with an alarming increasing incidence worldwide during recent years. Over the years, there is a growing body of evidence that uncontrolled maternal hyperglycaemia during pregnancy can potentially have detrimental effect on the neurodevelopment of the offspring. Both human and animal data have linked maternal diabetes with motor and cognitive impairment, as well as autism spectrum disorders, attention deficit hyperactivity disorder, learning abilities and psychiatric disorders. This review presents the available data from current literature investigating the relationship between maternal diabetes and offspring neurodevelopmental impairment. Moreover, possible mechanisms accounting for the detrimental effects of maternal diabetes on fetal brain like fetal neuroinflammation, iron deficiency, epigenetic alterations, disordered lipid metabolism and structural brain abnormalities are also highlighted. On the basis of the evidence demonstrated in the literature, it is mandatory that hyperglycaemia during pregnancy will be optimally controlled and the impact of maternal diabetes on offspring neurodevelopment will be more thoroughly investigated.
Collapse
Affiliation(s)
- Kalliopi Rodolaki
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoleta Iakovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoe Iliodromiti
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Ahmed S, Cano MÁ, Sánchez M, Hu N, Ibañez G. Effect of exposure to maternal diabetes during pregnancy on offspring's brain cortical thickness and neurocognitive functioning. Child Neuropsychol 2023; 29:588-606. [PMID: 35867480 PMCID: PMC9867783 DOI: 10.1080/09297049.2022.2103105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023]
Abstract
Little is known about the long-term effects of maternal diabetes during pregnancy (DP), either gestational diabetes or preexisting diabetes (type 1 or type 2), on offspring's brain morphometry and neurocognitive functioning (NCF). This study examined the effect of prenatal exposure to maternal DP on the brain structure and NCF in children between 9 and 10 years of age. This study used cross-sectional neuroimaging and NCF data from the baseline wave of the Adolescent Brain and Cognitive Development® study. Exposure to maternal DP was assigned from the developmental history questionnaire. Differences in the brain cortical thickness (CTh) and five cognitive abilities (executive function, working and episodic memory, processing speed, and language abilities) were examined in diabetes-exposed and diabetes-unexposed children. Linear mixed effect models and generalized linear models were used to adjust for the effect of confounding variables. A total of 9,967 children (718 diabetes-exposed and 9249 unexposed) were included in the analysis. Diabetes-exposed children had lower whole-brain CTh [mean: exposed vs unexposed = 2.725 mm vs 2.732 mm; difference (95%CI): -0.007 mm (-0.013, -0.001)] compared to unexposed children after adjusting for confounding variables. Diabetes-exposed children had lower CTh in most part of the occipital lobe of both hemispheres, right postcentral gyrus, and left superior parietal cortex. Diabetes-exposed children also had lower scores in processing speed task [mean difference (95%CI): -1.7 (-2.8, -0.6)] and total cognition [mean difference (95%CI): -0.6 (-1.2, -0.02)]. Diabetes-exposed children have reduced CTh and NCF during preadolescence, which might have implications for psychomotor development during later life. Prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
| | | | | | - Nan Hu
- Florida International University, Miami, Florida, USA
| | - Gladys Ibañez
- Florida International University, Miami, Florida, USA
| |
Collapse
|
11
|
Cohen N, Faleschini S, Rifas-Shiman SL, Bouchard L, Doyon M, Simard O, Arguin M, Fink G, Alman AC, Kirby R, Chen H, Wilson R, Fryer K, Perron P, Oken E, Hivert MF. Associations of maternal glucose markers in pregnancy with cord blood glucocorticoids and child hair cortisol levels. J Dev Orig Health Dis 2023; 14:88-95. [PMID: 35801348 PMCID: PMC9825683 DOI: 10.1017/s2040174422000381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Exposure to maternal hyperglycemia in utero has been associated with adverse metabolic outcomes in offspring. However, few studies have investigated the relationship between maternal hyperglycemia and offspring cortisol levels. We assessed associations of gestational diabetes mellitus (GDM) with cortisol biomarkers in two longitudinal prebirth cohorts: Project Viva included 928 mother-child pairs and Gen3G included 313 mother-child pairs. In Project Viva, GDM was diagnosed in N = 48 (5.2%) women using a two-step procedure (50 g glucose challenge test, if abnormal followed by 100 g oral glucose tolerance test [OGTT]), and in N = 29 (9.3%) women participating in Gen3G using one-step 75 g OGTT. In Project Viva, we measured cord blood glucocorticoids and child hair cortisol levels during mid-childhood (mean (SD) age: 7.8 (0.8) years) and early adolescence (mean (SD) age: 13.2 (0.9) years). In Gen3G, we measured hair cortisol at 5.4 (0.3) years. We used multivariable linear regression to examine associations of GDM with offspring cortisol, adjusting for child age and sex, maternal prepregnancy body mass index, education, and socioeconomic status. We additionally adjusted for child race/ethnicity in the cord blood analyses. In both Project Viva and Gen3G, we observed null associations of GDM and maternal glucose markers in pregnancy with cortisol biomarkers in cord blood at birth (β = 16.6 nmol/L, 95% CI -60.7, 94.0 in Project Viva) and in hair samples during childhood (β = -0.56 pg/mg, 95% CI -1.16, 0.04 in Project Viva; β = 0.09 pg/mg, 95% CI -0.38, 0.57 in Gen3G). Our findings do not support the hypothesis that maternal hyperglycemia is related to hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Nathan Cohen
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Sabrina Faleschini
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Luigi Bouchard
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Clinical Department of Laboratory medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay–Lac-St-Jean – Hôpital Universitaire de Chicoutimi, Saguenay, Quebec, Canada
| | - Myriam Doyon
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Olivier Simard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Melina Arguin
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guy Fink
- Department of Medical Biology, University Health and Social Service Center of the Estrie, Fleurimont, Quebec, Canada
| | - Amy C. Alman
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Russell Kirby
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Henian Chen
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Ronee Wilson
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Kimberly Fryer
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Patrice Perron
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Massachusetts General Hospital, Diabetes Unit, Boston, MA, USA
| |
Collapse
|
12
|
Tien Nguyen S, Bui Minh T, Trung Dinh H, Dinh Le T, Phi Thi Nguyen N, Tran TTH, Hien Vu T, Luong Cong T, Ho Thi Nguyen L, Tuan Pham P, Viet Tran T, Xuan Nguyen K. Relationship Between Maternal Serum Cortisol and Maternal Insulin Resistance and Fetal Ultrasound Characteristics in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:365-372. [PMID: 36788989 PMCID: PMC9922503 DOI: 10.2147/dmso.s400995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION Cortisol is proven to play a crucial role in hyperglycemia and fetal development in gestational diabetes mellitus (GDM). This research aims to investigate the relationship between maternal serum cortisol and insulin resistance indices and fetal ultrasound characteristics in women with GDM. METHODS A cross-sectional and descriptive study on 144 GDM in Vietnam from January 2015 to December 2020. Serum cortisol was measured using electrochemiluminescence immunoassay at 8 a.m. on the examination day in the vicinity of the 24th gestational week. Fetal ultrasound was performed by an experienced person who was blind to the study. RESULTS The mean cortisol level in the GDM group was 627.04 nmol/L. Serum cortisol levels positively correlated with abdominal circumference (AC), fasting plasma glucose (FPG), insulin, triglycerides, HOMA2-IR, and Mathew indices (with r of 0.18, 0.22, 0.18, 0.17, 0.18, and 0.22, respectively). Serum cortisol levels negatively correlated with QUICKI and McAuley indices (with r of -0.19 and -0.21), respectively. In a univariate linear regression, maternal serum cortisol positively correlated with fetal AC, head circumference (HC), and biparietal diameter (BPD) (with r of 0.21; 0.23; and 0.25, respectively). In a multivariate linear regression analysis, cortisol positively correlated with fetal AC, HC, and BPD after adjusting to maternal McAuley index. CONCLUSION Serum cortisol levels in GDM correlated with fasting blood glucose, triglycerides, and insulin resistance. Besides, serum cortisol levels in GDM positively correlated with fetal development.
Collapse
Affiliation(s)
- Son Tien Nguyen
- Department of Rheumatology and Endocrinology, Military Hospital 103, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Tien Bui Minh
- Department of Obstetrics and Gynecology, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Hoa Trung Dinh
- Department of Requested Treatment, National Hospital of Endocrinology, Ha Noi, Vietnam
- National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Tuan Dinh Le
- Department of Rheumatology and Endocrinology, Military Hospital 103, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Nga Phi Thi Nguyen
- Department of Rheumatology and Endocrinology, Military Hospital 103, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Thi Thanh Hoa Tran
- Department of Requested Treatment, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Trinh Hien Vu
- Department of Requested Treatment, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Thuc Luong Cong
- Cardiovascular Center, Military Hospital 103, Vietnam Medical Military University, Ha Noi, Vietnam
| | - Lan Ho Thi Nguyen
- Department of Requested Treatment, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Phuong Tuan Pham
- Department of Requested Treatment, National Hospital of Endocrinology, Ha Noi, Vietnam
- National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Tien Viet Tran
- Department of Infectious Diseases, Military Hospital 103, Vietnam Medical Military University, Hanoi, 10000, Vietnam
| | - Kien Xuan Nguyen
- Department of Military Medical Command and Organization, Vietnam Medical Military University, Ha Noi, Vietnam
- Correspondence: Kien Xuan Nguyen, Department of Military Medical Command and Organization, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La Ward, Ha Dong District, Hanoi city, Vietnam, Email
| |
Collapse
|
13
|
Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021; 237:507-522. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isadora Bertaco
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie, INRS, Laval, Quebec, Canada
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Ahmed S, Soliman A, De Sanctis V, Alyafie F, Alaaraj N, Hamed N, Ali HA, Kamal A. Defective Cortisol Secretion in Response to Spontaneous Hypoglycemia but Normal Cortisol Response to ACTH stimulation in neonates with Hyperinsulinemic Hypoglycemia (HH). ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021182. [PMID: 33988135 PMCID: PMC8182578 DOI: 10.23750/abm.v92i2.11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/04/2022]
Abstract
Introduction: Hyperinsulinemic Hypoglycaemia (HH) is the most common cause of recurrent and persistent hypoglycemia in the neonatal period. Cortisol and GH play an important role as a counterregulatory hormone during hypoglycemia. Both antagonize the peripheral effects of insulin and directly influence glucose metabolism Patients and Methods: We studied cortisol and GH secretion in newborn infants with HH during spontaneous hypoglycemia. In addition, their basal ACTH level was measured and cortisol response to a standard dose ACTH test was performed. Results: Nine newborns with HH were studied during the first 2 weeks of life. During HH, their mean glucose concentration was 1.42 ± 0.7 mmol/L, mean beta hydroxybutyrate level was 0.08 ± 0.04 mmol/L, and mean serum insulin level was 17.78 ± 9.7 μU/mL. Their cortisol and GH levels at the time of spontaneous hypoglycemia were 94.7 ± 83.1 nmol/L and 82.4 ± 29 m IU/L respectively. They had relatively low level of ACTH (range: 14 :72 pg/ml, mean: 39.4 ± 20 pg/mL) during hypoglycemia. All infants had GH concentration > 20 mIU/L at the time of hypoglycemia. All infants underwent ACTH test. Their basal serum cortisol levels did not differ compared to cortisol levels during hypoglycemia, and all had a normal peak cortisol response (> 500 nmol/L) in response to i.v. ACTH stimulation test. Conclusion: Infants with HH have low cortisol response to spontaneous hypoglycemia with normal response to exogenous standard-dose ACTH. Checking hypothalamic-pituitary axis (HPA) axis later in infancy using low dose ACTH may be useful to diagnose persistent HPA abnormalities in these infants. All HH infants had appropriate elevation of GH during hypoglycemia. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Shayma Ahmed
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Ashraf Soliman
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | | | - Fawzia Alyafie
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Nada Alaaraj
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Noor Hamed
- Departments of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Hamdy A Ali
- Departments of Neonatology, Hamad General Hospital, Doha, Qatar.
| | - Abdulla Kamal
- Departments of Pharmacology, Hamad General Hospital, Doha, Qatar.
| |
Collapse
|
15
|
Van Dam JM, Goldsworthy MR, Hague WM, Coat S, Pitcher JB. Cortical Plasticity and Interneuron Recruitment in Adolescents Born to Women with Gestational Diabetes Mellitus. Brain Sci 2021; 11:brainsci11030388. [PMID: 33808544 PMCID: PMC8003113 DOI: 10.3390/brainsci11030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to gestational diabetes mellitus (GDM) in utero is associated with a range of adverse cognitive and neurological outcomes. Previously, we reported altered neuroplastic responses to continuous theta burst stimulation (cTBS) in GDM-exposed adolescents. Recent research suggests that the relative excitability of complex oligosynaptic circuits (late I-wave circuits) can predict these responses. We aimed to determine if altered I-wave recruitment was associated with neuroplastic responses in adolescents born to women with GDM. A total of 20 GDM-exposed adolescents and 10 controls (aged 13.1 ± 1.0 years) participated. cTBS was used to induce neuroplasticity. I-wave recruitment was assessed by comparing motor-evoked potential latencies using different TMS coil directions. Recruitment of late I-waves was associated with stronger LTD-like neuroplastic responses to cTBS (p = < 0.001, R2 = 0.36). There were no differences between groups in mean neuroplasticity (p = 0.37), I-wave recruitment (p = 0.87), or the association between these variables (p = 0.41). The relationship between I-wave recruitment and the response to cTBS previously observed in adults is also present in adolescents and does not appear to be altered significantly by in utero GDM exposure. Exposure to GDM does not appear to significantly impair LTD-like synaptic plasticity or interneuron recruitment.
Collapse
Affiliation(s)
- Jago M. Van Dam
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; (J.M.V.D.); (W.M.H.); (S.C.)
| | - Mitchell R. Goldsworthy
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; (J.M.V.D.); (W.M.H.); (S.C.)
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
- Correspondence: (M.R.G.); (J.B.P.)
| | - William M. Hague
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; (J.M.V.D.); (W.M.H.); (S.C.)
- Obstetric Medicine, Women’s and Children’s Hospital Network, North Adelaide, South Australia 5006, Australia
| | - Suzette Coat
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; (J.M.V.D.); (W.M.H.); (S.C.)
| | - Julia B. Pitcher
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; (J.M.V.D.); (W.M.H.); (S.C.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
- Correspondence: (M.R.G.); (J.B.P.)
| |
Collapse
|
16
|
Greene SM, Sanchez YR, Pathapati N, Davis GN, Gould GG. Assessment of autism-relevant behaviors in C57BKS/J leptin receptor deficient mice. Horm Behav 2021; 129:104919. [PMID: 33428921 PMCID: PMC7965341 DOI: 10.1016/j.yhbeh.2020.104919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Gestational diabetes mellitus (GDM) was associated with greater autism risk in epidemiological studies. Disrupted leptin signaling may contribute to their coincidence, as it is found in both disorders. Given this we examined leptin receptor (Lepr) deficient (BKS.Cg-Dock7m +/+ Leprdb/J diabetic (db)) heterozygous (db/+) mice for autism-relevant behaviors. BKS db/+ females are lean with normal blood glucose, but they develop GDM while pregnant. We hypothesized BKS db/+ offspring might exhibit physiological and behavior traits consistent with autism. Adolescent body weight, fasting blood glucose, serum corticosterone, social preferences, self-grooming, marble burying, social dominance and cognitive flexibility of BKS db/+ mice was compared to C57BLKS/J (BKS) and C57BL/6J (BL6) mice. Male db/+ weighed more and had higher blood glucose and corticosterone relative to BL6, but not BKS mice. Also, male db/+ lacked social interaction preference, explored arenas less, and buried more marbles than BL6, but not BKS males. Male and female db/+ were more dominant and made more mistakes in water T-mazes locating a sunken platform after its position was reversed than BL6, but not BKS mice. Overall BKS db/+, particularly males, exhibited some autism-like social deficits and restrictive-repetitive behaviors relative to BL6, but BKS strain contributions to BKS db/+ behaviors were evident. Since BKS db/+ and BKS behavioral and physiological phenotypes are already so similar, it will be difficult to use these models in studies designed to detect contributions of fetal GDM exposures to offspring behaviors.
Collapse
Affiliation(s)
- Susan M Greene
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States of America.
| | - Yatzil R Sanchez
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States of America.
| | - Nikhita Pathapati
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States of America.
| | - Gianna N Davis
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States of America.
| | - Georgianna G Gould
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States of America.
| |
Collapse
|
17
|
Cohort profile: Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). Eur J Epidemiol 2020; 36:129-142. [PMID: 33222050 DOI: 10.1007/s10654-020-00697-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
The Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO) is a preconception, longitudinal cohort study that aims to study the effects of nutrition, lifestyle, and maternal mood prior to and during pregnancy on the epigenome of the offspring and clinically important outcomes including duration of gestation, fetal growth, metabolic and neural phenotypes in the offspring. Between February 2015 and October 2017, the S-PRESTO study recruited 1039 Chinese, Malay or Indian (or any combinations thereof) women aged 18-45 years and who intended to get pregnant and deliver in Singapore, resulting in 1032 unique participants and 373 children born in the cohort. The participants were followed up for 3 visits during the preconception phase and censored at 12 months of follow up if pregnancy was not achieved (N = 557 censored). Women who successfully conceived (N = 475) were characterised at gestational weeks 6-8, 11-13, 18-21, 24-26, 27-28 and 34-36. Follow up of their index offspring (N = 373 singletons) is on-going at birth, 1, 3 and 6 weeks, 3, 6, 12, 18, 24 and 36 months and beyond. Women are also being followed up post-delivery. Data is collected via interviewer-administered questionnaires, metabolic imaging (magnetic resonance imaging), standardized anthropometric measurements and collection of diverse specimens, i.e. blood, urine, buccal smear, stool, skin tapes, epithelial swabs at numerous timepoints. S-PRESTO has extensive repeated data collected which include genetic and epigenetic sampling from preconception which is unique in mother-offspring epidemiological cohorts. This enables prospective assessment of a wide array of potential determinants of future health outcomes in women from preconception to post-delivery and in their offspring across the earliest development from embryonic stages into early childhood. In addition, the S-PRESTO study draws from the three major Asian ethnic groups that represent 50% of the global population, increasing the relevance of its findings to global efforts to address non-communicable diseases.
Collapse
|
18
|
Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells 2020; 9:cells9061557. [PMID: 32604801 PMCID: PMC7349356 DOI: 10.3390/cells9061557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the major pregnancy-related complications, characterized as a transitory form of diabetes induced by insulin resistance accompanied by a low/absent pancreatic beta-cell compensatory adaptation to the increased insulin demand, causes the acute, long-term, and transgenerational health complications. The aim of the study was to assess if alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases are present in whole peripheral blood of children aged 3-11 years descending from GDM complicated pregnancies. A substantially altered microRNA expression profile was found in children descending from GDM complicated pregnancies. Almost all microRNAs with the exception of miR-92a-3p, miR-155-5p, and miR-210-3p were upregulated. The microRNA expression profile also differed between children after normal and GDM complicated pregnancies in relation to the presence of overweight/obesity, prehypertension/hypertension, and/or valve problems and heart defects. Always, screening based on the combination of microRNAs was superior over using individual microRNAs, since at 10.0% false positive rate it was able to identify a large proportion of children with an aberrant microRNA expression profile (88.14% regardless of clinical findings, 75.41% with normal clinical findings, and 96.49% with abnormal clinical findings). In addition, the higher incidence of valve problems and heart defects was found in children with a prior exposure to GDM. The extensive file of predicted targets of all microRNAs aberrantly expressed in children descending from GDM complicated pregnancies indicates that a large group of these genes is involved in ontologies of diabetes/cardiovascular/cerebrovascular diseases. In general, children with a prior exposure to GDM are at higher risk of later development of diabetes mellitus and cardiovascular/cerebrovascular diseases, and would benefit from dispensarisation as well as implementation of primary prevention strategies.
Collapse
|
19
|
|
20
|
Rivell A, Mattson MP. Intergenerational Metabolic Syndrome and Neuronal Network Hyperexcitability in Autism. Trends Neurosci 2019; 42:709-726. [PMID: 31495451 PMCID: PMC6779523 DOI: 10.1016/j.tins.2019.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
We review evidence that suggests a role for excessive consumption of energy-dense foods, particularly fructose, and consequent obesity and insulin resistance (metabolic syndrome) in the recent increase in prevalence of autism spectrum disorders (ASD). Maternal insulin resistance, obesity, and diabetes may predispose offspring to ASD by mechanisms involving chronic activation of anabolic cellular pathways and a lack of metabolic switching to ketosis resulting in a deficit in GABAergic signaling and neuronal network hyperexcitability. Metabolic reprogramming by epigenetic DNA and chromatin modifications may contribute to alterations in gene expression that result in ASD. These mechanistic insights suggest that interventions that improve metabolic health such as intermittent fasting and exercise may ameliorate developmental neuronal network abnormalities and consequent behavioral manifestations in ASD.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Hu J, Zhang J, Zhu B. Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia. Fundam Clin Pharmacol 2019; 33:649-658. [PMID: 31334867 DOI: 10.1111/fcp.12501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
Recent in vitro and clinical studies have found that metformin (MET) may play a preventive or therapeutic role in preeclampsia (PE) and may be a candidate drug for the prevention and/or treatment of PE. In this study, we used lipopolysaccharide (LPS) to induce a PE-like rat model and investigated the intervention effect of MET from the perspectives of clinical manifestations, placental morphology, serum marker for placental injury, systemic inflammatory response and oxidative/nitrative stress, and placental nuclear factor-κB (NF-κB) signaling. The results showed that MET improved LPS-induced hypertension, proteinuria, fetal growth restriction (FGR) and stillbirth, alleviated placental injury and decreased maternal serum marker alpha-fetoprotein (MS-AFP) level; MET suppressed LPS-induced TNF-α and IL-6 productions, reduced oxidative/nitrative stress as evidenced by increased superoxide dismutase (SOD) activity, decreased inducible nitric oxide synthase (iNOS) activity, and decreased levels of malondialdehyde (MDA) and nitric oxide (NO); MET inhibited LPS-induced NF-κB activation in placentas. Based on these findings, it can be concluded that MET is beneficial to the PE-like rat model by protecting placentas from injury, suppressing systemic inflammatory response and oxidative/nitrative stress, and inhibiting placental NF-κB signaling pathway. MET is a promising drug for prevention and/or treatment of PE.
Collapse
Affiliation(s)
- Jilin Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.,Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinman Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.,National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Baosheng Zhu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.,National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, 650032, China
| |
Collapse
|
22
|
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol 2019; 315:1-8. [DOI: 10.1016/j.expneurol.2019.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
|
23
|
Xu Q, Xie Q. Long-term effects of prenatal exposure to metformin on the health of children based on follow-up studies of randomized controlled trials: a systematic review and meta-analysis. Arch Gynecol Obstet 2019; 299:1295-1303. [PMID: 30953188 DOI: 10.1007/s00404-019-05124-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/16/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Oral antidiabetic medication of metformin is increasingly used in pregnant women with gestational diabetes mellitus (GDM), polycystic ovary syndrome (PCOS) and obesity. The drug passes through the placenta and can potentially influence the fetus. The aim of the study is to investigate the possible long-term effects of prenatal exposure to metformin on growth and development of the offspring. METHODS A systematic review and meta-analysis was conducted to examine the longer term outcomes by the follow-up studies of the already published RCTs focusing on the body composition, metabolic parameters and neurophysiological development of the children prenatally exposed to metformin. The primary sources of the reviewed studies through August 2018, with restriction on the language of English, were Pubmed and Embase. RESULTS 11 follow-up studies were included, with a maximal age of children being 13 years, comprising 823 children of mothers with GDM or PCOS who were randomized to either metformin or insulin/placebo during pregnancy. From the pooled meta-analysis we found that children prenatal exposure to metformin were associated with a significantly heavier weight (MD = 0.48 kg, 95% CI 0.24 kg, 0.73 kg; P = 0.0001, I2 = 0). As for other parameters of body composition, metabolic parameters and neurophysiological development, the results were similar between metformin and placebo/insulin use. CONCLUSION Increased offspring weight was more observed in children prenatal exposure to metformin. Heathcare providers and patients should be aware that metformin is increasingly prescribed in pregnancy based on the relatively limited evidences but nonetheless encouraging long-term offspring data are available.
Collapse
Affiliation(s)
- Qing Xu
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Putian College, No. 181 East Meiyuan Road, Lichen District, Putian City, 351100, Fujian, China.
| | - Qinglian Xie
- Health Evaluation Center, Affiliated Hospital of Putian College, Putian City, 351100, Fujian, China
| |
Collapse
|
24
|
Liu W, Liu J, Huang Z, Cui Z, Li L, Liu W, Qi Z. Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice. J Affect Disord 2019; 246:486-497. [PMID: 30599373 DOI: 10.1016/j.jad.2018.12.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Both depression itself and antidepressant medication have been reported to be significantly related to the risk of type 2 diabetes mellitus (T2DM). Glucagon-like peptide-1 (GLP-1), a treatment target for T2DM, has a neuroprotective effect. As an enhancer and sensitiser of GLP-1, metformin has been reported to be safe for the neurodevelopment. The present study aimed to determine whether and how GLP-1 mediates antidepressant effects of metformin and exercise in mice. METHODS Male C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for 8 weeks. From the 4th week, CUMS mice were subjected to oral metformin treatment and/or treadmill running. A videocomputerized tracking system was used to record behaviors of mice for a 5-min session. ELISA, western blotting and immunohistochemistry were used to examine serum protein concentrations, protein levels in whole hippocampus, protein distribution and expression in dorsal and ventral hippocampus, respectively. RESULTS Our results supported the validity of metformin as a useful antidepressant; moreover, treadmill running favored metformin effects on exploratory behaviors and serum corticosterone levels. CUMS reduced GLP-1 protein levels and phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), but increased protein levels of B-cell lymphoma 2-associated X-protein (BAX) in mice hippocampus. All these changes were restored by both single and combined treatment with metformin and exercise. LIMITATIONS We did not establish a causal relationship between GLP-1 expression and related signaling, using GLP-1 agonist and antagonist or knockout techniques. CONCLUSIONS Our findings have demonstrated that protein levels of pERK and BAX may be relevant to the role of GLP-1 in antidepressant effects of metformin and exercise, which may provide a novel topic for future clinical research.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Jiatong Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhiming Cui
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Lingxia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
25
|
Prenatal metformin exposure or organic cation transporter 3 knock-out curbs social interaction preference in male mice. Pharmacol Res 2018; 140:21-32. [PMID: 30423430 DOI: 10.1016/j.phrs.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/21/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
Abstract
Poorly managed gestational diabetes can lead to severe complications for mother and child including fetal overgrowth, neonatal hypoglycemia and increased autism risk. Use of metformin to control it is relatively new and promising. Yet safety concerns regarding gestational metformin use remain, as its long-term effects in offspring are unclear. In light of beneficial findings with metformin for adult mouse social behavior, we hypothesized gestational metformin treatment might also promote offspring sociability. To test this, metformin was administered to non-diabetic, lean C57BL/6 J female mice at mating, with treatment discontinued at birth or wean. Male offspring exposed to metformin through birth lost social interaction preference relative to controls by time in chambers, but not by sniffing measures. Further, prenatal metformin exposure appeared to enhance social novelty preference only in females. However due to unbalanced litters and lack of statistical power, firm establishment of any sex-dependency of metformin's effects on sociability was not possible. Since organic cation transporter 3 (OCT3) transports metformin and is dense in placenta, social preferences of OCT3 knock-out males were measured. Relative to wild-type, OCT3 knock-outs had reduced interaction preference. Our data indicate gestational metformin exposure under non-diabetic conditions, or lack of OCT3, can impair social behavior in male C57BL6/J mice. Since OCT3 transports serotonin and tryptophan, impaired placental OCT3 function is one common mechanism that could persistently impact central serotonin systems and social behavior. Yet no gross alterations in serotonergic function were evident by measure of serotonin transporter density in OCT3, or serotonin turnover in metformin-exposed offspring brains. Mechanisms underlying the behavioral outcomes, and if with gestational diabetes the same would occur, remain unclear. Metformin's impacts on placental transporters and serotonin metabolism or AMPK activity in fetal brain need further investigation to clarify benefits and risks to offspring sociability from use of metformin to treat gestational diabetes.
Collapse
|